jueves, 19 de octubre del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Fusión de Agujeros Negros: Ondas Gravitacionales

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Científicos detectan una cuarta onda gravitacional

 

Por primera vez, el hallazgo no ha sido realizado solo por el detector estadounidense, LIGO, sino también por el europeo, Virgo. Esto consolida la tecnología y permite mejorar 10 veces la precisión de la detección

Ondas gravitacionales detectadas. Son distorsiones del espacio-tiempo generadas en la fusión de <a href=agujeros negros (en la imagen) y que viajan hasta la Tierra" />

Ondas gravitacionales detectadas. Son distorsiones del espacio-tiempo generadas en la fusión de agujeros negros (en la imagen) y que viajan hasta la Tierra – Max Planck Institute for Gravitational Physics

G.L.S. Madrid

 

 

Los físicos han sido capaces de detectar una onda gravitacional, una distorsión del espacio-tiempo predicha por Einstein, por cuarta vez. El hallazgo, publicado este miércoles en Physical Review Letters, no solo consolida una nueva era de exploración basada en estas ondas, sino que pasará a la historia por ser el primero logrado gracias a la actividad conjunta del detector de ondas gravitacionales de Estados Unidos (LIGO, «Laser Interferometer Gravitational-wave Observatory») y su contraparte europea, (Virgo).

Resultado de imagen de Ondas gravitacionales, distorsión del Espacio

La detección se produjo el 14 de agosto cuando los dos observatorios estadounidenses (situados en Livingstone, Luisiana, y Hanford, en Washington) junto con el europeo, (localizado en Cascina, Italia), detectaron una fuente, conocida como «GW170814», que han relacionado con la fusión de dos agujeros negros. Uno tendría 31 masas solares y el otro 25 y ambos estarían a una distancia de la Tierra de 1.800 millones de años luz. Después de la fusión, y según los cálculos de los científicos, el agujero negro resultante adquirió una masa de 53 soles y el resto se transformó en energía emitida en forma de ondas gravitacionales.

«La incorporación de Virgo nos ha dado un montón de datos útiles», ha explicado en un comunicado de la Universidad de Glasgow John Veitch, coautor del hallazgo. «Tener un tercer detector significa que podemos triangular la posición de la fuente, y determinar con mucha mayor precisión el punto exacto del Universo desde donde llega la señal».

De hecho, gracias a la participación del observatorio europeo, en el que recientemente comenzó a funcionar una importante ampliación técnica conocida como «Advanced Virgo», los científicos han podido multiplicar por diez la precisión con la que se ha situado.

Perturbaciones del espacio-tiempo

 

 

Resultado de imagen de Desde el primer hallazgo de ondas gravitacionales, en septiembre de 2015, el observatorio LIGO ha detectado estas formas de energía en tres ocasiones

 

 

Desde el primer hallazgo de ondas gravitacionales, en septiembre de 2015, el observatorio LIGO ha detectado estas formas de energía en tres ocasiones. Tanto Ligo como Virgo son capaces de detectarlas gracias a una tecnología conocida como interferometría y que, fundamentalmente, permite medir distancias con una increíble precisión gracias a un sistema de rayos láser. Gracias a esta capacidad, es posible localizar las distorsiones del espacio-tiempo generadas por las ondas gravitacionales.

Estas distorsiones están provocadas por objetos muy masivos que giran a altas velocidades. De forma parecida a las ondas que aparecen en un estanque cuando se arroja una piedra, los objetos muy masivos generan unas ondas que viajan por el espacio a la velocidad de la luz y que pueden ser detectadas en la Tierra.

Tal como ha explicado John Veitch, la detección requiere varias fases de análisis. La primera tarea es filtrar y comparar los datos de los instrumentos para distinguir las detecciones reales de las que no lo son. Y, una vez que se encuentra una coincidencia, los análisis de datos se centran en determinar la masa y la posición de la fuente y luego compartirla con científicos de todo el mundo.

Inversiones multimillonarias

 

 

Resultado de imagen de El programa VIRGO y las Ondas Gravitacionales

 

 

Esta tarea es extremadamente compleja y, por ello, requiere un importante despliegue. Detrás de Virgo hay 20 laboratorios de seis países, una inversión de más de 324 millones de euros y un equipo de 280 científicos. LIGO, por su parte, tiene un equipo de 1.000 investigadores y ha supuesto una inversión de al menos 1.100 millones de dólares (cerca de 935 millones de euros).

