domingo, 17 de noviembre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Lo grande y lo pequeño, el saber y la ignorancia, El Universo y nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La gran Nebulosa de Orión
Cuando pienso en aquel pensamiento de Leibniz y miro la Nebulosa de Orión, puedo comprender ese Principio que en la Física llamamos causalidad:
“Todo estado presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro”.
Así, un día muy lejano ya en el pasado, una Supernova sembró el espacio interestelar con una Nebulosa que conocemos como Orión, en ella se han ido produciendo transiciones de fase como consecuencia del nacimiento de estrellas y mundos, y, la materia que en el pasado era simple, en el presente es más compleja y se está preparando para que en el futuro pueda llegar hasta ¡la vida! Ahí, en esa Nebulosa que arriba podemos contemplar, están todos los ingredientes de las estrellas, los mundos, la Vida y… ¡los pensamientos!
Los finales del siglo XX quizá sean recordados en la de la Ciencia como la época en la que la Física de partículas, el estudio de las estructuras más pequeñas de la Naturaleza (al menos hasta donde sabemos), unió sus fuerzas a la cosmología, el estudio del Universo como un todo. Juntas estas dos disciplinas esbozarían el esquema de la historia cósmica, investigando el pasado de las estructuras naturales en un çambito de escala enorme, desde los núcleos de los átomos hasta los cúmulos de galaxias.
La evolución de Darwin comienza en el inmenso Cosmos, donde las estrellas fabrican los materiales de la Vida.
El Hubble nos llevó hasta los confines del Universo profundo para ver viejas  galaxias de 13.000 millones de años de edad, y, cercanas al del Universo primitivo, cuando aún no existían estrellas y, la materia, se estaba formando.
Como decimos, la física y la cosmología hicieron un matrimonio de conveniencia y apresurado, se juntaron dos disciplinas muy diferentes. Los cosmólogos son solitarios y mantienen sus miradas fijas en ese horizonte lenano y profundo de los cúmulos de galaxias situados en el espacio-tiempo profundo y, acumulan, amorosamente sus de hilillos de antigua luz estelar que le traen mensajes y les cuentan la historia del universo.
Los físicos de partículas, en contraste con ellos, son relativamente gregarios -tienen que serlo, pues ni siquiera un Einstein sabe suficientemente de física como para hacerlo todo el sólo- y físicos: son por tradición transmitida estudiosos del aquí y ahora, inclinados a curvar cosas, volar cosas y desmontar cosas. Los físicos trabajan dura y rápidamente, obsesionados por la leyenda de que es improbable que tengan muchas ideas nuevas útiles después de cumplir los cuarenta, mientras que los cosmólogos son más a menudo jugadores de finales, adeptos a las visiones de vasto alcance, de quienes cabe esperar que realicen investigaciones productivas cuando sus cabellos blanquean por la edad. Los físicos son los zorros  que saben muchas cosas, los cosmólogos son más afines a los erizos, que saben una sola .
Claro que, como nos decía Marco Aurelio:
“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin: pues todas las cosas son de la misma clase y la misma forma.”

Leyendo ese pensamiento, me digo yo: sólo el paso del tiempo las transforma para finalmente, hacerlas desaparecer para que, de inmediato, puedan surgir otras nuevas que, en realidad, serán las mismas cosas que ya fueron.

 

 

 

                          Lo que arriba vemos, un día fue como nuestro Sol

 

A finales de los años setenta, los físicos de partículas se aventuraron a acudir a seminarios de cosmología a estudiar las galaxias y los quásars, mientras que los cosmólogos alquilaron del CERN y el Fermilab para trabajar en física de altas energías en instalaciones subterráneas desde donde se veína las estrellas. Algún famoso físico de aquellos tiempos dijo: “La física de partículas elementales y el estudio del universo primitivo, las dos ramas fundamentales de la ciencia de la naturaleza, se han fundido esencialmente”.
Son muchas las disciplinas científicas que hoy día, se están uniendo en la de objetivos comunes. Se investiga de manera conjunta y cada uno de esos apartados científicos, finalmente aunan los resultados para llegar a un todo que, nos mostrará la verdadera naturaleza del Universo, la materia que contiene y…¿por qué no? también de la vida misma.
El de encuentro entre físicos y cosmólogos fue el Big Bang. los físicos identificaron simetrías en la naturaleza que hoy están rotas pero que estuvieron intactas en un entorno de altas energías. Los cosmólogos informaron que el universo estuvo antaño en tal estado de alta energía, durante las etapas iniciales del big bang. Unidas ambas cosas, aparece el de un universo perfectamente simétrico cuyas simetrías se quebraron a medida que se expandió y se enfrió, creando las partículas de materia y energía que encontramos hoy a nuestro alrededor y asignándoles las pruebas de su genealogía

Claro que, si no existieran simetrías, en la Tierra habría días de 24 horas y otros de cinco minutos; viviríamos en un planeta deforme en la gravedad proyectaría objetos en todas direcciones; habría explosiones inexplicables. Sería un mundo peligrosamente caprichoso.

