domingo, 28 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El secreto está en las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en las estrellas y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

https://gcdn.emol.cl/exploracion-espacial/files/2015/04/telescopio-hubble-1.jpg

 

Multitud de estrellas de aproximadamente 1 ó 2 millones de años que componen la agrupación estelar llamada R136.en la Nebulosa de la Tarántula.

https://gcdn.emol.cl/exploracion-espacial/files/2015/04/telescopio-hubble-2.jpg

NGC 2174 es una nebulosa que se encuentra ubicada en la constelación de Orión, a 6 millones de años luz de la Tierra.

 La región central de la nebulosa de la Tarántula en la Gran Nube de Magallanes. El cúmulo de estrellas R136 joven y denso se puede ver en la parte inferior derecha de la imagen - NASA, ESA, P Crowther (University of Sheffield)

Aquí, con m´ças detalles. La región central de la nebulosa de la Tarántula en la Gran Nube de Magallanes. El cúmulo de estrellas R136 joven y denso se puede ver en la parte inferior derecha de la imagen – NASA, ESA, P Crowther (University of Sheffield)

Mira las estrellas, como brillan en el cielo.

Mira las estrellas, brillar como luceros.

En ellas está luz,

También los Elementos.

De ellas vinistes tú,

Y la Vida del Universo.

Fusión de deuterio con tritio, por la cual se producen helio 4, se liberan un neutrón y se generan 17,59 MeV  de energía, como cantidad de masa apropiada convertida de la energía cinética de los productos, según la fórmula E = Δm c2.

Todos los elementos de la Tabla Periódica existentes en el Universo se fraguaron en las estrellas, allí el proceso de fusión nuclear hace complejo lo que es sencillo. Todos los seres vivos de la Tierra están hechos de esos elementos y, el 99% corresponde a eso que llamamos CHON (Carbono, Hidrógeno, Oxígeno y Nitrógeno), el otro 1% corresponde a trazas de otros elementos también “fabricados” en las estrellas yu en explosiones de Supernovas.

Resultado de imagen de La Vida en el Universo

Y, siendo así (que lo es), mirando esas imágenes de arriba de lugares distantes cuajado de estrellas (también de mundos), ¿cómo podemos dudar de que la Vida, prolifera por todo el Universo?

emilio silvera

¡Las estrellas! ¿Qué haríamos sin ellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en las estrellas y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

http://es.globedia.com/imagenes/noticias/2010/12/30/541531_1.jpg

Las estrellas enanas rojas son las más abundantes en el Universo y, desde luego, las que tienen la vida más larga. Algunas son casi tan viejas como el universo mismo, el poco material de fusión que sonsumen las llevan hasta esas edades matusalénicas de miles de millones de años, más de diez mil millones tienen algunas que, nos podrían contar muchas, muchas cosas de las que fueron testigos. Otras como nuestro Sol, estrellas GV2 enana amarilla es también del tipo más abundante. Luego están una prléyade de estrellas de mayor envergadura y grandes masas que van desde las 10 hasta las casi 150 masas solares.

Según se estima, las estrellas cuando tienen unas 120 masas solares han llegado a un límite en el que, su propia radiación las puede destruir. Sin embargo, se han descubierto estrellas que llegan hasta las 150 masas solares. ¿Por qué se mantienen “vivas” y no explotan. Bueno, todos los indicios apiuntan al hecho de que, para desahogar y esquivar los efectos de la inmensa radiación que produce la fusión nuclear, eyectan de manera periódica, material al espacio interestelar y se tranquiliza. Ahí tenenos el ejemplo de Eta Carinae.

Existen estrellas hipergigantes que son las que sobrepasan las 30 masas solares, así fueron denominadas cuando se observaron los objetos más brillantes en las Nubes de Magallanes, aunque en realidad, lo que vieron eran cúmulos de estrellas y no estrellas individuales. Sin embargo de estrellas supermasivas existen múltiples ejemplos y, hemos podido comprobar que, la enorme cantidad de material de fusión que consumen las lleva a una vida corta. Las estrellas supermasivas sólo viven unos pocos millones de años, mientras que estrellas como el Sol, llegan a los diez mil millones de años de vida.

Hay muchas clases de estrellas: Estrellas capullos envueltas en una nube de gas y polvo, estrellas de baja o de alta velocidad, con envoltura, con exceso de ultravioleta, de baja luminosidad, de baja masa, de Bario, de manganeso, de Carbono, de Litio, de Bariones, de campo, de Circonio, de estroncio, estrellas de Helio, de la rama gigante asintótica, de manganeso-mercurio, de metales pesados, de neutrones, (¿de Quarks?), estrellas de referencia, de Silicio, de Tecnecio, de tipo tardío, de tipo temprano, estrella del Polo, estrella doble, estrella enana, estrella estándar, evolucionada, estrella Flash, estrella fulgurante, magnética, estrella guía, hipergigante, estrella invitada, múltiple, peculiar, pobre en metales, estrella reloj, simbiótica, rica en metales, supermasiva, fijas, gigantes…, cada una de ellas tiene su propia personalidad, su propio color y temperatura y también, una media de vida que depende de manera dirtecta de su masa.

Los elementos químicos se fraguan dentro de ellas, y, también al final de sus vidas, en las explosiones Supernovas, se crean los materiales más complejos de la Tabla Periódica. Estos materiales, van formar parte de las grandes Nebulosas de las que vuelven a surgir nuevas estrellas y nuevos mundos que estarán hechos de todos esos eslementos creados en las estrellas y, como nosotros mismos provenimos de ahí, es fácil oir la expresión: “Somos polvo de estrellas”.

Las estrellas no son ninguna excepción y como todo en nuestro Universo, con el paso del tiempo evolucionan y, a medida que van consumiento su combustibles nuclerar de fusión, van acortando sus vidas que, en funsión de la masa, será más corta o más duradera y también, sus finales serán distintos por la misma causa: Estrellas como el Sol = Enanas Blancas. Estrellas de varias masas solres = Estrella de Neutrones. Estrellas masivas y supermasivas = Agujeros Negros.

Esas transmutaciones que se producen durante un largo período de tiempo, conllevan fenómenos que se producen de distintastas maneras en cada una de esas estrellas. En unas, se alcanza la estabilidad al degenerarse los electrones (que son fermiones), que siguen la Ley de Pauli del Principio de esclusión. Ahí aparecen las enanas blancas.  De la misma manera sucede en estrellas más masivas que el Sol pero, al tener más masa, no es suficiente que los electrones se degeneren y, entonces, electrones y protones se fusionan para convertirse en Neutrones que son (al ser fermiones), los que se degeneran y estabiliza a la estrella como de Neutrones. Cuando ya la masa es muy grande, nada puede frenar a mla Gravedad y lo que nos queda es un Agujero Negro.

