martes, 25 de junio del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Ciencia es bella

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso, Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 EN PORTADA UN REPORTAJE DE EL PAÍS

Ritmo y simetría son conceptos comunes a ciencia y arte. El Nobel Frank Wilczek es el último en traspasar en su nueva obra la frontera entre ambas

 

 

Resultado de imagen de On Growth and Form (en español en Akal, 2011) del escocés D’Arcy Thomson

Fotografías de la serie de los años veinte ‘Formas artísticas de la naturaleza’, de Karl Blossfeldt.

¿Es el mundo una obra de arte? Tal es la cuestión que el autor se propone indagar desde el título y el prólogo de este ensayo. La idea tiene su dificultad porque en principio induce a pensar en el gran artista y en sus intenciones a la hora de crear el mundo. Sin embargo, el autor no se lanza directamente en esta dirección, sino a todo un conjunto de cuestiones que se descuelgan de la pregunta inicial. Por un lado, se trata de comparar el mundo de las ideas en las que se mueve la mente del artista cuando crea y el mundo de los cuerpos físicos de la realidad en la que está inmerso. Por otro lado, se trata de enfrentar la belleza que vive el artista cuando hace arte con la belleza que vive el científico cuando hace ciencia. Aplicamos el concepto de belleza tanto a un atardecer, que es un paisaje en condiciones efímeras, como al sonido de una música, como a un pedazo de conocimiento concebido por una mente humana. En la propuesta de Wilczek destaca un concepto sobre todos los demás: la simetría. Simetría exhiben los cristales, las plantas y los animales, simetría hay también en sus maneras de cambiar, hay simetría en las obras de arte y, sobre todo, hay simetría también en las teorías científicas. La creación científica y la creación artística ofrecen una buena pista para empezar.

 

Fotografías de la serie de los años veinte 'Formas artísticas de la naturaleza', de Karl Blossfeldt.

 

 

Se equivocan los que aseguran que ciencia y arte son la misma cosa y se equivocan los que dicen que arte y ciencia nada tienen que ver. Sin embargo, enfrentar estas dos grandes formas de conocimiento interesa tanto por lo que comparten como por lo que difieren. La intersección no puede ser más fértil. La grandeza de la ciencia está en que un científico puede llegar a comprender sin necesidad de intuir y la grandeza del artista en que puede llegar a intuir sin necesidad de comprender. Un físico comprende el comportamiento cuántico de una partícula porque lo anticipa usando la ecuación de Schrödinger, pero no lo intuye porque sus sentidos no han experimentado nunca nada similar. No hay intuición cuántica porque no hay observadores cuánticos. En cambio, un artista puede distorsionar la realidad y fabricarse una metáfora para intuir algo que no tiene por qué comprender y que ni siquiera tiene por qué existir en la naturaleza. Oscar Reutersvärd, por ejemplo, fue un artista gráfico que inventó objetos en tres dimensiones que se pueden dibujar, pero que desafían la intuición porque no se pueden construir. Es la idea de los objetos imposibles que cautivó al gran físico y matemático Roger Penrose y al que tanto debe el celebérrimo Maurits Cornelius Escher, el artista que finalmente ha quedado en la historia como padre de la idea.

 

Trazos, notas, teoremas

 

Resultado de imagen de On Growth and Form (en español en Akal, 2011) del escocés D’Arcy Thomson

 

 

Se enganchó tanto a esta cuestión que se pasó toda la vida reescribiendo el mismo libro. Se trata de On Growth and Form (en español en Akal, 2011) del escocés D’Arcy Thomson (1860-1948). Apareció por primera vez en 1917 con 793 páginas, pero la última edición de 1942 alcanza las 1116 páginas. Aún se puede conseguir en casi todos los idiomas y aún es tema de discusión tanto por sus aciertos como por sus errores. Sus críticos le reprochan que no acabara de comprender el mecanismo de la selección natural, aunque todo el mundo reconoce su tremenda influencia en otros autores. Yo me cuento entre los seducidos y mi réplica fue el ensayo La rebelión de las formas (Tusquets, 2004). Una obra maestra que conmovió a artistas y científicos es  Gödel, Escher, Bach (Tusquets, 1987) de Douglas Hofstadter, profesor de ciencias cognitivas e hijo de un premio Nobel de física, donde se relacionan las obras del matemático autor del teorema más bello de la historia, del artista que ilustró el mundo de los objetos imposibles y del  compositor barroco que revolucionó la música. Un ensayo  más moderno es Truth and Beauty: Science and the Quest of Order (Oxford University Press, 2011) de David Orrell.