 Por fortuna, hay simetrías, hay reglas que nos dicen que los planetas son esféricos, que los rostros son simétricos, que todos los días duran lo mismo, que hay frío y calor, día y noche, que hay positivo y negativo, que todo en el universo se rige por el equilibrio que se consigue en la igualdad de fuerzas contrapuestas, y, de esa manera, se llega a la simetría que nos rodea y podemos contemplar por todas partes. Sin embargo, nuestro Universo es el de simetrías rotas.

Tres Físicos recibieron el Nobel por las “simetrías rotas de la Naturaleza” Dos japoneses y un Yanqui (bueno, Estadounidense) ganaron el Premio Nobel de Física del 2008 por cosas que ayudan a explicar el comportamiento de las partículas más pequeñas de materia.

Makoto Kobayashi, Toshihide Masukaway el japonés nacido estadounidense, Yoichiro Nambu

En física, la idea de simetría refiere a un tipo de igualdad o equivalencia en una situación. En el nivel subatómico, por ejemplo, no deberías poder decir si estás viendo desplegados directamente en un espejo, o si una película de esos eventos está corriendo adelante o atrás. Y las partículas deberían comportarse justo como sus alter egos, llamadas antipartículas.

Si cualquiera de estas reglas es violada, la simetría se rompe.

Una gran simetría rota surgió inmediatamente después del Big Bang,  cuando sólo una infinitesimal fracción más de materia que antimateria fué creada. Debido a que estos dos tipos de partículas se aniquilan entre sí al encontrarse, ese exceso de materia fue de sembrar el Universo. En el suceso, sucedió la rotura de la simetría de la “fuerza única” que contenía todos los mecanismos y leyes de aquel primer universo.

El universo primitivo, en una espectacular imagen en 3D

                        Nadie pudo estar allí para tomar una instantánea de aquel Universo primitivo

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para y formar protones y neutrones los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.  Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

El Universo está lleno de información que debemos buscar para tratar de entender qué mensajes nos envía, lo que nos quiere decir. Sabemos que el Universo es todo lo que existe desde la materia, las fuerzas que con ella interaccionan y el Espacio y el Tiempo pero, seguimos preguntándonos ¿qué hacemos nosotros aquí?

Spitzer revela la existencia de los fulerenos en el espacio por primera vez

La materia evolucionada llegó hasta nosotros valiéndose del Carbomo, ese elemento esencial para la vida que conocemos

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados.  Avanza creando en el termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de  una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Puesto que el peso promedio de los protones en los de fisión, como el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante E = mc2. Esta es la fuente de energía que subyace en la bomba atómica.

    ¿Qué sabemos de la Energía ?  ¿La sabemos utilizar?

Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie , se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la de la vida de las estrellas, generalmente, no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución.

http://1.bp.blogspot.com/_hSuCohawC_Q/S_bNuIosk2I/AAAAAAAAAAk/SuxTbAI96VY/s1600/ciclo+de+vida+de+las+estrellas.jpg

         En cualquier Nebulosa podemos cúmulos de estrellas

Cuando mentalmente me sumerjo en las profundidades inmensas del universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos en realidad con relación al universo. Como una colonia de bacterias que habitan en una , allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno. Y, sin embargo, por otra parte, al pensar en la Mente de la que somos poseedores, me paso a otro pensamiento que es, totalmente opuesto y me dice que, algo más que simples seres vivientes sí que somos. El simple hecho de ser conscientes del Universo que nos da cobijo, es ya un síntoma de una más elevada categoría.

Igualmente, nosotros nos creemos importantes de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados. Podemos decir que hemos dado los primeros pasos para dar el salto hacia otros mundos, pero aún nos queda un largo recorrido por delante. Uno de los principales problemas con los que tenemos que luchar, es el hambre en el mundo, la igualdad de los pueblos, y, seguidamente, tendremos que pensar en nuevas fuentes de energías que cubran las exigencias de una población creciente y exigente.

