sábado, 16 de diciembre del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Extraños supervivientes del pasado

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los científicos no entienden por qué existe el agujero negro más antiguo del Universo

Tiene una masa 800 millones de veces la del Sol y ya existía cuando el universo tenía solo el 5 por ciento de su edad actual.

agujero negro cuando el Universo tenía un 5% de su edad actual. | Robin Dienel/Carnegie Institution for Science" href="https://s.libertaddigital.com/2017/12/08/1920/1080/fit/agujero-negro.jpg">

 

 

 

 

Ilustración que recrea el agujero negro cuando el Universo tenía un 5% de su edad actual. | Robin Dienel/Carnegie Institution for Science

 

 

Un grupo de astrónomos han descubierto el agujero negro supermasivo más distante observado. Reside en un cuásar luminoso y su luz llega desde cuando el universo tenía solo el 5 por ciento de su edad actual. Los cuásares son objetos tremendamente brillantes compuestos por enormes agujeros negros que acrecen la materia en el centro de las galaxias masivas. Este agujero negro recién descubierto tiene una masa 800 millones de veces la masa del Sol.

Recreación del cuásar más antiguo del universo descubierto desde un observatorio chileno

“Reunir toda esta masa en menos de 690 millones de años (desde el Big Bang) es un desafío enorme para las teorías del crecimiento súper masivo del agujero negro”, explica Eduardo Bañados, de la Carnegie Institution, que lideró la investigación, realizada con el telescopio Magallanes y que se publica en Nature.

Para explicar cómo agujeros negros tan grandes surgieron tan pronto después del Big Bang, los astrónomos han especulado que el universo primitivo podría haber tenido condiciones que permitieran la creación de agujeros negros muy grandes con masas que alcanzaban 100.000 veces la masa del Sol. Esto es muy diferente de los agujeros negros que se forman en el universo actual, que rara vez superan algunas docenas de masas solares.

Quásar distante ULAS J1120+0641

Bram Venemans, del Instituto Max Planck de Astronomía en Alemania, añadió: “Los cuásares se encuentran entre los objetos celestes más brillantes y distantes conocidos y son cruciales para comprender el universo primitivo”. El cuásar de Bañados es especialmente interesante porque es del tiempo conocido como la época de reionización, cuando el universo emergió de su edad oscura.

El Big Bang comenzó el universo como una sopa caliente y turbia de partículas extremadamente energéticas que se expandía rápidamente. A medida que se expandió, se enfrió. Alrededor de 400.000 años más tarde (muy rápidamente en una escala cósmica), estas partículas se enfriaron y se fusionaron en gas hidrógeno neutro.

Así se hizo la luz en el Universo

    Cuando se liberaron los fotones el Universo se hizo transparente, se hizo la luz

El universo permaneció oscuro, sin ninguna fuente luminosa, hasta que la gravedad condensó la materia en las primeras estrellas y galaxias. La energía liberada por estas galaxias antiguas causó que el hidrógeno neutral esparcido por todo el universo se excitara e ionizara, o perdiera un electrón, un estado en el que el gas se ha mantenido desde ese momento. Una vez que el universo se reionizó, los fotones podían viajar libremente por el espacio, por lo que el universo se volvió transparente a la luz.

El análisis del cuásar recién descubierto muestra que una gran fracción del hidrógeno en su entorno inmediato es neutral, lo que indica que los astrónomos han identificado una fuente en la época de reionización, antes de que suficientes de las primeras estrellas y galaxias se hubieran activado completamente para ionizar el universo. “Fue la última gran transición del universo y una de las fronteras actuales de la astrofísica”, señala Bañados.

Resultado de imagen de Cuásar lejano y desplazamiento al rojo

La distancia del cuásar está determinada por lo que se denomina su desplazamiento al rojo, que es una medida de cuánto se estira la longitud de onda de su luz mediante la expansión del universo antes de llegar a la Tierra. Cuanto mayor es el desplazamiento al rojo, mayor es la distancia, y los astrónomos posteriores están mirando a tiempo cuando observan el objeto. Este cuásar recién descubierto tiene un corrimiento al rojo de 7.54, basado en la detección de emisiones de carbono ionizado de la galaxia que aloja el agujero negro masivo.