 

Resultado de imagen de El mundo como obra de arte, del premio Nobel de Física Frank Wilczek

 

El mundo como obra de arte, del premio Nobel de Física Frank Wilczek, se sumerge en estas fértiles tierras fronterizas. ¿Qué es la belleza? ¿Qué es la belleza natural de los objetos reales y qué es la belleza cultural del conocimiento humano? ¿En qué punto se dan la mano ambas concepciones? El número áureo es una proporción conocida desde la antigüedad como un canon de belleza que se deduce por un razonamiento puramente mental. Basta imponer la armonía y el equilibrio que resulta más agradable y natural a nuestros sentidos. Por ello no es raro encontrarlo en todo tipo de estructuras de diseño humano, desde la arquitectura a los muebles, pasando por un simple encendedor. Pero ¿cómo demonios se explica que ese mismo número aparezca también en las formas y estructuras vivas? ¿Será como decía Oscar Wilde que la naturaleza copia al arte? La cuestión es de una profundidad sin fondo y no se limita a los objetos naturales o culturales. La belleza no está solo en los resultados visibles de las teorías científicas y matemáticas. La belleza está también en el origen, en las hipótesis de trabajo y en la concepción del mundo que han estimulado el pensamiento de los grandes creadores científicos.

 

Resultado de imagen de La belleza de los objetos naturalesResultado de imagen de La belleza de una rosa

 

Wilczek revisa las formas más bellas del pensamiento científico y de los objetos naturales para llegar a varias conclusiones no siempre explícitas en su texto. Aún antes de acordar una definición de belleza, digamos que la belleza es un concepto frecuente en el arte, propio del arte, pero que no es necesario para hacer arte. Y aún antes de acordar una definición de lo que es comprensible, digamos que la inteligibilidad es un concepto omnipresente y propio de la ciencia, pero que no es suficiente para hacer ciencia. Sin embargo, en todos los casos elegidos por Wilczek se filtra una relación esencial entre lo que es bello y lo que es comprensible. La forma más simple de belleza es la iteración en el espacio y en el tiempo, esto es, la armonía y el ritmo. Y la forma más inmediata de lograr esta belleza es la simetría. Se diría que la belleza es una especie de no cambio dentro del cambio. ¿Qué es una ley de la naturaleza? Pues algo muy parecido: es el cambio que menos cambia. Todos los movimientos de los planetas son diferentes, pero todos obedecen a las mismas ecuaciones de las mismas leyes. Los físicos buscan siempre principios de conservación (conservación de la masa, de la carga, de la energía, de la cantidad de movimiento, del momento angular…) porque con ellos se pueden anticipar los cambios que experimenta un sistema. Wilczek no puede disimular su emoción en el capítulo que dedica a Emmy Noether, la gran matemática que tanto admiró Einstein, cuyos teoremas establecen la relación entre los principios de conservación por un lado y las propiedades de simetría del espacio y del tiempo por otro. A Einstein se le debieron saltar las lágrimas con los trabajos de Noether (lo sé porque a mí me ocurrió lo mismo cuando los vi por primera vez en la pizarra de la facultad). Después de todo, tanto la teoría especial como la teoría general de la relatividad se levantan sobre el mismo pilar: el mundo puede ser complejo, misterioso, extraño…, ¡pero no feo! Es un principio estético como también queda claro en el capítulo que este ensayo dedica a la relatividad, sin duda la más grande y más bella teoría jamás concebida por una sola mente.

 

Fotografías de la serie de los años veinte 'Formas artísticas de la naturaleza', de Karl Blossfeldt.

 

El caso de la física cuántica, que el libro también se entretiene en saborear a través de los trabajos seminales de Einstein y Bohr, tiene un valor añadido: invita a comprender los fundamentos de la física cuántica a través de intuiciones musicales. No alcanza quizá raíces tan profundas en la fusión de los conceptos de belleza e inteligibilidad, pero sí ofrece un camino que es bastante más que una metáfora. Comprender es buscar lo que hay de común entre cosas aparentemente diferentes. Los objetos fractales, por ejemplo, ofrecen un lenguaje común para dar cuenta de la autosimilitud y la irregularidad, de nuevo el no cambio dentro del cambio, lo que afecta tanto a los hexágonos de un panal de abejas, de la estructura de un material sintético como el grafeno o a la estructura de un copo de nieve.

 

AetherWind.svg

 

El propósito de Michelson y Morley era medir la velocidad relativa a la que se mueve la Tierra con respecto al éter. Cada año, la Tierra recorre una distancia enorme en su órbita alrededor del Sol, a una velocidad de 30 km/s (más de 100.000 km/h). Se creía que la dirección del “viento del éter” con respecto a la posición de nuestra estrella variaría al medirse desde la Tierra, y así podría ser detectado. Por esta razón, y para evitar los efectos que podría provocar el Sol en el “viento” al moverse por el espacio, el experimento debería llevarse a cabo en varios momentos del año.

