viernes, 13 de septiembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Las maravillas del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas de neutrones y Púlsares    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Los astrónomos encontraron una clase extraña y enigmática de estrellas de neutrones, cuyo campo magnético es billones de veces más potente que el de nuestro Sol,Resultado de imagen de Los astrónomos encontraron una clase extraña y enigmática de estrellas de neutrones, cuyo campo magnético es billones de veces más potente que el de nuestro Sol,Resultado de imagen de Los astrónomos encontraron una clase extraña y enigmática de estrellas de neutrones, cuyo campo magnético es billones de veces más potente que el de nuestro Sol,

Los astrónomos encontraron una clase extraña y enigmática de estrellas de neutrones, cuyo campo magnético es billones de veces más potente que el de nuestro Sol, es decir, que el de una estrella mediana, y, no digamos, del de la Tierra. Tan intenso es el campo magnético que genera una de estas estrellas que, podría borrar una tarjeta de crédito desde 160.000 kilómetros de distancia. Le pusieron de nombre magnetars (estrellas magnéticas).

Estas particulares estrellas de neutrones. Conocidas como AXP (Anamalous X-ray Púlsars), desafían cualquier explicación física desde que la primera de ellas fue descubierta en 1982. Los nuevos datos sobre sus características los han proporcionado desde el Observatorio Rossi X-ray Timing Explorer, de la NASA.

http://1.bp.blogspot.com/-06578QpjE7g/TxRJMc3SwHI/AAAAAAAAE0c/tlk-2Wq2ZM4/s1600/416239main1_rxte-226x217.jpg

Observatorio Rossi X-ray Timing Explorer

Son muchos años ya los que llevan los Astrónomos sospechando que las AXP eran magnetars, pero carecían de las pruebas definitivas. El satelite Rossi, por fin, la consiguió al sorprender a una de ellas en pleno estallido, como lo haría una magnetar.

Después de 16 años en el espacio el satélite Rossi X-ray Timing Explorer (RXTE) de NASA realizó su última observación. El satélite proporcionó imágenes sin precedentes sobre los ambientes extremos alrededor de enanas blancas, estrellas de neutrones y agujeros negros.RXTE envió los datos de su última observación científica a tierra teniendo más que merecido el descanso.

La capacidad de cronometrado de RXTE fue crucial para registrar los cambios rápidos en rayos X asociados con las estrellas de neutrones, también conocidas como púlsares. Una estrella de neutrones es lo más cercano a un agujero negro que los astrónomos pueden observar directamente, concentrando medio millón de veces más masa que la de la Tierra en una esfera no mayor que una ciudad. Esta materia está tan comprimida que incluso una cuchara de café pesa tanto como el Everest. Las estrellas de neutrones pueden girar cientos de veces por segundo, y, una especie de esa familia es, precisamente los magnetars.

Sabemos que una estrella de Neutrones es una esfera ultradensa que tiene aproximadamente unos 16 km de diámetro. Es, como sabéis, el núcleo de una estrella colapsada que en su día pudo ser mucho más masiva que nuestro Sol y que explotó en forma de supernova. Las hay que emiten pulsos continuos de radiación X, al girar, que son la variedad a las que llamamos púlsares.

Los físicos recelan de los detalles que no terminan de encajar. No pueden ignorarlos por pequeños que sean. Les hacen temer la existencia de algún error fundamental en sus modelos y teorías. Por eso tras más de tres decenios de incertidumbre, los expertos en estrellas de neutrones respiran un poco más tranquilos gracias al estudio publicado en The Astrophysical Journal por el español Manu Linares desde el Instituto Tecnológico de Massachusetts (MIT).

Resultado de imagen de Terzan 5, la que ha estudiado Linares, les ha dado una alegría.

Resultado de imagen de Terzan 5, la que ha estudiado Linares, les ha dado una alegría.Resultado de imagen de Terzan 5, la que ha estudiado Linares, les ha dado una alegría.