Resultado de imagen de Cuásar lejano y desplazamiento al rojo

Detalles del cuásar 3C 273 observado con el Telescopio Espacial Hubble. La imagen de la izquierda muestra claramente lo brillante y compacto que es el objeto, lo que hizo que pareciese una estrella. Para conseguir la imagen de la izquierda se utilizó un instrumento (un coronógrafo) que bloqueaba la luz del cuásar, dejando ver su galaxia anfitriona. En ambas tomas se aprecia el chorro de gas a alta velocidad proveniente del agujero negro súper-masivo central. Una de las componentes de la emisión en radio de 3C 273 coincide perfectamente con este chorro de gas. | Crédito de la imagen: HST / NASA / ESA / STScI.

“Esta gran distancia hace que estos objetos sean extremadamente débiles cuando se ven desde la Tierra. Los cuásares tempranos también son muy raros en el cielo. Solo se sabía que existía un cuásar con un corrimiento al rojo mayor a siete antes de ahora, a pesar de una extensa búsqueda”, afirma Xiaohui Fan, del Observatorio Steward de la Universidad de Arizona.

Se prevé que entre 20 y 100 cuásares tan brillantes y tan distantes como el cuásar descubierto por Bañados y su equipo existan en todo el cielo, por lo que este es un descubrimiento importante que proporcionará información fundamental del universo joven, cuando solo era 5 por ciento su edad actual.

Conociendo el Universo del pasado

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Representación artística de un <a href=agujero negro." />

El agujero negro más antiguo del universo

Un grupo de astrónomos descubre un cuásar de cuando el universo solo tenía 690 millones de años

 

Recreación del cuásar más antiguo del universo descubierto desde un observatorio chileno

Recreación del cuásar más antiguo del universo descubierto desde un observatorio chileno ROBIN DIENEL/CARNEGIE INSTITUTION FOR SCIENCE

Acercarse al significado de las dimensiones del Universo produce vértigo. Hace alrededor de 10.000 años, los humanos comenzaron a domesticar seres vivos poniendo las bases de la civilización. Hay que retroceder 200 o 300.000 años para encontrar los primeros representantes de nuestra especie, la primera capaz de asomarse a los misterios del cosmos. Miles de generaciones humanas, 200 imperios como el de Roma, y aún no habríamos empezado a arañar la superficie de la historia universal. La Tierra se formó hace 4.500 millones de años y podría ser dos veces más vieja sin estar aún cerca de la gran inflación que dio origen a todo. Mucho más allá, a solo 690 millones de años del Big Bang, poco más que un instante en términos cósmicos, es donde se ha encontrado el cuásar más antiguo que se conoce.

Los cuásares son los objetos más brillantes del universo y son el fruto de una verdadera carnicería estelar. Se trata de agujeros negros supermasivos que ocupan el interior de grandes galaxias. Desde allí, con su inmenso tirón gravitatorio, atraen hacia ellos sistemas planetarios completos y escupen después materia acelerada a velocidades cercanas a la de la luz.

Uno de esos chorros hiperluminosos es el que descubrió un equipo liderado por el astrónomo chileno Eduardo Bañados desde el observatorio de Las Campanas, en el norte de Chile. “Este cuásar es tan luminoso que en tan solo 10 minutos de observación lo pudimos confirmar como el más lejano jamás observado”, explica el científico. El cuásar, que envía su luz desde una época en que el universo tenía solo un 5% de su edad actual, alberga en su interior un agujero negro con 800 veces la masa del Sol. Esa galaxia antiquísima ofrece información sobre lo que sucedió cuando empezaron a formarse las primeras estrellas y sobre eso escriben en Nature hoy Bañados y sus colegas.