Lo cierto es que, la química de las estrellas está presente en los mundos para que pueda surgir la Vida

Decir eso de que los elementos estelares llegaron a la Tierra y pudo surgir la Vida, no es, en realidad, contar gran cosa de lo que pudo pasar para que nosotros ahora, podamos estar aquí contando sobre ello. Los actuales descubrimientos de la Paleontología, la más tradicional de las científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica. Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutíles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy. Nada surge de manera espontánea, todo se fragua durante un tiempo que tiene marcado por la Naturaleza y, nosotros, hemos tardada (como humanos verdaderos), más de 13.000 millones de años en porde llegar hasta aquí. El tiempo necesario para que las estrellas fabricaran la materia prima y después, el mundo pusiera su granito de arena para que ésta pudiera evolucionar, con la ayuda de la radiaicón del Sol, el agua corriente, una adecuada atmósfera, la presencia de océanos, las placas tectónicas que reciclan periódicamente el planeta… ¡No, no es nada fácil que la vida surja en un Mundo!

Pero en el Universo, son muchas las cosas que pueden pasar, muchos los objetos que están presentes, imnumerables los fenómenos que de una u otra cuestión pueden estar pasando de manera continuada y que no siempre, sabemos comprender.

               ¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas

Simplemente se trata del fenómeno que conocemos como “Halo atmosférico”, un anilo o arco de luz que parece rodear al Sol (también a la Luna), resultado de la refracción y la reflexión de la luz solar o lunar por los cristales de hielo de los cirros. Los halos solares y lunares más comunes un diámetro angular de 46º. Por lo general, el borde del halo muestra un efecto prismático, estandio la luz azul refractada hacia el borde exterior y la rpoja al interior. Como resultado de la refracción preferencial de la luz hacia el borde del halo , la zona del cielo interior a un halo es más oscura que la interior. Los halos lunares solo pueden ser vistos claramente cuando la Luna es brillante, típicamente en un intervalo de cinco días en torno a la Luna llena.

El Halo Galáctico está referido a cualquier material situado en una distribicón aproximadamente esférica de una galaxia, y que se extiende hasta más allá de las regiones visibles. Puede referirse a la población de estrellas viejas (Población II), incluyendo a los cúmulos globulares, con poca o ninguna rotación alrededor del centro galáctico; o gas tenue, altamente ionizado y de alta temperatura que envelve a toda la galaxia, incluso, muchas veces el halo galáctico está referido a una especie de neblina inconcreta que circunda toda la galaxia sin que termine de hacerse presente pero, ahí está.

File:Ngc604 hst.jpg

Alguna vez podemos contemplar una que nos parece más o menos atractiva pero, no sabemos discernir sobre lo que en realidad estamos contemplando. Por ejempo, arriba tenemos la conocida como NGC 604,  una región H II gigante en la galaxia del Triángulo. Una región H II es una de gas y plasma brillante que puede alcanzar un tamaño de cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de luz ultravioleta extrema (con longitudes de onda inferiores a 912 Ångstroms) que ionizan la Nebulosa a su alrededor.

File:Ssc2005-02a.jpg

                                                                            Las regiones H II son muy abundantes en Galaxia

Cada de hidrógeno ionizado contribuye con dos partículas al gas, es decir, con un protón y un electrón. Las Regiones H II son calientes con temperaturas típicas de 10 000 K, y son entre 10 y 100 000 veces más densas que las regiones H I. Se encuentran normalmente alrededor de las estrellas O y B jóvenes y masivas, siendo el gas ionizado por su intensa luz ultraviloleta, haciendo que éste brille. La Nebulosa de orión es una famosa Región H II. Las Regiones H II pueden ser detectadas en la Galaxia por sus intensas emisiones en e infrarrojo. La radioemisión es debidaal bremsstrahlung del gas ionizado, y la radiación infrarroja a la emisión térmica del polvo.

http://bitacoradegalileo.files.wordpress.com/2010/12/m42_hallasnr.jpg

Las Regiones H II aquí muy presentes y dada su gran extensión. La nebulosa de Orión es uno de los objetos astronómicos más fotografiados, examinados, e investigados. De ella se ha obtenido información determinante acerca de la de estrellas y planetas y a partir de nubes de polvo y gas en colisión. Los astrónomos han observado en sus entrañas discos protoplanetarios, enananas marrones, fuertes turbulencias en el movimiento de partículas de gas y efectos fotoionizantes cerca de estrellas muy masivas próximas a la nebulosa.

Una región H I es una nube formada por hidrógeno atómico frío, poco denso y no ionizado con temperaturas de alrededor de 100 K. Las regiones HI no emiten radiación en el rango visual, sólo en la región de radio. La notación H I se refiere al hecho de que los átomos de Hidrógeno no están ionizados como lo están en los que están presentes en la regiones H II (arriba). Cada átomo de Hidrógeno neutro contribuye al gas justo con una partícula. la Densidad de las regiones H I es demasiado como para que se formen moléculas de hidrógeno, y la luz estelar disociará cualquier molécula formada, de manera que el gas permanece en forma de átomo. El Hidrñógeno neutro contrinuye aproximadamernte a la mitad de toda la materia interestelar en masa y en volumen,  con una densidad media de 1 Átomo/ cm3. Las regiones H I son frías.

Del asomnbroso universo son miuchas las cosas que desconocemos, y, poco a poco, vamos pudiendo descubrir muchos de sus misterios que nos acercan cada vez más, a saber dónde estamos y lo que podemos o no podemos esperar de lo que hay en nuestro entorno.

El Sol de desplaza por el de una tenue nube de gas interestelar conocida como Local Fluff.

La de que la Voyager 1 había dejado atrás la zona bajo influencia directa del viento solar y se encontraba ya surcando el interplantario se convirtió rápidamente en una de las grandes noticias astronómicas del año, en especial por toda la carga simbólica que representa que, por primera vez, un construido por la Humanidad había traspasado por primera vez esa frontera invisible que nos separa y aisla del océano estelar. Pero para los científicos de la misión la llegada a este nuevo reino con una sonda aún operativa y capaz de seguir enviado al menos hasta 2020 es un regalo del que esperan grandes resultados. Y es que más allá del límite solar se extiende una región tan amplia como desconocida, y mucho más compleja de lo que podamos imaginar.