El misterio que entramaban las estrellas de neutrones era el siguiente: desde los años 70 los astrofísicos las han estado estudiando a partir de las explosiones que se producen en sus capas externas. Pero las estrellas de neutrones no explotaban como ellos pensaban que debían hacerlo. Hasta que por fin Terzan 5, la que ha estudiado Linares, les ha dado una alegría.

 Ilustración artística de una estrella de neutrones y su disco de acreción. Crédito: NASA/Dana Berry.

Bombas de energía

Las estrellas de neutrones son el objeto observable más denso que existe en el universo. Son masas parecidas a nuestro Sol pero comprimidas en un radio de 8 a 15 kilómetros. En su interior la fuerza de la gravedad es billones de veces mayor a la terrestre. La descomunal presión compacta los átomos hasta que protones y electrones se funden formando neutrones. La temperatura y densidad son tan extremas que estos neutrones podrían llegar a romperse y dejar libres sus quarks.

A los astrofísicos les interesan sobremanera porque sus condiciones no existen en ningún otro lugar del universo observable. “Es como un laboratorio natural que nos permite investigar las leyes de la física en un rango de energías, densidades y campos magnéticos inalcanzables en la Tierra”, explica Manu Linares a SINC.

Resultado de imagen de Terzan 5, la que ha estudiado Linares, les ha dado una alegría.

Escenas así son corrientes en el Universo. Algunas estrellas de neutrones son tan densas que atraen la masa de las estrellas cercanas y llegan a tener una potencia magnética tan grande que eyectan intensos e inmensos rayos Gamma y X al espacio interestelar que son detectados por nuestros ingenios que observan este tipo de sucesos. Es tal su intensidad que superan más de mil veces los campos magnéticos de una estrella de neutrones corriente.

                          Intensa emisión de rayos Gamma al espacio

Claro que pueden llegar a estallar en el proceso, toda vez que coger nasa de objetos circundantes con el campo magnético que ya poseen y que, al inyectarle nuevo material también se agranda y pone la estabilidad de la estrella en un equilibrio defícil de mantener. Hasta hace muy poco no se sabía que esta clase de estrellas, los AXP, también podrían sufrir estallidos.

Fue el Rossi, precisamente, el que detectó el estallido en la estrella AXP 1E 1048-5937. Posteriores investigaciones indicaron que tiene un campo magnético  de aproximadamente 10^ 15 Gauss.

http://4.bp.blogspot.com/_XGCz7tfLmd0/TDUaKVAfCZI/AAAAAAAAGeA/pNphHD4hT8U/s1600/quapul02.jpg

En el verano de 1967 Anthony Hewish y sus colaboradores de la Universidad de Cambridge detectaron, por accidente, emisiones de radio en los cielos que en nada se parecían a las que se habían detectado hasta entonces. Llegaban en impulsos muy regulares a intervalos de sólo 1 1/3 segundos. Para ser exactos, a intervalos de 1,33730109 segundos. La fuente emisora recibió el nombre de “estrella pulsante” o “pulsar”.

   Esta es la imagen que de un púlsar tenemos pero… En general, las estrellas de neutrones pueden ser de variado rango o clase y hasta donde conocemos: De Neutrones, Púlsares y Magnetars cada una de ellas con sus extrañas y específicas cualidades que, al no llegar a comprenderlas… del todo, nos maravillan.

Resultado de imagen de PúlsaresrecicladosResultado de imagen de PúlsaresrecicladosResultado de imagen de Púlsaresreciclados

Se cree que los púlsares reciclados son púlsares ordinarios que han perdido energía y se han debilitado, y que luego se han puesto a girar de nuevo por acreción del gas de la estrella compañera. Existe una alta proporción de púlsares reciclados en los núcleos de los cúmulos globulares, donde la alta densidad de estrellas hace más probable la captura de una vieja estrella de neutrones en un sistema binario. Los primeros púlsares reciclados en ser descubiertos tenían  períodos de pulsos muy cortos y se conocen como “púlsares de milisegundo”, aunque más tarde se descubrieron otros con períodos mucho más largo.