 

 

Poco antes del tiempo en que existió este cuásar, el universo comenzó a ser visible

 

 

Resultado de imagen

 

 

Justo después del Big Bang, el universo era una sopa caliente de partículas muy energéticas que se expandían a velocidades inimaginables. Cuando las partículas se separaron unas de otras, el cosmos comenzó a enfriarse y 400.000 años de separación después, las partículas primigenias pudieron combinarse en un gas de hidrógeno neutro. El universo era entonces oscuro y permaneció falto de fuentes luminosas hasta que la gravedad comenzó a condensar la materia en las primeras estrellas y galaxias. La energía liberada por estas galaxias antiguas hizo que el hidrógeno neutro se ionizara. Con la reionización del universo, los fotones pudieron viajar libremente por el espacio, y así el cosmos se hizo transparente a la luz.

El nuevo cuásar envía información sobre aquella era en la que todo comenzó a ser visible. El análisis que se publica ahora en Nature muestra que una gran parte del hidrógeno de los alrededores inmediatos de aquella galaxia antiquísima es neutro, algo que indica que aquella fuente existió en la era de la reionización, antes de que las primeras estrellas y galaxias se hubiesen formado y tuviesen la capacidad para cambiar completamente el equilibrio electrónico del universo.

Figure 1

Lo más espectacular de los cuásares no es su lejanía, sino que puedan ser visibles. Un cuásar deber ser tan brillante como 1.000 galaxias juntas.

“Fue la última gran transición del universo y una de las fronteras actuales de la astrofísica”, dice Bañados. El investigador chileno lleva tiempo trabajando en investigar aquel tiempo de cambio, desde la edad oscura al universo visible al que estamos acostumbrados, y los cuásares, esas intensas fuentes de luz que viajan desde el universo temprano, son su herramienta.

En 2016, Bañados también anunció el descubrimiento de 63 nuevos cuásares con edades casi tan antiguas como el que presenta hoy. “La formación y la evolución de las primeras fuentes de luz y estructuras del universo es uno de los grandes misterios de la astronomía”, decía entonces. “Cuásares muy brillantes como los 63 descubiertos en este estudio son las mejores herramientas para ayudarnos a indagar en el universo temprano, pero hasta ahora, los resultados concluyentes se han limitado a una muestra muy pequeña de cuásares antiguos”, añadía.

“Este cuásar, por ser tan brillante, se está convirtiendo en una mina de oro para estudios del universo primitivo y ya hemos asegurado más observaciones de este objeto con gran parte de los observatorios más poderosos en la Tierra y en el espacio, desde rayos X a ondas de radio”, concluye Bañados sobre su último hallazgo.

Reportaje de prensa en el País

Atisbar en los agujeros negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

NASA Selecciona una Misión Para Estudiar los Agujeros Negros

 

04.01.17.- La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares.

Los objetos tales como los agujeros negros pueden calentar los gases circundantes a más de un millón de grados. La radiación de alta energía de rayos X de este gas puede ser polarizada, vibrando en una dirección particular. La misión Imaging X-ray Polarimetry Explorer (IXPE) transportará tres telescopios espaciales con cámaras capaces de medir la polarización de estos rayos X cósmicos, permitiendo a los científicos responder preguntas fundamentales sobre estos entornos turbulentos y extremos donde los campos gravitatorios, eléctricos y magnéticos están en sus límites.

“No podemos ver directamente lo que está pasando cerca de objetos como agujeros negros y estrellas de neutrones, pero estudiar la polarización de los rayos X emitidos desde sus entornos revela la física de estos enigmáticos objetos”, dijo Paul Hertz, director de división de astrofísica de la Dirección de Misiones Científicas de la NASA en Washington. “La NASA tiene una gran historia de lanzamiento de observatorios en el Programa de Exploración Astrofísica con nuevas y únicas capacidades de observación. IXPE abrirá una nueva ventana en el universo para que los astrónomos puedan mirar a través. Hoy, sólo podemos adivinar lo que vamos a encontrar”.

