martes, 21 de mayo del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Se consigue fotografiar al “monstruo” del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Simulación del horizonte de sucesos de un agujero negro

Simulación del horizonte de sucesos de un agujero negro - EHT

Máxima expectación por la primera fotografía de un agujero negro

Resultado de imagen de Gran expectación por la primera fotografía de un agujero negro

 

Todo apunta a que el consorcio global del Event Horizon Telescope presentará dos imágenes del horizonte de sucesos de dos agujeros negros supermasivos, uno en el centro de la Vía Láctea y otro en la galaxia M87

Nunca hasta ahora se ha visto uno de estos objetos. El hallazgo es clave para confirmar las predicciones de la relatividad de Einstein y estudiar estos cuerpos, fundamentales en la evolución de las galaxias

 

Todo apunta a que faltan poco más de 24 horas para que la humanidad presencie, por primera vez en la historia, la fotografía de un agujero negro. Este podría ser el motivo por el cual este miércoles astrónomos de todos los rincones del mundo han convocado una docena de ruedas de prensa para anunciar los primeros resultados del consorcio del « Event Horizon Telescope», EHT, cuya finalidad es tomar una instantánea del horizonte de sucesos de un agujero negro. Aunque la existencia de estos objetos es aceptada de forma universal, gracias a sus efectos gravitatorios sobre cuerpos cercanos, nadie ha visto uno hasta ahora.

A las 15.00 de la tarde, hora peninsular española, los 200 astrónomos del proyecto EHT presentarán los resultados de su campaña de observación de 2017. Habrá ruedas de prensa en Bruselas, Lyngby, Santiago de Chile, Shanghai, Tokio, Taipei y Washington. En Bruselas, la rueda de prensa se celebrará en el edificio de la Comisión Europea, el Berlaymont, y, en Madrid, el Consejo Superior de Investigaciones Científicas (CSIC) ha convocado a todos los medios.

¿Qué veremos?

 

Por el momento, se desconoce cuáles son los resultados que se harán públicos, pero, en el caso más favorable, se observarán simulaciones del horizonte de sucesos del agujero negro supermasivo del centro de la Vía Láctea, conocido como Sagitario A*, y de otro situado en el centro de la galaxia vecina M87, en la constelación de Virgo, y que está emitiendo un jet de energía de miles de años luz de largo.

Imagen de M87. El agujero negro de su núcleo emite un enorme jet, visible en la imagen

 

Imagen de M87. El agujero negro de su núcleo emite un enorme jet, visible en la imagen- Wikipedia

 

Los agujeros negros supermasivos son objetos que almacenan la masa de millones de soles en espacios muy reducidos, y que se caracterizan por estar rodeados por una banda de plasma (gas muy caliente) girando a enormes velocidades. También se caracterizan por tener un horizonte de sucesos, que es una región que funciona como un punto de no retorno que, una vez atravesado, impide que nada, ni la luz, escapen del interior de estos objetos. Se puede decir, por tanto, que los agujeros son pozos gravitacionales en los que el espacio-tiempo colapsa y atrapan la luz y la materia a perpetuidad. Por último, dentro de los agujeros negros existe una singularidad gravitacional, un punto sin dimensiones con densidad infinita.

Tal como explicó para este periódico Sheperd Doeleman, director del proyecto EHT, en 2017, con estas observaciones se espera ver un anillo luminoso de materia rodeando los agujeros negros, caracterizado por su asimetría debido al efecto doppler: dado que los agujeros están rotando, y como en un lado del anillo la luz y la materia se mueven hacia nosotros, nos parece más brillante, mientras que en el otro lado la luz y el material se están alejando, por lo que parecen más tenues. Por tanto, en principio las imágenes de los agujeros negros recordarían mucho a las de la película «Interestellar», con la diferencia de que este no representa la mencionada asimetría.

Simulación de un agujero negro aparecida en la película «Interestellar»

Simulación de un agujero negro aparecida en la película «Interestellar» - Warner Bros. / Syncopy / Paramount Pictures

 

En todo caso, resta por ver si los astrónomos han conseguido que las imágenes sean lo suficientemente nítidas como para poder comparar lo observado con lo predicho por las teorías. De hecho, uno de los problemas que los investigadores han tenido que hacer frente es el ruido introducido por los sistemas electrónicos en las observaciones.

Un telescopio global

 

 

Resultado de imagen de Telescopios situados en Arizona y HawAIResultado de imagen de Telescopios situados en Arizona y HawAI

Resultado de imagen de Telescopios situados en Arizona y HawAI

Resultado de imagen de Telescopios situados en Arizona y HawAI

Resultado de imagen de gRAN tELESCOPIO DE cANARIAS

Sean cuales sean los resultados que se muestren este miércoles, son fruto de una campaña de observación llevada a cabo en 2017, en la que se coordinaron las observaciones de ocho radiotelescopios diferentes, por medio de relojes atómicos. Dichos telescopios observaron los agujeros negros en longitudes de onda de un milímetro (entre el infrarrojo y los microondas).

Estas observaciones se sincronizaron a través de una técnica conocida como interferometría, y que permite sumar varias antenas para lograr unos resultados similares a los de un instrumento gigantesco, tan grande como la Tierra. De hecho, en este caso se combinaron las observaciones de telescopios situados en Arizona y Hawái (Estados Unidos), España, México, Chile y el polo Sur.