Resultado de imagen de El programa VIRGO y las Ondas Gravitacionales

La detección conjunta lograda por Virgo y LIGO tiene más ventajas. Tal como ha informado Sciencemag.org, dado que permite localizar con mayor precisión la fuente de las ondas, más adelante facilitará localizar el origen visualmente. Esto será muy interesante para situar otra fuente de ondas gravitacionales que hasta ahora no ha sido detectada nunca: la fusión de estrellas de neutrones.

Resultado de imagen de El programa VIRGO y las Ondas Gravitacionales

Si pudiéramos visualizar la fusión de dos agujeros negros… ¡Sería impresionante!

Hace unas semanas se rumoreó que se había detectado la primera, y ahora es cuestión de semanas o meses que se confirme o descarte. Sea como sea, lo interesante es que, cuando se detecte esta fuente, los científicos podrán mirar a través de los telescopios el origen de estas ondas gravitacionales. Esto permitirá aprender más sobre el fenómeno y sobre las estrellas de neutrones.

Además, la última observación permitirá poner a prueba las teorías sobre la polarización de las ondas gravitacionales, una propiedad predicha por la relatividad-einstein-necesaria-para-tele-o-no-perderse-201511242221_noticia.html">Relatividad de Einstein.

«Este es solo el comienzo de las observaciones de la red formada por Virgo y LIGO», ha dicho en un comunicado de la Universidad de Glasgow David Shoemaker, portavoz del LIGO. «Con la próxima carrera, prevista para otoño de 2018, podemos esperar una detección así cada semana, si no más». En los próximos años la ventana al Universo que son las ondas gravitacionales dará muchas sorpresas.

Colisión de agujeros negros y ondas gravitacionales

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Agujeros negros

 

La posibilidad reciente de detectar ondas gravitacionales hace posible estudiar objetos que hasta ahora eran casi invisibles. Aquí, en la presentación, nos dicen: El secreto que guardaron un siglo los agujeros negros.

 

 

Recreación de una pareja de <a href=agujeros negros a punto de fusionarse" width="980" height="552" />
Recreación de una pareja de agujeros negros a punto de fusionarse NASA

Durante la Primera Guerra Mundial, mientras calculaba trayectorias de proyectiles como artillero en el frente ruso, el físico alemán Karl Schwarzschild estudiaba la recién publicada Teoría General de la Relatividadde Albert Einstein. Además de comprobar que las ecuaciones de su compatriota describían el universo con una precisión sin precedentes, Schwarzschild observó que también implicaban la existencia de objetos cósmicos inesperados. Las curvaturas del tejido del espacio tiempo provocadas por los planetas o las estrellas generaban una especie de pozos gravitatorios que mantienen a los humanos anclados a la Tierra y hace que la Luna gire a nuestro alrededor mientras nosotros viajamos alrededor del Sol. En casos extremos, cuando la concentración de masa fuese máxima, la atracción gravitatoria sería tan intensa que ni siquiera la luz escaparía a su influjo.

Aquella fue la primera vez que se planteó la existencia de los agujeros negros, un concepto tan extraño que hasta Einstein dudó de su existencia real. Poco después, mientras seguía rumiando las consecuencias de su idea más revolucionaria, le escribió a Schwarzschild sobre la posibilidad de que algunos objetos supermasivos como aquellos extraños agujeros negros produjesen ondulaciones en el tejido espaciotemporal similares a las que se producen cuando se arroja una piedra a un estanque.

Resultado de imagen de LIGO y las Ondas gravitacionales

Un siglo después, aquellas hipótesis locas han sido confirmadas por pruebas empíricas. En septiembre de 2015, el Observatorio de Interferometría Láser de Ondas Gravitacionales (LIGO), en EE UU, captó las primeras ondas gravitacionales producidas justo en el momento en que dos agujeros negros chocaban un instante antes de fusionarse. Aquellos objetos tenían entre 10 y 30 veces la masa del Sol y su unión liberó en una fracción de segundo más energía que todas las estrellas conocidas juntas. Este tipo de colisiones habían sido predichas, pero era la primera vez que se observaban.