El Programa de Exploración de Astrofísica de la NASA solicitó propuestas para nuevas misiones en Septiembre de 2014. Se presentaron 14 propuestas y se seleccionaron tres conceptos de misión para su revisión adicional por un grupo de expertos y científicos externos. La NASA determinó que la propuesta IXPE proporcionaba el mejor potencial científico y el plan de desarrollo más factible.

 

 

La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares. Image Credit: NASA

 

 

 

Fusión de Agujeros Negros: Ondas Gravitacionales

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Científicos detectan una cuarta onda gravitacional

 

Por primera vez, el hallazgo no ha sido realizado solo por el detector estadounidense, LIGO, sino también por el europeo, Virgo. Esto consolida la tecnología y permite mejorar 10 veces la precisión de la detección

Ondas gravitacionales detectadas. Son distorsiones del espacio-tiempo generadas en la fusión de <a href=agujeros negros (en la imagen) y que viajan hasta la Tierra" />

Ondas gravitacionales detectadas. Son distorsiones del espacio-tiempo generadas en la fusión de agujeros negros (en la imagen) y que viajan hasta la Tierra – Max Planck Institute for Gravitational Physics

G.L.S. Madrid

 

 

Los físicos han sido capaces de detectar una onda gravitacional, una distorsión del espacio-tiempo predicha por Einstein, por cuarta vez. El hallazgo, publicado este miércoles en Physical Review Letters, no solo consolida una nueva era de exploración basada en estas ondas, sino que pasará a la historia por ser el primero logrado gracias a la actividad conjunta del detector de ondas gravitacionales de Estados Unidos (LIGO, «Laser Interferometer Gravitational-wave Observatory») y su contraparte europea, (Virgo).

Resultado de imagen de Ondas gravitacionales, distorsión del Espacio

La detección se produjo el 14 de agosto cuando los dos observatorios estadounidenses (situados en Livingstone, Luisiana, y Hanford, en Washington) junto con el europeo, (localizado en Cascina, Italia), detectaron una fuente, conocida como «GW170814», que han relacionado con la fusión de dos agujeros negros. Uno tendría 31 masas solares y el otro 25 y ambos estarían a una distancia de la Tierra de 1.800 millones de años luz. Después de la fusión, y según los cálculos de los científicos, el agujero negro resultante adquirió una masa de 53 soles y el resto se transformó en energía emitida en forma de ondas gravitacionales.

«La incorporación de Virgo nos ha dado un montón de datos útiles», ha explicado en un comunicado de la Universidad de Glasgow John Veitch, coautor del hallazgo. «Tener un tercer detector significa que podemos triangular la posición de la fuente, y determinar con mucha mayor precisión el punto exacto del Universo desde donde llega la señal».

De hecho, gracias a la participación del observatorio europeo, en el que recientemente comenzó a funcionar una importante ampliación técnica conocida como «Advanced Virgo», los científicos han podido multiplicar por diez la precisión con la que se ha situado.

Perturbaciones del espacio-tiempo

 

 

Resultado de imagen de Desde el primer hallazgo de ondas gravitacionales, en septiembre de 2015, el observatorio LIGO ha detectado estas formas de energía en tres ocasiones

 

 

Desde el primer hallazgo de ondas gravitacionales, en septiembre de 2015, el observatorio LIGO ha detectado estas formas de energía en tres ocasiones. Tanto Ligo como Virgo son capaces de detectarlas gracias a una tecnología conocida como interferometría y que, fundamentalmente, permite medir distancias con una increíble precisión gracias a un sistema de rayos láser. Gracias a esta capacidad, es posible localizar las distorsiones del espacio-tiempo generadas por las ondas gravitacionales.

Estas distorsiones están provocadas por objetos muy masivos que giran a altas velocidades. De forma parecida a las ondas que aparecen en un estanque cuando se arroja una piedra, los objetos muy masivos generan unas ondas que viajan por el espacio a la velocidad de la luz y que pueden ser detectadas en la Tierra.