Resultado de imagen de eL CENTRO DE LA gALAXIA Y sAG aResultado de imagen de eL CENTRO DE LA gALAXIA Y sAG a

Esta es la única forma de observar la silueta de los agujeros negros de la Vía Láctea o de M87 porque, aunque ambos son objetos grandes, para la escala humana, están extremadamente lejos. Por ejemplo, se cree que Sagitario A* (que tiene una masa de cuatro millones de soles) tiene un diámetro de 44 millones de kilómetros, lo que le permitiría caber en el interior de la órbita de Mercurio, pero resulta difícil de ver porque está a 26.000 años luz de la Tierra. El otro objeto, situado en M87, es 1.500 veces más masivo que Sagitario A*.

El reto es comparable al de ver una naranja puesta en la superficie de la Luna desde la Tierra

 

Según ha dicho Sheperd Doeleman, director del proyecto EHT, el reto es comparable al de ver una naranja puesta en la superficie de la Luna desde la Tierra.

Supercomputadoras y 4 petabytes de información

 

 

Resultado de imagen de Supercomputadoras y 4 petabytes de información

 

 

Hacer estas observaciones ha llevado mucho tiempo. Los astrónomos observaron estos agujeros negros durante cinco noches. Recogieron un total de cuatro petabytes de información (cuatro millones de gigabytes), que equivalen al «peso» que tendrían las canciones en formato MP3 necesarias para estar sonando 8.000 años seguidos. Los datos son tan voluminosos que los científicos no han podido transmitirlos por internet, sino que han tenido que moverlos por medio de discos duros.

Esta información se usó luego para elaborar modelos tridimensionales sobre ambos agujeros negros, contrastando los datos con las predicciones de la física para los agujeros negros en varias circunstancias. La tarea ha sido tan complicada, que los astrónomos han necesitado dos años para correlacionar, calibrar e interpretar los datos, con la ayuda de supercomputadores.

Resultado de imagen de eL HORIZONTE DE SUCESOS DE UN AGUJERO NEGRO

«Lo que supondría la imagen del agujero negro, si la conseguimos, sería coger la predicción más extraña y extrema de la relatividad general, uno de los mayores logros de la mente humana, y combinarla con la tecnología más avanzada con una colaboración a escala planetaria, en la que se han empleado las técnicas estadísticas más avanzadas y nuevas técnicas de imagen», dijo Peter Galison, miembro del equipo del EHT y científico en la Universidad de Harvard, en una conferencia celebrada en marzo. «Es como hacer una nueva cámara con un nuevo tipo de película y de lentes, combinándolo con otras cámaras a la vez».

Poner a prueba a Einstein

Según resaltó Galison, tomar una foto de un agujero negro no solo probaría la existencia e estos objetos, sino que permitiría poner a prueba las predicciones de la relatividad de Einstein.

NASA/UMass/D.Wang et al., IR: NASA/STScI / Feryel Ozel

 

NASA/UMass/D.Wang et al., IR: NASA/STScI / Feryel Ozel

 

«Einstein nos dijo hace 100 años cuál debería ser el tamaño y la forma de la sombra –de un agujero negro–», dijo Doeleman en dicha conferencia. «Si pudiéramos poner una regla junto a la sombra, podríamos poner a prueba la teoría de Einstein del límite del agujero negro». Hasta ahora, las observaciones habían permitido averiguar que el tamaño de la silueta de Sagitario A* es el que predice la teoría y que el horizonte es asimétrico, tal como se espera.

Nunca hasta ahora se ha predicho la relatividad de Einstein a esta escala. El último «empujón» relevante a esta teoría ocurrió en 2015, cuando se detectaron de forma directa, por primera vez, las ondas gravitacionales predichas por este científico, gracias a la fusión de parejas de agujeros negros. Ahora está por ver si Einstein también acertó a la hora de predecir cómo son los agujeros negros supermasivos, millones de veces más pesados que aquellos.

Y comprender a Sagitario A*

 

 

Resultado de imagen de lA MEJOR IMAGEN DE sAGITARIO A EN EL CENTRO GALÁCTICO

 

 

Además de afianzar, o no, la relatividad, las observaciones del EHT probablemente también revelarán interesantes datos sobre el agujero negro supermasivo de nuestra Vía Láctea. Tal como ha explicado a ABC Charles Hailey, experto en este objeto en la Universidad de Columbia (EE.UU.), «nuestro agujero negro supermasivo es muy misterioso: no pone mucha de su energía en forma de rayos X, como sí ocurre con los otros agujeros negros de muchas otras galaxias. Decimos que es infraluminoso, pero apenas estamos comenzando a entender por qué».

La clave está en que se desconocen los detalles de cómo la materia, gas y estrellas, que engullen los agujeros, es transformada en potente radiación, y también cómo caen hacia ellos, previamente. «Es muy probable que el EHT dilucide todas estas preguntas, sobre todo en combinación con otras observaciones en la banda de rayos X».

Imagen relacionada

Saber todo eso es fundamental para estudiar cómo los agujeros negros supermasivos que existen en la mayoría de las galaxias influyen en su evolución. «Incluso cuando estos objetos apenas contribuyen a una pequeña parte de la masa de una galaxia, parecen tener un efecto desmesurado en su evolución. Este es sin duda un campo muy activo en la astrofísica ahora mismo».

Parece que en los próximos años lo estará aún más. Sheperd Doeleman ha dicho en The New York Times que en abril del año pasado el EHT hizo otra observación de Sagitario A* y de M87, y que por entonces recogieron el doble de datos que en la primera observación. «Nuestro plan es llevar a cabo estas observaciones de forma indefinida y ver cómo las cosas cambian», ha reconocido.

