lunes, 15 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Misterios de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz? Porque cuando se acerca a las velocidades relativistas, es decir, la velocidad de la luz en el vacío, c, la energía inercial se convierte en masa y, al llegar a c (299.792,458 m/s), sería infinita.

 

Fondo con efecto de rapidez | Vector Gratis

 

Si un enjambre de fotones pasaran por delante de nosotros, estando en el vacío Espacial, sólo veríamos una ráfaga luminosa pasar tan rauda que sería vista y no vista.

 

                   Desplazamiento A La Velocidad De La Luz De Sam | Wiki | World Of Kings Amino

“Las propiedades de los fotones pueden estudiarse en experimentos donde se los hace incidir sobre la materia. Se observa así que, aunque los fotones no tienen masa, tienen un momento lineal $\vec{p}_\gamma$, cuyo módulo es proporcional a su energía

\begin{displaymath} E_\gamma= p_\gamma c \end{displaymath} (11)

Esto es un resultado de la relatividad especial, según la cual la energía y el momento de una partícula con velocidad $v$ son

$\displaystyle E$ $\textstyle =$ $\displaystyle \frac{mc^2}{\sqrt{1-\frac{v^2}{c^2}}}$ (12)
$\displaystyle \vec{p}$ $\textstyle =$ $\displaystyle \frac{m\vec{v}}{\sqrt{1-\frac{v^2}{c^2}}}$ (13)

La energía y el momento de una partícula a la velocidad de la luz serían infinitos, lo cual no es físicamente aceptable, a no ser que su masa sea cero, en cuyo caso se obtendría una indeterminación $\frac00$, que podría tener un límite finito. Como los fotones se propagan a la velocidad de la luz, deben tener masa nula.”

 

                        Velocidad de deformación GIF - Descargar & Compartir en PHONEKY

                                 Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?

Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.

 

Equivalencia entre la masa y la energía | Monitor EducativoMasa - Wikipedia, la enciclopedia libreOPINIÓN Lectura: La masa es inmóvil #23Jul - El ImpulsoQué significa E=mc2?

 

Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.

En condiciones ordinarias, la ganancia de energía en forma de masa es tan increíblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

 

                                     

                                      No, un púlsar tampoco puede ser más rápido que la luz

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 

                                 

En gracia quizás podamos superarla pero, en velocidad…no creo, c es el tope que impone el Universo para la velocidad.

Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa que, llegado a cierto límite, podría ser infinita y, como infinito no hay nada, nos quedamos con que nunca, nada, podrá sobrepasar esa velocidad.

 

Respuestas (XC): ¿Por qué la masa aumenta con la velocidad? – Ciencia de Sofá

 

En esta ecuación, el término pc representa el momento del objeto (o, lo que es lo mismo, el producto de su masa por la velocidad a la que se desplaza), multiplicado por la velocidad de la luz. De hecho, la versión de esta ecuación que todos conocemos (E = mc2) representa la energía que posee un objeto cuando está quieto (cuando v = 0 y, por tanto, pc = 0, así que E = mc+ 0).

 

LECTURA II.5 - La Segunda Ley de Newton

la masa (la resistencia al movimiento) es una propiedad que refleja la cantidad de energía que compone un objeto y se manifiesta a través de su inercia. Nos podemos preguntas: ¿Por qué la masa de un objeto aumenta a medida que incrementa su velocidad y de dónde sale esa masa que se suma?

 

E=MC2: La biografía de la ecuación más famosa del mundo eBook : Bodanis,  David , Madariaga López de Sa, Juan María: Amazon.es: Tienda Kindle

 

“El caso es que la ecuación completa de Einstein nos dice que la energía total de un objeto equivale a la energía que tiene cuando está quieto (mc), más la energía cinética que gana cuando empieza a moverse (pc). Por tanto, un objeto que se mueva muy rápido tendrá más energía que otro objeto idéntico, pero que está en reposo.”

De todo esto podemos deducir que siendo la velocidad de la luz en el vacío un límite que impone el Universo, cuando se va acercando a c, la velocidad se verá frenada y, la energía de inercia se convierte en masa (E = mc2 ).

 

              Qué pasaría si viajarás a la velocidad de la luz? | RPP Noticias

 

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.

¿Qué velocidad podría ser la de la luz en otros mundos paralelos que pudieran existir fuera de nuestro universo?

 

                       

         Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz

La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían superar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿cómo iremos? La única manera sería burlar a c, si podemos, al fin, abrir una ventana al hiperespacio.

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

 

Resultado de imagen de La Galaxia más lejanaEl 'Hubble' fotografía la galaxia más lejana del universo captada hasta ahora | Sociedad | EL PAÍS

De momento sólo con los Telescopios podemos llegar tan lejos. Ahí han captado la galaxia más lejana del Universo

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

 

           El CERN mide con precisión la masa del bosón de Higgs - unocero

Se han observado haces de muones lanzados a la velocidad de C, y el resultado fue que aumentaron su masa 10 veces.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

 

                 Es hermoso para descansar Y oir las cascadas caer | Imagenes de paisajes animados, Hermosos paisajes, Paisajes

 

Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos coger para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.