En todo este galimatías de conocimientos restringidos por una enorme ignorancia, sería poder saber lo que realmente son los fotones y los electrones, esas dos minúsculas partículas elementales de las que sospecho, que pueden encerrar las verdades del mundo, es decir, los secretos más profundos de la naturaleza. (137 que enlace con e, h, y c, donde pueden estar escondidas las a lo que no sabemos: ahí está la esencia de la relatividad, también nos habla de cuanto de acción de Planck y, por si fuera poco, el electromagnetismo está representado pro el electrón.

¿Sabremos alguna vez? Hilbert, en su tumba, tiene grabado que sí, en su epitafio nos dice: Tenemos que , ¡sabremos!

Me gustaría que tal predicción fuera cierta.

emilio silvera

Formación de los elementos en las Estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Formación de los elementos en las estrellasResultado de imagen de Formación de los elementos en las estrellasResultado de imagen de Formación de los elementos en las estrellasResultado de imagen de Formación de los elementos en las estrellasResultado de imagen de Formación de los elementos en las estrellas

Es importante saber la abundancia cósmica de elementos que se producen en las estrellas y los mecanismos mediante los cuales se obtienen en estrellas como el Sol que consiguen llegar hasta el Hierro y en estrellas masivas y explosiones supernovas que llegan hasta el Uranio.

Resultado de imagen de Efecto triple alfa

Aquí se escenifica el proceso Triple Alfa

Ya he escrito en otras ocasiones sobre el gran astrofísico Fred Hoyle , que tenía un dominio de la física nuclear no superado entre los astrónomos, hombre de espíritu independiente, que por pura energía intelectual se había abierto camino desde los grises valles textiles del norte de Inglaterra hasta llegar a ser un distinguido profesor de Cambridgue. Hoyle era individualista hasta el punto de la iconoclasia, y tam combativo como si hubiese ganado luchando su título de sir. Sus clases eran carismáticas, con acento de clase obrera que parecía ahondar sus credenciales eruditas acumuladas, y era igualmente eficaz con la palabra escrita; publicaba penetrante artículos especializados, fascinantes obras de divulgación ciantífica y animadas narraciones de ciencia-ficción en la que encontraba una puerta de escape para exponer ideas avanzadas que, científicamente, no estaban contrastadas.

Fred Hoyle

                           FRED HOYLE

Su burla era temible y sus críticas de la teoría del big bang hizo época por su mordacidad. Hoyle condenó la teoría por considerarla epistemológicamente estéril, ya que parecía poner una limitación temporal inviolable a la indagación científica: el big bang era una muralla de fuego, más allá de la cual la ciencia de la çepoca no sabía como investigar. Él no concebía y juzgó “sumamente objetable que las leyes de la física nos condujeran a una situación en la que se nos prohíbe calcular que ocurrió en cierto momento del tiermpo”. En aquel momento, no estaba falto de razón.

Pero no es ese el motivo de este trabajo, ya os decía antes que Hoyle tenía un dominio de la física nuclear nunca superado entre los astrónomos de su generación, había empezado a trabajar en la cuestión de las reacciones de la fusión estelar a mediado de los cuarenta. Pero había publicado poco, debido a una batalla continua con los “árbitros”, colegas anónimos que leían los artículos y los examinaban para establecer su exactitud, cuya hostilidad a las ideas más innovadoras de Hoyle hizo hizo que éste dejara de presentar sus trabajos a los periódicos. Hoyle tuvo que pagar un precio por su rebeldía, cuando, en 1951, mientras él, permanecía obstinadamente entre bastidores, Ernest Opik y Edwin Sepeter hallaron la síntesis en las estrellas de átomos desde el Berilio hasta el Carbono. Lamentando la oportunidad perdida, Hoyle rompió entonces su silencio y en un artículo de 1954 demostró como las estrellas gigantes rojas podían corvertir Carbono en Oxígeno 16.

Se encuentran elementos esenciales para la vida alrededor de una estrella joven. Usando el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array), un grupo de astrónomos detectó moléculas de azúcar presentes en el gas que rodea a una estrella joven, similar al sol. Esta es la primera vez que se ha descubierto azúcar en el espacio alrededor de una estrella de estas características. Tal hallazgo demuestra que los elementos esenciales para la vida se encuentran en el momento y lugar adecuados para poder existir en los planetas que se forman alrededor de la estrella.

          En las distintas secuencias presentes en las estrrellas… dintintos elementos

Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que existen son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Via Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el big bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plamo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia éscribió Hoyle, Fwler y los Burbidge_…está oculta en la distribución de la abundancia de elementos”

                               En el Big Bang: Hidrógeno, Helio, Litio.

En las estrellas de la serie principal: Carbono, Nitrógeno, Oxígeno.

En las estrellas moribundas: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.