 

 

La teoría de la Relatividad dice que la sombra del agujero será circular, como en el centro - Eventhorizontelescope.org

 

 

 

 

 

 

¡El Universo! Lleno de sucesos misteriosos

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (11)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Agujeros negros supermasivos

Cuando hablamos de un agujero negro estamos hablando de un objeto con un campo gravitacional tan intenso que su velocidad de escape supera la velocidad de la luz. Los agujeros negros se forman cuando las estrellas masivas colapsan al final de sus vidas. Un objeto que se colapsa se convierte en un agujero negro cuando su radio se hace menor que un tamaño crítico, conocido como radio de Schwarzschild, y la luz no puede escapar de él.

La superficie que tiene este radio crítico se denomina horizonte de sucesos, y marca la frontera dentro de la cual esta atrapada toda la información. De esta forma, los acontecimientos dentro del agujero negro no pueden ser observados desde fuera. La teoría muestra que tanto el espacio como el tiempo se distorsionan dentro del horizonte de sucesos y que los objetos colapsan a un único punto del agujero, que se llama singularidad, situada en el propio centro del agujero negro. Los agujeros negros pueden tener cualquier masa.

Pueden existir agujeros negros supermasivos con cientos de miles de masas solares, verdaderos montruos, en los centros de las galaxias activas. En el otro extremo, miniagujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después del Big Bang.

 

 

Resultado de imagen de Estrellas que agotan el combustible nuclear y explosionanResultado de imagen de Estrellas que agotan el combustible nuclear y explosionanResultado de imagen de Estrellas que agotan el combustible nuclear y explosionanResultado de imagen de Aquí un púlsar atrae a una enana roja

 

El proceso comienza al final de la vida de las estrellas que, dependiendo de sus masas, serán enanas blancas, estrella de neutrones, o, en último lugar, Agujeros Negros, los más masivos y densos. Se habla ahora de la existencia de las estrellas de Quarks que, de existir, estarían en el punto intermedio entre las de neutrones y los agujeros negros.

Nunca se ha observado directamente un agujero negro. Kart Schwarzschild (1.837 – 1.916), dedujo la existencia de agujeros negros a partir de las ecuaciones de Einstein de la relatividad general de 1.915 que, al ser estudiadas en 1.916, un año después de la publicación, encontró en estas ecuaciones que existían tales objetos supermasivos.

Antes, en la explicación sobre las estrellas, queriendo dejarlo para este momento, deje de explicar lo que hace el equilibrio en la vida de una estrella. La estrella está formada por una inmensa nube de gas y polvo que a veces tiene varios años luz de diámetro. Cuando dicho gas (sus moléculas) se va juntando se produce un rozamiento que ioniza los átomos de la nube de hidrógeno que se juntan y se juntan cada vez más, formando un remolino central que gira atrayendo al gas circundante, que poco a poco va formando una inmensa bola. En el núcleo, la fricción es muy grande y las moléculas apretadas al máximo por la fuerza de gravedad, por fin produce una temperatura de varios millones de grados K que es la causante de la fusión de los protones que forman esos átomos de hidrógeno. La reacción que se produce es una reacción en cadena; comienza la fusión que durará todo el tiempo de vida de la estrella. Así nacen las estrellas cuyas vidas están supeditadas al tiempo que tarde en ser consumido su combustible nuclear, el hidrógeno que mediante la fusión es convertido en helio.

 

 

Resultado de imagen de Estrellas supermasivas azuladas

 

 

Es estas regiones comienza la historia de lo que muchos millones de años más tarde, será un agujero negro. Estrellas nuevas supermasivas, azuladas y de intensa radiación ultravioleta (como esa que vemos abajo a la derecha), un día lejano en el tiempo llegará a su final y se convertirá en supernova, lanzando las capas exteriores de su masa al espacio interestelar y, el resto de la estrella, quedando libre de la fuerza de radiación que producía la fusión nuclear, quedará a merced de la fuerza de Gravedad que, haciendo su trabajo, la comprimirá hasta extremos insospechados convirtiéndola en un Agujero Negro. Si la masa es más pequeña (2 – 3 masas solares) será una estrella de neutrones, ya que, al ser comprimido los protones y electrones allí presentes, se fusionaran para convertirse en neutrones que, al sentirse estrechamente empaquetados, se degenerarán e impedirán que la masa de la estrella siga comprimiéndose.

Las estrellas muy grandes, conocidas como supermasivas, son devoradoras de hidrógeno y sus vidas son mucho más cortas que el de las estrellas normales. Una vez que se produce la fusión termonuclear, se ha creado el equilibrio de la estrella; veamos como. La inmensa masa que se juntado para formar la estrella genera una gran cantidad de fuerza de gravedad que tiende a comprimir la estrella bajo su propio peso. La fusión termonuclear generada en el núcleo de la estrella, hace que la estrella tienda a expandirse. En esta situación, la fusión que expande y la gravedad que contrae, como son fuerzas similares, se contrarresta la una a la otra y así la estrella continua brillando en equilibrio perfecto.

 

 

Resultado de imagen de Implosión de una estrella agotado su combustible nuclear de fusiónResultado de imagen de Implosión de una estrella agotado su combustible nuclear de fusión

 

Pero, ¿qué ocurre cuando se consume todo el hidrógeno?

Pues que la fuerza de fusión deja de empujar hacia fuera y la gravedad continúa (ya sin nada que lo impida) hasta conseguir que la masa de la estrella implosiones, es decir, caiga sobre sí misma contrayendose más y más hasta llegar a tener una demnsidad enorme y un radio mucho más pequeño que el original. El resultado final dependerá de la masa inicial y conforme a ella se produce la transición de fase hacia una u otra clase de estrella.

Según sean estrellas medianas como nuestro Sol, grandes o muy grandes, lo que antes era una estrella, cuando finaliza el derrumbe o implosión, cuando la estrella es aplastada sobre sí misma por su propio peso, tendremos una estrella enana blanca, una estrella de neutrones o un agujero negro.