 

Una hipótesis plantea que los agujeros negros nacieron juntos en forma de pareja de estrellas

Como se anunció entonces, la posibilidad de detectar ondas gravitacionales inauguraba una nueva etapa para la astronomía, que podía estudiar de forma directa fenómenos hasta entonces invisibles. Esta semana, un equipo de investigadores de la Universidad de Birmingham, en Reino Unido, y las universidades de Maryland y Chicago, en EE UU, ha publicado en Nature los resultados de uno de los primeros trabajos de esta nueva astronomía. Su intención era explicar cómo se formaban las parejas de agujeros negros como las que ha detectado LIGO.

Resultado de imagen de Captan dos estrellas masivas

Captan dos estrellas masivas que funden con el beso de la muerte

Ilya Mandel, científico de la Universidad de Birmingham y coautor del artículo, explica en The Conversation que los astrónomos se plantean dos hipótesis para la formación de estas parejas. En una de ellas, la pareja habría iniciado su periplo unida desde el inicio, con el nacimiento simultáneo de dos estrellas masivas. Después de una larga existencia, cuando su combustible nuclear se agotase, ambas se colapsarían bajo el peso de su propia gravedad concentrándose hasta formar dos agujeros negros. Si estuviesen a la distancia adecuada, ambos objetos empezarían a perder parte de la energía que los mantenía en sus órbitas en forma de ondas gravitacionales y caerían en una espiral hacia el otro hasta fusionarse. En la segunda opción que se plantea, los monstruos cósmicos se habrían formado por separado, pero lo habrían hecho en una parte del universo con superpoblación de estrellas. Los tirones gravitatorios de esos astros habrían acabado por reunir a los dos agujeros negros.

La información proporcionada por LIGO permite saber si estos objetos rotan lentamente o lo hacen rápido y si están alineados entre ellos o no. Por ahora, los datos indican que los agujeros negros giran sobre sí mismos a toda velocidad y que no están alineados. Esto pondría los datos contra la teoría de que se formaron como estrella binaria e indicaría que, al menos en este caso, las dos bestias gravitatorias surgieron por separado en una región con muchas estrellas y se acabaron por unir después.

Resultado de imagen de Agujeros negros

Los agujeros negros atraen la materia circundante y la engullen

Los autores señalan que ese tipo de agujeros negros serían similares a los observados en nuestra galaxia. Calculan que harían falta otras diez observaciones de los efectos de la fusión de otras parejas para confirmar su origen. Sin embargo, también advierten que es posible que esos agujeros lejanos sean distintos de los que vemos en nuestro vecindario y en ese caso harían falta muchas más observaciones para dar sentido a tanta complejidad. Resolver el misterio del todo requerirá tiempo, pero al menos ya se sabe que los protagonistas de la historia son reales. Lo que se sabe ahora, pese a todo lo que se desconoce, habría fascinado a aquel artillero que aprovechaba los descansos entre disparos para reflexionar sobre los enigmas del universo.

Fuente: El País

Otra manera de mirar el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Ondas gravitatorias
           La colisión de agujeros negros o de estrellas de neutrones las provacan

NATURE

 

Las ondas gravitacionales se adentran por fin en el nacimiento de los agujeros negros

 

Una investigación sugiere que el origen de los agujeros negros binarios está en estrellas independientes que se unieron después de su muerte

Las ondas gravitacionales contienen información sobre los cuerpos que las originan

     Las ondas gravitacionales contienen información sobre los cuerpos que las originan – LIGO

La primera detección de la historia de las ondas gravitacionales, anunciada en febrero de 2016, consiguió dos importantes logros. Confirmó que Einstein estaba en lo cierto cuando predijo que el Universo era surcado a la velocidad de la luz por distorsiones del espacio tiempo, e inauguró una nueva era en la Astronomía. Si a partir de los setenta la detección de rayos X permitió conseguir un nuevo sentido para observar las profundidades del espacio, en los años venideros se espera que las ondas gravitacionales permitan descubrir mucho sobre aquello que no podemos ver bien: por ejemplo los agujeros negros o las etapas tempranas del Big Bang.