El movimiento de esta estrella binaria fue un misterio durante más de 30años, e incluso se presentó como un posible fracaso de la Relatividad General de Einstein. Ahora un encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha resuleto el misterio. Se observan hechos que no siempre podemos explicar y, persistimos en la búsqueda de las respuestas hasta que las podemos encontrar.

En el efecto periastro se puede contemplar el brillo de una estrella binaria que tiene una órbita altamente excéntrica. Cuando la separación entre las componentes es mínima. Es de hecho, un aumento del efecto de reflexión en el instante del periastro, y surge por la misma causa: la irradiación de una estrrella por la otra.

Hemos llegado a saber de nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí estan presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Ésta es una situación en resulta especialmente apropiado utilizar las unidades “naturales” la , longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros , lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

Lo cierto es que, desde el comienzo del Tiempo, allá por los confines impenetrables de la lejanía del Big Bang (si es que fue así realmente como nació el Universo), se tuvieron que esperar algunos cientos de millones de años para que suregieran las primeras estrellas, pasar por las Eras de la Radiación, la Era Leptónica, la de la Materia, que se produjera la descongelación de los fotones para que el Universo se hiciera de luz… Después de miles de millones de años, el Universo tenía los elementos necesarios para que, la Vida, pudiera surgir en los mundos adecuados y… ¡Aquí estamos!

Aquí estamos tratando de saber lo mismo que quisieron saber nuestros ancestros filósofos: ¿De dónde venimos? ¿Qué hacemos aquí? ?Hacia Dónde vamos? ¿Tendremos algún destino predeterminado…

Y seguiremos, dentro de nuestra inmensa ignorancia, haciendo preguntas mientras estémos por aquí.

emilio silvera

¿Las estrellas? ¿Qué haríamos sin ellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en las estrellas y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Nella fantasia – Sarah Brightman – Concert … – YouTube

¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (big bang, teoría del universo estacionario, etc.

http://es.globedia.com/imagenes/noticias/2010/12/30/541531_1.jpg

Las estrellas enanas rojas son las más abundantes en el Universo y, desde luego, las que tienen la vida más larga. Algunas son casi tan viejas como el universo mismo, el poco material de fusión que consumen las llevan hasta esas edades matusalénicas de miles de millones de años, más de diez mil millones tienen algunas que, nos podrían contar muchas cosas de las que fueron testigos. Otras como nuestro Sol, estrellas de la clase GV2, enana amarilla, es también del tipo más abundante. Luego están una prléyade de estrellas de mayor envergadura que llamamos estrllas gigantes e hiperestrellas que van desde las 10 hasta las casi 150 masas solares, ya que, a partir de ahí, su propia radiación las destruiría

Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferentes de los que en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar la vida.

En relación al título de este trabajo: ¡Las estrellas! ¿Qué haríamos sin ellas? La respuesta es que no haríamos nada, por la semcilla razón de que, sin estrellas, tampoco nosotros estaríamos aquí. ¡Ellas nos trajeron y, en ellas está nuestro destino final! Viajar a las Estrellas.

Según se estima, las estrellas cuando tienen unas 120 masas solares han llegado a un límite en el que, su propia radiación las puede destruir. Sin embargo, se han descubierto estrellas que llegan hasta las 150 masas solares. ¿Por qué se mantienen “vivas” y no explotan. Bueno, todos los indicios apiuntan al hecho de que, para desahogar y esquivar los efectos de la inmensa radiación que produce la fusión nuclear, eyectan de manera periódica, material al espacio interestelar y se tranquiliza. Ahí tenenos el ejemplo de Eta Carinae.

EtaCarinae.jpg

Eta Carinae (η Car / η Carinae) es una estrella del tipo variable luminosa azu hipermasiva, situada en la constelación de la Quilla. Su masa oscila entre 100 y 150 veces la masa solar,  lo que la convierte en una de las estrellas más masivas conocidas en nuestra Galaxia. Asimismo, posee una altísima luminosidad, de alrededor de cuatro millones de veces la del Sol;  debido a la gran cantidad de polvo existente a su alrededor, Eta Carinae irradia el 99% de su luminosidad en la parte infrarroja del espectro, lo que la convierte en el objeto más brillante del cielo en el intervalo de longitudes de onda entre 10 y 20 μm.

Eta Carinae es una estrella muy joven, con una edad entre los 2 y los 3 millones de años, y se encuentra situada en NGC 3372,  también llamada la Gran Nebulosa de Carina o simplemente Nebulosa de Carina. Dicha nebulosa contiene varias estrellas supermasivas, incluyendo, además de Eta Carinae, la estrella HD 83129A.

Comparación entre los tamaños del Sol y VY Canis Majoris una hipergigante. Se trata de la segunda estrella más grande conocida. En su momento fue la mayor estrella conocida, aunque luego se descubrieron otras estrellas de mayor tamaño. En la actualidad la estrella más grande conocida es UY Scuti. Es una de las estrellas más grandes , y posee un radio equivalente a 1708 ± 192 radios solares (un diámetro que correspondería a 2.375.828.000 kil´çometros). Si esta estrella fuera nuestro Sol, englobaría todos los planetas hasta Júpiter y llegaría hasta la mitad de la órbita de Saturno. UY Scuti tiene un volumen de aproximadamente 5 mil millones de veces el del Sol. La segunda estrella más grande conocida actualmente es Westerlund-1-26.

                                                    TIPO ESPECTRAL

Existen estrellas hipergigantes que son las que sobrepasan las 30 masas solares, así fueron denominadas cuando se observaron los objetos más brillantes en las Nubes de Magallanes, aunque en realidad, lo que vieron eran cúmulos de estrellas y no estrellas individuales. Sin embargo de estrellas supermasivas existen múltiples ejemplos y, hemos podido comprobar que, la enorme cantidad de material de fusión que consumen las lleva a una vida corta. Las estrellas supermasivas sólo viven unos pocos millones de años, mientras que estrellas como el Sol, llegan a los diez mil millones de años de vida.