Tal como ha explicado John Veitch, la detección requiere varias fases de análisis. La primera tarea es filtrar y comparar los datos de los instrumentos para distinguir las detecciones reales de las que no lo son. Y, una vez que se encuentra una coincidencia, los análisis de datos se centran en determinar la masa y la posición de la fuente y luego compartirla con científicos de todo el mundo.

Inversiones multimillonarias

 

 

Resultado de imagen de El programa VIRGO y las Ondas Gravitacionales

 

 

Esta tarea es extremadamente compleja y, por ello, requiere un importante despliegue. Detrás de Virgo hay 20 laboratorios de seis países, una inversión de más de 324 millones de euros y un equipo de 280 científicos. LIGO, por su parte, tiene un equipo de 1.000 investigadores y ha supuesto una inversión de al menos 1.100 millones de dólares (cerca de 935 millones de euros).

Resultado de imagen de El programa VIRGO y las Ondas Gravitacionales

La detección conjunta lograda por Virgo y LIGO tiene más ventajas. Tal como ha informado Sciencemag.org, dado que permite localizar con mayor precisión la fuente de las ondas, más adelante facilitará localizar el origen visualmente. Esto será muy interesante para situar otra fuente de ondas gravitacionales que hasta ahora no ha sido detectada nunca: la fusión de estrellas de neutrones.

Resultado de imagen de El programa VIRGO y las Ondas Gravitacionales

Si pudiéramos visualizar la fusión de dos agujeros negros… ¡Sería impresionante!

Hace unas semanas se rumoreó que se había detectado la primera, y ahora es cuestión de semanas o meses que se confirme o descarte. Sea como sea, lo interesante es que, cuando se detecte esta fuente, los científicos podrán mirar a través de los telescopios el origen de estas ondas gravitacionales. Esto permitirá aprender más sobre el fenómeno y sobre las estrellas de neutrones.

Además, la última observación permitirá poner a prueba las teorías sobre la polarización de las ondas gravitacionales, una propiedad predicha por la relatividad-einstein-necesaria-para-tele-o-no-perderse-201511242221_noticia.html">Relatividad de Einstein.

«Este es solo el comienzo de las observaciones de la red formada por Virgo y LIGO», ha dicho en un comunicado de la Universidad de Glasgow David Shoemaker, portavoz del LIGO. «Con la próxima carrera, prevista para otoño de 2018, podemos esperar una detección así cada semana, si no más». En los próximos años la ventana al Universo que son las ondas gravitacionales dará muchas sorpresas.

Colisión de agujeros negros y ondas gravitacionales

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Agujeros negros

 

La posibilidad reciente de detectar ondas gravitacionales hace posible estudiar objetos que hasta ahora eran casi invisibles. Aquí, en la presentación, nos dicen: El secreto que guardaron un siglo los agujeros negros.

 

 

Recreación de una pareja de <a href=agujeros negros a punto de fusionarse" width="980" height="552" />
Recreación de una pareja de agujeros negros a punto de fusionarse NASA

Durante la Primera Guerra Mundial, mientras calculaba trayectorias de proyectiles como artillero en el frente ruso, el físico alemán Karl Schwarzschild estudiaba la recién publicada Teoría General de la Relatividadde Albert Einstein. Además de comprobar que las ecuaciones de su compatriota describían el universo con una precisión sin precedentes, Schwarzschild observó que también implicaban la existencia de objetos cósmicos inesperados. Las curvaturas del tejido del espacio tiempo provocadas por los planetas o las estrellas generaban una especie de pozos gravitatorios que mantienen a los humanos anclados a la Tierra y hace que la Luna gire a nuestro alrededor mientras nosotros viajamos alrededor del Sol. En casos extremos, cuando la concentración de masa fuese máxima, la atracción gravitatoria sería tan intensa que ni siquiera la luz escaparía a su influjo.