Resultado de imagen de Ondas gravitatorias

En total, las ondas gravitacionales se han detectado en tres ocasiones, lo que ha permitido comprobar que la tecnología es madura. Además, en cuestión de un año o dos, dos nuevos detectores (Virgo y KAGRA) trabajarán a pleno rendimiento en la tarea de cazarlas. Este miércoles, los científicos podrían estar ante el primer descubrimiento de esa nueva era en la Astronomía. Investigadores de la Universidad de Birmingham han usado las ondas gravitacionales detectadas en tres ocasiones, más una cuarta, para sugerir cuál es el origen de los agujeros negros binarios. Tal como han concluido en Nature, su origen parece estar relacionado con el encuentro de agujeros negros formados tras la muerte de estrellas independientes. Además, han explicado que con tan solo diez detecciones en total, se podría concluir con certeza cómo se forman estos objetos.

Imagen relacionada

Los agujeros negros son entidades muy esquivas y difíciles de entender. Se caracterizan porque a partir de un cierto punto de su «superficie», el llamado relatividad-201702272154_noticia.html">horizonte de sucesos, toda (o casi toda) la información está atrapada y no sale al exterior. Por eso, solo hay dos propiedades muy sencillas para explicar su comportamiento: se trata del giro o momento angular y de la masa.

Esto se extiende a los sistemas donde dos agujeros negros giran en torno a un centro de gravedad común, unos objetos que se cree que están presentes en el Universo en un número de decenas de millones. En efecto, los investigadores explican su origen a partir del giro y la masa.

El huevo y la gallina

 

 

Resultado de imagen de El Huevo o la Gallina

 

 

El debate es muy técnico, pero se asemeja a la paradoja del huevo y la gallina: ¿qué va antes? En el caso de los agujeros negros, la pregunta es si dos estrellas que giraban una en torno a la otra se transformaron en agujeros negros, o bien si estrellas independientes, comenzaron a interaccionar después de colapsar y de convertirse en estos misteriosos objetos. Una tercera opción es que los agujeros negros no procedan de la muerte de estrellas, sino que se hayan formado a partir de la acumulación de plasma en las etapas tempranas del Universo.

El equipo de Will Farr, investigador de la Universidad de Birmingham, ha examinado estos escenarios a la luz de las ondas gravitacionales.

Cada una de estas hipótesis tiene varias implicaciones. Si los agujeros provienen de una estrella binaria, en la que sus dos miembros han muerto y colapsado, ambos deberían tener el giro alineado y además girar muy rápido. ¿Qué quiere decir esto? Que en relación con el eje de la órbita entre los dos agujeros, el eje de rotación de los propios cuerpos es perpendicular, tal como se aprecia en la imagen de abajo, a la izquierda. (En el Sistema Solar esto no ocurre en la Tierra, puesto que su eje de rotación está inclinado en comparación con el eje de su órbita en torno al Sol).

Si los agujeros provienen de una estrella binaria, su rotación debería de estar alineada con la órbita (izquierda). A la derecha no aparece este alineamiento, lo que sugiere que el origen es otro
Si los agujeros provienen de una estrella binaria, su rotación debería de estar alineada con la órbita (izquierda). A la derecha no aparece este alineamiento, lo que sugiere que el origen es otro- STEINN SIGURÐSSON/NATURE

 

También podría ocurrir otra cosa: que los agujeros negros se hubieran formado separadamente, en un lugar atestado de estrellas, como puede ser un cúmulo. A la muerte de dos estrellas, las interacciones con los vecinos estelares y su distinto origen conllevarían que su eje de giro no estuviera alineado. En este caso, además, el giro podría ser muy rápido o muy lento.

Tal como ha explicado Steinn Sigurdsson en un artículo que ha acompañado en Nature a la publicación de Farr, hay una tercera opción. Los agujeros negros binarios podrían haberse formado justo después del Big Bang, en concreto en un entorno caliente y dominado por un denso plasma, y no tras la muerte de estrellas. Si esto fuera cierto, los agujeros negros binarios que vemos hoy en día tendrían un giro no alineado y lento.

