martes, 19 de noviembre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Agujeros Negros! Esos monstruos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando hablamos de un agujero negro estamos hablando de un objeto con un campo gravitacional tan intenso que su velocidad de escape supera la velocidad de la luz. Los agujeros negros se forman cuando las estrellas masivas colapsan al final de sus vidas. Un objeto que se colapsa se convierte en un agujero negro cuando su radio se hace menor que un tamaño crítico, conocido como radio de Schwarzschild, y la luz no puede escapar de él.

Resultado de imagen de agujero negro y su Horizonte de sucesos

agujeros negros y su horizonte de sucesos

 

La superficie de tiene este radio crítico se denomina horizonte de sucesos, y marca la frontera dentro de la cual esta atrapada toda la información. De esta forma, los acontecimientos dentro del agujero negro no pueden ser observados desde fuera. La teoría muestra que tanto el espacio como el tiempo se distorsionan dentro del horizonte de sucesos y que los objetos colapsan a un único punto del agujero, que se llama singularidad, situada en el propio centro del agujero negro. Los agujeros negros pueden tener cualquier masa.

Pueden existir agujeros negros supermasivos (de 105 masas solares) en los centros de las galaxias activas. En el otro extremo, mini.agujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después del Big Bang. Diminutos agujeros negros podrían ser capaces de capturar partículas a su alrededor, formando el equivalente gravitatorio de los átomos.

Resultado de imagen de Se supine que existen mini agujeros negros

Leer más

El Horizonte de los Agujeros Negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, SgrA) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros  supermasivos.

El centro galáctico: un misterio en ondas de radio

Al sintonizar hacia el centro de la Vía Láctea, los radioastrónomos exploran un lugar complejo y misterioso donde está SgrA que…¡Esconde un Agujero Negro descomunal! Las observaciones astronómicas utilizando la técnica de Interferometría de muy larga base, a longitudes de onda milimétricas proporcionan una resolución angular única en Astronomía. De este modo, observando a 86 GHz se consigue una resolución angular del orden de 40 microsegundos de arco, lo que supone una resolución lineal de 1 año-luz para una fuente con un corrimiento al rojo z = 1, de 10 días-luz para una fuente con un corrimiento al rojo de z = 0,01 y de 10 minutos-luz (1 Unidad Astronómica) para una fuente situada a una distancia de 8 Kpc (1 parcec = 3,26 años-luz), la distancia de nuestro centro galáctico. Debemos resaltar que con la técnica de mm-VLBI disfrutamos de una doble ventaja: por un lado alcanzamos una resolución de decenas de microsegundos de arco, proporcionando imágenes muy detalladas de las regiones emisoras y, por otro, podemos estudiar aquellas regiones que son parcialmente opacas a longitudes de onda más larga.

 

Imagen de un chorro de 5000 años-luz de longitud que está siendo eyectado del núcleo activo de la galaxia M87 (una radiogalaxia). La radiación sincrotrón del chorro (azul) contrasta con la luz estelar de la galaxia albergadora (amarillo). Crédito: HST/NASA/ESA.


Las galaxias activas tienen núcleos que brillan tanto, que pueden llegar a ser más luminosos que las galaxias que los alberga. Estas galaxias activas se caracterizan porque en sus núcleos ocurren procesos no-térmicos que liberan enormes cantidades de energía que parece provenir de una región muy pequeña y brillante situada en el corazón de la galaxia.

Son muchos los indicios que favorecen la hipótesis de que tales objetos son agujeros negros muy masivos (del orden de 100-1000 millones de veces la masa del Sol), con un tamaño de 1 minuto-luz o varios días-luz. La enorme fuerza gravitatoria que ejercen estos agujeros negros atrae el gas y las estrellas de las inmediaciones, formando el denominado disco de acrecimiento que está en rotación diferencial en torno al objeto masivo.

El modelo de “Agujero Negro + disco de acrecimiento” es el más satisfactorio hoy día para explicar las propiedades de los núcleos activos de galaxias. Un aspecto muy destacado en la morfología de las regiones compactas de los núcleos activos es la presencia de una intensa emisión radio en forma de chorros (los denominados Jets relativistas), que están formados por un plasma de partículas relativistas que emanan del núcleo central y viajan hasta distancias de varios megaparsec.

