jueves, 17 de agosto del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Imaginación sin límite pero… ¿sabremos comprender?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

cluster-galaxias

A cualquier región del Universo que podamos enfilar nuestros telescopios… Como media, siempre veremos las mismas cosas y se producirán los mismos fenómenos

Está claro que pensar siquiera en que en nuestro Universo, dependiendo de la región en la que nos encontremos, habrá distintas leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar  y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario,  los científicos suponen con prudencia que, sean cuales fueran las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte del Cosmos por muy remota que se encuentre aquella región; los elementos primordiales que lo formaron fueron siempre los mismos y las fuerzas que intervinieron para formarlo también.

                             La materia y las fuerzas que conforman nuestro Universo

Las fuerzas fundamentale son


Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva   producida de manera natural.  Portadoras W y Z-
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La transporta el gravitón.

Fue Einstein el que anunció lo que se llamó principio de covariancia: que las leyes de la naturaleza deberían expresarse en una forma que pareciera la misma para todos los observadores, independientemente de dónde estuvieran situados y de cómo se estuvieran moviendo. En caso contrario… ¿En qué clase de Universo estaríamos?

Lo cierto es que Einstein fue muy afortunado y pudo lanzar al mundo su teoría de la relatividad especial, gracias a muchos apoyos que encontró en Mach, en Lorentz, en Maxwell… En lo que se refiere a la relatividad general, estuvo dando vueltas y vueltas buscando la manera de expresar las ecuaciones de esa teoría pero, no daba con la manera de expresar sus pensamientos.

Sin embargo, fue un hombre con suerte, ya que,  durante la última parte del siglo XIX en Alemania e Italia, matemáticos puros habían estado inmersos en el estudio profundo y detallado de todas las geometrías posibles sobre superficies curvas. Habían desarrollado un lenguaje matemático que automáticamente tenía la propiedad de que toda ecuación poseía una forma que se conservaba cuando las coordenadas que la describían se cambiaban de cualquier manera. Este lenguaje se denominaba cálculo tensorial. Tales cambios de coordenadas equivalen a preguntar qué tipo de ecuación vería alguien que se moviera de una manera diferente.

Einstein se quedó literalmente paralizado al leer la Conferencia de Riemann. Allí, delante de sus propios ojos tenía lo que Riemann denominaba Tensor métricoEinstein se dio cuenta de que era exactamente lo que necesitaba para expresar de manera precisa y exacta sus ideas. Así  llegó a ser  posible la teoría de la relatividad general.

matriz

Gracias al Tensor de Rieman, Einstein pudo formular:  T_{ik} = \frac{c^4}{8\pi G} \left [R_{ik} - \left(\frac{g_{ik} R}{2}\right) + \Lambda g_{ik} \right ]

Recordando aquellos años de búsqueda e incertidumbre, Einstein escribió:

“Los años de búsqueda en la oscuridad de una verdad que uno siente pero no puede expresar el deseo intenso y la alternancia de confianza y desazón hasta que uno encuentra el camino a la claridad y comprensión sólo son familiares a aquél que los ha experimentado. 

Einstein, con esa aparentemente sencilla ecuación que arriba podemos ver, le dijo al mundo mucho más, de lo que él mismo, en un principio pensaba. En ese momento, se podría decir, sin temor a equivocarnos que comenzó la historia de la cosmología moderna. Comprendimos mejor el universo, supimos ver y comprender la implosión de las estrellas obligadas por la gravedad al salir de la secuencia principal, aparecieron los agujeros negros… y, en fin, pudimos acceder a “otro universo”.

Es curioso como la teoría de la relatividad general nos ha llevado a comprender mejor el universo y, sobre todo, a esa fuerza solitaria, la Gravedad. Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que -como tantas veces hemos comentado aquí-, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas galácticas, estelas y de objetos que, como los agujerods negros y los mundos, emiten la fuerza curvando el espacio a su alrededor y distorsionando el tiempo si su densidad llega a ser extrema.