Resultado de imagen de Agujeros negros binarios

Will Farr ha investigado todo lo que ha podido sobre el giro y el alineamiento de los agujeros negros binarios para desvelar este misterio y tratar de dilucidar cuál es el escenario más probable. Después de usar las señales de ondas gravitacionales detectadas hasta ahora, (GW150914, GW170104 y GW151226), junto a una última, la candidata a señal LVT151012, Farr ha sugerido que estos objetos giran rápidamente y de forma no alineada, lo que es compatible con la idea de que estos sistemas se formaron a partir de estrellas individuales que colapsaron antes de convertirse en un sistema binario.

Imagen relacionada

El hallazgo no es inequívoco porque hay varios puntos oscuros. Hay incertidumbres en relación con la precisión con la que se ha medido el giro de los agujeros negros, podría ocurirr que los detectados hasta ahora no fueran representativos de la población y además podría haber muchas explicaciones o bien muchos tipos de agujeros negros binarios. En todo caso, los autores consideran que será posible concluir con confianza cuál es el origen de los agujeros negros binarios, o al menos saber cuál es el mecanismo predominante, con tan solo diez nuevas detecciones de ondas gravitacionales procedentes de la fusión de agujeros. La lenta carrera hacia lo desconocido continúa, esta vez «a lomos» de las ondas predichas por Einstein.

NASA Selecciona una Misión Para Estudiar los Agujeros Negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Imagen relacionada

 

Los objetos más extraños del Universo: Horizonte de Susceos y Singularidad

 

La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares.

Resultado de imagen de Púlsares

Los púlsares, son Estrellas de Neutrones girando a gran velocidad

Los objetos tales como los agujeros negros pueden calentar los gases circundantes a más de un millón de grados. La radiación de alta energía de rayos X de este gas puede ser polarizada, vibrando en una dirección particular. La misión Imaging X-ray Polarimetry Explorer (IXPE) transportará tres telescopios espaciales con cámaras capaces de medir la polarización de estos rayos X cósmicos, permitiendo a los científicos responder preguntas fundamentales sobre estos entornos turbulentos y extremos donde los campos gravitatorios, eléctricos y magnéticos están en sus límites.

“No podemos ver directamente lo que está pasando cerca de objetos como agujeros negros y estrellas de neutrones, pero estudiar la polarización de los rayos X emitidos desde sus entornos revela la física de estos enigmáticos objetos”, dijo Paul Hertz, director de división de astrofísica de la Dirección de Misiones Científicas de la NASA en Washington. “La NASA tiene una gran historia de lanzamiento de observatorios en el Programa de Exploración Astrofísica con nuevas y únicas capacidades de observación. IXPE abrirá una nueva ventana en el universo para que los astrónomos puedan mirar a través. Hoy, sólo podemos adivinar lo que vamos a encontrar”.

Resultado de imagen de El Programa de Exploración de Astrofísica de la NASA

El Programa de Exploración de Astrofísica de la NASA solicitó propuestas para nuevas misiones en Septiembre de 2014. Se presentaron 14 propuestas y se seleccionaron tres conceptos de misión para su revisión adicional por un grupo de expertos y científicos externos. La NASA determinó que la propuesta IXPE proporcionaba el mejor potencial científico y el plan de desarrollo más factible.

La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares. Image Credit: NASA

Fuente: NASA

 

Esos extraños objetos

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ABC-Ciencia

 

El caso del agujero negro supermasivo que está sufriendo un horrible «corte de digestión»

 

En el centro de la galaxia NGC 1595 uno de estos objetos sufre estallidos de ondas de radio y rayos X porque no es capaz de engullir toda la materia que se ha congregado a su alrededor

La galaxia Remolino (a la izquierda) se está fundiendo con la pequeña galaxia NGC 5195

 

 

 

La galaxia Remolino (a la izquierda) se está fundiendo con la pequeña galaxia NGC 5195 – NASA/ESA NRAO / AUI / NSF / NASA / CXC / NASA / ESA / STScI / U. Manchester / Rampadarath et al

 

No hay nada más voraz que un agujero negro supermasivo. Estos objetos son descomunales acumulaciones de materia que han quedado confinadas en un espacio mínimo. Tanto que la gravedad les hace convertirse en monstruos capaces de tragarse la luz y toda la materia que se acerque demasiado a sus dominios.