Jet relativista de un AGN. Creditos: Pearson Education, Inc., Upper Saddle River, New Jersey

Estos Jets son los aceleradores de partículas más energéticos del Cosmos. Sin embargo, todavía se desconoce como se generan, aceleran y coliman, si bien a través de simulaciones magnetohidrodinámicas se conoce que el campo magnético juega un papel fundamental en estos procesos. La técnica de mm-VLBI proporciona imágenes directas y nítidas de las regiones nucleares de las galaxias activas y acotan tanto el tamaño de los núcleos como la anchura de los chorros en la vecindad del agujero negro supermasivo. De hecho, las resoluciones angulares proporcionadas por mm-VLBI corresponderían a escalas lineales del orden de miles, centenares y decenas de Radios de Schwarzschild dependiendo de la distancia y la masa del agujero negro.

Existen algunos casos espectaculares, las imágenes obtenidas con mm-VLBI trazan los chorros relativistas a escalas del subparsec, cartografiando los motores centrales de las fuentes compactas con una resolución lineal tal que nos permite acercarnos a la última órbita estable en torno al agujero negro supermasivo. Podemos mencionar algunos casos espectaculares que han dejado asombrados a propios y extraños.

Mrk 501: Es una radiogalaxia situada a un corrimiento al rojo de z = 0.oo34. La masa del agujero negro central es del orden de mil millones de masas solares, por lo que el tamaño del radio de Schwarzschild es de 0,12 días-luz. Las observaciones con mm-VLBI a 86 GHz, muestra que su núcleo es muy compacto. El tamaño del núcleo de la radio fuente se puede establecer en 0,03 pc.

M87: La galaxia M87 está situada a la una distancia de 16,75 Mpc tiene un agujero negro situado en la región nuclear con una masa del orden de los 3.000 millones de masas solares, lo que implica que el tamaño del Radio de Schwarzschild es de 0,34 días-luz, Las observaciones interferométricas a 45 y 43 GHz han mostrado la presencia de un chorro relativista, en la que se observan dos fenómenos muy relevantes: i) en la base del jet, el ángulo de apertura es muy grande, lo que indicaría que el chorro vuelve a recolimarse a una cierta distancia del Agujero Negro central; ii) el chorro presenta fuerte emisión en sus bordes (fenómeno conocido como “edge brightening”, mientras que presenta emisión muy débil en su interior.

Todo esto lleva consigo una serie de implicaciones y parámetros de tipo técnicos que no son al caso destacar aquí.

Astrometría diferencial

Las observaciones de VLBI a longitudes de onda centimétricas han mostrado que SgrA, la radio fuente compacta en el centro de nuestra Galaxia, tiene un tamaño angular que escala con la longitud de onda al cuadrado, resultado que se interpreta físicamente considerando que la estructura que detectamos para SgrA no es su estructura intrínseca sino la imagen resultado de la interacción de su emisión de radio con sus electrones interestelares de la región interna de la Galaxia (lo que técnicamente se conoce como el “disco de scattering”. Las observaciones con mm-VLBI a 86 GHz han permitido determinar por primera vez el tamaño intrínseco de SgrA que ha resultado ser de 1,01 Unidades Astronómicas.

Chandra image of Sgr A.jpg

                                      Imagen de Sagitario A proporcionada por Chandra

Considerando que SgrA se encuentra a una distancia de 8 Kpc y que su masa es de 4 millones de masas solares, este tamaño lineal corresponde a 12,6 Radios de Schwarzschild. Con todo esto, vengo a decir que estamos ya en la misma vecindad de los agujeros negros y, lo único que tenemos que despejar es la incógnita que nos pueda crear el efecto del que nos habla la Relatividad General cuando establece que la radiación proveniente de una superficie esférica a una cierta distancia del agujero negro, sufriría un proceso de lente gravitacional amplificadora dándonos un tamaño mayor que el real. Así, cualquier objeto emisor con un tamaño intrínseco inferior a 1,5 Radios de Schwarzschild tendría un diámetro aparente mayor que 5,2 R de Schwarzschild.

¡Es todo tan complejo!

emilio silvera

El agujero negro más monstruoso hallado hasta el momento

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de El agujero negro más grande hallado hasta el momento

El mayor agujero negro descubierto hasta el momento tiene 40.000 millones de masas solares y está a 700 millones de años luz de la Tierra

Un equipo de investigadores capitaneados por Kianusch Mehrgan, del Instituto Max Planck para la Física Extraterrestre, acaba de identificar un ejemplar extraordinario, único. El mayor agujero negro descubierto hasta el momento.  Gigantesco incluso si se le compara con los mayores agujeros negros conocidos hasta ahora. Su masa, en efecto, supera los 40.000 millones de masas solares. Para esta bestia, incluso el término «supermasivo» se ha quedado corto. Sus descubridores, de hecho, se refieren a él como «ultramasivo».