La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacío es una muestra.

 

                   Resultado de imagen de Muones lanzados a velocidades relativistas en el LHC aumentaron sus masas

Habiando lanzado un haz de muones que alcanzó velocidades relativistas, y, se dieron cuenta que su peso, había crecido diez veces. Como la velocidad de la luz es un límite del Universo, los muones se fueron frenando a medida que se acercaban a c, y la energía de inercia se convirtió en masa.

                                              MÁS CIENCIA, POR FAVOR!!: La falsedad de la "masa relativista"

                                                                    La relatividad de la masa

La teoría de la invariancia predice que la masa observada de un objeto aumentará a medida que aumente la velocidad relativa del objeto. Curiosamente, este efecto se había observado incluso antes de la teoría de Einstein, cuando los científicos se sorprendieron al notar un aumento en la masa de los electrones de alta velocidad en los tubos de vacío. Este efecto se observa fácilmente hoy en día en los aceleradores de partículas, donde las partículas elementales cargadas, como los electrones o los protones, se aceleran mediante campos electromagnéticos a velocidades tan altas como 0,9999999 de la velocidad de la luz. Las masas de estas partículas aumentan exactamente la cantidad predicha por la fórmula de Einstein. A esa velocidad, el aumento de su masa mm es aproximadamente 2236 veces la masa en reposo. De hecho, los aceleradores circulares deben diseñarse para tener en cuenta este aumento de masa.

 

                  Imagen relacionada

       Ingenios que inventó el hombre y que nos revelan secretos profundamente escondido

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.

A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

 

File:Military laser experiment.jpg

                                     Fotones emitidos por un rayo coherente conformado por un láser

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relegar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.

¡La Naturaleza! Observémosla.

Emilio silvera V.

 

Misterios de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

       ¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz?

 

Los fotones a cualquier longitud de onda se siguen moviendo a la velocidad  de la luz? - Quora

Los fotones a cualquier longitud de onda se siguen moviendo a la velocidad de la luz

 

Logran, por primera vez, ralentizar la velocidad de la luz

                  Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?

Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.

Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.

 

Resultado de imagen de A medida que la velocidad se acerca a C, la energía se convierte en masa

 

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 

 

Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa.

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

 

La velocidad de la luz era la más rápida del universo, hasta que apareció  un misterioso rayo | Explora | Univision

la materia es todo lo que esta en el universo y tiene masa, la energía es materia? y si lo fuera la luz es energía entonces puedo concluir de que la luz es materia , pero la luz no tiene masa.?????????

                                   La luz está dentro de la materia y en el universo… ¡por todas partes!

 

Foto: El fin del universo. (Midjourney)

 

En condiciones ordinarias, la ganancia de energía en forma de masa es tan increíblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

 

                     

                No un pulsar tampoco puede ser más rápido que la luz

 

             

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

 

 

 

Proceso de fotosíntesis on Make a GIF

             También la luz (fotones), son absorbidos por las plantas y surge la Fotosíntesis

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 

En gracia quizás podamos superarla pero, en velocidad…no creo, c es el tope que impone el Universo para la velocidad, es el límite al que podemos enviar información y también, al que nos podemos mover con las más rápidas naves que pudiéramos construir.

Todo esto no es pura teoría, sino que ha sido comprobado, una y mil veces en los grandes aceleradores de partículas, donde los muones, por ejemplo, aumentaron su masa diez veces al acercarse a velocidades relativistas, es la realidad de los hechos.

 

         

            Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz

La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían superar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿cómo iremos?

 

Puede haber algo más rápido que la luz? | Las científicas responden |  Ciencia | EL PAÍS

 

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

 

                     

                        De momento sólo con los Telescopios podemos llegar tan lejos.

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

 

                           

 

Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos encontrar lo que buscamos para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.

La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.

A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

 

File:Military laser experiment.jpg

                Fotones emitidos por un rayo coherente conformado por un láser

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relagar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.

¡La Naturaleza! Observémosla. De todas las maneras, como nuestra imaginación es casi tan grande como el mismo universo, ya se han postulado teorías para ir buscando la manera de poder desvelar si existe alguna posibilidad de que la velocidad de la luz sea superada.

 

       Fórmula relativista de adición de velocidades

En matemáticas se llama prolongación de una función a la extensión de su dominio más allá de sus singularidades, que se comportan como frontera entre el dominio original y el extendido. Normalmente, la prolongación requiere incluir algunos cambios de signo en la definición de la función extendida para evitar que aparezcan valores imaginarios puros u otros números complejos. La matemática de la teoría de la relatividad puede ser aplicada a partículas que se mueven a una velocidad mayor que la de la luz (llamadas taquiones) si aceptamos que la masa y la energía de estas partículas pueden adoptar valores imaginarios puros. El problema es que no sabemos qué sentido físico tienen estos valores imaginarios.

emilio silvera

¡La Hiperdimensionalidad! ¡Qué cosas nos cuentan!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El modelo estándar | Lleida.comHadrón - Wikipedia, la enciclopedia libre

https://www.youtube.com/watch?v=4FQzg6HDRfA&t=86s

 

 

Neurociencia: Descifrando los Secretos del Cerebro Humano

         El cerebro tiene secretos que… ¡Nunca nos contará!