Hay muchas clases de estrellas: Estrellas capullos envueltas en una nube de gas y polvo, estrellas de baja o de alta velocidad, con envoltura, con exceso de ultravioleta, de baja luminosidad, de baja masa, de Bario, de Manganeso, de Carbono, de Litio, de Bariones, de campo, de Circonio, de Estroncio, estrellas de Helio, de la rama gigante asintótica, de Manganeso-Mercurio, de metales pesados, de Neutrones, (¿de Quarks?), estrellas de referencia, de Silicio, de Tecnecio, de tipo tardío, de tipo temprano, estrella del Polo, estrella doble, estrella enana, estrella estándar, evolucionada, estrella Flash, estrella fulgurante, magnética, estrella guía, hipergigante, estrella invitada, múltiple, peculiar, pobre en metales, estrella reloj, simbiótica, rica en metales, supermasiva, fijas, gigantes…, cada una de ellas tiene su propia personalidad, su propio color y temperatura y también, una media de vida que depende de manera dirtecta de su masa.

Los elementos químicos se fraguan dentro de ellas, y, también al final de sus vidas, en las explosiones Supernovas, se crean los materiales más complejos de la Tabla Periódica. Estos materiales, van formar parte de las grandes Nebulosas de las que vuelven a surgir nuevas estrellas y nuevos mundos que estarán hechos de todos esos eslementos creados en las estrellas y, como nosotros mismos provenimos de ahí, es fácil oir la expresión: “Somos polvo de estrellas”.

Las estrellas no son ninguna excepción y como todo en nuestro Universo, con el paso del tiempo evolucionan y, a medida que van consumiento su combustibles nuclerar de fusión, van acortando sus vidas que, en funsión de la masa, será más corta o más duradera y también, sus finales serán distintos por la misma causa: Estrellas como el Sol = Enanas Blancas. Estrellas de varias masas solres = Estrella de Neutrones. Estrellas masivas y supermasivas = Agujeros Negros.

Esas transmutaciones que se producen durante un largo período de tiempo, conllevan fenómenos que se producen de distintas maneras en cada una de esas estrellas. En unas, se alcanza la estabilidad al degenerarse los electrones (que son fermiones), que siguen la Ley de Pauli del Principio de esclusión. Ahí aparecen las enanas blancas.  De la misma manera sucede en estrellas más masivas que el Sol pero, al tener más masa, no es suficiente que los electrones se degeneren y, entonces, electrones y protones se fusionan para convertirse en Neutrones que son (al ser fermiones), los que se degeneran y estabiliza a la estrella como de Neutrones. Cuando ya la masa es muy grande, nada puede frenar a la Gravedad y lo que nos queda es un Agujero Negro.

       Lo cierto es que, la química de las estrellas está presente en los mundos para que pueda surgir la Vida

Decir eso de que los elementos estelares llegaron a la Tierra y pudo surgir la Vida, no es, en realidad, contar gran cosa de lo que pudo pasar para que nosotros ahora, podamos estar aquí contando sobre ello. Los actuales descubrimientos de la Paleontología, la más tradicional de las actividades científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica.

Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutíles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy. Nada surge de manera espontánea, todo se fragua durante un tiempo que tiene marcado por la Naturaleza y, nosotros, hemos tardada (como humanos verdaderos), más de 13.000 millones de años en porde llegar hasta aquí.

Del tronco común de los primates, surgieron dos ramas: la de los grandes simios, como el gorila, el chimpancé y el orangután y la de los homínidos. Los Chimpancés y nosotros tenemos un ancestro común que no era ni Homo ni Pan (pero esa, es otra historia).

El tiempo necesario para que las estrellas fabricaran la materia prima y después, el mundo pusiera su granito de arena para que ésta pudiera evolucionar, con la ayuda de la radiaicón del Sol, el agua corriente, una adecuada atmósfera, la presencia de océanos, las placas tectónicas que reciclan periódicamente el planeta… ¡No, no es nada fácil que la vida surja en un Mundo!

Pero en el Universo, son muchas las cosas que pueden pasar, muchos los objetos que están presentes, imnumerables los fenómenos que de una u otra manera pueden estar pasando de forma continuada y que no siempre, sabemos comprender.

Resultado de imagen de ¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas

              

    ¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas, es una simple Nebulosa planetaria

Simplemente se trata del fenómeno que conocemos como “Halo atmosférico”, un anilo o arco de luz que parece rodear al Sol (también a la Luna), resultado de la refracción y la reflexión de la luz solar o lunar por los cristales de hielo de los cirros. Los halos solares y lunares más comunes un diámetro angular de 46º. Por lo general, el borde del halo muestra un efecto prismático, estandio la luz azul refractada hacia el borde exterior y la rpoja al interior. Como resultado de la refracción preferencial de la luz hacia el borde del halo , la zona del cielo interior a un halo es más oscura que la interior. Los halos lunares solo pueden ser vistos claramente cuando la Luna es brillante, típicamente en un intervalo de cinco días en torno a la Luna llena.

El Halo Galáctico está referido a cualquier material situado en una distribución aproximadamente esférica de una galaxia, y que se extiende hasta más allá de las regiones visibles. Puede referirse a la población de estrellas viejas (Población II), incluyendo a los cúmulos globulares, con poca o ninguna rotación alrededor del centro galáctico; o gas tenue, altamente ionizado y de alta temperatura que envuelve a toda la galaxia, incluso, muchas veces el halo galáctico está referido a una especie de neblina inconcreta que circunda toda la galaxia sin que termine de hacerse presente pero, ahí está.

File:Ngc604 hst.jpg

Alguna vez podemos contemplar una que nos parece más o menos atractiva pero, no sabemos discernir sobre lo que en realidad estamos contemplando. Por ejempo, arriba tenemos la conocida como NGC 604,  una región H II gigante en la galaxia del Triángulo. Una región H II es una de gas y plasma brillante que puede alcanzar un tamaño de cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de luz ultravioleta extrema (con longitudes de onda inferiores a 912 Ångstroms) que ionizan la Nebulosa a su alrededor.

File:Ssc2005-02a.jpg

                                                                Las regiones H II son muy abundantes en Galaxia

Cada molécula de hidrógeno ionizado contribuye con dos partículas al gas, es decir, con un protón y un electrón. Las Regiones H II son calientes con temperaturas típicas de 10 000 K, y son entre 10 y 100 000 veces más densas que las regiones H I. Se encuentran normalmente alrededor de las estrellas O y B jóvenes y masivas, siendo el gas ionizado por su intensa luz ultraviloleta, haciendo que éste brille. La Nebulosa de orión es una famosa Región H II.

