lunes, 23 de septiembre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cómo sujetar los pensamientos?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Dentro de nuestras mentes se crean torbellinos infinitos de pensamientos que debemos ordenar. Andamos sumergidos en la espesa niebla de nuestra ignorancia y no siempre, sabemos “ver” con la claridad suficiente y necesaria cómo es el mundo. En escritos míos anteriores, me he referido a la teoría expuesta de manera magistral por el reconocido físico teórico Kip S. Thorne. Él cree firmemente que en el futuro será posible viajar al pasado a través de un agujero de gusano. Para que las bocas de entrada aquí, y la de salida “allí” -pongamos por ejemplo, que el allí está en Andrómeda- se mantengan abiertas, es necesario que dispongamos de energía exótica como la que se produce en las placas del Efecto Casimir.

Resultado de imagen de efecto casimir

De la manera que vemos avanzar la ciencia, negar cualquier posibilidad futura, me parece al menos arriesgado y de tal maravilla, podría ser posible algún día muy lejos en el futuro, ¿quién sabe? si puede llegar a ser realidad. Sin embargo, hay que puntualizar algunas cosas.

  • Todos hemos oído contar, hemos leído o hemos visionado alguna película en la que el personaje principal viaja al pasado, se encuentra con su abuelo, se pelea con él y lo mata, y así, ni su padre ni él mismo pudieron nacer.
  • También se podría viajar al pasado, matar a Hitler y evitar el holocausto judío.
  • O impedir la crucifixión de Cristo.
  • O…

Imagen 2

¡Pues va a ser que no! Los mecanismos del universo no permitirían tales acciones que cambiarían el curso de una historia que ya tuvo muchas consecuencias, y, como decía Hawking, alguna clase de censura cósmica, lo impedirá.

Si Thorne tiene razón y alguna vez vamos al pasado, a un mundo que fue y que no es el nuestro, creo que las leyes de la física impedirán que nuestra presencia fuese material y que nuestras acciones pudieran incidir en los hechos para cambiar su curso; eso es imposible. Cuando el suceso pasó no estábamos allí, y, por eso pasó de esa manera y, ahora, por mucho que queramos, no podremos cambiar ese hecho pasado. El Jarrón roto y hecho añicos nunca se podrá recomponer.

Imagen 4

El Tiempo, eso que no sabemos explicar lo que es, tiene mucho que decir en todo esto de ir al pasado

Nuestra presencia allí sería incorpórea, holográfica, o, de cualquier otra manera en la que  podríamos ver, observar, mirar con fascinación de manera directa lo que allí pasó, ser testigos de hechos históricos (seguramente sería una forma de turismo del futuro), pero no nos estaría permitido intervenir. Además, si eso algún día fuese posible, también es dudoso que las personas de aquel lugar de época remota, pudieran vernos, ya que, en realidad, nosotros en aquel momento no estábamos allí.

Lo que ya pasó es irreversible. No podemos físicamente retrotraer el tiempo para borrar lo que pasó. Cuando una estrella muere por haber agotado su combustiblre nuclear de fusión, explota como Supernova y crea una Nebulosa y un Agujero negro… ¿Cómo podríamos cambiar eso un millón de años más tarde, aunque consiguiéramos viajar al pasado?

Cuando un astrofísico mira una galaxia que está a 1.000 millones de años-luz de nosotros, está mirando el pasado. La galaxia que ve es la galaxia que fue hace 1.000 millones de años, que es el tiempo que ha tardado su imagen en llegar a nosotros viajando a la velocidad de la luz. No estamos capacitados de ninguna manera para poder observar esa galaxia tal y como es ahora; la distancia que la separa de nosotros tiene que ser recorrida, y el viaje duró mil millones de años, así que cuando lleguemos allí, la galaxia habrá evolucionado y será muy diferente a como era cuando iniciamos el viaje.

http://nuestrascharlasnocturnas.files.wordpress.com/2010/10/int-341269.jpg

Los astrónomos creen haber hallado el objeto más lejano jamás divisado en el universo: una galaxia muy distante en el tiempo y en el espacio.  Semioculto en una foto captada por el Telescopio Espacial Hubble y dado a conocer este año, se encuentra un corpúsculo de luz que los astrónomos europeos calculan es una galaxia de hace 13.100 millones de años. Es un momento en que el universo era muy joven, de apenas 600 millones de años. De confirmarse, será el objeto más antiguo y más distante hallado hasta la fecha y, la galaxia, probablemente ni exista ya.

El rayo de luz que es atraído por un agujero negro y desaparece en la singularidad, no puede volver para que lo podamos ver de nuevo. Allí, en ese lugar extraño y desconocido, se pierde toda la información y, si no explota y esparce todo su contenido, la información se perderá para siempre.

La entropía del universo es irreversible; el deterioro de los sistemas cerrados es imparable. Todo se transforma para convertir las cosas en otras diferentes. Son las leyes del universo, y a nosotros, simples mortales, sólo nos queda tratar de comprenderlas para obtener de ellas “tal como son” el mayor beneficio posible. Cuando la ambición o la inconsciencia nos lleva a querer cambiar las leyes del universo y de su naturaleza, el resultado no puede ser bueno. Somos nosotros los que tenemos que adaptarnos al medio y no al revés (excepto cuando por medios artificiales preparamos el medio para nuestro beneficio, pero simplemente adaptándolo y no cambiándolo).

Todas estas razones y muchas más que podrían exponerse aquí son las que impedirán algún día muy lejano de nuestro futuro, cambiar el pasado que, según mi opinión, es inamovible. ¡Ah!, y en contra de lo que dice en su libro Jean Bouchart, creo que todo lo que ocurre está causado por lo que ocurrió. Es lo que los físicos llaman causalidad. Nada ocurre porque sí, todo tiene su causa.

  • Si de verdad amas, te amarán.
  • Si estudias, aprenderás.
  • Si eres un vago, te llegará la miseria y la degradación.
  • Si haces lo que te gusta, serás más feliz.

Todo es la consecuencia de lo que hacemos. Igualmente, en nuestro mundo y en nuestro universo, rige la misma ley: si contaminas el planeta, se deteriorará el medio ambiente y morirá la atmósfera que ahora nos da la vida. Si una estrella agota su combustible nuclear, morirá, dejará de brillar y se convertirá en un objeto diferente. Todo es así.

Mi consejo: que nuestro comportamiento no sea nunca causante de males ajenos; que nos conformemos y sepamos valorar lo que tenemos; que tratemos cada día de ser mejores adquiriendo nuevos conocimientos, el verdadero sustento del ser. Cuanto más sabemos, más podemos ofrecer a los demás y a nuestro propio “espíritu”.

Seguramente, el verdadero amor es el único que nos salvará. En el último momento, surgirá en nosotros esa llama interior que llevamos dentro en la que se concentra todo lo bueno. El mal será rechazado y estaremos en un Universo mejor, más igual para todos, más justo y en el que, la dignidad de las personas estará asegurada. Quien trata de humillar a otro y despojarle de su dignidad, no es consciente de que en realidad, es su dignidiad la que se verá resentida por tan vil acción.

En mi transcurrir cotidiano, por mi trabajo, veo con mucha pena cómo las personas tratan de engañarse las unas a las otras. Es la forma general, y lo excepcional es el encontrar, muy de tarde en tarde, personas decentes y honradas, mejor o peor preparadas (qué más da) pero nobles de espíritu y limpias de corazón; cuando eso ocurre, es como una ráfaga de aire fresco y perfumado que inunda los sentidos.

          No todos nos muestran su verdadera cara

Como lo normal es todo lo contrario, la fealdad interior, el engaño, la ausencia de moralidad y de ética, la traición de los “amigos” o familiares, etc., mi remedio es bien sencillo: me encierro en mi mundo particular de la física, la astronomía y, en definitiva, de cualquier rama del saber que esté presente en ese momento en mis pensamientos, y de esa forma, por unos momentos, me olvido de la fea verdad que nos rodea. La bondad y el amor sólo aparecen en efímeras ráfagas que rápidamente se esfuman y desaparecen, excepto en ámbitos como el seno famliar. Ahí, dentro de la familia -la esposa, los hijos, nietos hermanos y los padres… se desencadena un alto índice de ternura que hace florecer lo lo mejor de nosotros. En el seno familiar podemos sentir las bocanadas de aire puro  y perfumado inexistentes en otro lugar. En algunos casos, ese estado de amor y de ternura se extiende hacia todos los demás.

Estamos en un mundo frío, cada cual campa a lo suyo y, por lo general,  los demás sólo son instrumentos para conseguir nuestros objetivos. Nuestro mundo está cambiando, ya está regido por Ordenadores personalizados que atienden a nuestras instrucciones y se ocupan de necesidades cotidianas en la casa, en la oficina, en la fábrica y que son capaces de realizar planteamientos matemáticos en minutos, cosa que los seres vivos no pueden hacer a pesar de ser ellos los inventores del prodigio. No veo nada claro el devenir de la Humanidad.