Neurociencia: Descifrando los Secretos del Cerebro Humano

 

La complejidad de la mente: “El cerebro recuerda lo que queremos según el  estado de ánimo”
Maravillar a los lectores con la complejidad de la mente humana es uno de los objetivos que la neuróloga catalana Isabel Güell persigue en su libro “Un mundo extraño”, en el que revela que “el cerebro no es una grabadora, sino un mecanismo mucho más imaginativo; organizado para recordar lo que queremos y olvidar el resto”.

La neurociencia, un campo multidisciplinario que estudia el sistema nervioso y el funcionamiento del cerebro humano, ha estado en constante evolución a lo largo de los años. A medida que avanzamos en nuestra comprensión de este órgano increíblemente complejo, descubrimos secretos y misterios que han desconcertado a la humanidad durante siglos.

                         Afganistán: vimana del “Pozo de Tiempo” | Este blog se mudoOM OD: El Misterio de los Vimanas en el Desierto de Afganistán

                                               Vimana, un pozo de tiempo en Afganistán

                   El Misterio de los Vimanas en el Desierto de Afganistán

El 21 de diciembre de 2010 científicos estadounidenses descubrieron “un vimana atrapado en un pozo del tiempo“ (un campo gravitatorio electromagnético, que sólo puede ocurrir en una dimensión invisible del espacio) en la ciudad de Balkh, Afganistán, lugar que alguna vez Marco Polo catalogó como “una de las ciudades más nobles y grandiosas” del mundo”.

 

Los intentos por retirar el misterioso Vimana de la cueva donde había estado oculto durante por lo menos 5.000 años, causaron la “desaparición” de por lo menos 8 soldados norteamericanos, atrapados por el vórtex temporal ( nuestros cuerpos no pueden desplazarse como si nada del presente al futuro y del futuro al pasado sin cargarse el peso destructivo de las leyes de la física, salvo si se logra bloquear el campo magnético, algo que aparentemente los científicos norteamericanos tardaron ocho cadáveres en descubrir y solucionar, probablemente con jaulas de Faraday ).

 

La existencia de este tipo de fenómenos no está demostrado por los científicos (caso contrario estaríamos hablando de leyes), pero los físicos teóricos coinciden en general que podrían ser posibles si se acepta la teoría del Multi-universo (un universo de por lo menos 11 dimensiones espaciotemporales) como estructura lógica y matemática. Atravesando esa especie de plasma líquido, nos podríamos trasladar a otros mundos, a otras galaxias.

 

Theodor Kaluza, ya en 1921 conjeturaba que si ampliáramos nuestra visión del universo a 5 dimensiones, entonces no habría más que un solo campo de fuerza: la gravedad, y lo que llamamos electromagnetismo sería tan sólo la parte del campo gravitatorio que opera en la quinta dimensión, una realidad espacial que jamás reconoceríamos si persistiéramos en nuestros conceptos de realidad lineal, similar a un holograma.

Bueno, independientemente de que todo esto pueda ser una realidad, lo cierto es que, nosotros, ahora en nuestro tiempo, hablamos de un universo con más dimensiones y, la carrera de las más altas dimensiones la inicio (como arriba se menciona) en el año 1919 (no el 1921) por Theodor Kaluza, un oscuro y desconocido matemático,  cuando le presentó a Einstein mediante un escrito una teoría unificada que podía unificar, las dos grandes teorías del momento, la Relatividad General con el Magnetismo y podía realizarse si elaboraba sus ecuaciones  en un espacio-tiempo de cinco dimensiones.

 

Resultado de imagen de La quinta dimensión de Kaluza

 

Así estaban las cosas cuando en 1.919 recibió Einstein un trabajo de Theodor Kaluza, un privatdozent en la Universidad de Königsberg, en el que extendía la Relatividad General a cinco dimensiones. Kaluza consideraba un espacio con cuatro dimensiones, más la correspondiente dimensión temporal y suponía que la métrica del espacio-tiempo se podía escribir como:

 

Resultado de imagen de Oskar Klein

                     Klein

Así que, como hemos dicho, ese mismo año, Oskar Klein publicaba un trabajo sobre la relación entre la teoría cuántica y la relatividad en cinco dimensiones. Uno de los principales defectos del modelo de Kaluza era la interpretación física de la quinta dimensión. La condición cilíndrica impuesta ad hoc hacía que ningún campo dependiera de la dimensión extra, pero no se justificaba de manera alguna.