Cuando miramos al cielo nocturno -en la imagen de arriba lo hacemos desde Tenerife-  y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

Cuando recordamos que la galaxia Andrómeda se está acercando a la Vía Láctea a unos 300 km/s, y sabiendo lo que ahora sabemos, no podemos dejar de preguntarnos ¿dónde estará la Humanidad dentro de cinco mil millones de años? Si tenemos la suerte de haber podido llegar tan lejos -que es dudoso-, seguramente,  nuestra inmensa  imaginación habrá desarrollado conocimientos y tecnologías suficientes para poder escapar de tan dramático suceso. Estaremos tan ricamente instalados en otras galaxias, en otros mundos. De alguna manera… ¿No es el Universo nuestra casa?

emilio silvera

Cúmulo abierto M67

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Messier object 067.jpg

 

Un equipo internacional de astrónomos ha descubierto que hay muchos más planetas calientes similares a Júpiter de lo que se suponía, en un cúmulo estelar denominado Messier 67. Este sorprendente resultado se obtuvo utilizando diversos telescopios e instrumentos, incluyendo al espectrógrafo HARPS instalado en el Observatorio La Silla de ESO en Chile. El ambiente denso de un cúmulo genera más interacciones entre los planetas y las estrellas cercanas, lo cual podría explicar el exceso de Júpiteres calientes.

 

 

http://www.astrobitacora.com/wp-content/uploads/2015/12/planet-trio_1024.jpg

 

Planetas mayores que Júpiter orbitan algunas de sus estrellas

 

M67 (también conocido como NGC 2682) es un cúmulo abierto situado en la constelación de Cáncer.

M67 tiene aproximadamente 500 componentes. Contiene 11 estrellas gigantes de tipo espectral K con magnitud absoluta entre +0.5 y +1.5, así como algunas estrellas en la zona más azul de la Secuencia Principal, la más brillante de ellas de tipo espectral B8 o B9. También posee 200 enanas blancas (esto quiere decir que doscientos soles murieron para que ellas existieran) y 100 estrellas parecidas a nuestro sol. La magnitud aparente de sus estrellas más brillantes es alrededor de 10ª.

Resultado de imagen de Harlow Shapley

Debido al alto número de estrellas, de tipos tan distintos, ha sido estudiado intensamente: Harlow Shapley (1917) realizó los primeros trabajos sobre sus colores y magnitudes, Barnard (1931) midió la posición de sus principales componentes (para determinar sus movimientos propios), Popper (1954) los espectros de sus brillantes estrellas, mientras que Johnson y Sandage (1955) elaboraron el primer Diagrama HR preciso de alrededor de 500 estrellas, descubriendo su elevada edad y su estado tan evolucionado.

Resultado de imagen de estrellas binarias ellas (presumiblemente del tipo RS CVn

Estas binarias se pueden fusionar para formar una estrella de Neutrones

Hasta la fecha (2.016) se han descubierto la presencia de 45 fuentes de Rayos X en el cúmulo, la mayoría de ellas estrellas binarias ellas (presumiblemente del tipo RS CVn), con períodos orbitales de 10 días o menos.

En su parte sur, prácticamente en la zona occidental, aparece un pequeño agrupamiento de nueve estrellitas conocido como Dipper: tiene forma de pequeña cometa con la cola curvada; una de sus estrellas componentes es la variable S 999.

Imagen relacionadaImagen relacionadaResultado de imagen de variables del tipo binaria eclipsante y binaria espectroscópica

Contiene bastantes variables del tipo binaria eclipsante y binaria espectroscópica; algunas de estas estrellas, fácilmente visibles para telescopios de aficionado dotado de cámara CCD son:

  • AH Cnc: de magnitud 13.33, es una binaria del tipo UW UMa descubierta en 1960; su período es igual a 0.360452 días, su amplitudes próxima a 0.40 magnitudes.
  • EV Cnc: de magnitud 12.78, también es una binaria de tipo UW UMa; fue descubierta en 1991, tiene un período igual a 0.44144 días y una amplitud igual a 0.18 magnitudes.
  • AG Cnc: con magnitud 13.77 presenta un período igual a 2.84 días y una amplitud de 0.20 magnitudes.
  • S 999: de magnitud 12.60 es una variable de largo período (9.2 días) que presenta una amplitud fotométrica igual a 0.07 magnitudes; está situada en la parte norte del Dipper.
  • S 1063: también conocida como NSV 4274, es un astro de magnitud 13.79 con un período de variación muy largo, comprendido entre los 17 y 18 días (hasta el año 2006 no está bien determinado), con una amplitud de 0.18 magnitudes.
  • ES Cnc: con magnitud 11.19 es una de las más brillantes del cúmulo; se trata de una estrella del tipo blue straggler (errante azul) que resulta ser también una variable eclipsante con un período igual a 1.0677978 días.