Pasemos a otras cuestiones. En  enero de 2.007, comenzó y se celebró en la India el 20 International Joint Conference of Artificial Intelligence, un encuentro en el que se pusieron al día todos los avances en inteligencia artificial, y donde fue celebrado el 50 cumpleaños de su creación.

El incremento de los resultados en este campo (mucho hemos hablado aquí de ello), ha sido asombroso. Internet es una buena prueba de ello en la búsqueda de información por contenido, comercio electrónico, sistemas de recomendación, web semántica, etc. el futuro de Internet, de la industria y del comercio, de las ciudades futuras, de los viajes espaciales, de la medicina, etc., etc., etc., dependerán de los progresos que se realicen en el ámbito de la inteligencia artificial y en la nanotecnología; ahí parecen estar el progreso del futuro.

geminoids

Hemos llegado a fabricar “clones” artificiales que cuesta identificar de los originales y… ¡Esto no ha hecho más que empezar! ¿Dónde acabará todo?

La inteligencia artificial, entre otras cosas, podrá llevar y facilitar información a países subdesarrollados que, de esta manera, podrá ofrecer educación a sus habitantes, mejorará la salud de la población, su agricultura, etc. la calidad de vida, en definitiva.

Ya se están desarrollando en Japón los ordenadores inteligentes (los llamados de quinta generación), y el entusiasmo de empresas informáticas japonesas y estadounidenses por la inteligencia artificial aconsejó a Europa no quedarse atrás y acometer sus propios proyectos mediante programas de investigación en estas nuevas tecnologías del futuro.

El término de inteligencia artificial, si no me falla la memoria, se acuñó en la reunión de Dartmouth en 1.956, que fue un evento único e histórico. Único porque no se volvió a celebrar, es decir, no fue el primero de una serie como ocurre con los congresos internacionales de lo que,  se llevan celebrandos 20; y fue histórico por el hecho de que allí se acuñó el término que ha prevalecido de inteligencia artificial.

En DartMouth se presentó un único resultado: un programa llamado Logic Theorist, capaz de demostrar teoremas de lógica proporcional contenidos (según leí) en la famosa obra “Principia Matematica” de Bertrand Russell y Alfred Whitehead (la obra más famosa de Newton lleva el mismo título). El programa lo desarrollaron Herbert Simón (que en 1.978 recibió el premio Nobel de Economía), Alan Newell y Clifford Shaw. Sin embargo, en éste de enero en la India, se presentaron 470 resultados seleccionados entre los casi 1.400 que recibieron.

Alan Turing cropped.jpg

Estatua de Alan Turing y su retrato de fondo

Desde aquella reunión del 56, los hitos alcanzados en el campo de la IA han sido extraordinarios: desde jugar al ajedrez hasta diagnosticar enfermedades, comprender textos sobre temas concretos que implican conocimientos especializados… No obstante, el objetivo de desarrollar las inteligencias artificiales generales que los pioneros de esta ciencia, reunidos en 1.956, propusieron para ser alcanzados, quedan aún muy lejanos. Pero, todo llegará; todo es cuestión de ¡tiempo!

Esta ciencia le debe mucho a las matemáticas. Alan Turing es un ejemplo. Fue un gran matemático que formalizó conceptos tan básicos para la informática como el concepto de algoritmo y el concepto de calculabilidad mediante la denominada Máquina de Turing, lo que nos lleva a considerar a Turing como a uno de los “padres” de la informática y, más concretamente, de la informática teórica. En 1.950 publicó un ensayo, “Computing Machinery and Intelligence”, donde describió su famoso Test de Turing, según el cual se podría determinar si una máquina es o no inteligente. La IA le debe pues el test que lleva su nombre, pero la informática le debe más.

Estamos tratando de crear cerebros positrónicos en los que se desarrollen los pensamientos propios y… ¡hasta los sentimientos! ¿No estaremos queriendo ir demasiado lejos? Está claro que la IA se aliará y formará equipo con la biología y la nanotecnología, y de esta unión surgirán avances que ahora ni podemos imaginar en nuestra actual comprensión (limitada) de la inteligencia artificial.

Como siempre me ocurre, cuando me pongo a escribir mis pensamientos vuelan, parece que estoy estableciendo una conversación conmigo mismo y traslado lo que se ella surge a la pantalla del ordenador, donde quedan plasmados todos los pensamientos presentes en mi cerebro en ese momento. En esas líneas de letras quiero expresar lo que recuerdo, lo que he leído, lo que he estudiado del tema que en ese momento ocupa mi atención, y así ocurre que, no siendo infalible, los errores pueden ser muchos y algunas explicaciones o comentarios poco documentados (consulto muy poco escribiendo y me dejo llevar), por lo que pido disculpas. Sin embargo, mis lectores -que son buenos amigos-, ganan en frescura y espontaneidad; el texto es más natural y en él están ausentes las artificialidades. Creo que salen ganando.

Resultado de imagen de quien puede sujetar los pensamientos

       ¿Quién puede sujetar los pensamientos?

Lo que quería decir antes -como otras veces me he ido por las ramas-, es que puedo comenzar hablando de una cuestión y terminar hablando de otra muy distinta. Me vienen a la mente temas diversos, y de manera natural, sigo mis pensamientos y así lo reflejo en la blanca pantalla.

¿No resulta más ameno? De todas formas, siempre trato de finalizar los temas. Básicamente soy un insaciable buscador de la razón de ser de las cosas; todo me parece interesante. Mi curiosidad es ilimitada y mi vehemencia y pasión me llevan, a veces, a olvidarme de comer o (más grave aún), de recoger a mi mujer, que en un pueblo cercano espera mi llegada como habíamos quedado. Son cosas corrientes de mi manera de ser, que cuando emprendo una tarea, una lectura, o un proyecto, lo quiero tener terminado antes de… ¡haberlo comenzado!

http://upload.wikimedia.org/wikipedia/commons/e/e4/DS4_Champollion_2.jpg

Leo cualquier titular en un periódico: “Instalan un observatorio bajo el hielo para estudiar los confines del cosmos. Cuando esté en marcha, los científicos esperan que detecte 1.000 colisiones diarias de neutrinos, partículas minúsculas que nos traen información del universo.” No puedo, a partir de ahí, evitar el comprar el periódico o la revista para leer todo el reportaje completo, aunque sé que no dirán nada que ya no sepa sobre los neutrinos y la manera de cazarlos en las profundidades de la Tierra, en profundas minas abandonadas en las que colocan tanques de agua pesada que, conectados a potentes ordenadores, detectan la presencia de estas diminutas partículas -al parecer- carentes de masa que pertenecen a la familia de los leptones.

Cada segundo que pasa, billones de estas minúsculas partículas invisibles llamadas neutrinos, atraviesan nuestros cuerpos, en muchos casos, después de haber recorrido de un confín a otro todo el universo. Sin que nos demos cuenta estamos conectados con el otro extremo del Cosmos por medio de las conexiones invisibles que su Naturaleza impone. De hecho, somos parte de ese inmenso Universo que tratamos de conocer.

Los neutrinos, al contrario que los fotones, viajan sin cesar de un lado a otro del universo sin que ningún campo magnético los desvíe de su camino, y sin ser destruidos tras colisionar con otras partículas, ya que apenas poseen carga eléctrica ni interaccionan con la materia. Por ello, estudiar de cerca un neutrino permitiría descubrir su procedencia y aportaría a los científicos una valiosa información sobre los rincones del universo de los que provienen.

El problema que se plantea es que agarrar un neutrino no es tarea nada fácil, y aunque se cree que el neutrino puede ser el mensajero cósmico ideal, primero habrá que retenerlo para poder hacer la comprobación. Esta partícula fue anunciada o prevista su existencia por Wolfgan Pauli, y su nombre, neutrino (pequeño neutro en italiano), se lo puso el físico Enrico Fermi. Pauli quiso quiso así, con la existencia del neutrino, explicar dónde estaba la masa perdida en la fusión nuclear de la materia, en los fenómenos producidos por la radiación inducida por la fuerza nuclear débil. El neutrino era la explicación: La masa “perdida” se eyectaba al espacio en forma de energía representada por los neutrinos.

Aunque parezca no venir a cuento, me viene a la mente que el fin de la Edad de Hielo, hace 300 millones de años fue precedido por bruscos cambios en el nivel de dióxido de carbono (CO2), alteraciones violentas del clima y efectos drásticos sobre la vegetación del planeta. Pero, ¡¿qué estamos haciendo ahora?! La irresponsabilidad de algunos seres humanos es ilimitada.