Las Regiones H II pueden ser detectadas en la Galaxia por sus intensas emisiones en e infrarrojo. La radioemisión es debida al bremsstrahlung del gas ionizado, y la radiación infrarroja a la emisión térmica del polvo. Cuando una molécula de agua (H2O) es bombardeada por partículas cargadas (iones), o por fotones de suficiente energía, pierde uno de sus electrones

http://bitacoradegalileo.files.wordpress.com/2010/12/m42_hallasnr.jpg

Las Regiones H II aquí muy presentes y dada su gran extensión. La nebulosa de Orión es uno de los objetos astronómicos más fotografiados, examinados, e investigados. De ella se ha obtenido información determinante acerca de las de estrellas y planetas y a partir de nubes de polvo y gas en colisión. Los astrónomos han observado en sus entrañas discos protoplanetarios, enananas marrones, fuertes turbulencias en el movimiento de partículas de gas y efectos fotoionizantes cerca de estrellas muy masivas próximas a la nebulosa. Además, en lugares como este se han hallado mol´çeculas complejas como azúcares y aminoácidos que son necesarios para la formación de la vida.

Una región H I es una nube formada por hidrógeno atómico frío, poco denso y no ionizado con temperaturas de alrededor de 100 K. Las regiones HI no emiten radiación en el rango visual, sólo en la región de radio. La notación H I se refiere al hecho de que los átomos de Hidrógeno no están ionizados como lo están en los que están presentes en la regiones H II (arriba). Cada átomo de Hidrógeno neutro contribuye al gas justo con una partícula. la Densidad de las regiones H I es demasiado como para que se formen moléculas de hidrógeno, y la luz estelar disociará cualquier molécula formada, de manera que el gas permanece en forma de átomo. El Hidógeno neutro contrinuye aproximadamernte a la mitad de toda la materia interestelar en masa y en volumen,  con una densidad media de 1 Átomo/ cm3. Las regiones H I son frías.

Del asomnbroso universo son miuchas las cosas que desconocemos, y, poco a poco, vamos pudiendo descubrir muchos de sus misterios que nos acercan cada vez más, a saber dónde estamos y lo que podemos o no podemos esperar de lo que hay en nuestro entorno.

El Sol de desplaza por el sendero abierto en una tenue nube de gas interestelar conocida como Local Fluff.

Lo de que la Voyager 1 había dejado atrás la zona bajo influencia directa del viento solar y se encontraba ya surcando el espacio interplantario se convirtió rápidamente en una de las grandes noticias astronómicas del año, en especial por toda la carga simbólica que representa que, por primera vez, un ingenio construido por la Humanidad había traspasado por fín  esa frontera invisible que nos separa y aisla del océano estelar.

          La Voyager I cruzó la última frontera del Sistema Solar

Pero para los científicos de la misión la llegada a este nuevo reino con una sonda aún operativa y capaz de seguir enviado al menos hasta 2020 es un regalo del que esperan grandes resultados. Y es que más allá del límite solar se extiende una región tan amplia como desconocida, y mucho más compleja de lo que podamos imaginar.

El movimiento de esta estrella binaria fue un misterio durante más de 30 años, e incluso se presentó como un posible fracaso de la Relatividad General de Einstein. Ahora un equipo  encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha resuleto el misterio. Se observan hechos que no siempre podemos explicar y, persistimos en la búsqueda de las respuestas hasta que las podemos encontrar.

Resultado de imagen de Dos estrellas binarias

En el efecto periastro se puede contemplar el brillo de una estrella binaria que tiene una órbita altamente excéntrica. Cuando la separación entre las componentes es mínima. Es de hecho, un aumento del efecto de reflexión en el instante del periastro, y surge por la misma causa: la irradiación de una estrella por la otra.

Hemos llegado a saber de nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsaresagujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí estan presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Ésta es una situación en resulta especialmente apropiado utilizar las unidades “naturales” la , longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada en el ser humano.

Mp = (hc/G)½ = 5’56 × 10-5 gramos
L= (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros , lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

Lo cierto es que, desde el comienzo del Tiempo, allá por los confines impenetrables de la lejanía del Big Bang (si es que fue así realmente como nació el Universo), se tuvieron que esperar algunos cientos de millones de años para que suregieran las primeras estrellas, pasar por las Eras de la Radiación, la Era Leptónica, la de la Materia, que se produjera la descongelación de los fotones para que el Universo se hiciera de luz… Después de miles de millones de años, el Universo tenía los elementos necesarios para que, la Vida, pudiera surgir en los mundos adecuados y… ¡Aquí estamos!

Aquí estamos tratando de saber lo mismo que quisieron saber nuestros ancestros filósofos: ¿De dónde venimos? ¿Qué hacemos aquí? ?Hacia Dónde vamos? ¿Tendremos algún destino predeterminado…?

Y seguiremos, dentro de nuestra inmensa ignorancia, haciendo preguntas mientras estémos por aquí creyéndo saber mucho más, de lo que en realidad sabemos.

emilio silvera

¡Las estrellas! ¿Qué haríamos sin ellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en las estrellas y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

http://es.globedia.com/imagenes/noticias/2010/12/30/541531_1.jpg

Las estrellas enanas rojas son las más abundantes en el Universo y, desde luego, las que tienen la vida más larga. Algunas son casi tan viejas como el universo mismo, el poco material de fusión que sonsumen las llevan hasta esas edades matusalénicas de miles de millones de años, más de diez mil millones tienen algunas que, nos podrían contar muchas, muchas cosas de las que fueron testigos. Otras como nuestro Sol, estrellas GV2 enana amarilla es también del tipo más abundante. Luego están una prléyade de estrellas de mayor envergadura y grandes masas que van desde las 10 hasta las casi 150 masas solares.

Según se estima, las estrellas cuando tienen unas 120 masas solares han llegado a un límite en el que, su propia radiación las puede destruir. Sin embargo, se han descubierto estrellas que llegan hasta las 150 masas solares. ¿Por qué se mantienen “vivas” y no explotan. Bueno, todos los indicios apiuntan al hecho de que, para desahogar y esquivar los efectos de la inmensa radiación que produce la fusión nuclear, eyectan de manera periódica, material al espacio interestelar y se tranquiliza. Ahí tenenos el ejemplo de Eta Carinae.