Resultado de imagen de PúlsaresrecicladosResultado de imagen de Púlsaresreciclados

Para poder llegar a estrella de neutrones, la estrella original que implosiona es más masiva que nuestro Sol. La estrella de Neutrones es muy densa, tan densa como el núcleo de un átomo y, cuando colapsa se convierte en un púlsar giratorio que es el resultado de una explosión de supernova como la presenciada en 1054.

De todas las maneras y aunque han sido descubierto y, sin duda alguna existen, aún tenemos mucho que aprender de los magnetars que, son los objetos más extraños de la familia de las estrellas de neutrones.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

http://4.bp.blogspot.com/_XGCz7tfLmd0/TDUaKVAfCZI/AAAAAAAAGeA/pNphHD4hT8U/s1600/quapul02.jpg

En el verano de 1967 Anthony Hewish y sus colaboradores de la Universidad de Cambridge detectaron, por accidente, emisiones de radio en los cielos que en nada se parecían a las que se habían detectado hasta entonces. Llegaban en impulsos muy regulares a intervalos de sólo 1 1/3 segundos. Para ser exactos, a intervalos de 1,33730109 segundos. La fuente emisora recibió el nombre de “estrella pulsante” o “pulsar”.

   Esta es la imagen que de un púlsar tenemos pero…

¿QUE SON LOS PÚLSARES?

Un púlsar es una fuente de radio desde la que se recibe un tren de pulsos altamente regular. Han sido catalogados cerca de un millar de púlsares desde que se descubriera el primero en 1967. Los Púlsares son Estrellas de Neutrones en rápida rotación, con un diámetro de 20-30 Km. Las estrellas se hallan altamente magnetizadas (alrededor de 10 exp.8 tesla), con el eje magnético inclinado con respecto al eje de rotación.

La emisión de radio se cree que surge por la aceleración de partículas cargadas por encima de los polos magnéticos. A medida que rota la estrella, un haz de ondas de radio barre la Tierra, siendo entonces observado el pulso, de forma similar a la luz de un faro. Los períodos de los pulsos son típicamente de 1 s pero varían desde los 1,56 ms (púlsares de milisegundo) hasta los 4’3 s

Los períodos de los pulsos se alargan gradualmente a medida que las estrellas de neutrones pierden energía rotacional, aunque unos pocos púlsares jóvenes son propensos a súbitas perturbaciones conocidas como ráfagas. Las medidas precisas de tiempos en los púlsares han revelado la presencia de púlsares binarios, y un púlsar, PSR 1257+12, se ha demostrado que está acompañado por objetos de masa planetaria. Han sido detectados destellos ópticos procedentes de unos pocos púlsares, notablemente los Púlsares del Cangrejo y Vela.

La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigante, aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrellas de neutronesdespués de una acreción de masa de una estrella compañera. (Púlsar reciclado).

El nombre del objeto capturado es Vela y es un pulsar que lanza un chorro de partículas cargadas que corren a lo largo del eje de rotación del astro- Muchos son los púlsares descubiertos por el Telescopio Espacial Hubble que, desde hace 25 años está observando el Espacio Interetelar para desvelar los secretos del Universo.

La gran mayoría de los púlsares conocidos se encuentran en la Vía Láctea  y están concentrados en el plano galáctico. Se estima que hay unos 100.000 púlsares en la Galaxia. Las observaciones de la dispersión interestelar y del efecto Faraday en los púlsares suministran información sobre la distribución de electrones libres y de los campos magnéticos de la Vía Láctea.

Cuando un púlsar está en órbita con otra estrella, estamos hablando de un púlsar binario, cuya existencia es revelada por un cambio cíclico en el período de pulsación a medida que las dos estrellas orbitan la una en torno a la otra. Se conocen alrededor de 50 púlsares binarios, con períodos orbitales que varían entre menos de 1 hora y varios años, y períodos de pulsión entre 1,6 ms y más de 1 s.

                                  Imagen más aclaratoria del PSR 1913+16

El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.

El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.