Hace 300 millones de años, el hemisferio sur del planeta estaba casi totalmente cubierto por el hielo; los océanos del norte eran una sola masa gélida y los trópicos estaban dominados por espesas selvas, pero 40 millones de años después, el hielo había desaparecido; el mundo era un lugar ardiente y árido. La vegetación era escasa y los vientos secos soplaban sobre una superficie donde casi no había vegetación. Sólo un reptil podría sobrevivir en aquellas condiciones.

Ahora parece que estamos decididos a repetirlo. ¿Qué hará Gaia para defenderse? Creo que hará lo que estime necesario para preservar su integridad, y si para ello es preciso eliminar a los molestos “bichitos” que causaron el mal, no creo que dude en hacerlo, ya que los acogió, les ofreció todos los recursos necesarios para la supervivencia, y el pago no fue, precisamente, el más adecuado. Lo peor de todo esto es que el comportamiento, el egoísmo de unos pocos lo pagaremos todos. Es como cuando un niño molesta en el colegio y el maestro castiga a toda la clase.

Franz Liszt dijo una vez la hermosa frase siguiente:

“Nuestras vidas son preludios; preludios de una desconocida canción cuya primera nota es la muerte.”

 

Liszt encabezó su referencia a un poema de Lamartine, en uno de sus más conocidos poemas sinfónicos, con esta memorable definición. Y se hizo la pregunta ¿Será verdad que la muerte es el comienzo?

Bueno, es mejor ser respetuoso con ciertos pensamientos. Hay ciertos temas sobre los que la ciencia no tiene potestades ni puede legislar. Yo, en este sentido, me parapeto tras mi ignorancia para no pronunciarme sobre lo que desconozco, y sobre temas que la ciencia no está en condiciones de explicar. Claro que, no por ello y para mi intimidad, no dejo de tener mi propio criterio sobre lo que vendrá luego de ese último momento por el que tenemos que pasar todos.

Llegados a este punto, recuerdo las palabras de mi hija María, pianista y clavecinista, que tiene una personal y artística interpretación de las cosas a través de argumentos musicales. Para ella, la música es algo más que un arte; es el todo, una manera de interpretar la vida y de ver las cosas. La música es para ella su esencia, su materia revelada y el camino elegido para vivir en un mundo aparte, de colores, lleno de notas musicales que forman melodías de una belleza infinita. Cuando habla de su música, se transporta y vive dentro de una suerte poética que la eleva a un plano superior y filosófico, casi místico o religioso, que la revitaliza, le da una fuerza especial y, sobre todo, le hace feliz al estar haciendo aquello que más le gusta. El que puede conseguir eso, es un elegido -yo no pude elegir-. Claro que, a veces pienso: ¿No será que María se sumerge en su música para no ver la fealdad del mundo?

emilio silvera

¿Que dónde estamos? ¡En un Universo dinámico!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Resultado de imagen de El Universo y la VidaResultado de imagen de El Universo y la Vida

 

Mundos que tienen las precisas condiciones para albergar la Vida. Podrá ser como la que ya conocemos en el planeta Tierra, o, de distinta mosfología, inteligente o no pero… ¡Vida al fin y al cabo!

Estamos inmersos en una inconmensurable grandeza de variedad y coloridos escenarios en los que están presentes las fuerzas fundamentales del universo y las constantes que hacen posible que, formas de vida de cualquier índole que podamos imaginar, estarán pululando en sus ecosistemas y habitats, sin que nada pueda evitarlo, si lo pensamos bien, amigos míos, parece como si el universo hubiera sabido que nosotros, teníamos que venir.

Dibujo20150317 Principle of the fuzzy time dispersion measurement - nphys3293-f1

John Wheeler propuso que el espaciotiempo en la escala de Planck es una espuma cuántica. Una teoría cuántica de la gravedad que describa esta espuma cuántica debería violar la simetría de Lorentz de la teoría de la relatividad. Para explorar esta espuma cuántica, Giovanni Amelino-Camelia y varios colegas propusieron en 1998 estudiar la relación energía-momento para un fotón que haya recorrido distancias muy grandes, es decir, estudiar si la velocidad de un fotón en el vacío depende de su energía (no es constante).

 

Todos los objetos del Universo son el resulta de fuerzas antagónicas que, al ser iguales, se equilibran y consiguen la estabilidad. Las estrellas son el mejor ejemplo: La Gravedad trata de comprimir a la estrella que, mediante la fusión tiende a expandirse y, la lucha de esas dos fuerzas iguales en potencia crea la estabilidad. Con los átomos ocurre lo mismo,la carga positiva de los protones es  igualada por la negativa de los electrones.

 

             Hemos sabido llegar a los dos extremos desde lo pequeño a lo grande

Hemos podido llegar a unas alturas en el mundo de la exploración científica que, nos posibilita reconocer los impactos de los cambios que se producen con el devenir del tiempo en la Naturaleza y, hemos llegado a comprender que, el Universo, es dinámico. Hacia finales del siglo XIX se había llegado a saber que hubo un tiempo en que la Tierra y nuestro Sistema solar no existían; que la especie humana debía haber cambiado en apariencia y en el promedio de su capacidad mental a lo largo de enormes períodos de tiempo; y que en cierto sentido, amplio y general, el Universo debería estar degradándose, haciéndose un lugar hospitalario y ordenado. Durante el siglo XX hemos podido ampliar esa imagen de un Universo cambiante.

MIramos todo esa grandeza pero… ¿Sabremos comporender?

Delante de nuestros propios ojos podemos contemplar cambia, por ejemplo, el clima y la topografía de nuestro propio planeta y de todas las especies que en él están presentes en sus distintas formas de vida que, como muestra cercana de lo que ocurre en cualquier otro lugar del Universo, nos sirve de Laboratorio para la observación de la dinámica universal.

Hemos descubierto que todo el Universo de estrellas y galaxias está en un continuo estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan de otros hacia un futuro que será distinto del presente. Hemos empezado a darnos cuenta de que vivímos en un “Tiempo” prestado. Los sucesos astronómicos catastróficos son comunes; los mundos colisionan. El planeta Tierra ha sufrido en el pasado impactos de cometas y asteroides. Un día se acabará nuestra suerte; el escudo que tan fortuitamente nos proporciona el enorme planeta Júpiter (leer la noticia de más abajo), que guarda los confines exteriores de nuestro Sistema solar, no será capaz de salvarnos.

 Resultado de imagen de Un peligroso meteorito se acerca

Un meteorito de potencial peligro se acerca a la Tierra… ¿Qué pasará? ¿Pasará cerca? ¿Chocará con en planeta? ¿Nos salvaremos otra vez… Nadie lo sabe. Ni el Equipo que lo ha descubierto y está haciendo el seguimiento. Lo cierto es que unos años lo sabremos.

Todos sabemos de las inmensas consecuencias que el impacto de un gran objeto sobre la Tierra tendría. Los cráteres que jalonan la superficie terrestre por todo el planeta nos hablan de lo que pasó en el pasado y, eso, amigos míos, no tenemos muchas soluciones. Claro que todo es cuestión de tiempo y, al final, hasta nuestro Sol morirá para convertirse, primero en una gigante roja que sobrepasará Mercurio y Venus y se quedará muy cerca de nuestro planeta, para entonces, las temperaturas subirán y los océanos se evaporarán, la vida, tal como la conocemos, ya no estará en este vergel que, durante miles de años, nos ha dado cobijo a nosotros y a otros muchos seres.

Sí, las consecuencias del Caos son impredecibles. Nosotros hemos reconocido los secretos simples del caos y la impredecibilidad que asedian a tantas partes que rodean a nuestro mundo. Sí, es cierto que entendemos que nuestro clima es cambiante pero, no podemos predecir esos cambios. Hemos apreciado las similitudes entre complejidades como ésta y las que emergen de los sistemas de interacción humana -sociedades, economías, ecosistemas…- y, , del interior de la propia mente humana.

Todas esas complejidades tratan de convencernos de que el mundo es como una montaña rusa desbocada, rodando y dando bandazos; que todo lo que una vez hemos tenido por cierto podría ser derrocado cualquier día, sin que nosotros, pobres mortales, podamos evitarlo y, algunos, incluso ven semejante perspectiva como una razón sospechar de la ciencia, como si produjera un efecto corrosivo sobre los fundamentos de la Naturaleza humana y de la certeza, como si las construcciones del Universo físico y el vasto esquema de sus leyes debiera haberse establecido pensando en nuestra fragilidad psicológica.

 

La ilusión de realidad la hemos experimentado todos en los sueños. Sin embargo, también estando despiertos estamos “viendo” una “realidad” que no existe, sólo está en nuestras mentes. El caso es que, la materia sólida que vemos, en realidad, en su mayor parte, esta conformada por espacios vacíos. Algunos tienen recuerdos de hechos que nunca ocurrieron.