Existen estrellas hipergigantes que son las que sobrepasan las 30 masas solares, así fueron denominadas cuando se observaron los objetos más brillantes en las Nubes de Magallanes, aunque en realidad, lo que vieron eran cúmulos de estrellas y no estrellas individuales. Sin embargo de estrellas supermasivas existen múltiples ejemplos y, hemos podido comprobar que, la enorme cantidad de material de fusión que consumen las lleva a una vida corta. Las estrellas supermasivas sólo viven unos pocos millones de años, mientras que estrellas como el Sol, llegan a los diez mil millones de años de vida.

Hay muchas clases de estrellas: Estrellas capullos envueltas en una nube de gas y polvo, estrellas de baja o de alta velocidad, con envoltura, con exceso de ultravioleta, de baja luminosidad, de baja masa, de Bario, de manganeso, de Carbono, de Litio, de Bariones, de campo, de Circonio, de estroncio, estrellas de Helio, de la rama gigante asintótica, de manganeso-mercurio, de metales pesados, de neutrones, (¿de Quarks?), estrellas de referencia, de Silicio, de Tecnecio, de tipo tardío, de tipo temprano, estrella del Polo, estrella doble, estrella enana, estrella estándar, evolucionada, estrella Flash, estrella fulgurante, magnética, estrella guía, hipergigante, estrella invitada, múltiple, peculiar, pobre en metales, estrella reloj, simbiótica, rica en metales, supermasiva, fijas, gigantes…, cada una de ellas tiene su propia personalidad, su propio color y temperatura y también, una media de vida que depende de manera dirtecta de su masa.

Los elementos químicos se fraguan dentro de ellas, y, también al final de sus vidas, en las explosiones Supernovas, se crean los materiales más complejos de la Tabla Periódica. Estos materiales, van formar parte de las grandes Nebulosas de las que vuelven a surgir nuevas estrellas y nuevos mundos que estarán hechos de todos esos eslementos creados en las estrellas y, como nosotros mismos provenimos de ahí, es fácil oir la expresión: “Somos polvo de estrellas”.

Las estrellas no son ninguna excepción y como todo en nuestro Universo, con el paso del tiempo evolucionan y, a medida que van consumiento su combustibles nuclerar de fusión, van acortando sus vidas que, en funsión de la masa, será más corta o más duradera y también, sus finales serán distintos por la misma causa: Estrellas como el Sol = Enanas Blancas. Estrellas de varias masas solres = Estrella de Neutrones. Estrellas masivas y supermasivas = Agujeros Negros.

Esas transmutaciones que se producen durante un largo período de tiempo, conllevan fenómenos que se producen de distintastas maneras en cada una de esas estrellas. En unas, se alcanza la estabilidad al degenerarse los electrones (que son fermiones), que siguen la Ley de Pauli del Principio de esclusión. Ahí aparecen las enanas blancas.  De la misma manera sucede en estrellas más masivas que el Sol pero, al tener más masa, no es suficiente que los electrones se degeneren y, entonces, electrones y protones se fusionan para convertirse en Neutrones que son (al ser fermiones), los que se degeneran y estabiliza a la estrella como de Neutrones. Cuando ya la masa es muy grande, nada puede frenar a mla Gravedad y lo que nos queda es un Agujero Negro.

Es cierto que en las inmensas masas de gas y povo que conforman las grandes Nebulosas, han sido halladas moléculas y ácidos necesarios para que, en los mundos apropiados, germine la vida. Esos remanentes de materiales y elementos contienen todo lo necesario que, cuando interacciona con un entorno adecuado, se reúne para producir la transición de fase que recorre el largo camino que va, desde la “materia inerte hasta los pensamientos”. Es decir, el surgir de la vida.

Lo cierto es que, la química de las estrellas está presente en los mundos para que pueda surgir la Vida

Decir eso de que los elementos estelares llegaron a la Tierra y pudo surgir la Vida, no es, en realidad, contar gran cosa de lo que pudo pasar para que nosotros ahora, podamos estar aquí contando sobre ello. Los actuales descubrimientos de la Paleontología, la más tradicional de las científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica. Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutíles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Nada surge de manera espontánea, todo se fragua durante un tiempo que tiene marcado por la Naturaleza y, nosotros, hemos tardada (como humanos verdaderos), más de 13.000 millones de años en porde llegar hasta aquí. El tiempo necesario para que las estrellas fabricaran la materia prima y después, el mundo pusiera su granito de arena para que ésta pudiera evolucionar, con la ayuda de la radiaicón del Sol, el agua corriente, una adecuada atmósfera, la presencia de océanos, las placas tectónicas que reciclan periódicamente el planeta… ¡No, no es nada fácil que la vida surja en un Mundo!

Pero en el Universo, son muchas las cosas que pueden pasar, muchos los objetos que están presentes, imnumerables los fenómenos que de una u otra cuestión pueden estar pasando de manera continuada y que no siempre, sabemos comprender.

Resultado de imagen de ¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas Blog de emilio silvera

  ¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas es una simple Nebulosa Planeteria, es decir, lo que quedará después de que el Sol muera. Una enana blanca en el centro (ese puntito blanco), y, una bonita nebulosa multicolor.

Simplemente se trata del fenómeno que conocemos como “Halo atmosférico”, un anilo o arco de luz que parece rodear al Sol (también a la Luna), resultado de la refracción y la reflexión de la luz solar o lunar por los cristales de hielo de los cirros. Los halos solares y lunares más comunes un diámetro angular de 46º. Por lo general, el borde del halo muestra un efecto prismático, estandio la luz azul refractada hacia el borde exterior y la rpoja al interior. Como resultado de la refracción preferencial de la luz hacia el borde del halo , la zona del cielo interior a un halo es más oscura que la interior. Los halos lunares solo pueden ser vistos claramente cuando la Luna es brillante, típicamente en un intervalo de cinco días en torno a la Luna llena.

El Halo Galáctico está referido a cualquier material situado en una distribución aproximadamente esférica de una galaxia, y que se extiende hasta más allá de las regiones visibles. Puede referirse a la población de estrellas viejas (Población II), incluyendo a los cúmulos globulares, con poca o ninguna rotación alrededor del centro galáctico; o gas tenue, altamente ionizado y de alta temperatura que envuelve a toda la galaxia, incluso, muchas veces el halo galáctico está referido a una especie de neblina inconcreta que circunda toda la galaxia sin que termine de hacerse presente pero, ahí está.