Klein propuso que los campos podrían depender de ella, pero que ésta tendría la topología de un círculo con un radio muy pequeño, lo cual garantizaría la cuantización de la carga eléctrica. Su diminuto tamaño, R5 ≈ 8×10-31 cm, cercano a la longitud de Planck, explicaría el hecho de que la dimensión extra no se observe en los experimentos ordinarios, y en particular, que la ley del inverso del cuadrado se cumpla para distancias r » R5. Pero además, la condición de periodicidad implica que existe una isometría de la métrica bajo traslaciones en la quinta dimensión, cuyo grupo U(1), coincide con el grupo de simetría gauge del electromagnetismo.

 

 

Einstein al principio se burló de aquella disparatada idea pero, más tarde, habiendo leído y pensado con más atenci`´on en lo que aquello podía significar, ayudó a Kaluza a publicar su idea de un mundo con cinco dimensiones (allí quedó abierta la puerta que más tarde, traspasarían los teóricos de las teorías de más altas dimensiones). Algunos años más tarde, , el físico sueco Oskar Klein publicó una versión cuántica del artículo de Kaluza. La Teoría Kaluza-Klein que resultó parecía interesante, pero, en realidad, nadie sabía que hacer con ella hasta que, en los años setenta; cuando pareció beneficioso trabajar en la supersimetría, la sacaron del baúl de los recuerdos, la desempolvaron y la tomaron como modelo.

Pronto, Kaluza y Klein estuvieron en los labios de todo el mundo  (con Murray Gell-Mann, en su papel de centinela lingüistico, regañando a sus colegas que no lo sabían pronunciar “Ka-wu-sah-Klein”.

 

                           

                  Pero, ¿Existen en nuestro Universo dimensiones ocultas?

Aunque la teoría de cuerdas en particular y la supersimetría en general apelaban a mayores dimensiones, las cuerdas tenian un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la Teoría de cuerdas sólo sería eficaz, en dos, diez y veintiseis dimensiones, y sólo invocaba dos posibles grupos de simetría: SO(32) o E8 x E8. Cuando una teoría apunta hacia algo tan tajante, los científicos prestan atención, y a finales de los años ochenta había decenas de ellos que trabajaban en las cuerdas. Por aquel entonces, quedaba mucho trabajo duro por hacer, pero las perspectivas era brillantes. “Es posible que las décadas futuras -escribieron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten- sea un excepcional período de aventura intelectual.” Desde luego, la aventura comenzó y, ¡qué aventura!

 

El mundo está definido por las Constantes adimensionales de la Naturaleza que hace el Universo que conocemos

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Puesto que el radio de compactificación es tan pequeño, el valor típico de las masas será muy elevado, cercano a la masa de Planck Mp = k-12 = 1’2 × 1019 GeV*, y por tanto, a las energías accesibles hoy día (y previsiblemente, tampoco en un futuro cercano – qué más quisieran E. Witten y los perseguidores de las supercuerdas -), únicamente el modo cero n = 0 será relevante. Esto plantea un serio problema para la teoría, pues no contendría partículas ligeras cargadas como las que conocemos.

¿Y si llevamos a Kaluza-Klein a dimensiones superiores para unificar todas las interacciones?

 

Desintegración beta - Wikipedia, la enciclopedia libre

 

En este proceso llamado desintegración beta y debido a la interacción débil, un neutrón se transforma en un protón, un electrón y un antineutrino electrónico cuando uno de los quarks del neutrón emite una partícula W–. Aquí queda claro que el término “interacción” es más general que “fuerza”; esta interacción que hace cambiar la identidad de las partículas no podría llamarse fuerza (todo representado en uno de los famosos diagramas de Feynman).

 

Diagrama de Feynman y ecuación de la desintegración β del muón por medio del bosón W − extraido de [12]  

Diagrama de Feynman y ecuación de la desintegración β del muón por medio del bosón W

La descripción de las interacciones débiles y fuertes a través de teorías gauge no abelianas mostró las limitaciones de los modelos en cinco dimensiones, pues éstas requerirían grupos de simetría mayores que el del electromagnetismo. En 1964 Bryce de UIT presentó el primer modelo de tipo Kaluza-KleinYang-Mills en el que el espacio extra contenía más de una dimensión.

El siguiente paso sería construir un modelo cuyo grupo de isometría contuviese el del Modelo Estándar SU(3)c × SU(2)l × U(1)y, y que unificara por tanto la gravitación con el resto de las interacciones.

 

Edward Witten demostró en 1981 que el número total de dimensiones que se necesitarían sería al menos de once. Sin embargo, se pudo comprobar que la extensión de la teoría a once dimensiones no podía contener fermiones quirales, y por tanto sería incapaz de describir los campos de leptones y quarks.

Por otra parte, la supersimetría implica que por cada bosón existe un fermión con las mismas propiedades. La extensión super-simétrica de la Relatividad General es lo que se conoce como super-gravedad (supersimetría local).