Pero hay un sentido en el que todo cambio e impredecibilidad es una ilusión. No constituye toda la historia sobre la Naturaleza del Universo. Hay tanto un lado conservador como un lado progresista en la estructura profunda de la realidad. A pesar del cambio incesante y la dinámica del mundo visible, existen aspectos de la fábrica del Universo que son misteriosos en su inquebrantable constancia. Son estas misteriosas cosas invariables las que hacen de nuestro Universo el que es y lo distinguen de otros mundos que pudiéramos imaginar.

Lo mismo que existen los hilos invisibles que mantiene unidas a las galaxias, de la misma manera, hay un hilo dorado que teje una continuidad a través de la Naturaleza. Nos llevan a esperar que ciertas cosas sean iguales en otros lugares del espacio además de la Tierra; que fueron y serán las mismas en otros tiempos además de hoy; que algunos casos, ni la hiostoria ni la geografía importan y, son como leyes inamovibles, no hechas por el hombre que, según hemos podido llegar a saber, están por encima de todas esas cuestiones terrenales en las que el hombre ha intervenido de una u otra manera. De hecho, quizá sin uns substrato semejante de realidades invariables no podría haber corrientes superficiales de cambio ni ninguna complejidad de materia y mente.

Los secretos más ocultos del Universo están codificados en unos valores numéricos, aparentemente eternos, a los que llamamos “constantes de la naturaleza”. ellas se encuentran algunas tan famosas como la de la gravitación universal, G, la de la velocidad de la luz, c, o la de Planck, h. Pero, ¿son las “constantes de la naturaleza” realmente constantes? ¿Son las mismas en todas partes? ¿Están todas ellas ligadas? ¿Podría haber evolucionado y persistido la vida si fueran ligeramente distintas? Claro que, estos enigmas nos conducen hasta las fronteras más ignoradas de la ciencia, nos desvela las profundas implicaciones que estas constantes tienen para el destino del universo y el lugar de los hombres en él y, aunque conocemos sus valores, sus números, no podemos dar una explicación de por qué resultan ser esos.

Sí, confinados en un hermoso planeta desde el que, mediante el ingenio y la imaginación, tratamos de escpaar para saber, lo que existe fuera de nuestro entorno, en regiones remotas del Universo a las que no podemos llegar. Sin embargo, no perdemos la esperanza de que, algún día…

Y, mientras tanto, nosotros los humanos, una especie que ha logrado la consciencia de SER, estamos aquí confinados en este hermoso planeta que llamamos Tierra y, ella, tratamos de desvelar esos misterios y otros muchos llenos de secretos que en la Naturaleza subyacen para que los podamos desvelar. Parece mentira que en un planeta igneo, incandescente, podeamos ver ahora nuestro hermoso planeta que desde hace cuatro mil millones de años acoge la Vida. “Su clima y su topografía varían continuamente, como las especies que viven en él. Y lo que es más espectacular,  hemos descubierto que todo el universo de estrellas y galaxias está en un estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan de otros hacia un futuro que será muy diferente del presente. Ahora sabemos que, vivímos en un tiempo prestado.”

El mundo que nos rodea es así porque está conformado por esas constantes de la Naturaleza que hacen que las coaas sean como las podemos observar. Le dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la Naturaleza. ¿Recordáis el 137? Ese puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son, la razón de sus valores sigue siendo un secreto profundamente escondido.

Y, a pesar de todo esto, el Universo, sigue siendo dinámico y cambiante de tal manera que no deja de evolucionar y, estrellas que hoy podemos ver brillando en el cielo, “mañana” habrán desaparecido siempre dando lugar a otros objetos y otras conformaciones pero, ni la masa ni la energía, habrán cambiado en el Universo.

Pero, y nosotros…¿habremos cambiado?, o, quizá como esas estrellas, tampoco estaremos aquí para el Universo alcance esa fase final del frío absoluto en la que nada, ni el tiempo ni el espacio se podrá mover y, si eso llega… ¡dónde estarán los pensamientos de tántos?

emilio silvera

¡El Universo! A veces pienso, ¡que sabe lo que hace!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como se trata de una Ciencia que estudia la naturaleza Física del Universo y de los objetos contenidos en él, fundamentalmente estrellas, galaxias y la composición del espacio entre ellas, así como las consecuencias de las interacciones y transformaciones que en el Cosmos se producen, aquí dejamos una breve secuencia de hechos que, suceden sin cesar en el ámbito del Universo y, gracias a los cuales, existe la Tierra…y, nosotros.

La evolución cósmica de los elementos nos lleva a la formación de los núcleos atómicos simples en el big bang y a una posterior fusión de estos núcleos ligeros para formar otros más pesados y complejos en en el interior de las estrellas, para finalizar el ciclo en las explosiones supernovas donde se plasman aquellos elementos finales de la Tabla Periódica, los más complejos y pesados.

Hay procesos en el Universo que, si pudiera ser posible contemplarlos en directo, serían dignos del mayor asombro. Por ejemplo, a mí me maravilló comprender como se podía formar Carbono en las estrella y, de cómo éstas se valían del llamado “Efecto Triple Alfa” para conseguirlo.

La fusión en el centro de las estrella se logra cuando la densidad y temperatura son suficientemente altas. Existen varios ciclos de fusión que ocurren en diferentes fases de la vida de una estrella. Estos diferentes ciclos forman los diferentes elementos que conocemos. El primer ciclo de fusión es la fusión del Hidrógeno  hacia Helio. Esta es la fase en la que se encuentra nuestro Sol.

En las estrellas con temperaturas muy altas ocurren otros ciclos de fusiones (ciclos CNO ). A temperaturas aún más altas , el helio que se quema produce Carbono. Finalmente, a temperaturas extremadamente altas se forman los elementos más pesados como el Hierro.

Imagen relacionada

                        Cadena Protón-Protón

La cadena protón-protón es una de las dos reacciones de fusión que se producen en las estrellas para convertir el hidrógeno en helio, el otro proceso conocido es el ciclo CNO. Las cadenas protón-protón son más importantes en estrellas del tamaño del Sol o menores. El balance global del proceso es el equivalente de unir cuatro nucleones y dos electrones para formar un núcleo de helio-4 (2 protones + 2 neutrones).

Primer paso (dos veces)

    Segundo paso (dos veces)


  

El ciclo Carbono Nitrógeno Oxígeno:

Las reacciones internas que ocurren en las estrellas forman a los neutrinos que llegan a la Tierra. Al detectar estos neutrinos, los científicos pueden aprender sobre las fusiones internas en las estrellas. En el proceso de fusión nuclear denominado reacción Protón-Protón las partículas intervinientes son el protón(carga positiva), el neutrón (carga neutra), el positrón (carga positiva, antipartícula del electrón) y el neutrino.

Archivo:Keplers supernova.jpg

En las explosiones supernovas que viene a ser el aspecto más brillante de estos sucesos de transformación de la materia, literalmente, es que la explosión de la estrella genera suficiente energía  sintetizar una enorme variedad de átomos más pesados que el hierro que es el límite donde se paran en la producción de elementos estrellas medianas como nuestro Sol.

Pero, en las estrellas masivas y supermasivas gigantes, con decenas de masas solares, cuando el núcleo de hierro se contrae emite un solo sonido estruendoso, y este retumbar final del gong envía una onda sonara  arriba a través del gas que entran, el resultado es el choque más violento del Universo.

La imagen es un zoom del centro de la galaxia M82, una de las más cercanas galaxias con estrellas explosivas a una distancia de sólo 12 millones de  luz. La imagen de la izquierda, tomada con el Telescopio Espacial Hubble (HST), muestra el cuerpo de la galaxia en azul y el gas hidrógeno expulsado por las estrellas explosivas del centro en rojo.

Más arriba decíamos que aquí está el choque más violento del Universo. En un momento se forjan en la ardiente región de colisión toneladas de oro, plata, mercurio, hierro y plomo, yodo, estaño y cobre. La detonación arroja las capas exteriores de la estrella al espacio interestelar, y , con su valioso cargamento, se expande, deambula durante largo tiempo y se mezcla con las nubes interestelares circundantes.

El más conocido remanente estelar, la Nebulosa del Cangrejo cuyos filamentos nos hablan de complejos materiales que la explosión primaria formó hace ya mucho tiempo, y, que actualmente, sirve de estudio  saber sobre los procesos estelares en este tipo de sucesos.

El pulsar de la nebulosa del cangrejo, en rojo del hubble

 dejámos una relación de materiales que pueden ser formados en las explosiones supernovas y, cuando se condensan estrellas nuevas a partir de esas nubes, sus planetas heredan los elementos forjados en estrellas anteriores y durante la explosión. La Tierra fue uno de esos planetas y éstos son los antepasados de los escudos de bronce y las espadas de acero con los que los hombres han luchado, y el oro y la plata por los que lucharon, y los clavos de hierro que los hombres del Capitan Cook negociaban por el afecto de las tahitianas.