En 2004 se publicó un estudio del cúmulo en el que se midieron las magnitudes de sus estrellas con una precisión de diezmilésimas de magnitud: (0.0001 magnitud).

Fuente de datos de Wikipedia.

¡Física! ¡Astronomía! Tienen tántos secretos

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de iones
Al combinarse sodio con cloro, para formar cloruro de sodio (sal común de mesa), cada átomo de sodio cede un electrón a un átomo de cloro.
En lo referido al  deuterón es una de las variedades del ion hidrógeno o Hidrón. En química,  y en física de partículas, el deuterón, (del griego δεύτερος, deuteros, “el segundo”), designa el núcleo del átomo de deuterio,   un isótopo  estable del elemento Hidrógeno.  El símbolo del deuterón es 2H+, o más raramente, D+ o simplemente d. Un deuterón se compone de un neutrón y un protón.

Estaba pensando escribir un poco sobre cuestiones generales de la Física, y, de pronto, sin saber el por qué, me vino a la memoria que, el deuterón, resultó ser una partícula muy valiosa para bombardear los núcleos.  En 1.934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P.Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituído por un protón y 2 neutrones. La reacción de planteó así:

Hidrógeno2 + Hidrógeno2 → Hidrógeno3 + Hidrógeno1

 

 

Fusión nuclear de deuterones (núcleos de deuterio) y tritones (núcleos de tritio) con producción de helio. Este nuevo Hidrógeno superpesado se denomino “tritio”; su ebullición a 25’0 °K y su fusión, 20’5 °K.

Como con cierta frecuencia me pasa, me desvió del tema en un principio elegido y, sin poderlo evitar, mi ideas (que parecen tener vida propia), cogen los caminos más diversos.  Basta con que se cruce en el camino del trabajo que realizo, un fugaz recuerdo, lo sigo y me lleva a destinos distintos de los que me propuse al comenzar, así, en este caso, me pasé a la química que, también me gusta mucho y está directamente relacionada con la física, de hecho son hermanas, la madre, las matemáticas, la única que, finalmente, lo podrá explicar todo.

“Puesto que el electrón posee una carga eléctrica (negativa), cualquier movimiento del mismo puede generar un pequeño campo magnético capaz de hacerlo interactuar con un campo magnético externo no homogéneo. Y una manera en la cual el 47avo electrón solitario pueda comportarse como un pequeño imán dándole de este modo al átomo de plata un momento magnético es girando sobre su propio eje como si fuese un trompo”

Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra, o el Sol, o nuestra Galaxia o, si se me permite decirlo, como el propio Universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas.  Estas, al girar, genera un minúsculo campo magnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nóbel de Física en 1.943 y 1.944, respectivamente, por sus trabajos sobre dicho fenómeno.

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en número mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermín y Dirac.  Por ello, se las llama y conoce como Estadísticas Fermi-Dirac.  Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par.  Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S.N.Bose. Las partículas que se adaptan a la “estadística Bose-Einstein” son “bosones”.  Por ejemplo, la partícula alfa, es un bosón.

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de ésta teoría en vez de las de la mecánica clásica.  En estadística cuantica, los estados de energía se considera que están cuantizados.  La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son los bosones que, tienden a juntarse.

Los bosones tienen un momento angular n h/2p, donde n es cero o un entero y h es la constante de Planck.  Para bosones idénticos, la función de ondas es siempre simétrica.  Si solo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n+½) h/2p y cualquier función de ondas de fermiones idénticos es siempre antisimétrica.