 

 

Joël Scherk (1946-1980) (a menudo citado como Joel Scherk) fue un francés teórico físicoque estudió la teoría de cuerdas ysupergravedad[1] .Junto con John H. Schwarz , pensaba que la teoría de cuerdas es una teoría de la gravedad cuántica en 1974.En 1978, junto con Eugène Cremmer y Julia Bernard , Scherk construyó el lagrangiano y supersimetría transformaciones parasupergravedad en once dimensiones, que es uno de los fundamentos de la teoría-M .

 

Teoria M

Unos años antes, en 1978, Cremmer, Julia y Scherk habían encontrado que la supergravedad, precisamente en once dimensiones, tenía propiedades de unicidad que no se encontraban en otras dimensiones. A pesar de ello, la teoría no contenía fermiones quirales, como los que conocemos, cuando se compactaba en cuatro dimensiones. Estos problemas llevaron a gran parte de los teóricos al estudio de otro programa de unificación a través de dimensiones extra aún más ambicioso, la teoría de cuerdas.

No por haberme referido a ella en otros trabajos anteriores estará de más dar un breve repaso a las supercuerdas. Siempre surge algún matiz nuevo que enriquece lo que ya sabemos.

 

Gabriele Veneziano - Wikipedia, la enciclopedia libre

 

El origen de la teoría de supercuerdas data de 1968, cuando Gabriele Veneziano introdujo los modelos duales en un intento de describir las amplitudes de interacción hadrónicas, que en aquellos tiempos no parecía provenir de ninguna teoría cuántica de campos del tipo de la electrodinámica cuántica. Posteriormente, en 1979, Yaichiro Nambu, Leonard Susskind y Holger Nielsen demostraron de forma independiente que las amplitudes duales podían obtenerse como resultado de la dinámica de objetos unidimensionales cuánticos y relativistas dando comienzo la teoría de cuerdas.

En 1971, Pierre Ramona, André Neveu y otros desarrollaron una teoría de cuerdas con fermiones y bosones que resultó ser supersimétrica, inaugurando de esta forma la era de las supercuerdas.

 

      David Jonathan Gross

Sin embargo, en 1973 David Gross, David Politzer y Frank Wilczek descubrieron que la Cromodinámica Cuántica, que es una teoría de campos gauge no abeliana basada en el grupo de color SU(3)c, que describe las interacciones fuertes en términos de quarks y gluones, poseía la propiedad de la libertad asintótica. Esto significaba que a grandes energías los quarks eran esencialmente libres, mientras que a bajas energías se encontraban confinados dentro de los hadrones en una región con radio R de valor R ≈ hc/Λ ≈ 10-13 cm.

Dicho descubrimiento, que fue recompensado con la concesión del Premio Nobel de Física a sus autores en 2.004, desvió el interés de la comunidad científica hacia la Cromodinámica Cuántica como teoría de las interacciones fuertes, relegando casi al olvido a la teoría de supercuerdas.

 

Resultado de imagen de Cuerdas abiertas, cerradas, lazosResultado de imagen de Cuerdas abiertas, cerradas, lazos

 

Se habla de cuerdas abiertas, cerradas o de lazos, de p branas donde p denota su dimensionalidad (así, 1 brana podría ser una cuerda y 2.Brana una membrana) o D-Branas (si son cuerdas abiertas) Y, se habla de objetos mayores y diversos que van incorporados en esa teoría de cuerdas de diversas familias o modelos que quieren sondear en las profundidades del Universo físico para saber, como es.

En la década de los noventa se creó una versión de mucho éxito de la teoría de cuerdas. Sus autores, los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohn, a quienes se dio en llamar el cuarteto de cuerdas de Princeton.

 

Teoría de cuerdas heteróticas sin supersimetría - La Ciencia de la Mula  Francis

                                                 La cuerda Heterótica

El de más edad de los cuatro, David Gross, hombre de temperamento imperativo, es temible en los seminarios cuando al final de la charla, en el tiempo de preguntas, con su inconfundible vozarrón dispara certeros e inquisidoras preguntas al ponente. Lo que resulta sorprendente es el hecho de que sus preguntas dan normalmente en el clavo.

Gross y sus colegas propusieron lo que se denomina la cuerda heterótica. Hoy día, de todas las variedades de teorías tipo Kaluza-Klein que se propusieron en el pasado, es precisamente la cuerda heterótica la que tiene mayor potencial para unificar todas las leyes de la naturaleza en una teoría. Gross cree que la teoría de cuerdas resuelve el problema de construir la propia materia a partir de la geometría de la que emergen las partículas de materia y también la gravedad en presencia de las otras fuerzas de la naturaleza.

Resultado de imagen de Ecuaciones de campo de la relatividad general

Como por arte de magia, las ecuaciones de campo de la Teoría de la relatividad, emergen, sin que nadie las llame, cuando los físicos desarrollan las matemáticas de la Teoría de cuerdas. ¿Por qué será?

El caso curioso es que, la Relatividad de Einstein, subyace en la Teoría de cuerdas, y, si eliminamos de esta a aquella y su geometría de la Gravedad…todo resulta inútil. El gran Einstein está presente en muchos lugares y quizás, más de los que nos podamos imaginar.