La muerte de una estrella supergigante, regenera el espacio interestelar de materiales complejos que, más tarde, forjan estrellas nuevas y mundos ricos en toda clase de elementos que, si tienen suerte de caer en la zona habitable, proporcionará a los seres que allí puedan surgir, los materiales y elementos necesarios para el desarrollo de sus ideas mediante la construcción de máquinas y tecnologías que, de otra manera, no sería posible. Incluso, sin estos materiales, ni esos seres podrían surgir a la vida.

¿No os parece una maravilla? Comenzando con el Hidrógeno, Helio Berilio y Litio en el Big Bang, se continuó con el Carbono, Nitrógeno y Oxígeno en las estrellas de la secuencia principal, y,  más arriba explicaba, se continúa en las estrellas moribundas con el Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc…Uranio. ¡Que maravilla!

El Hubble ha captado en los cielos profundos las más extrañas y variadas imágenes de objetos que en el Cosmos puedan estar presentes, sin embargo, pocas tan bellas como las de nuestro planete Tierra que, es tan rico y especial, gracias a esos procesos que antes hemos contado que ocurren en las estrellas, en las explosiones de supernovas y mediante la creación de esos materiales complejos  los que se encuentran la química biológica para la vida.

 

Si a partir de las Nebulosas que se forman cuando las estrellas masivas llegan al final de sus vidas, pueden surgir planetas  la Tierra, y, si la Tierra contiene la riqueza de todos esos materiales forjados en las estrellas y en el corazón de esas inmensas explosiones, y, si el Universo está plagado de galaxias en las que, de manera periódica suceden esas explosiones, nos podríamos preguntar: ¿Cuantas “Tierras” podrán existir incluso en nuestra propia Galaxia? Y, ¿Cuántos seres pueden haberse formado a partir de esos materiales complejos forjados en las estrellas?

¡Qué gran secreto tiene el Universo! ¿Cómo se las arregla para crear, las precisas condiciones que dan lugar al surgir de la Vida?

emilio silvera

¿El Universo? ¡Una maravilla!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de El cúmulo Copo de Nieve y la Nebulosa del Cono

                                          El cúmulo Copo de Nieve y la Nebulosa del Cono

El Cúmulo Copo de Nieve en la Nebulosa del Cono, es como tantas otras Nebulosas, el resultado de la explosión de una estrella al final de sus días. Las estrellas nunca quieren morir del todo y, cuando lo hacen al finalizar sus ciclos de fusión, se convierten en otros objetos distintos y, sus materiales sobrantes son dejados esparcidos por grandes regiones del espacio interestelar, en forma de bellas nebulosas de las que surgen nuevas estrellas, nuevos mundos y… -seguramente- nuevas formas de vida.

Ahora sabemos que el Universo está constituido de innumerables galaxias que forman cúmulos que, a su vez, se juntan en supercúmulos. Estas galaxias están abarrotadas de estrellas y las estrellas, no pocas veces, están acompañadas de planetas que forman sistemas planetarios. Nosotros, los humanos, hemos realizado profundas observaciones que, con nuestros modernos ingenios, nos han podido llevar hasta el espacio profundo, allí donde habitan galaxias que nacieron hace ahora doce mil millones de años.

http://apod.nasa.gov/apod/image/0910/m42c217p_2panel.jpg

Arriba podemos contemplar una especie de incubadora estelar que todos conocemos como la Gran Nebulosa de Orión, una familiar imagen que está cerca de “nuestro barrio” dentro de la Galaxia Vía Láctea y también conocida como M42 con sus resplandecientes nubes y sus jóvenes y masivas estrellas nuevas que radian en el ultravioleta ionizando la región que toma ese familiar tono azulado.

Situada en el borde de un complejo de nubes moleculares gigantes, esta cautivadora nebulosa -laboratorio espacial- es solo una pequeña fracción de la inmensa cantidad de material interestelar en nuestra vecindad galáctica.El campo de la imagen se extiende cerca de 75 años-luz a la distancia estimada a la Nebulosa de Orión de 1.500 años-luz. Es una de las Nebulosas más estudiada por los Astrónomos y astrofísicos debido a su enorme capacidad de crear nuevas estrellas y estar en ella presentes procesos de transmutación de elementos y una vertiginosa actividad que es la mejor muestra del comportamiento de la materia en estos lugares.

Resultado de imagen de El Cinturón de Orión

                             El Cinturón de Orión

Sin salir de nuestra región, nos vamos al barrio vecino que conocemos como Cinturón de Orión donde destacan las estrellas azuladas Alnitak, Alnilam y Mintaka, estrellas supermasivas y muy calientes que forman el Cinturón del Cazador. Ahí podemos ver, abajo a la izquierda la famosa Nebulosa oscura Cabeza de Caballo.

Alrededor de figuras como la que arriba podemos contemplar, los humanos siempre hemos sido propensos a creer en predicciones fantásticas y fantasías y, para darle ese tinte de enigma y misterio, algunas veces, no hemos dudado en retorcer los hechos para que parezcan lo que no son. Con lo que los mayas creían, ha pasado algo parecido y, los catastróficos, aprovechan para crear una corriente de opinión en la que, mucha gente ignorante de los hechos suelen caer.

Resultado de imagen de LOs sacerdotes mayas y la Astronomía

 

“Según creían los sacerdotes mayas, estos acontecimientos celestes marcaban el amanecer de una nueva era, que se contabilizó usando la “cuenta larga”, un registro lineal de los días que comienza con la cuarta creación maya del año 3114 a.C. y predice que el final del universo actual tendría lugar el 23 de diciembre del año 2012 d.C. Durante este intervalo de vida del universo, que es de unos cinco mil años, numerosos ciclos de tiempo menores marcaban las duraciones de los ritmos astronómicos, naturales y políticos intercalados.”

 

 

Imagen relacionada

 

 

 Curiosamente, las fechas de la cuarta y última creación maya encajan bastante bien con las del cuarto y último ciclo hindú: 13 de agosto del año 3114 a. C. y 5 de febrero de 3112 a.C. para los mayas, según Linda Schele, y 17-18 de febrero del año 3102 a.C. para los hindúes, según Aveni. En la India estas fechas concuerdan con una conjunción planetaria en Aries. En la mitología maya estas fechas representan dos actuaciones de los dioses para crear el universo. El 13 de agosto de 3114 establecieron el corazón cósmico llevando las tres estrellas del cinturón de Orión al centro del cielo; dos años más tarde, el 5 de febrero, levantaron el árbol cósmico, que es la Vía Láctea. Como en la India, ambos días correspondían a acontecimientos astronómicos. Schele, una epigrafista y profesora de historia del arte de la Universidad de Texas, que ve los mitos mayas como “mapas estelares”, afirma que el 13 de agosto del año 3114 a.C. las estrellas de Orión se situaron en el centro del cielo al amanecer. La Gran Nebulosa (M42), desconocida para los europeos hasta 1610, puede verse entre estas estrellas y los mayas la llamaron el humo de la cocina cósmica. Un año más tarde, los dioses plantaron el árbol cósmico, representado por la Vía Láctea, que conectaba las trece capas del cielo con las siete capas del submundo. Según Schele, “ En el año 3112 a.C. la mañana del 5 de febrero, la totalidad de la Vía Láctea ascendió por la parte oriental del horizonte, hasta que al amanecer se extendió de norte a sur por el cielo”. Aveni está de acuerdo con la primera interpretación, pero tiene dudas con respecto a las afirmaciones que hablan de la Vía Láctea del 5 de febrero.

¡Otra vez me ha pasado, aparece un recuerdo en mi mente y lo sigo, lo sigo, lo sigo… dejando de lado lo que estaba haciendo.

Sigamos con el trabajo de hoy.

Del Brazo de Orión, la región que nos acoge y en la que se encuentra situado nuestro Sistema solar, al no poderlo tomar desde fuera y tenerlo tan cerca (de hecho estamos en él inmersos), no podemos tener una imagen como las que hemos captado de otros lugares y regiones más alejadas. También conocido como “brazo local” que es alternativo al Brazo de Orión de nuestra Galaxia, así se define algunas veces al Brazo espiral que contiene a nuestro Sol.

Cuando hablamos de brazo espiral nos estamos refiriendo a una estructura curvada en el disco de las galaxias espirales (y de algunas irregulares) donde se concentran las estrellas jóvenes, las nebulosas (regiones H II) y el polvo. Algunas galaxias tienen un patrón bien definido de dos brazos espirales, mientras que otras pueden tener tres o cuatro brazos, estando en ocasiones fragmentados. Los brazos son visibles por la reciente formación de estrellas brillantes, masivas y de corta vida en ellos. Esta actividad de formación de estrellas es periódica, correspondiendo al movimiento a través del disco de una onda de densidad gravitatoria y de fuertes vientos estelares.