 

 

Resultado de imagen de nebulosa planetaria NGC 2440

 

 

Como si fuera una mariposa, esta estrella enana blanca comienza su vida envolviéndose en un capullo. Sin embargo, en esta analogía, la estrella sería más bien la oruga y el capullo de gas expulsado la etapa verdaderamente llamativa y hermosa. La nebulosa planetaria NGC 2440 contiene una de las enanas blancas conocidas más calientes. La enana blanca se ve como un punto brillante cerca del centro de la fotografía. Eventualmente, nuestro Sol se convertirá en una “mariposa enana blanca”, pero no en los próximos 5 mil millones de años. Las estrellas conocidas como “enanas blancas” pueden tener diámetros de sólo una centésima del Sol. Son muy densas a pesar de su pequeño tamaño.

Sí, en el Universo son muchas las cosas que existen para nuestro asombro y, no pocas veces, nuestras mentes tienen que hacer un alto en el camino, para pensar profundamente, hasta llegar a comprender lo que allí existe y como llegó a poder formarse.

 

 

Resultado de imagen de Cygnus X-1.el agujero negro del centro de la Galaxia

 

 

Alrededor del agujero negro puede formarse un disco de acreción cuando cae materia sobre él desde una estrella cercana que, para su mal, se atreve a traspasar el horizonte de sucesos. Es tan enorme la fuerza de gravedad que genera el agujero negroque, en tal circunstancias, literalmente hablando se come a esa estrella compañera próxima. En ese proceso, el agujero negro produce energía predominantemente en longitudes de onda de rayos X a medida que la materia está siendo engullida hacia la singularidad. De hecho, estos rayos X pueden ser detectados por satélites en órbita. Se ha localizado una enorme fuente de rayos X en el centro mismo de nuestra galaxia. En realidad han sido varias las fuentes localizadas allí, a unos 30.000 años luz de nosotros. Son serios candidatos a agujeros negros, siendo el más famoso Cygnus X-1.

 

 

 

Archivo:Accretion disk.jpg

 

 

Esta es una de las representaciones artísticas que nos hacen de Signus X-1. Es un ejemplo clásico de una Binaria de Rayos X, un sistema binario formado por un objeto compacto, que puede ser un agujero negro o una estrella de neutrones, y la estrella supergigante azul azul HDE 226868 de magnitud aparente 8,9. Como en toda binaria de rayos X, no es el agujero negro el que emite los rayos X, sino la materia que está a punto de caer en él. Esta materia (gas de plasma) forma un disco de acreción que orbita alrededor del agujero negro y alcanza temperaturas de millones de Kelvin que, quizás un día lejano aún en el futuro, podamos aprovechar como fuente de energía inagotable.

 

 

Resultado de imagen de En los núcleos de las galaxias

 

 

En los núcleos de las galaxias se han detectado las radiaciones que son propias de la existencia allí de grandes agujeros negros que se tragan toda la materia circundante de gas y polvo e incluso de estrellas vecinas. El espacio a su alrededor se curva y el tiempo se distorsiona.

Existen varias formas teóricamente posibles de agujeros negros.

  • Un agujero negro sin rotación ni carga eléctrica (Schwarzschild).
  • Un agujero negro sin rotación con carga eléctrica (Reissner-Nordström).

En la práctica es más fácil que los agujeros negros estén rotando y que no tengan carga eléctrica, forma conocida como agujero negro de Kerr. Los agujeros negros no son totalmente negros; la teoría sugiere que pueden emitir energía en forma de radiación Hawking.

 

 

La estrella supermasiva, cuando se convierte en un agujero negro se contrae tanto que realmente desaparece de la vista, de ahí su nombre de “agujero negro”. Su enorme densidad genera una fuerza gravitatoria tan descomunal que la velocidad de escape supera a la de la luz, por tal motivo, ni la luz puede escapar de él. En la singularidad, dejan de existir el tiempo y el espacio; podríamos decir que el agujero negro está fuera, apartado de nuestro universo, pero en realidad deja sentir sus efectos ya que, como antes dije, se pueden detectar las radiaciones de rayos X que emite cuando engulle materia de cualquier objeto estelar que se le aproxime más allá del punto límite que se conoce como horizonte de sucesos.

Con la explicación anterior he querido significar que, de acuerdo con la relatividad de Einstein, cabe la posibilidad de que una masa redujera sin límite su tamaño y se autoconfinara en un espacio infinitamente pequeño y que, alrededor de esta, se forme una frontera gravitacional a la que se ha dado el nombre de horizonte de sucesos. He dicho al principio de este apartado que en 1.916, fue Schwarzschild el que marca el límite de este horizonte de sucesos para cualquier cuerpo celeste, magnitud conocida como radio de Schwarzschild que se denota por: 

 

 

Resultado de imagen de el radio de Schwarzschild

 

Siguiendo la fórmula de arriba de la imagen: M es la masa del agujero negroG es la constante gravitacional de Newton, y c2es la velocidad de la luz elevada al cuadrado. Así, el radio de Schwarzschil para el Sol que tiene un diámetro de 1.392.530 Km, sería de sólo tres kilómetros, mientras que el de la Tierra es de 1 cm: si un cuerpo con la masa de la Tierra se comprimiera hasta el extremo de convertirse en una singularidad, la esfera formada por su horizonte de sucesos tendría el modesto tamaño de una bolita o canica de niños. Por otro lado, para una estrella de unas 10 masas solares el radio de Schwarzschild es de unos 30 kilómetros. Que para nuestro Sol, como he dicho antes, se quedaría en sólo tres kilómetros, tal es su grado de encogimiento sobre sí mismo.