Partículas y campos, clásicos y cuánticos. Las nociones clásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.
Partículas y campos, clásicos y cuánticos. Las nociones cñásicas de partícula y campo comparadas con su contrapartida cuántica. Una partícula cuántica está deslocalizada: su posición se reparte en una distribución de probabilidad. Un campo cuántico es equivalente a un colectivo de partículas cuánticas.
neutrones. La dispersión inelástica de neutrones en un cristal es el resultado de la interacción de un neutrón lanzado contra los átomos en vibración de la red cristalina. En teoría cuántica de campos, el proceso se modeliza de manera más sencilla al introducir los cuantos de las ondas sonoras del cristal, los fonones, entendiéndolo como la absorción o emisión de un fonón por el neutrón.”
Dispersión de <a href=
neutrones. La dispersión inelástica de neutrones en un cristal es el resultado de la interacción de un neutrón lanzado contra los átomos en vibración de la red cristalina. En teoría cuántica de campos, el proceso se modeliza de manera más sencilla al introducir los cuantos de las ondas sonoras del cristal, los fonones, entendiéndolo como la absorción o emisión de un fonón por el neutrón.”
Dispersión de neutrones. La dispersión inelástica de neutrones en un cristal es el resultado de la interacción de un neutrón lanzado contra los átomos en vibración de la red cristalina.  En teoría cuántica de campos, el proceso se modeliza de manera más sencilla al introducir los cuantos de las ondas sonoras del cristal, los fotones,  entendiéndolo como la absorción o emisión de un fonón por el neutrón.

La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones.  Estas partículas se conocen con el nombre de aiones; para aniones idénticos la función de ondas no es simétrica (un cambio de fase de+1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1.  Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

Debido al principio de exclusión de Pauli es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones).

Resultado de imagen de Condensado de Bose-<a href=Einstein" width="304" height="222" />

Esta imagen fue proporcionada por JILA, Universidad de Colorado, Boulder. Está específicamente acreditada a Mike Matthews, del equipo de investigación JILA.

“Un condensado de Bose–Einstein es un estado de la materia en el que ciertas partículas (bosones) pierden sus características individuales para colapsar en un único estado colectivo y en el cual los efectos cuánticos se manifiestan en una escala macroscópica. Ésta condensación fue predicha por Bose y Einstein en 1924-25. A finales de los años 30 se observó que, a muy bajas temperaturas (-271 ºC = 2.17 grados Kelvin) cerca del cero absoluto, el helio-4 se comportaba como un nuevo fluido con propiedades inusuales tales como la ausencia de viscosidad (fluir sin disipar energía) y la existencia de vórtices (pequeños remolinos indestructibles) cuantizados. A este nuevo estado se le conoce como superfluido. L. Landau obtuvo el Premio Nobel en 1964 por su teoría fenomenológica que explica la superfluidez como una consecuencia de un condensado de bosones interactuántes.”

La condensación de Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7k) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Este efecto (condensación Bose-Einstein), como ya habréis podido suponer, es llamado así en honor al físico Satyendra Naht Bose (1.894-1.974) y de Albert Einstein.

Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender como forma un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado.  Lo cierto es que ocurre así. La prueba directa más evidente de ello es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado.  El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalentes a cero, aunque por alguna razón desconocida, lograr crear un campo magnético cuando gira la partícula.

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E=mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es, ¡materia! La materia es la luz, la energía, el magnetismo.  En definitiva, la fuerza que reine en el Universo y que esté presente, de una u otra forma en todas partes (aunque no podamos verla). ¡Es Curioso! Sea como fuere, la rotación del neutrón nos dé la respuesta a esas preguntas:

¿Qué es el antineutrón?  Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo.  En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.

Es indudable que las antipartículas pueden combinarse para formar la “antimateria”, de la misma forma que las partículas corrientes forman la materia ordinaria.

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un “antideuterón”. Desde entonces se ha producido el “antihielo 3″, y no cabe duda de que se pudiera crear otros antinúcleos más complicados aun si se abordara el problema con más interés.

Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el Universo?

Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente.  Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro.  Así, pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate dichas interacciones materia-antimateria.

[clip_image001%255B3%255D.jpg]

No parece que dichas observaciones fuesen un éxito. La única materia detectada ha sido siempre la Bariónica, la que podemos ver y emite radiación y luz. De todas las demás formas de materia de la que tanto hemos hablado (materia oscura, antimateria, o, sustancia cósmica… ¡ni la más mínima pista! Al menos hasta el momento.