Como habéis podido comprobar, nada sucede por que sí, todo tiene una explicación satisfactoria de lo que, algunas veces, decimos que son misterios escondidos de la Naturaleza y, sin embargo, simplemente se trata de que, nuestra ignorancia, no nos deja llegar a esos niveles del saber que son necesarios para poder explicar algunos fenómenos naturales que, exigen años de estudios, observaciones, experimentos y, también, mucha imaginación.

La abundancia, distribución y comportamiento de los elementos químicos en el cosmos es uno de los tópicos clásicos de la astrofísica y la cosmoquímica. En geoquímica es también importante realizar este estudio ya que:

Imagen relacionadaImagen relacionadaImagen relacionadaImagen relacionada

- Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.

- Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.

- Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.

- Las distintas capas de la Tierra presentan abundancias diferentes de elementos. El conocer la abundancia cósmica nos permite tener un punto de referencia común. Así, sabiendo cuales son las concentraciones normales de los elementos en el cosmos las diferencias con las abundancia en la Tierra nos pueden proporcionar hipótesis de los procesos geoquímicos que actuaron sobre la Tierra originando migraciones y acumulaciones de los distintos elementos, que modificaron sus proporciones y abundancias respecto al Cosmos.

La tabla periódica de los elementos es un arreglo sumamente ingenioso que permite presentar de manera lógica y estructurada las más simples sustancias de las que se compone todo: absolutamente todo lo que conocemos. Todos los elementos que conocemos, e incluso con lo que todavía no nos hemos encontrado, tienen un lugar preciso en ella, cuya posición nos permite conocer muchas de sus características. Ese grupo de casi cien ingredientes permite crear cualquier cosa. Pero no siempre fue así.

Resultado de imagen de Gran Nebulosa de OriónResultado de imagen de Gran Nebulosa de Orión

           Me gusta la Gran Nebulosa de Orión. Hay ahí tantas cosas, nos cuenta historias que…

 

  FUENTES DE DATOS DE ABUNDANCIAS CÓSMICAS DE LOS ELEMENTOS

Resultado de imagen de ABUNDANCIAS CÓSMICAS DE LOS ELEMENTOS

Estos datos deben obtenerse a partir del estudio de la materia cósmica. La materia cósmica comprende:

Gas interestelar, de muy baja densidad (10-24 g/cm3) y Nebulosas gaseosas o nubes de gas interestelar y polvo. Las nebulosas gaseosas se producen cuando una porción del medio interestelar está sujeta a radiación por una estrella brillante y muy caliente, hasta tal punto se ioniza que se vuelve fluorescente y emite un espectro de línea brillante (que se estudian por métodos espectroscopios). Por ejemplo las nebulosas de “Orión” y “Trifidas”. Las ventajas de estas nebulosas difusas para el estudio de las abundancias son:

Resultado de imagen de Nebulosa TrífidaResultado de imagen de Nebulosa Trífida

‑ Su uniformidad de composición.

‑ El que todas sus partes sean accesibles a la observación, al contrario de lo que ocurre en las estrellas.

También tiene desventajas:

‑ Solo se observan las líneas de los elementos más abundantes.

‑ Cada elemento se observa solo en uno o pocos estadios de ionización aunque puede existir en muchos.

‑ La mayoría de las nebulosas exhiben una estructura filamentosa o estratiforme  es decir que ni la D ni la T son uniformes de un punto a otro. A partir del medio interestelar (gas interestelar y nébulas gaseosas) se están formando continuamente nuevas estrellas.

 

Resultado de imagen de Las Nebulosas como criadero de estrellas

                         Las estrellas se forman a partir del gas y el polvo de las Nebulosas

En las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: Hidrógeno, Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos  simples en el big bang y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.

El Sol como gigante roja

          El Sol, dentro de 5.000 millones de años, será una Gigante roja primero y una enana blanca después

Hoyle en sus investigaciones de los elementos en las estrellas se encontró con el obstáculo insuperable del hierro. El hierro es el más estable de todos los elementos; fusionar núcleos de hierro para formar nucleos de un elemento más pesado consume energía en vez de liberarla; ¿cómo,  pues, podían las estrellas efectuar la fusión del hierro y seguir brillando? Hoyle pensó que las supernovas podían realizar la tarea, que el extraordinario calor de una estrella en explosión podía servir para forjar los elementos más pesados que el hierro, si el de una estrella ordinaria no podía. Pero no lo pudo probar.