Por otra parte, los acontecimientos que ocurren fuera del horizonte de sucesos en un agujero negro, tienen un comportamiento como cualquier otro objeto cósmico de acuerdo a la masa que presente. Por ejemplo, si nuestro Sol se transformara en un agujero negro, la Tierra seguiría con los mismos patrones orbitales que antes de dicha conversión del Sol en agujero negro.

 

 

Resultado de imagen de La singularidad del agujero negro

 

Ahora bien, y en función de la fórmula anteriormente descrita, el horizonte de sucesos se incrementa en la medida que crece la masa del agujero a medida que atrae masa hacia él y se la traga introduciéndola en la singularidad. Las evidencias observacionales nos invitan a pensar que en muchos centros de galaxias se han formado ya inmensos agujeros negrossupermasivos que han acumulado tanta masa (absorciones de materia interestelar y estrellas) que su tamaño másico estaría bordeando el millón de masas solares, pero su radio de Schwarzschil no supera ni las 20 UA (unidad astronómica = 150 millones de Km), mucho menor que nuestro sistema solar.

 

 

Resultado de imagen de La singularidad del agujero negro

 

 

La singularidad es el pico de abajo que llega a desaparecer de la vista, la densidad adquirida por la materia es tan inmensamente grande que, parece como si hubiera entrado en otro mundo. Sin embargo, su infinita fuerza de gravedad se deja sentir y atrae a todos aquellos objetos que, en las cercanias de sus dominios, osen traspasar el horixonte de sucesos, es decir, la línea de irás y no volverás.

Comprender lo que es una singularidad puede resultar muy difícil para una persona alejada de la ciencia en sí.

Es un asunto bastante complejo el de la singularidad en sí misma, y para los lectores más alejados de los quehaceres de la física, será casi imposible aceptarla. En el pasado, no fue fácil su aceptación, a pesar de las conclusiones radicales que expuso Kart Schwarzschild en su trabajo inspirado en la teoría y ecuaciones de Einstein. De hecho, hasta el mismo Einstein dudó de la existencia de tales monstruos cosmológicos. Incluso durante largo tiempo, la comunidad científica lo consideró como una curiosidad teórica. Tuvieron que transcurrir 50 años de conocimientos experimentales y observaciones astronómicas para empezar a creer, sin ningún atisbo de duda, que los agujeros negros existían realmente.

 

 

Resultado de imagen de La singularidad del agujero negro

 

 

Sí, es posible que una vez que hayamos representado la singularidad mediante las matemáticas de la relatividad general, la única otra manera de hacerlo sea en el interior de nuestras mentes, imaginando lo que puede ser. Claro que, también la imagen pueda estar refiriéndose a que, nuestras mentes también son singularidades de la materia que han llegado a ser conscientes.

El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión. La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir. Además, en la singularidad, según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.

La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de enana blanca o de estrella de neutrones, para convertirse en una singularidad.

 

 

Resultado de imagen de Un pulsar atrae a una enana roja

 

 

Aquí un púlsar atrae a una enana roja

 

Estrellas de Neutrones que, con sus campos magnéticos influyen en todo el espacio circundante y, sus pulsos luminosos cuando se dejan ver como púlsares, son como los faros del cielo que avisan a seres de mundos lejanos, que maravillas como esa están ahí.

Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad, la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.

Oppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro, al desarrollar el planteamiento de una nube de polvo colapsante. En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidad de la que pasará a formar parte.

Resultado de imagen de En los alrededores de un agujero negro

 

 

Alrededor de un agujero negro, y, en objetos cercanos a él, se pueden ver efectos extraordinarios que finalizan con su desaparición dentro del Agujero Negro que, los engulle y cada vez se hace más y más poderoso. Algunos son verdaderos monstruos del Universo y llegan a poseer miles de millones de masas solares. ¿Os imaginais dar un paseo por sus cercanias?

Desde entonces, muchos han sido los físicos que se han especializado profundizando en las matemáticas relativas a los agujeros negros. John Malher (que los bautizó como agujeros negros), Roger Penrose, Stephen Hawking, Kip S. Thorne, Kerr y muchos otros nombres que ahora no recuerdo, han contribuido de manera muy notable al conocimiento de los agujeros negros, las cuestiones que de ellas se derivan y otras consecuencias de densidad, energía, gravedad, ondas gravitacionales, etc, que son deducidas a partir de estos fenómenos del cosmos.

 

Se afirma que las singularidades se encuentran rodeadas por un horizonte de sucesos, pero para un observador, en esencia, no puede ver nunca la singularidad desde el exterior. Específicamente implica que hay alguna región incapaz de enviar señales al infinito exterior. La limitación de esta región es el horizonte de sucesos, tras ella se encuentra atrapado el pasado y el infinito nulo futuro. Lo anterior nos hace distinguir que en esta frontera se deberían reunir las características siguientes:

  • debe ser una superficie nula donde es pareja, generada por geodésicas nulas;
  • contiene una geodésica nula de futuro sin fin, que se origina a partir de cada punto en el que no es pareja, y que
  • el área de secciones transversales espaciales jamás pueden disminuir a lo largo del tiempo.

Todo esto ha sido demostrado matemáticamente por Israel, 1.967; Carter, 1.971; Robinson, 1.975; y Hawking, 1.978 con límite futuro asintótico de tal espaciotiempo como el espaciotiempo de Kerr, lo que resulta notable, pues la métrica de Kerr es una hermosa y exacta formulación para las ecuaciones de vacío de Einstein y, como un tema que se relaciona con la entropía en los agujeros negros.