¿Es posible que el Universo este formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalentes en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaria la otra, y el Universo debería estar compuesta de iguales cantidades de la una y de la otra.

Se trata de núcleos de Antihelio 4 formados por dos antiprotones y dos antineutrones

 

Este es el dilema.  La teoría nos dice que debería haber allí, en el espacio interestelar,  antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los quásares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.

 Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado de su composición en lugares muy lejanos del Universo.

“Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible.”

El comentario de arriba se ha podido oír en alguna película de ciencia ficción. Podría ser verdad ¡un material desconocido! Sin embargo, no porque la nave esté construida por una materia distinta a la que aquí existe, sino porque, de los mismos materiales que pueblan todo el Universo, esos extraterrestres han sabido manipularlos para conseguir una aleación distinta. El Universo es igual en todas partes y, por muy lejos que un mundo pueda estar situado, siempre estará compuesto, en mayor o menor proporción, por los elementos conocidos de la Tabla Periódica. Otra cosa será el nivel tecnológico que ese pueblo pueda tener para conseguir aleaciones inusuales en la Tierra.

Lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia?

Está claro que, dentro de lo que ya sabemos, lo único que podemos asegurar es el hecho de que, a partir de la materia, lo podremos conseguir todo y, está claro que, aún encierra muchos secretos que no hemos podido desvelar.

emilio silvera

Sencillamente sería el fín de los Seres vivos de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Y si el Sol desapareciera de repente?

Esta es la cascada de consecuencias para nuestro planeta y cómo se sucederían en el tiempo

 

¿Y si el Sol desapareciera de repente?

 

 

 

 

No hace falta ser un astrónomo experimentado para saber que dependemos completamente del Sol. Nuestra estrella particular, en efecto, ocupa el centro de nuestro sistema planetario, mantiene los mundos en su sitio e irradia la energía necesaria para que aquí, en la Tierra, sea posible la vida. Gracias al Sol tenemos luz, calor, atmósfera, fotosíntesis, océanos… Sabemos también, sin embargo, que nada, ni siquiera el Sol, dura eternamente. Durará mucho tiempo, sí, aunque no para siempre. ¿Pero qué sucedería si un buen día el Sol desapareciera de repente? ¿Cuáles serían las consecuencias para nosotros y cómo se sucederían en el tiempo?

Un gráfico recién publicado por la web SolarCentre ha recopilado mucha de la información disponible para resolver la cuestión. Y el panorama, como era de suponer, no resulta nada esperanzador…

Se acabó la gravedad

 

 

El mundo sería muy distinto si de pronto desapareciera la fuerza de Gravedad que genera el Sol

 

En una secuencia cronológica, lo primero que desaparecería con el Sol es su atracción gravitatoria. Todos los planetas están “ligados” gravitatoriamente al Sol, y su súbita desaparición los dejaría sin un centro alrededor del que orbitar. De modo que empezarían a viajar, más o menos, en línea recta, hasta que se toparan con otro cuerpo lo suficientemente grande como para atraerlos. La estrella más cercana, Alpha Centauri, está a 4,2 años luz de distancia, así que esta situación de “vagabundeo espacial”, suponiendo que algún mundo se dirigiera hacia allí, duraría muchos miles de años.

Por supuesto, al perder su orden establecido es muy probable que algunos planetas chocaran entre sí, o que muchas lunas acabaran precipitándose sobre los mundos a los que orbitan. Júpiter y Saturno, los dos gigantes del Sistema Solar, lograrían quizá atraer a algunos de los planetas que nos rodean, para devorarlos sin contemplaciones.