Es curioso constatar que si abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió atraído inicialmente hacia la teoría de cuerdas. En 1.982 leyó un artículo de revisión de John Schwarz y quedó sorprendido al darse cuenta de que la gravedad emerge de la teoría de supercuerdas a partir solamente de los requisitos de auto consistencia. Recuerda que fue “la mayor excitación intelectual de mi vida”.

 

Las diez frases reales de Albert Einstein que han pasado a la Historia

Allá donde esté el viejo Einstein, sonreirá al ver que llevaba razón en todo

Gross se siente satisfecho pensando que Einstein, si viviera, disfrutaría con la teoría de supercuerdas que sólo es válida si incluye su propia teoría de la relatividad general, y amaría el hecho de que la belleza y la simplicidad de esa teoría proceden en última instancia de un principio geométrico, cuya naturaleza exacta es aún desconocida.atividad general de Einstein. Nos ayuda a estudiar las partes más grandes del Universo, como las estrellas y las galaxias. Pero los elementos diminutos los átomos y las partículas subatómicas se rigen por unas leyes diferentes denominadas mecánica cuántica.

 

Una explosión de <a href=

 

Claro que, como todos sabemos, Einstein se pasó los últimos treinta años de su vida tratando de buscar esa teoría unificada que nunca pudo encontrar. No era consciente de que, en su tiempo, ni las matemáticas necesarias existían aún. En la historia de la física del siglo XX muchos son los huesos descoloridos de teorías que antes se consideraban cercanas a esa respuesta final que incansables buscamos.

Hasta el gran Wolfgang Pauli había colaborado con Heisenberg en la búsqueda de una teoría unificada durante algún tiempo, pero se alarmó al oír en una emisión radiofónica como Heisenberg decía: “Está a punto de ser terminada una Teoría unificada de Pauli-Heisenberg, en la que sólo nos queda por elaborar unos pocos detalles técnicos.”

 

Wolfgang Pauli ETH-Bib Portr 01042.jpg

            Wolfgang Pauli

Enfadado por lo que consideraba una hipérbole de Heisenberg que se extralimitó con aquellas declaraciones en las que lo involucraba sin su consentimiento,  Pauli envió a Gamow y otros colegas una simple hija de papel en blanco en la que había dibujado una caja vacía. Al pie del dibujo puso estas palabras: “Esto es para demostrar al mundo que yo puedo pintar como Tiziano. Sólo faltan algunos detalles técnicos.”

Los críticos del concepto de supercuerdas señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoría aún  no había repetido siquiera los logros del Modelo Estándar, ni había hecho una sola predicción que pudiera someterse a prueba mediante el experimento. La Supersimetría ordenaba que el Universo debería estar repleto de familias de partículas nuevas, entre ellas los selectrones (equivalente al electrón super-simétrico) o el fotino (equivalente al fotón).

 

Fotones y electrones 'dialogan' en la nanoescala. Asturias MundialSimetrías de las fuerzas y la materia | Instituto de Física Corpuscular

Lo cierto es que, nada de lo predicho ha podido ser comprobado “todavía” pero, sin embargo, la belleza que conlleva la teoría de cuerdas es tal que nos induce a creer en ella y, sólo podemos pensar que no tenemos los medios necesarios para comprobar sus predicciones, con razón nos dice E. Witten que se trata de una teoría fuera de nuestro tiempo, las supercuerdas pertenecen al futuro y aparecieron antes por Azar.

Y, a todo esto, ¿Dónde están esas otras dimensiones?

emilio silvera

Cuando las palabras no saben explicar conceptos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pérdida de información en los agujeros negros

          Observada por primera vez la radiación de Hawking en un análogo óptico de  un agujero negro - La Ciencia de la Mula FrancisEl legado de Hawking : Revista Pesquisa Fapesp

“La radiación de Hawking es una forma de radiación emitida por los agujeros negros y consistente principalmente en la emanación de partículas subatómicas sin masa debido a los efectos cuánticos que se producen en el horizonte de sucesos.”

Se dice que un agujero negro (una masa M concentrada en un volumen menor que el dictado por su radio de Schwarzschild rs = 2GM/c2) absorbe todo lo que cae sobre él. Sin embargo, Beckenstein y Hawking determinaron que el agujero negro posee entropía (proporcional al área del horizonte) y por ello temperatura, y Hawking concluye (1975) que la temperatura le hace radiar como un cuerpo negro; por tanto, eventualmente el agujero se evapora.

Logran probar la principal teoría de Stephen Hawking recreando un agujero  negro en laboratorio | Gacetín Madrid

Aquí viene la paradoja. Si formamos el agujero negro arrojando materia en forma concreta (por ejemplo, un camión), la masa del camión acabaría eventualmente escupida como radiación del cuerpo negro, perdiéndose la preciosa información sobre el camión. Pero se supone que la evolución de “todo” es cuántica, y por ello unitaria. Ahora bien, la evolución unitaria mantiene la información (estados puros van a estados puros, no mezcla…); he ahí la paradoja.