Resultado de imagen de El espacio se distorsiona en un agujero negroResultado de imagen de El espacio se distorsiona en un agujero negro

 

 

El espacio se distorsiona en presencia de grandes masas. ¿Qué transformaciones no sufrirá en presencia de un Agujero Negro?

No resulta arriesgado afirmar que existen variables en las formas de las singularidades que, según las formuladas por Oppenheimer y su colaborador Snyder, después las de kerr y más tarde otros, todas podrían existir como un mismo objeto que se presenta en distintas formas o maneras.

Ahora bien, para que un ente, un objeto o un observador pueda introducirse dentro de una singularidad como un agujero negro, en cualquiera que fuese su forma, tendría que traspasar el radio de Schwarzschild (las fronteras matemáticas del horizonte de sucesos), cuya velocidad de escape es igual a la de la luz, aunque esta tampoco puede salir de allí una vez atrapada dentro de los límites fronterizos determinados por el radio. Este radio de Schwarzschild puede ser calculado usándose la ecuación para la velocidad de escape

 

 

foto

 

Cada cuerpo, según su masa, exige una velocidad para poder escapar de él. La Tierra exige 11 km/s

 

Para el caso de fotones u objeto sin masa, tales como neutrinos, se sustituye la velocidad de escape por la de la luz c2.

La velocidad de escape está referida a la velocidad mínima requerida para escapar de un campo gravitacional. El objeto que escapa puede ser cualquier cosa, desde una molécula de gas a una nave espacial. Como antes he reflejado está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo del que pretende escapar (del núcleo). Un objeto que se mueva a velocidad menor a la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica.

 

Así hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Veamos algunas:

 

 

Objeto Velocidad de escape
La Tierra ………….11,18 Km/s
El Sol ………….617,3 Km/s
Júpiter ……………59,6 Km/s
Saturno ……………35,6 Km/s
Venus ………….10,36 Km/s
Agujero negro ….+ de 299.000 Km/s

 

 

Ponernos a comentar sobre objetos y fenómenos que en el Universo están presentes, puede llegar a sar fascinante. A medida que nos sumergimos en las complejidades de las cosas, los procesos mediante los cuáles cambian para convertirse en otras diferentes de las que en un principio eran, los ritmos y energías, las fuerzas fundamentales que actúan sobre ellos… ¡Es una maravilla!

emilio silvera

En el Centro de la Galaxia, nos acecha Sagitario A

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Sagitario A en el centro de la Galaxia

Imagen de la región en el centro galáctico en el que reside Sagitario A, el agujero negro monstruoso

 

 

Investigadores han usado 13 telescopios y un modelo computacional para conseguir la mejor imagen del agujero negro de nuestra galaxia hasta ahora.
Noticia publicada en El Español

Es fácil olvidarlo, pero en el centro de nuestra galaxia hay un gigantesco agujero negro; está constantemente tragando materia, constantemente en expansión. Si lo piensas, da mucho miedo, aunque por supuesto, no es algo de lo que tengamos que preocuparnos; aunque puede que cambies de opinión después de verlo mejor.

Pese a estar más cerca, eso no significa que conseguir imágenes del agujero negro de la Vía Láctea sea más fácil comparado con los del resto del universo. Los agujeros negros son tan compactos que para conseguir una observación directa haría falta un telescopio del tamaño de la Tierra.

Resultado de imagen de Telescopios observando un Agujero negro

Aunque esté relativamente cerca, fotografiar un agujero negro es difícil

 

Esa no es la única razón por la que Sagitario A*, la denominación que recibe el agujero negro supermasivo en el centro de la Vía Láctea, es un gran desconocido para la mayoría. La gran masa de materia que rodea al agujero negro, atraída por su enorme gravedad, actúa como ver a través de “cristal escarchado”, según los científicos. El resultado son lecturas que poco tienen que ver con la realidad.

 

 

Por eso, el último logro conseguido entre universidades y telescopios de todo el mundo es tan importante: la primera imagen clara del agujero negro de nuestra galaxia. Para conseguirlo, no les ha bastado con la observación directa, sino que los modelos computacionales han cobrado una gran importancia.

Los investigadores usaron 13 telescopios de todo el mundo, desde el polo sur hasta Europa, Sudamérica, África, Norteamérica y Australia. Juntos, tenían tanta resolución como para ver desde Londres una chincheta en el suelo de Nueva York. Para unir las mediciones obtenidas por todos los telescopios, se usó una técnica llamada interferometría, consistente en combinar los datos obtenidos de diferentes receptores para conseguir una imagen de mayor resolución.

Resultado de imagen de El centro galáctico

Parte del mosaico del Chandra, con referencias. Sagittarius A corresponde a la zona del centro galáctico, donde se presume la existencia de un agujero negro

La imagen del agujero negro de nuestra galaxia

Aún quedaba el problema de la “neblina” provocada por las masas que rodean al agujero negro. Eso se solucionó con un nuevo modelo computacional, que hizo la imagen más clara. El resultado es la imagen de mayor resolución que se ha obtenido hasta ahora de un agujero negro.

 

 

imagen del agujero negro de nuestra galaxia

 

Gracias a esta imagen, ya se han detectado algunos detalles interesantes. Por ejemplo, este agujero negro no parece tener un “jet”, o “chorro”; una expulsión de materia a altas velocidades que se suele ver como resultado de muchos agujeros negros. Una posibilidad es que el chorro esté apuntando hacia la Tierra, y que por eso no lo podamos ver.

Por supuesto, no hay ningún peligro de que este agujero negro nos vaya a afectar. Está a casi 26.000 años luz, e incluso al ritmo al que devora materia, es muy probable que la humanidad se extinga y la Tierra sea destruida antes de tener que preocuparnos por nuestro agujero negro (qué raro suena eso).