Nuestra curiosidad nos ha llevado, mediante la observación y estudio del cielo, desde tiempos inmemoriales, a saber de las estrellas, de cómo se forman, viven y mueren y, de las formas que adoptan al final de sus vidas, en qué se convierten cuando llega ese momento final y a dónde va a parar la masa de las capas exteriores que eyectan con violencia al espacio interestelar para formar nuevas nebulosas. De la estrella original, según sus masas, nos quedará una enana blanca, una estrella de neutrones y, un agujero negro. También, en encuentros atípicos o sucesos inesperados, pueden crearse estrellas por fusión que las transforman en otras diferentes de lo que en su origen fueron.

 

                                                                       Lo podemos explicar de diferentes maneras

Resultado de imagen de Como se forma un agujero negro

Uno de los acontecimientos más increíbles que podríamos contemplar en el Universo sería, cómo se forma un Agujero negro que, lo mismo es el resultado de la muerte de una estrella masiva que implosiona y se contrae más y más hasta que desaparece de nuestra vista, o, también, se podría formar en otros sucesos como, por ejemplo, la fusión de dos estrellas de neutrones.

La formación de un agujero negro es una de las manifestaciones  más grandes de las que tenenmos constancia con la Gravedad. La estrella, en este caso gigante y muy masiva, llega a su final por haber agotado todo su combustible nuclear de fusión y, queda a merced de la fuerza de gravedad que genera su propia masa que, entonces, comienza a contraerse sobre sí misma más y más hasta llegar a convertirse en una singularidad, es decir, un punto matemático en el que ciertas cantidades físicas pueden alcanzar valores infinitos de temperatura y densidad. Por ejemplo, de acuerdo con la relatividad general, la curvatura del espacio-tiempo se hace infinita en un agujero negro en el que, el espacio y el tiempo…¡dejan de existir!

Resultado de imagen de La radiación impulsa la expansión de la estrella

Es tan fuerte la Gravedad generada que nada la puede frenar. Muchas veces hemos hablado aquí de la estabilidad de una estrella que se debe a la igualdad de dos fuerzas antagónicas: por un lado, la fuerza de fusión y de radiación de una estrella que la impulsa a expandirse y que, sólo puede ser frenada por aquella otra fuerza que emite la misma masa estelar, la Gravedad. Las dos se ven compensadas y, de esa manera, la estrella vive miles de millones de años.

Las estrellas implosionan y se contraen sobre sí mismas cuando la fusión finaliza en sus núcleos por falta de combustible nuclear, tales como el hidrógeno, helio, berilio, Carbono, Oxígeno… Entonces, el proceso de contracción no es igual en todas ellas, sino que, está reglado en función de la masa que cada estrella pueda tener. En una estrella como nuestro Sol, cuando comienza a contraerse está obligando a la masa a  que ocupe un espacio cada vez menor.

La masa, la materia, como sabemos está formada por partículas subatómicas que, cada una de ellas tienen sus propias singularidades, y, por ejemplo, el electrón, es una partícula que, siendo de la familia de los leptones es, además, un fermión que obedece a la estadística de Fermi-Dirac y está sometido al Principio de exclusión de Pauli que es un principio de la mecánica cuántica aplicable sólo a los fermionesy no a los bosones, y, en virtud del cual dos partículas idénticas en un sistema, como por ejemplo electrones en un átomo o quarks en un hadrón, no pueden poseer un conjunto  idénticos de números cuánticos.  (esto es, en el mismo estado cuántico de partícula individual) en el mismo sistema cuántico ligado (El origen de este Principio se encuentra en el teorema de espín-estadística de la teoría relativista).

Toda la explicación anterior está encaminada a que, podáis comprender el por qué, se forman las estrellas enanas blancas y de neutrones debido al Principio de exclusión de Pauli. Sabemos que la materia, en su mayor parte son espacios vacíos pero, si la fuerza de Gravedad va comprimiendo la masa de una estrella más y más, lo que está haciendo es que va juntando, cada vez más, a las partículas que conforman esa materia. Así, los electrones se ven más juntos cada vez y, llega un momento, en el que sienten una especie de “claustrofobia”, su condición de fermiones, no les permite estar tan juntos y, entonces, se degeneran y comienzan a moverse a velocidades relativista. Tal suceso, es de tal magnitud que, la Gravedad que estaba comprimiendo la nasa de la estrella, se ve frenada y se alcanza una estabilidad que finaliza dejando una estrella enana blanca estable.

Pero, ¿qué pasaría si la estrella en vez de tener la masa de nuestro Sol, tiene varias veces su masa? Entonces, ni la degeneración de los electrones puede frenar la fuerza gravitatoria que sigue comprimiendo la masa de la estrella y fusiona electrones con protones para formar neutrones. Los neutrones, que también son fermiones, se ven comprimidos hasta tal punto que, también se degeneran y, ellos, sí son capaces de frenar la fuerza gravitatoria quedando esa masa estabilizada como estrella de Neutrones.

Como el niño que no deja de hacer preguntas, nosotros, llegados a este punto también, podríamos preguntar: ¿Qué ocurriría si la estrella es muy masiva? Entonces amigos míos, el Principio de Excliusión de Pauli haría mutis por el foro, impotente ante la descomunal fuerza gravitatoria desatada y, ni la degeneración de electrones y neutrones podría frenarla. La masa se vería comprimida más y más hasta convertirse en un agujero negro de donde, ni la luz puede escapar.

http://myprofeciencias.files.wordpress.com/2010/09/muertedeestrella.jpg

Pero los mecanismos del Universo son muchos y los sucesos que podemos contemplar son asombrosos. Por ejemplo, si una inocente estrella está situada cerca de una enana blanca de gran densidad, se vería atraída por ella y “vería” como, poco a poco, le robaría su masa hasta que, finalmente, la engulliría en su totalidad.

Si eso ocurre tal y como vemos en la imagen, ¿qué pasaría entonces? Sencillamente que, la estrella enana blanca pasaría a transformarse en una estrella de neutrones, ya que, la masa que a pasado a engrosar su entidad, es demasiado para poder quedar estable como enana blanca y, de nuevo la gravedad hace que electrones y protones se fundan para formar neutrones que, degenerados, estabilizan la nueva estrella.

 

Sí, hemos llegado a ser conscientes de nuestro entorno y hemos podido crear ingenios que nos hablan y muestran las lejanas regiones del Universo. Ahora podemos hablar de las tremendas energías presentes en el espacio cosmológico y sabemos por qué se generan y cuáles son sus consecuencias. Conocemos de la importancia del Sol para la vida en la Tierra, hemos observado el Sistema solar al que pertenecemos dentro una inmensa galaxia de estrellas y, sobre todo, hemos llegado a comprender que, la Vida en nuestro planeta, puede no ser un privilegio, sino cosa cotidiana repartida por todo el universo infinito.

El Telescopio Espacial Fermi,  de Rayos Gamma de la NASA ha descubierto y nos enseña una estructura nunca antes vista en el centro de la Galaxía Vía Láctea. La estructura se extiende a 50.000 años luz y puede ser el remanente de una erupción de un agujero negro de enorme tamaño en el centro de nuestra Galaxia.

Imagen artística de la sonda Dawn acercándose Vesta – Crédito NASA/JPL. El pasado 16 de julio de 2011, la sonda Dawn de la NASA se acercó al gran asteroide Vesta; el Telescopio Espacial Hubble ha capturó  imágenes de Vesta, que ayudaron a afinar los planes para el encuentro de la nave espacial con el asteroide.

El desarrollo de la ciencia  tiene su frontera superior en el desarrollo de tecnologías que hacen posible el conocimiento de nuestro universo. Satélites, telescopios, radio telescopios, sondas espaciales, naves, cohetes y transbordadores  son el fruto de la investigación de muchos profesionales de diversas áreas del conocimiento que están llevando a toda la Humanidad hacia el futuro.

Molecula de azúcar detectada por el telescopio ALMA. | ESO

Con el radiotelescopio ALMA, ubicado en el desierto de Atacama (Chile), a 5.000 metros de altura, los científicos lograron captar moléculas de glicolaldehído en el gas que rodea la estrella binaria joven IRAS 16293-2422, con una masa similar a la del Sol y ubicada a 400 años luz de la Tierra.

El glicolaldehído ya se había divisado en el espacio interestelar anteriormente, pero esta es la primera vez que se localiza tan cerca de una estrella de este tipo, a distancias equivalentes a las que separan Urano del Sol en nuestro propio sistema solar.

“En el disco de gas y polvo que rodea a esta estrella de formación reciente encontramos glicolaldehído, un azúcar simple que no es muy distinto al que ponemos en el café”, señaló Jes Jørgensen, del Instituto Niels Bohr de Dinamarca y autor principal del estudio.

 

 

El Telescopio Kepler cree haber encontrado un planeta con agua,  similar a la Tierra.