Fue Hawking quien primero presentó la paradoja de “pérdida de información” en contra de otros que, como Gerard’t Hooft y Susskind, quienes mantienen que la información no se puede perder, y que por ello debe haber sutiles correlaciones en la radiación emitida, de las que en principio sería posible extraer la información original sobre que el agujero negro tragó un camión…

Leer más

¡Una Singularidad! Extraño Objeto

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Euclides nos presentó un Universo de espacios planos, y, dos mil años más tarde, llegó Riemann para enseñarnos un nuevo universo de espacios curvos. La visión del “mundo” ha sido cambiante con el paso del Tiempo y los nuevos conocimientos, nuevas matemáticas y nueva tecnología.

Tenemos que saber como la violación de la simetría CP (el proceso que originó la materia) aparece, y, lo que es más importante, hemos de introducir en el nuevo fenómeno llamado Campo de Higss que cuenta en todos los problemas que se vislumbran en el Modelo Estándar de la Física de Partículas y de las fuerzas fundamentales (excepto una). Esos parámetros aleatorios se han metido con calzador para que las cuentas cuadren, lo que nos lleva a sentir que el Modelo Estándar se mueve bajo nuestros pies como si arenas movedizas se tratara.

El “casamiento” de la Relatividad General con la Teoría Cuántica es el mayor problema que tiene la Física, toda vez que, una de las cuatro fuerzas, la Gravedad, se niega a estar incluida en el Modelo Estándar.

Pero hablemos del trabajo de hoy; ¡La Singularidad!

La singularidad de los agujeros negros - ¡No sabes nada!Blog de Fran: Agujeros negrosMecánica Universal - La Singularidad - Wattpad

Lo cierto es que, a pesar de los muchos datos que tenemos sobre estos objetos cósmicos exóticos, son muchas las cosas que aún se nos resisten, y, el conocimiento es parcial, no sabemos que clase de materia puede albergarse en una Singularidad de un Agujero Negro. La que forma enanas blancas y estrellas de neutrones nos pueden dar una idea aproximada.

Nobel de Física: qué es la singularidad, el corazón de los agujeros negros  donde se rompen todas las leyes conocidas de la naturaleza - BBC News MundoCientíficos demuestran la existencia de singularidades de agujeros negros  en el espacio 3D curvo - Diario de Noticias de Navarra

Se dice que la Singularidad es el “corazón” del Agujero Negro, en ese lugar se rompen todas las leyes de la Física. El Espacio se distorsiona y el Tiempo deja de existir. ¿Qué lugar puede ser de esa manera?

El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión.  La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir.  Además, en la singularidad,  según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.

La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de enana blanca o de estrella de neutrones, para convertirse en una singularidad.

Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad, la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.

Modelo OS
La figura de la izquierda representa a la nube de polvo en colapso de Oppenhieimer y Snyder, que ilustra una superficie atrapada.
El modelo de Oppenhieimer y Snyder posee una superficie atrapada, que corresponde a una superficie cuya área se iOppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro, al desarrollar el planteamiento de una nube de polvo colapsante. En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidad de la que pasará a formar parte.

Desde entonces, muchos han sido los físicos que se han especializado profundizando en las matemáticas relativas a los agujeros negros. John Wheeler (que los bautizó como agujeros negros), Roger Penrose, Stephen Hawking, Kip S. Thorne, Kerr y muchos otros nombres que ahora no recuerdo, han contribuido de manera muy notable al conocimiento de los agujeros negros, las cuestiones que de ellas se derivan y otras consecuencias de densidad, energía, gravedad, ondas gravitacionales, que son deducidas a partir de estos fenómenos del cosmos.

           Primera foto agujero negro: ¿Qué es el horizonte de sucesos?

Se afirma que las singularidades se encuentran rodeadas por un horizonte de sucesos, pero para un observador, en esencia, no puede ver nunca la singularidad desde el exterior. Específicamente implica que hay alguna región incapaz de enviar señales al infinito exterior. La limitación de esta región es el horizonte de sucesos, tras ella se encuentra atrapado el pasado y el infinito nulo futuro. Lo anterior nos hace distinguir que en esta frontera se deberían reunir las características siguientes:

  • Debe ser una superficie nula donde es pareja, generada por geodésicas nulas;
  • contiene una geodésica nula de futuro sin fin, que se origina a partir de cada punto en el que no es pareja, y que
  • el área de secciones transversales espaciales jamás pueden disminuir a lo largo del tiempo.

Pueden existir agujeros negros  super-masivos (de 105 masas solares) en los centros de las galaxias activas. En el otro extremo, mini agujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después delBig Bang. Diminutos agujeros negros podrían ser capaces de capturar partículas a su alrededor, formando el equivalente gravitatorio de los átomos.