Noticias que no dejan de sorprender

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nuestro contertulio y amigo Kike, en uno de sus comentarios nos viene a comunicar la noticia que ha dado algún medio sobre un hecho insólito: “Un científico dice haber demostrado que dentro de los agujeros negros se forman grandes cantidades de estrellas”. La Incredulidad fue lo primero que sentí cuando leí tal cosa.

Representación gráfica del agujero negro GRO J1655-40, en el Sistema Solar

Si pensamos un poco en el interior de los agujeros negros, encontramos un lugar en el que, los físicos, han machacado sus sesos luchando con las ecuaciones de einstein de la  Relatividad General, para buscar el secreto mejor guardado del Universo, ya que, nada que haya entrado en uno de estos exóticos objetos ha podido nunca salir para contarnos lo que allí pueda existir. Unos creen que podríamos encontrar un camino hacia otro universo y, lo más probable es que encontremos una singularidad con gravedad de marea infinita. Es decir, el fin del espacio y del tiempo, el nacimiento de la espuma cuántica.

Resultado de imagen de Espuma cuántica

“Recientemente, a partir de la observación del comportamiento de los fotones procedentes de los rayos cósmicos, se han obtenido límites para la granularidad del espacio-tiempo, y se ha encontrado que en escalas en las que ya deberían observarse trazas de la espuma cuántica, éste se muestra completamente suave. A la espera de más resultados de este tipo, pues aún son preliminares, surgen preguntas apasionantes. ¿De confirmarse la suavidad del espacio-tiempo implicaría que la mecánica cuántica no se aplica a los campos gravitatorios? ¿Es la escala de Planck inadecuada para resolver la espuma cuántica, y por qué es así, pues la deducción se basa en principios fundamentales bien establecidos? ¿Qué falla entonces en nuestros modelos?

 

 

Resultado de imagen de En el interior del agujero negro

 

Traspasar el horizonte de sucesos y entrar en las fauces del agujero negro, es el camino de irás y no volverás. Nadie estuvo nunca allí dentro y volvió para contarnos lo que existe en el lugar.

No sabemos en realidad lo que puede existir dentro de un agujero Negro. ¿cómo poder saberlo? sabemos que ninguna señal puede salir nunca de un lugar como ese para poder darnos la respuesta. sea lo que fuese que pudiera existir allí dentro, nunca podrá, ningún intrépido viajero,  volver al exterior para contarnos tal maravilla, un lugar de infinita curvatura y densidad, allí donde el tiempo deja de existir, un lugar que lo que pueda contener nunca podrá influir en nuestro Universo, toda vez que allí estará confinado para siempre.

Imagen relacionada

Está claro que la curiosidad que llevamos con nosotros, no puede quedar satisfecha con éstas sencilla explicaciones, necesita más argumentación para poder comprender, a ciencia cierta, lo que en el agujero negro se pueda esconder. sin embargo, John archibal wheeler nos enseñó la importancia de la búsqueda para comprender el “corazón” de un agujero Negro.  Él creía  que el estado final de la materia dentro del agujero Negro, lo que quedaba después de la Implosión de una estrella masiva, era el “Santo Grial” de la física teórica, un conocimiento tan valioso que nos podría llevar a la comprensión final de lo que la materia es.

Intenso campo magnético de agujero negro supermasivo

Astrónomos de la Universidad Tecnológica Chalmers han utilizado el telescopio gigante Alma para revelar un extremadamente poderoso campo magnético muy cerca de un agujero negro supermasivo en una galaxia distante. Los resultados aparecen en la edición del 17 de abril de 2015 de la revista Science.
Claro que hablar de agujeros negros sería incomprensible sin escuchar lo que nos decía sobre ellos algunos físicos que dedicaron su vida al estudio de estos extraños objetos cosmológicos. J. Robert Oppenheimer fue el que nos dijo que la singularidad quedaba oculta por el Horizonte de sucesos, y, de esa manera, el interior del agujero quedaba oculto desde el exterior.
Representación de una estrella, el chorro de materia que va hacia el agujero negro y el disco que se forma en torno a este
Lo cierto es que, de lo que no podemos tener ninguna duda es del hecho cierto de que, la fuerza gravitatoria generada por la Singularidad del agujero negro, es tan potente que atrae hacia sí el material circundante que engulle y se hace cada vez mayor.
Está claro que cuando hablamos de los agujeros negros lo hacemos de algo que aún esconde muchos misterios, lo que sucede cuando se forma un agujero negro es muy semejante a lo que dicen que sería el final del universo mediante el Big Crunch, es decir, todo el material de una estrella masiva al final de su vida, al quedar sin material nuclear de fusión que está agotado, se queda a merced de la gravedad e implosiona sobre sí misma, de manera tal que su ingente masa se va contrayendo más y más hasta el punto de que desaparece literalmente de nuestra vista, se ha convertido en una singularidad de energía y densidad infinitas, la curvatura cierra el círculo y el tiempo desaparece.
“Para conservar la “monogamia” cuántica, Polchinski sugirió que el enlazamiento agujero negro-fotón se rompe. Esto produce un muro de energía en el horizonte de sucesos del agujero negro que echa por tierra la relatividad debido a que cualquiera que caiga se quemaría en lugar de volverse espagueti. Bienvenido a la paradoja del muro de fuego (“firewall”) del agujero negro.