           Púlsar evaporando estrella © Crédito: NASA/ESA. PSR 1957 + 20

Otro púlsar binario destacable es PSR 1957 + 20, llamado en ocasiones púlsar de la viuda negra, en el que la intensa radiación procedente del pulsar está evaporando su  pequeña estrella compañera. Algunos púlsares binarios se saben ahora que son púlsares reciclados que han adquirido altas velocidades de rotación debido  a la acreción de gas procedente del compañero.

Resultado de imagen de El Púlsar PSR 1937 + 21

               PSR 1937 + 21

El púlsar del milisegundo brilla cada pocas milésimas de segundo. El primero en ser descubierto, PSR 1937 + 21, tiene un período de 1,56 ms, siendo aún el del período más corto conocido y próximo al mínimo teórico para una estrella de neutrones en rotación. Han sido descubiertos más de 60 púlsares con períodos de menos de 20 milisegundos, muchos de ellos en cúmulos globulares. Los púlsares de milisegundo poseen una rotación extremadamente estable y mantiene una regularidad mayor que la de los relojes atómicos.

También está el púlsar de rayos X. Aquí estamos hablando de una binaria de rayos X que tiene una variabilidad regular, en la que la pulsación está asociada al período de rotación de la compañera compacta, una estrella de neutrones magnetizada.

Los períodos varían desde unos pocos segundos hasta unos pocos minutos. Estas pulsaciones se piensa que están provocadas por el campo magnético que canaliza el gas en acreción hacia los polos de la estrella produciendo “manchas calientes” localizadas que se hacen visibles o no a medida que rota la estrella. Un ejemplo de dicho sistema es Hércules X-1.

La mayoría de los púlsares se piensa que se crean en explosiones de supernova por el colapso del núcleo de una estrella supergigante, aunque en la actualidad hay considerables evidencias de que al menos algunos de ellos se originan a partir de enanas blancas que han colapsado en estrellas de neutronesdespués de una acreción de masa de una estrella compañera. (Púlsar reciclado).

Otro tipo de púlsar es el llamado óptico que sufre pulsaciones en la parte visible del espectro, además de en longitudes de onda de radio y de otros tipos. El primer púlsar cuyas pulsaciones ópticas fueron descubiertas fue el Púlsar del Cangrejo, en 1969, seguido del Púlsar Vela en 1977.

El púlsar denominado “reciclado” es un púlsar con un campo magnético inusualmente bajo (1-100 tesla), un ritmo de frenado pequeño y un período de pulsos frecuentemente muy bajo, encontrándose a menudo en sistemas binarios.

Resultado de imagen de Detectan un púlsar reciclado

   Púlsares de milisegundo y la teoría del reciclaje

Se cree que los púlsares reciclados son púlsares ordinarios que han perdido energía y se han debilitado, y que luego se han puesto a girar de nuevo por acreción del gas de la estrella compañera. Existe una alta proporción de púlsares reciclados en los núcleos de los cúmulos globulares, donde la alta densidad de estrellas hace más probable la captura de una vieja estrella de neutrones en un sistema binario. Los primeros púlsares reciclados en ser descubiertos tenían  períodos de pulsos muy cortos y se conocen como “púlsares de milisegundo”, aunque más tarde se descubrieron otros con períodos mucho más largo.

“El remanente de supernova de SN 1054, constituido por los desechos expulsados durante la explosión, se llama Nebulosa del Cangrejo. Está situada en una zona cercana a la estrella ζ Tauri. Alberga en su interior los residuos compactos de la estrella que explotó, un púlsar, llamado pulsar del Cangrejo (o PSR B0531+21). Esta nebulosa y el pulsar que contiene forman la estructura astronómica más estudiada fuera del sistema solar, entre otras cosas porque es una de las raras supernovas en las que la fecha de la explosión es perfectamente conocida.”

Para poder llegar a estrella de neutrones, la estrella original que implosiona es más masiva que nuestro Sol. La estrella de Neutrones es muy densa, tan densa como el núcleo de un átomo y, cuando colapsa se convierte en un púlsar giratorio que es el resultado de una explosión de supernova como la presenciada en 1054.

emilio silvera