Todo esto ha sido demostrado matemáticamente por Israel, 1.967; Carter, 1.971; Robinson, 1.975; y Hawking, 1.978 con límite futuro asintótico de tal espacio-tiempo como el espacio-tiempo de Kerr, lo que resulta notable, pues la métrica de Kerr es una hermosa y exacta formulación para las ecuaciones de vacío de Einstein y, como un tema que se relaciona con la entropía en los agujeros negros.

No resulta arriesgado afirmar que existen variables en las formas de las singularidades que, según las formuladas por Oppenheimer y su colaborador Snyder, después las de Kerr y más tarde otros, todas podrían existir como un mismo objeto que se presenta en distintas formas o maneras.

                                                      

Ahora bien, para que un ente, un objeto o un observador pueda introducirse dentro de una singularidad como un agujero negro, en cualquiera que fuese su forma, tendría que traspasar el radio de Schwarzschild (las fronteras matemáticas del horizonte de sucesos), cuya velocidad de escape es igual a la de la luz, aunque esta tampoco puede salir de allí una vez atrapada dentro de los límites fronterizos determinados por el radio. Este radio de Schwarzschild puede ser calculado usándose la ecuación para la velocidad de escape:

Para el caso de fotones u objeto sin masa, tales como neutrinos, se sustituye la velocidad de escape por la de la luz c2. “En el modelo de Schrödinger se abandona la concepción de los electrones como esferas diminutas con carga que giran en torno al núcleo, … Es cierto que en mecánica cuántica quedan muchos enigmas por resolver. Pero hablando de objetos de grandes masas, veamos lo que tenemos que hacer para escapar de ellos.

Podemos escapar de la fuerza de gravedad de un planeta pero, de un A.N., será imposible.

La velocidad de escape está referida a la velocidad mínima requerida para escapar de un campo gravitacional. El objeto que escapa puede ser cualquier cosa, desde una molécula de gas a una nave espacial. Como antes he reflejado está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo del que pretende escapar (del núcleo). Un objeto que se mueva a velocidad menor a la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica.

Así hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Veamos algunas:

Objeto

Velocidad de escape

La Tierra

………….11,18 Km/s

El Sol

………….617,3 Km/s

Júpiter

………….59,6 Km/s

Saturno

………….35,6 Km/s

Venus

………….10,36 Km/s

Agujero negro

…….+ de 299.000 Km/s

Como se ve en el cuadro anterior, cada objeto celeste, en función de su masa, tiene su propia velocidad de escape para que cualquier cosa pueda salir de su órbita y escapar de él. El caso de la singularidad, es decir, la inmensa masa que está presente en las entrañas de un Agujero negro, genera una fuerza de gravedad tal que, nada está a salvo en sus inmediaciones, cualquier objeto, sea estrella, polvo estelar, planeta o lo que pudiera ser, será engullido por el “monstruo”, sin que nada pueda evitarlo.

La excepción está en el último ejemplo, la velocidad de escape necesaria para vencer la fuerza de atracción de un agujero negro que, siendo preciso superar la velocidad de la luz 299.792’458 Km/s, es algo que no está permitido, ya que todos sabemos que conforme determina la teoría de la relatividad especial de Einstein, la velocidad de la luz es la velocidad límite en nuestro universo; nada puede ir más rápido que la velocidad de la luz, entre otras razones porque el objeto sufriría la transformación de Lorentz y su masa sería infinita.

Podría continuar explicando otros aspectos que rodean a los agujeros negros, pero estimo que el objetivo que perseguía de hacer conocer lo que es un agujero negro y el origen del mismo, está sobradamente cumplido.

Existen aspectos del A.N. que influyen en el mundo cuántico, y, por ejemplo, el máximo radio que puede tener un agujero negro virtual está dado aproximadamente por

que equivale a unos 10-³³ centímetros. Esta distancia se conoce como longitud de Planck y es la única unidad de distancia que se puede construir con las tres constantes fundamentales de la naturaleza: G, h y c. La longitud de Planck es tan extremadamente pequeña (10²° veces menor que el radio de un electrón) que debe ser la distancia característica de otro nivel de la naturaleza, subyacente al mundo subatómico, donde rigen las leyes aún desconocidas de la gravedad cuántica.

Así como el océano presenta un aspecto liso e inmóvil cuando se observa desde una gran distancia, pero posee fuertes turbulencias y tormentas a escala humana, el espacio-tiempo parece “liso” y estático a gran escala, pero es extremadamente turbulento en el nivel de la longitud de Planck, donde los hoyos negros se forman y evaporan continuamente. En el mundo de Planck, las leyes de la física deben ser muy distintas de las que conocemos hasta ahora.

La estructura macroscópica del espacio-tiempo parece plana, pero éste debe ser extremadamente turbulento en el nivel de la escala de Planck. Escala en la que parece que entramos en otro mundo… ¡El de la mecánica cuántica! que se aleja de ese mundo cotidinao que conocemos en el que lo macroscópico predomina por todas partes y lo infinitesimal no se deja ver con el ojo desnudo.

¡Existen infinitos secretos! ¡Es tan grande nuestra ignorancia!

emilio silvera