Abundan las posibles soluciones, pero ahora dos físicos, Juan Maldacena del Instituto de Estudio Avanzado en Princeton, y Leonard Susskind de la Universidad Stanford, California, han presentado una más audaz: una nueva clase de agujero de gusano en que el enlazamiento no necesita romperse. “
Resultado de imagen de La singularidad
Cuando la estrella Implosiona bajo el peso de su propia masa y la fuerza gravitatoria que ésta genera, se crea un horizonte de sucesos alrededor del agujero negro en formación, la estrella esférica original sigue implosionando, inexosrablemente, hasta alcanzar la densidad infinita y el volumen cero, después de lo cual crea y se funde en una singularidad espacio-temporal.
La singularidad es una región donde -según las leyes de la relatividad- la curvatura del espacio-tiempo se hace infinitamente grande y el espacio-tiempo deja de existir. Puesto que la gravedad de marea es una manifestación de la curvatura espacio-temporal. Así, podemos decir que una singularidad es también una región de gravedad de marea inifinita, es decir, una región en donde la gravedad ejerce un tirón infinito sobre todos los objetos a lo largo de algunas direcciones y una compresión infinita a lo largo de otras.
Después de estas sencillas explicaciones, mal podemos comprender lo que dice el científico del que nos habla Kike en su comentario ¡formar estrellas en el interior de un agujero negro! La idiosincracia del agujero lo impide.
Me gustaría seguir y hacer mucho más largo el trabajo sobre el apasionante tema de los agujeros negros y lo que de ellos podemos esperar pero, sinceramente creo que, encontrar en su interior cúmulos de estrellas… No parece lo más acertado. Algunos, por obtener unos minutos de gloria, lo que obtienen en realidad es la carcajada del “mundo” científico y el ridículo inolvidable.
emilio silvera

¡Extraños objetos del Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Representación de un agujero negro que engulle materia (naranja) y libera energía (azul)

Representación de un agujero negro que engulle materia (naranja) y libera energía (azul) - NASA/JPL-Caltech

 

      Dicen haber descubierto un agujero negro capaz de hacer girar el espacio-tiempo.

 

Resultado de imagen de En el sistema binario 4U 1630-47

 

 En el sistema binario 4U 1630-47 hay un agujero negro que gira casi a la máxima velocidad permitida por la Relatividad Especial y que retuerce todo lo que hay a su alrededor.

 

 

Un equipo internacional de investigadores, liderados por la Indian Space Research Organization (Isro) y la NASA, acaban de descubrir en el sistema binario 4U 1630-47 un agujero negro que gira casi al máximo de la velocidad permitida por la teoría de la Relatividad General de Einstein. De hecho, su rotación es tan rápida que el objeto estaría obligando a que el propio espacio circundante rote junto a él.

Según los científicos, que utilizaron el satélite indio AstroSat y el Observatorio de rayos X Chandra, de la NASA, y cuyo trabajo se publicará próximamente en Astrophysical Journal, estudiar a los agujeros negros con altas velocidades de giro resulta de la máxima importancia para poner a prueba nuestras teorías sobre el Universo, entre ellas la propia Relatividad.

Imagen relacionada

Todo comenzó en 2016, cuando el AstroSat descubrió un agujero negro en el sistema binario (dos objetos estelares orbitándose mutuamente) 4U 1630-47. Desde el primer momento, una serie de violentos estallidos en el rango de los rayos X llamaron poderosamente la atención de los investigadores. Poco después, el Observatorio Chandra confirmó los resultados y quedó claro que ese agujero negro en concreto no era como los demás.

Devoradores de materia

 

 

Imagen relacionada

La emisión de rayos X de un agujero negro se produce a medida que la materia circundante (en su mayor parte gas y polvo) se precipita y es «devorada» por él. Esas emisiones permitieron que los investigadores se dieran cuenta de que el agujero negro en cuestión, cuya masa es diez veces la de nuestro Sol, estaba girando sobre sí mismo a una velocidad de vértigo. La tasa de rotación de un agujero negro puede oscilar entre dos valores, 0 y 1. Y el agujero negro de 4U 1630-47 mostraba una tasa de giro de 0,9, lo que equivale casi a la velocidad de la luz.

Resultado de imagen de Los giros frenéticos de un agujero negro hace girar al espacio tiempo

Un dato que dejó a los investigadores con la boca abierta, ya que la teoría de Einstein implica que si un agujero negro es capaz de girar tan rápido, entonces será capaz de hacer que el espacio mismo gire junto a él.

Hasta el momento, de los veinte agujeros que se conocen en nuestra galaxia, solo ha sido posible medir la tasa de rotación de otros cuatro. Y el del sistema 4U 1630-47 es, sin duda, el más rápido de todos. Los científicos creen que, si lo que sabemos de los agujeros negros es correcto, la combinación de factores como la velocidad de rotación, la materia que entra en ellos y las altas temperaturas reinantes podrían ser la clave para entender cómo se forman las galaxias.

¿Cómo se sabe lo rápido que giran?

 

 

Resultado de imagen de Gifs de agujeros negros giratorios

 

 

La masa y la velocidad de rotación son las dos propiedades principales que caracterizan a un agujero negro. Pero mientras que la masa se puede calcular con facilidad, gracias a la gravedad que genera,averiguar la tasa de rotación es algo mucho más complicado.

En palabras de Mayukt Pahari, autor principal del estudio, «las mediciones de la velocidad de rotación son muy difíciles de realizar, y solo es posible llevarlas a cabo por medio de observaciones de rayos X de muy alta calidad de un sistema estelar binario, en el que el agujero negro está absorbiendo materia de su estrella compañera».

Resultado de imagen de Los giros frenéticos de un agujero negro hace girar al espacio tiempo

Si los cálculos son correctos, el agujero negro del sistema binario 4U 1630-47 podría ser la llave para averiguar cómo afectan al propio espacio estos extraordinarios objetos. Y desvelar, de paso, el desconocido proceso que llevó a la formación de las galaxias.