El observatorio espacial Kepler encontró en el sistema planetario Kepler-22, a 600 años luz, el primer planeta situado en la llamada “zona habitable”, un área en la que, por su distancia a su sol, puede haber agua líquida, según anunció este lunes la NASA en una rueda de prensa. Los científicos del Centro de Investigación Ames de la NASA anunciaron además que Kepler ha identificado 1.000 nuevos “candidatos” a planeta, diez de los cuales tienen un tamaño similar al de la Tierra y orbitan en la zona habitable de la estrella de su sistema solar, esto es, ni demasiado cerca ni demasiado lejos de una estrella.

El Telescopio Kepler cree haber encontrado un planeta con agua,  similar a la Tierra.

El planeta, Kepler-22b, es el más pequeño hallado por la sonda espacial orbitando en la “zona habitable” -aquella donde las temperaturas permiten la vida- de una estrella similar a la de la Tierra.55 planetas son aún más grandes que Júpiter, el más grande de nuestro sistema solar Es más grande que la Tierra y todavía no se ha determinado si es rocoso, gaseoso o líquido, pero, según dijo la subdirectora del equipo científico del Centro Ames, Natalie Batalha, “estamos cada vez más cerca de encontrar unplaneta parecido a la Tierra”.

Esta escena es del día en que, en 1997,  fue lanzada la Misión Cassini-Huygens hacia el vecino Saturno. ¿Qué podemos comentar de esa misión que nos llevó al más grande de los asombros, al podernos mostrar imágenesa nunca antes vistas? Ahora, ha finalizado su andadura pero, su labor perdura en nosotros que, gracias a “ella” somos un poco más sabios.

Animación de Júpiter

                                                Imágenes tomadas por Cassini a su paso por Júpiter

La misión Cassini a Saturno y Huygens a Titán, es una de las misiones más ambiciosas hasta el momento jamás llevado a cabo. Todos sabemos ahora de su alta rentabilidad y de los muchos logros conseguidos. Gracias a esta misión sabemos de mucho más sobre el planeta hermano y de su gran satélite Titán del que hemos podido comprobar que es una “pequeña Tierra” con sus océanos de metano y su densa atmósfera inusual en cuerpos tan pequeños.

¡El ingenio humano!

La masa de la sonda Cassini es tan grande que no fue posible emplear un vehículo de lanzamiento que la dirigiese directamente a Saturno. Para alcanzar este planeta fueron necesarias cuatro asistencias gravitacionales; de esta forma, Cassini empleó una trayectoria interplanetaria que la llevaría a Venus en dos ocasiones, posteriormente hacia la Tierra y después hacia Júpiter. Después de sobrevolar Venus en dos ocasiones a una altitud de 284 Km, el 26 de abril de 1998 y a 600 Km, el 24 de junio de 1999, el vehículo se aproximó a la Tierra, acercándose a 1171 Km de su superficie el 18 de agosto de 1999. Gracias a estas tres asistencias gravitacionales, Cassini adquirió el momento suficiente para dirigirse al Sistema Solar externo. La cuarta y última asistencia se llevaría a cabo en Júpiter, el 30 de diciembre de 2000, sobrevolando a una distancia de 9.723.890 Km, e impulsándose hacia Saturno.

¿Os dais cuenta de la asombrosa imaginación y los conocimientos que son necesarios para llevar a cabo todo este conglomerado de datos?

Fase de Crucero:

Cassini llevó a cabo un plan de vuelo de baja actividad durante el cual sólo se realizaron las actividades de navegación e ingeniería imprescindibles, como maniobras de chequeo o corrección de trayectoria. Los instrumentos científicos fueron desconectados permanentemente, salvo en el transcurso de unas pocas actividades de mantenimiento. Estas incluían sólo un chequeo de todo su instrumento cuando la sonda estaba cerca de la Tierra, así como la calibración del magnetómetro. Las comprobaciones sobre el estado de la sonda Huygens se llevaron a cabo cada seis meses, mientras que las observaciones científicas se realizaron cuando el vehículo se aproximó a Venus, la Tierra y Júpiter.

El sobrevuelo de Júpiter significó una buena oportunidad para las sondas Cassini y Galileo de cara a estudiar varios aspectos de este planeta y su medio circundante desde octubre de 2000 hasta marzo de 2001, es decir, antes, durante y después de la máxima aproximación a Júpiter, el 30 de diciembre de 2000. Las observaciones científicas contaron con la ventaja de disponer de dos sondas espaciales en las cercanías del planeta al mismo tiempo. Algunos de los objetivos llevados a cabo conjuntamente por la Cassini y la Galileo incluyeron el estudio de la magnetosfera y los efectos del viento solar en ésta, así como la obtención de datos sobre las auroras en Júpiter.

Durante este sobrevuelo, la mayor parte de los instrumentos del orbitador Cassini fueron conectados, calibrados y trabajaron recogiendo información. Este estudio conjunto sirvió como buena práctica para comprobar el funcionamiento del instrumental de la sonda tres años antes de su llegada a Saturno.

Llegada a Saturno

Después de un viaje de casi siete años y más de 3500 millones de kilómetros recorridos, la sonda Cassini llegará a Saturno el día 1 de julio de 2004.

La fase más crítica de la misión –además del lanzamiento– es la inserción orbital del vehículo en torno al planeta. Cuando el vehículo alcance el planeta, la sonda pondrá en marcha su motor principal durante 96 minutos a las 04:36 T.U., con la finalidad de reducir su velocidad y permitir que la gravedad de Saturno la capture como un satélite del planeta. Atravesando el hueco entre los anillos F y G, Cassini se aproximará al planeta para iniciar así la primera de sus 76 órbitas que completará durante su misión principal de cuatro años.

Todos hemos podido admirar las imágenes y sabido de los datos científicos que la Cassini ha podido enviar a la Tierra para que, todos podamos saber mucho más del planeta Saturno y de su entorno. Imágenes inolvidables y de increíble belleza forman parte ya de la historia de la misión.

                                                                 La misión de la sonda Huygens

La sonda Huygens viajó junto a la Cassini hacia Saturno. Anclada a ésta y alimentada eléctricamente por un cable umbilical, Huygens ha permanecido durante el viaje de siete años en modo inactivo, sólo puesta en marcha cada seis meses para realizar chequeos de tres horas de duración de su instrumental y de sus sistemas ingenieriles.

 Unos 20 días antes de alcanzar la atmósfera alta de Titán, Huygens fue eyectada por Cassini. Esto ocurrió el 24 de diciembre de 2004. Tras cortar su cable umbilical y abrir sus anclajes, Huygens se separó de su nave madre y voló en solitario hacia Titán, con una trayectoria balística, girando a 7 revoluciones por minuto para estabilizarse. Varios temporizadores automáticos conectarán los sistemas de la sonda espacial antes de que ésta alcance la atmósfera superior de Titán.

Dos días después de la eyección de la sonda, Cassini realizará una maniobra de desviación, de manera que ésta puedo seguir a la Huygens cuando penetró en la atmósfera de Titán. Esta maniobra servió también para establecer la geometría requerida entre el orbitador con Huygens, así como las comunicaciones de radio durante el descenso.

Huygens porta dos transmisores de microondas en la banda S y dos antenas, las cuales enviarán simultáneamente la información recogida hacia el orbitador Cassini. Una de ellas emitirá con un retraso de seis segundos respecto a la otra, para evitar cualquier pérdida de información si tuviesen lugar problemas con las comunicaciones.

El descenso de Huygens tuvo lugar el 15 de enero de 2005. La sonda entró en la atmósfera de Titán a una velocidad de 20.000 Km/h. Este vehículo ha sido diseñado tanto para soportar el extremo frío del espacio (temperaturas de –200°C) como el intenso calor que se encontrará durante su entrada atmosférica (más de 12000°C).

Los paracaídas que transporta Huygens frenaron más la sonda, de tal modo que ésta puedo llevar a cabo un amplio programa de observaciones científicas al tiempo que desciende hacia la superficie de Titán. Cuando la velocidad de la sonda descendido hasta los 1400 Km/h, se desprendió su cubierta mediante un paracaídas piloto. Acto seguido se desplegó otro paracaídas de 8.3 metros de diámetro que frenó aún más el vehículo, permitiendo la eyección del decelerador y del escudo térmico.

Durante la primera parte del descenso, el trabajo de los instrumentos situados a bordo de la sonda Huygens será dirigido por un sistema temporizador, pero en los últimos 10 a 20 Km, será un altímetro radar quien medirá la altura a la que se encuentra el vehículo y controlará el instrumental científico.

Durante el descenso, el instrumento de estructura atmosférica de Huygens medió las propiedades físicas de la atmósfera. El cromatógrafo de gases y el espectrómetro de masas determinarán la composición química de la atmósfera en función de la altitud. El colector de aerosoles y el pirolizador capturarán partículas de aerosol –las finas partículas líquidas o sólidas suspendidas en la atmósfera–, las calentará y enviará el vapor resultante al espectrómetro y el cromatógrafo para su análisis.