Noticia de prensa

Nuevos descubrimientos

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Imagen del Cúmulo galáctico Abell 85, en culo centro se encuentra la galaxia Holmberg 15A

Imagen del Cúmulo galáctico Abell 85, en culo centro se encuentra la galaxia Holmberg 15A – Chandra X-Ray Observatory/NASA

Resultado de imagen de El mayor agujero negro

Hallan el mayor agujero negro de la Historia:

Tiene 40.000 millones de masas solares. El colosal objeto se encuentra en el corazón de la galaxia Holmberg 15A, a 700 millones de años luz de la Tierra.

ABC – CIENCVIA

 

Sabemos que los agujeros negros pueden llegar a ser grandes, muy grandes, en especial los que residen en los centros de la mayoría de las galaxias. Nuestra Vía Láctea, sin ir más lejos, alberga en su corazón a Sagitario A*, un auténtico «monstruo» con una masa equivalente a la de cuatro millones de soles. No en vano, esta clase de agujeros negros reciben el nombre de «supermasivos». Pero por muy impresionante que parezca, Sagitario A* parecería ridículamente pequeño al lado de muchos otros agujeros negros similares, que tienen decenas, centenares e incluso miles de millones de veces la masa de nuestro Sol.

Resultado de imagen de El mayor agujero negro

Ahora, un equipo de investigadores capitaneados por Kianusch Mehrgan, del Instituto Max Planck para la Física Extraterrestre, acaba de identificar un ejemplar extraordinario, único. Y gigantesco incluso si se le compara con los mayores agujeros negros conocidos hasta ahora. Su masa, en efecto, supera los 40.000 millones de masas solares. Para esta bestia, incluso el término «supermasivo» se ha quedado corto. Sus descubridores, de hecho, se refieren a él como «ultramasivo».

Este oscuro y enorme coloso espacial se encuentra en el centro de Holmberg 15A, una galaxia elíptica supergigante situada a 700 millones de años luz de distancia, justo en medio del cúmulo de galaxias Abell 85. No hace falta decir que el objeto es uno de los mayores agujeros negros jamás encontrados, y el mayor localizado hasta ahora por el método de medir el movimiento de las estrellas que hay a su alrededor.

Resultado de imagen de El mayor agujero negro

Algunos cálculos anteriores, basados en la dinámica de la galaxia y del cúmulo que la contiene, habían estimado para este agujero negro una masa aún mucho mayor (cerca de 310.000 millones de masas solares). Pero todos esos cálculos se llevaron a cabo a partir de mediciones indirectas del agujero negro. La de Mehrgan y sus colegas, sin embargo, es la primera medición directa del objeto conseguida hasta ahora.

El espectacular hallazgo, que se publicará próximamente en The Astrophysical Journal, puede consultarse ya en el servidor arXiv de la Universidad de Cornell. Según se explica en el propio artículo, los investigadores analizaron la cinemática estelar de Holmberg 15A «a partir de nuevas observaciones espectrales de amplio campo de alta resolución». Y encontraron «un agujero negro supermasivo con una masa de (4.0 ± 0.80) × 1010 masas solares en el centro de la galaxia. Se trata del agujero negro más masivo hallado con una detección dinámica directa en en el Universo local».

Imagen relacionada

Con sus 40.000 millones de masas solares, el agujero negro es tan grande que su horizonte de sucesos (la frontera invisible que, una vez cruzada, no permite que nada pueda volver a salir) englobaría sobradamente las órbitas de todos los planetas del Sistema Solar. Para hacernos una idea de su magnitud, basta con pensar que Plutón se encuentra, como promedio, a 39,5 Unidades Astronómicas del Sol (una Unidad Astronómica, o UA, equivale a la distancia que hay entre el Sol y la Tierra, unos 150 millones de km). Y que la heliopausa, donde el viento solar pierde prácticamente toda su fuerza, se encuentra a 123 UA del astro Rey. Pues bien, el horizonte de sucesos de Holm 15A*, como se ha dado en llamar al colosal agujero negro, se extiende a lo largo de 790 UA. Resulta difícil imaginar siquiera algo de ese tamaño.

Resultado de imagen de El agujero negro supermasivo de la galaxia Holmberg 15A

«El agujero negro supermasivo de la galaxia Holmberg 15A -escriben los investigadores-, no solo es el más masivo encontrado hasta ahora, sino que también es de cuatro a nueve veces más grande de lo esperado dada la masa estelar del bulbo de la galaxia y la velocidad de dispersión de sus estrellas».