Oscuridad eterna

 

Resultado de imagen de Un mundo a oscuras, sin Sol

 

 

Aquí, en la Tierra, tardaríamos 8 minutos en darnos cuenta de que el Sol ya no está en su sitio. Ese es, en efecto, el tiempo que un rayo de sol tarda en recorrer, a la velocidad de la luz, los 150 millones de km. que nos separan del astro rey. Pasado ese tiempo, nos veríamos sumidos de repente en una total oscuridad. Y sería para siempre. Ni siquiera seríamos capaces de volver a contemplar la Luna, ya que su brillo no es más que un reflejo de la luz que recibe del Sol. Sí que veríamos las estrellas, que disponen de sus propias fuentes de luz, pero nuestras vidas se convertirían en una larga e interminable noche. Sin luz, además, las plantas ya no podrían seguir haciendo la fotosíntesis, con lo que la aportación de oxígeno a la atmósfera se interrumpiría casi por completo. Las reservas planetarias del gas que nos permite respirar apenas si durarían un par de semanas.

Se acabó el calor

 

Resultado de imagen de Desaparece el Sol y la Tierra se congela

 

Pero la oscuridad no sería lo más grave. De hecho, la temperatura media de la Tierra, que actualmente es de 29,6 grados, descendería rápidamente hasta los -123 grados en apenas dos meses. Cuatro meses después de la desaparición del Sol, la temperatura media de nuestro planeta sería de -198 grados, casi doscientas veces más fría que el interior de una nevera doméstica. En estas condiciones, la inmensa mayoría de la vida desaparecería de nuestro mundo. Solo quedarían algunos microorgansmos extremófilos que viven en medio de las rocas de la corteza terrestre, a varios km. de profundidad, y que no dependen de la luz solar. Los animales subterráneos y los carroñeros lograrían sobrevivir, quizá, durante un breve tiempo adicional, alimentándose de los cadáveres del resto. Pero terminarían desapareciendo en pocas semanas, junto a los demás. Sorprendentemente, los árboles más grandes lograrían, quizá, sobrevivir más tiempo, incluso durante algunas décadas, a pesar del frío y sin fotosíntesis.

Para los humanos, la única opción sería embarcar en submarinos y sumergirse con ellos hasta lo más profundo de los océanos, para aprovechar el calor interno del planeta a medida que surge a través de las fuentes hidrotermales. Con los océanos congelados, ese sería, probablemente, uno de los últimos reductos para la vida terrestre. Otra solución temporal sería la de construir módulos habitables totalmente aislados de las condiciones externas, aunque habría muy poco tiempo para hacerlo (menos de un mes desde el “apagón”) y, de conseguirlo, solo se salvarían unos pocos y durante un tiempo limitado.

9 Imágenes asombrosas de lagos, océanos y estanques congelados

Al final, unos pocos cientos de años tras la desaparición del Sol, incluso las profundidades oceánicas se congelarían. La atmósfera se colapsará y la gélida superficie de lo que fue un mundo lleno de vida quedaría indefensa del bombardeo radiactivo de los rayos cósmicos.

Un panorama, pues totalmente desolador. Por fortuna, el Sol es una estrella de mediana edad, que lleva brillando unos 5.000 millones de años y todo parece indicar que lo seguirá haciendo durante otros 5.000 millones de años más. Aunque ningún ser humano llegará a verlo. Dentro de “solo” unos 1.000 millones de años, en efecto, el Sol se habrá vuelto tan caliente que hará hervir los océanos, que se evaporarán y harán de la Tierra un mundo inhabitable. Ojalá que para entonces ya estemos instalados en otros lugares, muy lejos de aquí…

Resuelto el misterio del neutrino estéril

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Instlaciones de la base Amundsen-Scott, en el polo Sur, donde está instalado el telescopio Bicep-3.

 

Los datos de un Observatorio en la Antártida descartan casi por completo la posibilidad de que exista un neutrino que podría ayudar a explicar la materia oscura.

 

 

Imagen del laboratorio de detección de neutrinos IceCube, en la Antártida. IAN REES, ICECUBE – NSF

Los neutrinos son como los hobbits de la física de partículas. Prefieren estar en sus cosas, sin meterse en los líos políticos de los poderosos elfos o los ambiciosos humanos, y parecen insignificantes a su lado. Sin embargo, tienen algo, quizá fruto de esa autonomía respecto a otras partículas más poderosas, que les hace poder cambiar el mundo desde su posición aparentemente humilde.