Luego, en 1956, el tema de la producción estelar de elementos recibió nuevo ímpetu cuando el astrónomo norteamericano Paul Merril identificó las reveladoras líneas del Tecnecio 99 en los espectros de las estrellas S. El Tecnecio 99 es más pesado que el hierro. También es un elemento inestable, con una vida media de sólo 200.000 años. Si los átomos de Tecnecio que Merril detectó se hubiesen originado hace miles de millones de años en el big bang, se habrían desintegrado desde entonces y quedarían hoy muy pocos de ellos en las estrellas S o en otras cualesquiera. Sin embargo, allí estaban. Evidentemente, las estrellas sabían como construir elementos más allá del hierro, aunque los astrofísicos no lo supiesen.

                                         Estrella muy evolucionada que se transforma en otra cosa

Las estrellas de tecnecio son estrellas cuyo espectro revela la presencia del elemento tecnecio. Las primeras estrellas de este tipo fueron descubiertas en 1952, proporcionando la primera prueba directa de la nucleosíntesis estelar, es decir, la fabricación de elementos más pesados a partir de otros más ligeros en el interior de las estrellas. Como los isótopos más estables de tecnecio tienen una vida media de sólo un millón de años, la única explicación para la presencia de este elemento en el interior de las estrellas es que haya sido creado en un pasado relativamente reciente. Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.

Imagen relacionadaImagen relacionadaResultado de imagen de Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.Resultado de imagen de estrellas tipo m

Estimulado por el descubrimiento de Merril, Hoyle reanudó sus investigaciones sobre la nucleosíntesis estelar. Era una tarea que se tomó muy en serio. De niño, mientras se ocultaba en lo alto de una muralla de piedra jugando al escondite, miró hacia lo alto, a las estrellas, y resolvió descubridor qué eran, y el astrofísico adulto nunca olvidó su compromiso juvenil. Cuando visitó el California Institute Of Technology, Hoyle estuvo en compañía de Willy Fowler, un miembro residente de la facultad con un conocimiento enciclopédico de la física nuclear, y Geoffrey y Margaret Burbidge, un talentoso equipo de marido y mujer que, como Hoyle, eran escépticos ingleses en la relativo al big bang.

Hubo un cambio cuando Geoffrey Burbidge, examinando datos a los que recientemente se había eximido de las normas de seguridad de una prueba atómica en el atolón Bikini, observó que la vida media de uno de los elementos radiactivos producidos por la explosión, el californio 254, era de 55 días. Esto sonó familiar: 55 días era justamente el período que tardó en consumirse una supernova que estaba estudiando Walter Baade. El californio es uno de los elementos más pesados; si fuese creado en el intenso calor de estrellas en explosión, entonces, seguramente los elementos situados entre el hierro y el californio -que comprenden, a fin de cuentas, la mayoría de la Tabla Periódica- también podrían formarse allí. Pero ¿cómo?.

                                                 Nucleosíntesis estelar

Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio.

Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.

Resultado de imagen de El peso de los diversos átomos

Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caído en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.

Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe.

¿Apreciáis la maravilla?

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas. Esa era la meta de Hoyle, llegar a comprender el proceso y, a poder demostrarlo.

“El problema de la síntesis de elementos -escribieron- está estrechamente ligado al problema de la evolución estelar.” La curva de abundancia cósmica de elementos que mostraba las cantidades relativas de las diversas clases de átomos en el universo a gran escala. Pone ciertos límites a la teoría de cómo se formaron los elementos, y, en ella aparecen por orden creciente:

Resultado de imagen de gráfico de la abundancia de elementos en el blog de emilio silvera vázquez

En estrellas como el Sol, el proceso se frena en el Huerro

Como reseñamos antes la lista sería Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que aparecen en los gráficos de los estudios realizados son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Vía Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el big bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plomo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia escribió Hoyle, Fwler y los Burbidge_…está oculta en la distribución de la abundancia de elementos”

File:Triple-Alpha Process.png

         En la imagen de arriba se refleja el proceso Triple Alpha descubierto por Hoyle:

Amigos míos, son las 5,53 h., me siento algo cansado de teclear y me parece que con los datos aquí expuestos podéis tener una idea bastante buena de la formación de elementos en el cosmos y de cómo las estrellas son las máquinas creadoras de la materia cada vez más compleja y, el Universo, nos muestra de qué mecanismos se vale para poder traer elementos que más tarde formarán parte de los planetas, de los objetos en ellos presentes y, de la Vida.

emilio silvera

El Universo y las cosas que contiene

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica, General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡EL UNIVERSO! Así hemos denominado a este inmenso lugar en el que somos una ínfima brizna, menos que nada, comparado con la inmensidad del lugar que lo conforma todo.

 

 

Todo lo que existe, cúmulos de estrellas, inmensos cúmulos de galaxias, sistemas planetarios y Nebulosas, agujeros negros, estrellas de neutrones… Todo lo que existe, incluso la Vida, está aquí