Una posible explicación para su enorme tamaño sería que Holm 15A* procede de la fusión de dos agujeros negros más pequeños durante una antigua colisión entre dos galaxias, que se unieron para formar una mucho mayor. Ahora, los investigadores quieren seguir estudiando esta «bestia impresionante», realizar modelos más complejos y detallados y comparar sus resultados con las observaciones, para tratar así de descubrir cómo exactamente pudo llegar a formarse un agujero negro tan desproporcionadamente grande.

La pregunta, por supuesto, es la siguiente: si sucedió una vez, puede volver a pasar, de modo que ¿cuántos agujeros negros «ultramasivos» puede haber ahí fuera? ¿Y es posible que los haya todavía más grandes? La respuesta podría llegar con las próximas investigaciones.

Campos electromagnéticos en A.N. masivos

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Campos Magnéticos en Agujeros Negros Supermasivos

“Primera imagen real de la historia de un agujero negro supermasivo ubicado en el centro de la galaxia M87 presentado el 10 de abril de 2019 por el consorcio internacional Telescopio del Horizonte de Sucesos.”

Los agujeros negros supermasivos encierran buena parte de los principales misterios que hoy tiene planteados la astrofísica. Por ejemplo, seguimos sin saber cómo pudieron adquirir miles de millones de veces la masa solar en tan poco tiempo, cientos de millones de años, después del Big Bang. La presión de la radiación emitida en un ritmo de acrecimiento de material tan rápido tendría que haber frenado el proceso.

Además, el acrecimiento suele venir acompañado de eyección en forma de chorros relativistas de parte del material.  El modelo más aceptado para explicar la producción de estos chorros, que se mantienen extraordinariamente enfocados hasta distancias extragalácticas, es el llamado proceso de Blandfrod-Znajek que, si bien se entiende a nivel energético, no concreta la dinámica.

“Arriba: representación artística de un agujero negro supermasivo absorbiendo materia de una estrella cercana. Abajo: imágenes de un supuesto agujero negro supermasivo devorando una estrella en la galaxia RXJ 1242-11. Izq.: en rayos x; Der.: en luz visible.

Según este modelo, intensos campos magnéticos en la parte más interna del disco de acrecimiento extraerían energía rotacional del agujero negro y la transformarían en energía cinética para los chorros relativistas.

Completar la teoría requiere estudiar estos fascinantes astros a través de nuevas ventanas observacionales (mayores sensibilidades y resoluciones). Gran parte de la información disponible sobre las inmediaciones del agujero negro proviene de simulaciones y de extrapolaciones a partir de regiones muy distantes. Por ejemplo, los campos magnéticos se habían medido en los chorros a grandes distancias (varios años-luz) del agujero negro pues, cerca de éste, el chorro absorbe completamente su propia radioemisión.

       Concepción artística de un agujero y la acreción del disco negro supermasivo

Iván Martí-Vidal, en el Observatorio Espacial Onsala de la Chalmers University of Technology, y otros colegas en este centro acaban de informar (DOI:10.1126/science.aaa1784) que han conseguido detectar señales del campo magnético desde la base misma del chorro, observando para ello radiofrecuencias muy altas, para las que esa zona deja de ser opaca. Estudiando cómo depende el ángulo de polarización de la longitud de onda, los investigadores han detectado la rotación de Faraday debida al campo magnético en el punto donde nace el chorro relativista. Y esta rotación ha resultado ser cientos de veces mayor que la máxima jamás detectada en astronomía, revelando así la enorme intensidad del campo magnético asociado al nacimiento del chorro relativista.

Arriba, tres simulaciones por GRMHD del el 11 de abril de 2017. Abajo, los mismos modelos teóricos, procesados a través la tecnología de simulación VLBI, emulando el ruido que provoca la atmósfera terrestre en la observación. Imagen: K. Akiyama et al.

“Arriba, tres simulaciones por GRMHD del el 11 de abril de 2017. Abajo, los mismos modelos teóricos, procesados a través la tecnología de simulación VLBI, emulando el ruido que provoca la atmósfera terrestre en la observación. Imagen: K. Akiyama et al.”

En definitiva, Martí-Vidal y sus colegas en Suecia han obtenido, por primera vez de forma directa, una señal del campo magnético que habita precisamente en el lugar donde se ultima el proceso de Blandfrod-Znajek. Esto completa de modo importante el conocimiento que hasta ahora se tenía de estos exóticos objetos, que provenía de extrapolaciones dependientes del modelo. Es un paso más para entender el papel fundamental que los agujeros negros han podido tener en la evolución del Universo.

Revista RSEF, Volumen 29 número 2 de 2.015