Igual que un hobbit salvó a la Tierra Media del dominio del mal absoluto de Sauron, cuentan los físicos que pudieron ser los neutrinos quienes inclinaron la balanza hacia la antimateria en la lucha que se inició contra la materia en los orígenes del tiempo. Tras el Big Bang se había creado la misma cantidad de las dos sustancias y cada vez que una partícula con una carga chocaba contra su opuesta ambas se desintegraban dejando tras de sí un rastro de radiación. Si esa igualdad en la guerra hubiese perdurado, hoy no habría ni galaxias ni Tierra, ni humanos ni libros sobre hobbits.

Los neutrinos estériles podrían explicar por qué hay más materia que antimateria

 

 

Como los hobbits, que se dividen en tres razas, los neutrinos se agrupan en tres sabores, asociados a otros tres leptones de distintas masas: el electrón, el muón y el tau. Estas partículas se crean cuando protones de alta energía, producidos en cataclismos cósmicos como las supernovas, chocan contra la atmósfera terrestre y desencadenan una lluvia de partículas diversas entre las que se encuentran los neutrinos. En su camino a través de la Tierra, fluctúan cambiando de sabor, un fenómeno cuyo descubrimiento fue premiado con el Nobel de Física en 2015.

Estos hallazgos ya habían ayudado a reconfigurar el Modelo Estándar de física de partículas, que sirve para organizar nuestro conocimiento sobre cómo funciona la materia en su nivel más fundamental, pero en los últimos años, algunos científicos, a la vista de resultados experimentales difíciles de explicar con las partículas conocidas, habían planteado la posibilidad de que existiese un tipo de neutrino más. El neutrino estéril, como lo bautizaron, sería aún menos sociable que sus hermanos y solo trataría con el resto de la materia a través de la fuerza de gravedad. Su presencia habría ayudado a explicar si realmente los neutrinos desempeñaron un papel clave en el enfrentamiento entre materia y antimateria y podrían ayudar a entender qué es la materia oscura.

Sin embargo, un artículo publicado esta semana en la revista Physical Review Letters indica que tras mucho buscar no hay rastro de esta cuarta especie de neutrinos. Los autores llegan a esta conclusión después de analizar miles de neutrinos detectados por el Observatorio de Neutrinos IceCube del Polo Sur. Este particular telescopio está formado por 5.160 sensores congelados en el hielo antártico y distribuidos a una profundidad de entre 1,5 y 2,5 kilómetros en un espacio de un kilómetro cúbico. Esas dimensiones descomunales son necesarias para lograr atrapar las señales producidas por estas escurridizas partículas. Los neutrinos que intenta capturar IceCube se producen en la atmósfera sobre el Polo Norte y llegan a la Antártida después de atravesar toda la Tierra.

El telescopio IceCube cuenta con 5.160 detectores que ocupan un kilómetro cúbico bajo el hielo antártico

 

 

 

Los científicos esperaban que, si existiese, el neutrino estéril dejaría una señal clara en un determinado rango energético de un electronvoltio. Planteaban que este cuarto neutrino podría aparecer durante las fluctuaciones cuánticas que producen los cambios de sabor de la partícula. Pero esa señal no se ha encontrado. Además, los autores del trabajo han excluido la posibilidad de que se les haya escapado algo calculando la cantidad de neutrinos de cada clase generados en la atmósfera del Polo Norte. “Podemos detectar la cantidad de neutrinos muónicos, electrónicos y de tau y no hay nada que falte en la ecuación, así que la conclusión es que los resultados de IceCube debilitan la posibilidad de que este cuarto neutrino exista”, ha afirmado Jason Koskinen, investigador de la Universidad de Copenhague y coautor del estudio.

Este resultado es una muestra más de las posibilidades del telescopio de neutrinos antártico, una infraestructura que requirió una inversión de 271 millones de dólares. En noviembre de 2013, se publicó que durante los meses anteriores los detectores de IceCube habían atrapado 28 neutrinos procedentes de fuera del Sistema Solar. Entonces, los científicos anunciaron que la capacidad para detectar a aquellos mensajeros, capaces de viajar imperturbados por todo el espacio con información clave sobre la naturaleza del cosmos, como el hobbit que pudo entrar en Mordor sin ser detectado, abría una nueva era en la astronomía.