File:Ngc604 hst.jpg

Alguna vez podemos contemplar una que nos parece más o menos atractiva pero, no sabemos discernir sobre lo que en realidad estamos contemplando. Por ejempo, arriba tenemos la conocida como NGC 604,  una región H II gigante en la galaxia del Triángulo. Una región H II es una de gas y plasma brillante que puede alcanzar un tamaño de cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de luz ultravioleta extrema (con longitudes de onda inferiores a 912 Ångstroms) que ionizan la Nebulosa a su alrededor.

File:Ssc2005-02a.jpg

                                               Las regiones H II son muy abundantes en nuestra Galaxia

Cada átomo de hidrógeno ionizado contribuye con dos partículas al gas, es decir, con un protón y un electrón. Las Regiones H II son calientes con temperaturas típicas de 10 000 K, y son entre 10 y 100 000 veces más densas que las regiones H I. Se encuentran normalmente alrededor de las estrellas O y B jóvenes y masivas, siendo el gas ionizado por su intensa luz ultraviloleta, haciendo que éste brille. La Nebulosa de orión es una famosa Región H II. Las Regiones H II pueden ser detectadas en la Galaxia por sus intensas emisiones en e infrarrojo. La radioemisión es debidaal bremsstrahlung del gas ionizado, y la radiación infrarroja a la emisión térmica del polvo.

http://bitacoradegalileo.files.wordpress.com/2010/12/m42_hallasnr.jpg

Las Regiones H II aquí muy presentes y dada su gran extensión. La nebulosa de Orión es uno de los objetos astronómicos más fotografiados, examinados, e investigados. De ella se ha obtenido información determinante acerca de la de estrellas y planetas y a partir de nubes de polvo y gas en colisión. Los astrónomos han observado en sus entrañas discos protoplanetarios, enananas marrones, fuertes turbulencias en el movimiento de partículas de gas y efectos fotoionizantes cerca de estrellas muy masivas próximas a la nebulosa.

Una región H I es una nube formada por hidrógeno atómico frío, poco denso y no ionizado con temperaturas de alrededor de 100 K. Las regiones HI no emiten radiación en el rango visual, sólo en la región de radio. La notación H I se refiere al hecho de que los átomos de Hidrógeno no están ionizados como lo están en los que están presentes en la regiones H II (arriba). Cada átomo de Hidrógeno neutro contribuye al gas justo con una partícula. la Densidad de las regiones H I es demasiado sencilla como para que se formen moléculas de hidrógeno, y la luz estelar disociará cualquier molécula formada, de manera que el gas permanece en forma de átomo. El Hidrógeno neutro contrinuye aproximadamernte a la mitad de toda la materia interestelar en masa y en volumen,  con una densidad media de 1 Átomo/ cm3. Las regiones H I son frías.

Del asomnbroso universo son muchas las cosas que desconocemos, y, poco a poco, vamos pudiendo descubrir muchos de sus misterios que nos acercan cada vez más, a saber dónde estamos y lo que podemos o no podemos esperar de lo que hay en nuestro entorno.

El Sol de desplaza por el de una tenue nube de gas interestelar conocida como Local Fluff.

Lo de que la Voyager 1 había dejado atrás la zona bajo influencia directa del viento solar y se encontraba ya surcando el interplantario se convirtió rápidamente en una de las grandes noticias astronómicas del año, en especial por toda la carga simbólica que representa que, por primera vez, un ingenio construido por la Humanidad había traspasado por primera vez esa frontera invisible que nos separa y aisla del océano estelar. Pero para los científicos de la misión la llegada a este nuevo reino con una sonda aún operativa y capaz de seguir enviado al menos hasta 2020 es un regalo del que esperan grandes resultados. Y es que más allá del límite solar se extiende una región tan amplia como desconocida, y mucho más compleja de lo que podamos imaginar.

El movimiento de esta estrella binaria fue un misterio durante más de 30 años, e incluso se presentó como un posible fracaso de la Relatividad General de Einstein. Ahora un encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha resuelto el misterio. Se observan hechos que no siempre podemos explicar y, persistimos en la búsqueda de las respuestas hasta que las podemos encontrar.

En el efecto periastro se puede contemplar el brillo de una estrella binaria que tiene una órbita altamente excéntrica. Cuando la separación entre las componentes es mínima. Es de hecho, un aumento del efecto de reflexión en el instante del periastro, y surge por la misma causa: la irradiación de una estrrella por la otra.

Hemos llegado a saber de nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí estan presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Ésta es una situación en resulta especialmente apropiado utilizar las unidades “naturales” la , longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros , lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

Lo cierto es que, desde el comienzo del Tiempo, allá por los confines impenetrables de la lejanía del Big Bang (si es que fue así realmente como nació el Universo), se tuvieron que esperar algunos cientos de millones de años para que suregieran las primeras estrellas, pasar por las Eras de la Radiación, la Era Leptónica, la de la Materia, que se produjera la descongelación de los fotones para que el Universo se hiciera de luz… Después de miles de millones de años, el Universo tenía los elementos necesarios para que, la Vida, pudiera surgir en los mundos adecuados y… ¡Aquí estamos!

Aquí estamos tratando de saber lo mismo que quisieron saber nuestros ancestros filósofos: ¿De dónde venimos? ¿Qué hacemos aquí? ?Hacia Dónde vamos? ¿Tendremos algún destino predeterminado…

Y seguiremos, dentro de nuestra inmensa ignorancia, haciendo preguntas mientras estémos por aquí.

emilio silvera

¡La curiosidad! que está con nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en las estrellas y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

hubble2

Me ha venido a la memoria escenas y hechos que, en la última charla que pude dar en un Centro Educativo,  en el apartado de Ciencia, para chavales de 2º de Bachillerato, comencé la sesión ilustrándola con la Imagen de arriba, de la que di una breve explicación antes de entrar en materia que, en realidad era: Nacimiento, Vida y Muerte de las estrellas y, de lo que hacían durante esos largos períodos de tiempo y, en qué se convertían al final de sus vidas como estrellas.

El caso fue que, comencé con las explicaciones y, de entre el auditorio de jóvenes llenos de energía y revoltosos, algunos, no prestaban atención y, además, con sus bromas y risas, no dejaban que los demás, se pudieran interesar en lo que allí se trataba.

Aquella actitud de algunos, me obligó a parar la charla y, mirándo seriamente a los alborotadores, les dije: “Chicos, si el tema no os interesa, y queréis salir de aquí siendo un poco más “burros”, sois libres de hacerlo.” Sin embargo, os ruego que, si finalmente decidís seguir con nosotros, y al final ser un poco mñás “sabios”, dejéis de alborotar.