Aquella fue la primera vez que se planteó la existencia de los agujeros negros, un concepto tan extraño que hasta Einstein dudó de su existencia real. Poco después, mientras seguía rumiando las consecuencias de su idea más revolucionaria, le escribió a Schwarzschild sobre la posibilidad de que algunos objetos supermasivos como aquellos extraños agujeros negros produjesen ondulaciones en el tejido espaciotemporal similares a las que se producen cuando se arroja una piedra a un estanque.

Resultado de imagen de LIGO y las Ondas gravitacionales

Un siglo después, aquellas hipótesis locas han sido confirmadas por pruebas empíricas. En septiembre de 2015, el Observatorio de Interferometría Láser de Ondas Gravitacionales (LIGO), en EE UU, captó las primeras ondas gravitacionales producidas justo en el momento en que dos agujeros negros chocaban un instante antes de fusionarse. Aquellos objetos tenían entre 10 y 30 veces la masa del Sol y su unión liberó en una fracción de segundo más energía que todas las estrellas conocidas juntas. Este tipo de colisiones habían sido predichas, pero era la primera vez que se observaban.

 

Una hipótesis plantea que los agujeros negros nacieron juntos en forma de pareja de estrellas

Como se anunció entonces, la posibilidad de detectar ondas gravitacionales inauguraba una nueva etapa para la astronomía, que podía estudiar de forma directa fenómenos hasta entonces invisibles. Esta semana, un equipo de investigadores de la Universidad de Birmingham, en Reino Unido, y las universidades de Maryland y Chicago, en EE UU, ha publicado en Nature los resultados de uno de los primeros trabajos de esta nueva astronomía. Su intención era explicar cómo se formaban las parejas de agujeros negros como las que ha detectado LIGO.

Resultado de imagen de Captan dos estrellas masivas

Captan dos estrellas masivas que funden con el beso de la muerte

Ilya Mandel, científico de la Universidad de Birmingham y coautor del artículo, explica en The Conversation que los astrónomos se plantean dos hipótesis para la formación de estas parejas. En una de ellas, la pareja habría iniciado su periplo unida desde el inicio, con el nacimiento simultáneo de dos estrellas masivas. Después de una larga existencia, cuando su combustible nuclear se agotase, ambas se colapsarían bajo el peso de su propia gravedad concentrándose hasta formar dos agujeros negros. Si estuviesen a la distancia adecuada, ambos objetos empezarían a perder parte de la energía que los mantenía en sus órbitas en forma de ondas gravitacionales y caerían en una espiral hacia el otro hasta fusionarse. En la segunda opción que se plantea, los monstruos cósmicos se habrían formado por separado, pero lo habrían hecho en una parte del universo con superpoblación de estrellas. Los tirones gravitatorios de esos astros habrían acabado por reunir a los dos agujeros negros.

La información proporcionada por LIGO permite saber si estos objetos rotan lentamente o lo hacen rápido y si están alineados entre ellos o no. Por ahora, los datos indican que los agujeros negros giran sobre sí mismos a toda velocidad y que no están alineados. Esto pondría los datos contra la teoría de que se formaron como estrella binaria e indicaría que, al menos en este caso, las dos bestias gravitatorias surgieron por separado en una región con muchas estrellas y se acabaron por unir después.

Resultado de imagen de Agujeros negros

Los agujeros negros atraen la materia circundante y la engullen

Los autores señalan que ese tipo de agujeros negros serían similares a los observados en nuestra galaxia. Calculan que harían falta otras diez observaciones de los efectos de la fusión de otras parejas para confirmar su origen. Sin embargo, también advierten que es posible que esos agujeros lejanos sean distintos de los que vemos en nuestro vecindario y en ese caso harían falta muchas más observaciones para dar sentido a tanta complejidad. Resolver el misterio del todo requerirá tiempo, pero al menos ya se sabe que los protagonistas de la historia son reales. Lo que se sabe ahora, pese a todo lo que se desconoce, habría fascinado a aquel artillero que aprovechaba los descansos entre disparos para reflexionar sobre los enigmas del universo.

Fuente: El País