Pero hasta ellos tienen un límite. Este martes, astrónomos de la Universidad de Mánchester han informado de un caso de «indigestión» sufrido por una de estas moles. Un agujero negro supermasivo ha atrapado más materia a su alrededor de la que puede engullir, de modo que en su entorno se han producido furiosos estallidos de energía en el último millón de años. Estos resultados han sido publicados en la conferencia Nacional de Astronomía de la Universidad de Hull (Reino Unido), este martes.

Representación de un <a href=agujero negro supermasivo (a la derecha) expulsado del centro de su galaxia" />

La terrible indigestión ha sido detectada en las profundidades de la pequeña galaxia NGC 5195. Es una vecina de la galaxia NGC 5194, más conocida como galaxia Remolino, que se está fundiendo con su vecina. Ambas están bailando en torno a la otra, y en cuestión de miles de millones de años serán una sola.

See Explanation.  Clicking on the picture will download<br />
the highest resolution version available.

Pero en el corazón de NGC 5195, que más bien se comporta como un estómago brutal, hay un agujero negro supermasivo que va engullendo materia a medida que la pequeña galaxia se sumerge en la grande. Este agujero tiene una masa equivalente a 19 millones de soles.

Imagen coloreada de los flujos de ondas de radio y los estallidos de <a href=rayos X" />

 

 

 

Imagen coloreada de los flujos de ondas de radio y los estallidos de rayos X- NRAO / AUI / NSF / NASA / CXC / NASA / ESA / STScI / U. Manchester / Rampadarath et al.

 

 

 

Como el ritmo al que llega nueva materia es mayor al ritmo en que la engulle, a su alrededor se ha formado un disco de acreción tan grande que el agujero ha perdido la capacidad de digerirlo, de forma que la materia está siendo expulsada al espacio a través de violentos estallidos.

Por este motivo, el observatorio Chandra de rayos X detectó el año pasado potentes arcos de rayos X procedentes del corazón de la pequeña galaxia NGC 5195.

Después de apuntar hacia allá el telescopio MERLIN, un instrumento que capta las ondas de radio, y también el «Very Large Array» (VLA), el Chandra y el vetusto Hubble, los científicos han reconstruido la historia completa de los arcos de energía liberados en el violento estómago del agujero negro supermasivo.

Un «eructo» cósmico

 

 

Resultado de imagen de Un gran eructo cósmico en un <a href=agujero negro" width="478" height="269" />

 

Este agujero negro no está sufriendo un corte de digestión cualquiera. Una masa equivalente a 19 millones de soles está girando a gran velocidad en el corazón de la galaxia NGC 5195, generando temperaturas y campos magnéticos muy potentes. Y, cuando el proceso de acumulación (acreción) de materia falla, se genera una increíble onda de choque que expulsa hacia el exterior grandes cantidades de materia.

Mapa de ondas de radio de las cercanías del <a href=agujero negro" />

 

 

 

Mapa de ondas de radio de las cercanías del agujero negro- e-MERLIN / U. Manchester / Rampadarath et al.

 

 

 

Este «eructo» cósmico implica la presencia de electrones acelerados hasta casi la velocidad de la luz, interaccionando con un campo magnético muy intenso. Por eso, se emiten ondas muy energéticas en la longitud de onda de las ondas de radio. Al mismo tiempo, la onda de choque calienta e infla el medio interestelar, ioniza el gas y emite energía en forma de rayos X. Esta burbuja de alta energía es precisamente lo que Chandra y el telescopio Hubble han podido detectar.

Resultado de imagen de Un gran eructo cósmico en un <a href=agujero negro" width="478" height="269" />

Según Hayden Rampadarath, el primer autor de la investigación, sus observaciones demuestran no solo que las ondas de radio y los rayos X están conectados, sino que el propio flujo de las ondas del primero es el que genera las estructuras del segundo. Según Rampadarath, «estamos presenciando un evento de proporciones galácticas en todo el espectro electromagnético».

Tal como ha explicado este científico, el agujero negro empezó a lanzar al espacio sus explosiones de energía hace uno o dos millones de años, justo cuando los ancestros humanos comenzaron a aprovechar el fuego. «Que ahora seamos capaces de observar este evento a través de todos estos telescopios es bastante extraordinario», ha reflexionado Rampadarath.