Como ya son “hombrecitos y mujeres”, la reprimenda tuvo su efecto y, a partir de aquel momento, todos estuvieron atentos a mis palabras con las que fui desgranando, despacio y con palabras sencillas, lo que era una explosión de supernova y cómo dejaba regada una amplia región del espacio interestelar por una hermosa e inmensa nebulosa de cuyos materiales, vuelven a nacer nuevas estrellas y nuevos mundos.

Imagen de la formación de una estrella tomada por un nuevo telescopio. (Foto: ESA).

Apoyaba mis palabras con imágenes  como la de arriba.  La fotografía combina diferentes radiaciones, como rayos X, infrarojos o luz visible, y genera una amalgama de colores que aportan información importante para entender cómo llega una estrella a ser una estrella. Esta imagen ofrece una interesante mirada hacia el interior de la región activa de estrellas en ciernes llamada NGC 346. Los científicos responsables del telescopio aseguran que revela información nueva sobre cómo se forman las estrellas en el Universo.

La NASA publicó un video (1/09/2011) donde se aprecia el proceso de nacimiento estelar. Con grandes chorros de gas incandescente nacen las estrellas a millones de años luz, algo que ahora está al alcance del ojo humano a través de un vídeo reconstruido con imágenes fijas tomadas por el telescopio Hubble.  El vídeo, publicado en la página web de la agencia espacial estadounidense (NASA), ofrecía nuevos detalles sobre el proceso de nacimiento estelar, en el que se pueden apreciar los chorros de gas que expulsan las estrellas jóvenes con un detalle hasta ahora nunca visto.

A medida que las explicaciones avanzaban, pude notar como el interés de los chicos crecía. Ya no bromeaba nadie, la sala estaba en silencio y todos, sin excepción, se veían interesados e incluso, algunos, tenían la boca abierta por asombro. Allí, lo que al principio era una simple charla para alumnos, se fue convirtiendo en un auditoriun donde, profesores y alumnos de otras clases llegaban y se unián a los ya presentes.

Les pude explicar con todo detalle y de la manera más sencilla posible, como se formaban los elementos en las estrellas a partir del Hidrogeno, el elemento más sencillo de la Naturaleza.

Les expliqué el proceso protónprotón que convertía Hidrógeno en Helio y el proceso triple Alfa que convertía Helio en Carbono, el material químicamente más idóneo para la vida -al menos aquí en la Tierra- y, se hizo un largo recorrido por la transmutación que se producía en  todos los elementos, a medida que transcurría el tiempo y la estrella evolucionaba.

Pude darles una buena noción de las clases de estrellas que existen y de que, no todas tienen las mismas masas y que, como consecuencia de ello, cada una de esas estrellas, viven más o menos tiempo y que, cuando al final mueren, lo hacen de muy diferentes maneras. Ya que, estrellas medianas como nuestro Sol, terminan creando una Nebulosa planetaria al convertirse en Gigante roja y, terminan sus días como enanas blancas de una gran densidad. Les expliqué el proceso que hacían hasta llegar a tal estado y los parámetros que, como ekl principio de exclusión de Pauli, estaban allí presentes. De la misma manera, les expliqué que, estrellas más masivas terminaban como estrellas de neutrones y más masivas aún, como agujeros negros.

El recorrido fue algo largo (más de lo esperado), ya que, vista la gran atención que todos ponían en las explicaciones y en las imágenes que se ivan poniendo en cada fasa del proceso explicativo, procuraba que el tema tratado lo fuera en profundidad y amplitud y, de esa manera, la cosa resultó, además de más amena, mucho más completa y, sobre todo, comprensible.

Cuando al final di la charla por finalizada, pregunté si alguien quería alguna explicación sobre algún aspecxto delo que habíamos tratado, y, las manos que se levantaban presagiaban un largo, muy largo debate. Y, así fue. Los jóvenes se interesaban por todo y, de entre todo lo explicado, las cosas que más llamaron su atención fueron, por ejemplo:

Que nuestro Sol, cada segundo, pueda fusionar 4.654000 toneladas de Hidrógeno en 4.650.000 toneladas de Helio. Y, un observador inquisitivo, me preguntaba: ¿dónde están las 4.000 Tn que se han perdido? Bueno, le expliqé que habían sido lanzadas al espacio interestelar en forma de luz y de calor y, una pequeña fracción, llegaba a la Tierra para permitir la fotosíntesis y la vida.

Otra de las cuestiones que les llamó más la atención fue, cómo era posible que estrellas supergigantes, pudieran tener una vida más corta cuando tenían a su disposición mucho más material. Y, cuando les expliqué que, esas estrellas, no consumen sino que devoran literalmente el material nuclaer de fusión, comprendieron el por qué de sus cortas vidas.

Y, preguntaban cómo no todas las estrellas tenían el mismo colo, amarillas como nuestro Sol. La exlicación, como sabemos, está en el hecho de que no todas están formadas por el mismo material: Hay estrellas de Carbono, otras son de Oxígeno, Litio, manganeso…, la diversidad es enorme.

Mostraron mucha curiosidad y más intewrés aún, al saber -no todos conocían tal hecho- que, los elementos para hacer posible, la bio-química de la vida, se fabrica en las estrellas, es allí, en sus hornos nucleares donde se producen los elementos que conforma la materia del Universo, su diversidad que, bajo ciertas condiciones y, en los mundos adecuados situados en las zonas habitables de sus estrellas, pueden hacer surgir formas de vida que, a veces, llegan incluso a ser conscientes, como ha pasado aquí, en la Tierra.

Resultado de imagen de Remanente de Supernova

Los remanentes de supernovas y de cómo en esas inmensas explosiones se producían oro y platino, también fue uno de los temas que llamó la atención del personal. Todos querían hablar al mismo tiempo y todos -era un auténtico gozo- tenían preguntas que plantear. Al final, el tiempo pasaba sin sentir y tuve que dar por finalizado el evento que, al contrario de lo que parecía al principio, fue todo un exito, sobre todo, al comprobar que aquellos jóvenes al terminar la charla y el coloquio, eran un poco “más sabios” que antes de empezar.

Claro que, no siempre las cosas salen tan bien paradas. Recuerdo aquel Asilo de Ancianos al que hace tiempo fuí a dar una charla de astronomía y, antes de terminar, estaban todos, prácticamewnte dormidos. La curiosidad y el interés, les había abandonado y, ese fue un día triste para mí.

emilio silvera