El sistema de imagen de descenso y el radiómetro espectral trabajarán en la toma de imágenes de formaciones nubosas y de la superficie de Titán, determinando además la visibilidad en la atmósfera de este mundo. Según se vaya aproximando a la superficie, el instrumento encenderá un sistema de iluminación brillante que para medir la reflectividad superficial. Paralelamente a ello, la señal emitida por la sonda Huygens será recogida por el experimento Doppler de la Cassini, con lo cual se podrán determinar los vientos, ráfagas y turbulencias de la atmósfera. Cuando la sonda sea empujada por el viento, la frecuencia de su señal de radio variará ligeramente –en lo que se conoce como efecto Doppler, similar a la variación de la frecuencia del silbido de un tren que percibimos cuando éste pasa por delante de nosotros. Estos cambios en la frecuencia se emplearán para deducir la velocidad del viento que ha experimentado la sonda.

              Pequeños mundos muy cercanos a nosotros y que nos podrían dar buenas sorpresas

La misión principal de la sonda Cassini tenía previsto que  finalizaría el 30 de junio de 2008, cuatro años después de su llegada a Saturno y 33 días después de su último sobrevuelo a Titán, el cual tuvo lugar el 28 de mayo de 2008. Este sobrevuelo estaba diseñado para posicionar a la sonda de cara a un nuevo acercamiento a dicho satélite el 31 de julio de 2008, ofreciendo la oportunidad de proceder con más sobrevuelos durante la misión extendida, si es que los recursos disponibles la permiten. No hay ningún factor en la misión principal que impida una misión extendida. Lo cierto es que, Cassini sigue ahí y, como otros ingenios espaciales enviados al espacio, continúan más allá de la misión en principio previstas enviando datos e imágenes que nos acercan al saber del mundo que nos rodea y nos dice cómo y por qué funciona así la Naturaleza.

Me he extendido más de lo previsto en este trabajo y, no puedo seguir nombrando otras misiones que, como las enviadas a Marte, tan buenos réditos de conocimiento nos han suministrado. Ya habrá lugar más adelante para continuar profundizando en todo lo que hicimos y, también, ¿cómo no? en lo mucho nos queda por hacer.

No podemos negar que, escenas como la que arriba contemplamos, no sea algo cotidiano en el devenir de la Humanidad. El futuro que nos aguarda puede ser algo maravilloso y de asombrosos descubrimientos que nos llevaran lejos, hacia otros mundos, otras estrellas… ¡otras amistades!

Pero todo eso amigo míos, sólo podrá ser posible gracias al conocimiento y al hecho de ser conscientes de nuestras limitaciones. No debemos nunca querer superar a la Naturaleza, simplemente debemos aprender de ella.

emilio silvera

El Tiempo Pasa, las ideas fluyen, vamos comprendiendo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                            Nuestra vecina galáctica la Pequeña Nube de Magallanes

Hoy dejaré una pincelada de la preciosa Galaxia Irregular que es la más pequeña de las dos que tienen el mismo nombre y que acompañan a nuestra Galaxia, La Vía Láctea; es también conocida como Nubecula Minor. Tiene unos 9 ooo años-luz de longitud y se encuentra a 190 000 años-luz, visible a simple vista como una mancha brumosa de unos 3º en Tucana. Su masa visible es menor que el 25% de nuestra Galaxia, y contiene relativamente más gas y menos polvo que la Gran Nube de Magallanes, aunque menos cúmulos y Nebulosas. Su estructura puede estar alargada en la dirección de la Tierra.

http://www.eso.org/public/archives/images/screen/eso1302a.jpg

El cúmulo globular de estrellas 47 Tucanae. Maravillas como esta están presentes en la pequeña Nube de Magallanes. Este brillante cúmulo de estrellas es 47 Tucanae (NGC 104), en una imagen captada por el telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy) de ESO, instalado en el Observatorio Paranal, en Chile. Este cúmulo se encuentra a unos 15.000 años luz de nosotros y contiene millones de estrellas, algunas de las cuales son bastante inusuales y exóticas. Esta imagen fue captada como parte del sondeo “Magellanic Cloud” de VISTA, un proyecto que sondea la región de las Nubes de Magallanes, dos pequeñas galaxias muy cercanas a nuestra Vía Láctea.

Si quieres leer el trabajo completo, pulsa encima del título que sigue:

 

 

El premio nobel 2004, Frank Wilczek como un gran creativo de la física, nunca decepciona. Este profesor, famoso por sus trabajos en cromodinámica cuántica (QCD), la teoría que explica el micromundo existente dentro de las llamadas partículas elementales, vuelve a poner las leyes de la Física patas arriba con su más reciente teoría, en la que presenta un sorprendente tipo de cristal –time crystal- que a diferencia de los cristales convencionales no ofrece regularidad en el espacio, sino en el tiempo. Sería una nueva organización de la materia en la que la estructura se repite periódicamente en el tiempo, a diferencia de la periodicidad espacial de los cristales convencionales

El trabajo completo pulsando el título siguiente:

 

 

 

Ahora: Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo!

Lo de no mirar atrás… ¡no me gusta! Si lo hubiéramos hecho , ¿cómo habríamos aprendido lo que sabemos? Por otra parte, el Presente es el resultado de lo que hicimos en el Pasado, de la misma manera que el Futuro se está construyendo en el Presente.

Imagen relacionada

Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad. El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta de paradoja y, si no existe tal barrera, debería existir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.

¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez?  Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales,  pensaremos como nos enseño Einstein a una mayor escala,  en la utilidad de un y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.

Resultado de imagen de “Frases escogidas de Muad´Dib”, por la Irulan.Resultado de imagen de “Frases escogidas de Muad´Dib”, por la Irulan.

                        Hay en todas las cosas un ritmo que es parte de nuestro Universo.

“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede ver ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”

De “Frases escogidas de Muad´Dib”, por la Irulan.

 

Resultado de imagen de Nuestras mentes pueden inventar recuerdos

                  Hemos imaginado estar en otros niveles y podemos inventar recuerdos

Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí.  Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias autoconsistentes.  En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.

Resultado de imagen de Imaginando mundos de fantasía

                            Siempre nos ha gustado imaginar

Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.

Resultado de imagen de Andar en círculo

Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera , todo depende bajo el punto de vista desde en el que miremos las cosas.

Resultado de imagen de Universos paralelos

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”

 

 

¿Como sería la vida si la tierra fuera cuadrada?

 

        Los hay que creen, que la vida, es única en la Tierra, y eso es igual que creer que la Tierra es cuadrada

Lo cierto es que, siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en las constantes son diferentes y la vida no puede existir?

En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!

        Nuestro Universo es como es las constantes son las que son

Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nociva para la vida.

Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes).  Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!


 

 

Un estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el llamada la constante cosmológica, originalmente propuesta por Einstein, sería la verdadera .

 

 

Resultado de imagen de Una charca humeante en Yellowstone

 

En nuestro planeta, como en otros, en cualquier charca caliente surgirá la vida. Desde la especulación informal de Darwin de que la vida empezó en alguna pequeña charca caliente, la sabiduría convencional ha consistido en que la vida es y siempre fue un fenómeno de superficie. El descubrimiento de la Biosfera profunda y caliente ha alterado espectacularmente esta visión. Si la vida puede florecer muy por debajo de la superficie de la Tierra, quizá deberíamos mirar hacia abajo en busca el crisol en el que se forjó el primer ser vivo.

Resultado de imagen de Las constantes universales

Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano. Las tres formas de Universo que nos ponen los cosmólogos para que podamos elegir uno que será el que realmente se asemeja al nuestro. Abierto, plano y cerrado todo será en función de la Densidad Crítica que el Universo pueda tener.

                                Todo dependerá de cual sea el de la densidad de materia en el Universo

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas… y ¡vida!

Gráfico: Sólo en el modelo de universo que se expande de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.

No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Universo.

Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de de partida especiales.

En este lugar se ha descubierto un sistema planetario parecido al nuestro. Los siete planetas detectados orbitan alrededor de la estrella KOI-351. Cuatro de ellos tienen periodos orbitales de entre 7, 9, 92 y 125 días y los de los otros tres son de 331, 211 y 60 días, similares a los de la Tierra, Venus y Mercurio.

Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el universo, cada una de las cuales contiene a su vez decenas de miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber, como en el nuestro formas de vida, algunas inteligentes.

Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press). Un equipo internacional han podido completar el mapa más preciso y completo hecho hasta el momento y, con este avance, se puede conocer el universo y sus contenidos con una mayor precisión.

 

Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estadio de evolución en el que nos encontramos, las estrellas tuvieron que más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bioquímica de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.

Situada a 12.900 M de años-luz, descubren la Galaxia lejana y, seguramente, de la primeras

Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.

emilio silvera