El libro recorre las ideas más bellas y trascendentes de la física con Galileo, Newton, Maxwell o Einstein, pero no esquiva las ideas bellas que han resultado ser falsas. La concepción geométrica de los átomos de Platón, el sistema solar de Kepler, el éter que buscaban Michel­son y Morley, etcétera. Queda claro: aunque la belleza predispone a comprender, hay que reconocer que la belleza no es una garantía de verdad. Sin embargo, Wilczek consigue seducir al lector tácita y subliminalmente en favor de una respuesta a la pregunta inicial del libro: ¿es el mundo una obra de arte? Y ésta no es otra que un sonoro y apasionado ¡sí!

 

La teoría especial y la general de la relatividad se levantan sobre el mismo pilar: el mundo puede ser complejo, pero no feo

 

Wilczek es un físico teórico de amplísima cultura dentro y fuera de la física. Recibió el Premio Nobel de Física en 2004 por un tema aparentemente tan contradictorio como la libertad asintótica en la teoría de las interacciones fuertes, esto es, cuando dos quarks se acercan mucho entre ellos su fuerza de interacción se debilita tanto que se convierten en partículas libres. El libro equivale a un paseo a través de la historia de la física de la mano de alguien que comprende la realidad desde una concepción estética global del mundo…, como todos los grandes científicos.

 

Emilio Silvera

¿Habrá un Universo en la sombra?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Algunos dicen que un resultado asombroso de la teoría de supercuerdas es que pueden dar lugar a otro tipo más de materia oscura. Y,  me pregunto yo, ¿aún no hemos encontrado la primera y ya estamos hablando de una segunda? Hay una versiónde la teoría de cuerdas que es muy llamativa desde el punto de vista estético, las ecuaciones parecen sugerir que en el Tiempo de Planck el Universo se desgajó en dos partes separadas.

Resultado de imagen de El inmenso océano

El simple hecho de que no podamos verlos, no quiere decir que no existan. Miramos la superficie pero, ¿que puede haber debajo de ella? Delante de nuestros ojos, el inmenso océano de brillo rutilante que recibe los rayos del Sol, el rumor de las olas que vienen hacia la playa, a los lejos, el horizonte siempre inalcanzable… Pero ¿Qué hay debajo de la superficie? El que no podamos contemplarlo no quiere decir que la multiplicidad de formas de vida no estén ahí, en sus habitats ocultos para nosotros.

De la misma manera, existen muchas cosas en el Universo con por una u otra razón, se ocultan a nuestra percepción, y, sin embargo, ahí están.

 

Resultado de imagen de Nuestros sentidos son limitados

 

Además de los cinco sentidos clásicos que todos conocemos, existen otros sentidos que, sin estar a la vista, nos acompañan y nos sirven para poder ahondar en el conocimiento de las cosas: Los “ojos de la Mente”, por medio de la intuición, el presentimiento, una idea fugaz y esclarecedora… ¡Sí, contamos con muchas armas para poder comprender el entorno que nos rodea y, mucho más allá de lo que la vista pueda alcanzar.

 

Resultado de imagen de Universo en la sombra

 

Siguiendo con lo que antes decía, está nuestro mundo normal con su complemento entero de partículas y compañeras supersimétricas, y hay, además, un mundo de sombra. La materia en ese mundo de sombra tiene un parecido con la del nuestro en que también tiene sus partículas y “spartículas”. Dentro de cada mundo, las partículas interaccionan unas con otras a través de un complemento entero de cuatro fuerzas. Sin embargo, las partículas de un mundo pueden interaccionar con las del otro mundo sólo a través de la fuerzqa de gravedad. Un electrón y un selectrón de sombra pueden estar cerca el uno del otro y no sentir una fuerza eléctrica, aunque cada uno de ellos lleve consigo su propia versión de carga eléctrica. La única fuerza entre los dos sería la fuerza relativamente débil de la Gravedad.

 

 

Esta imagen de arriba vista una y mil veces, nos quiere transportar a esa materia en la sombra que es parte de ese universo que no podemos ver, y, sin embargo, por mucho que se haya podido hablar de todo esto, lo único cierto es que nada se sabe y a pesar de ello, se hacen afirmaciones categóricas sobre lo que “sólo es una posibilidad” que se ha conjeturado a partir de abservaciones.

La idea de un universo en la sombra nos proporciona una manera sencilla de pensar en la “materia oscura”. El Universo dividido en materia y en materia en la sombra situada en el Tiempo de Planck, y cada una evolucionó de acuerdo con sus leyes propias que le dieron también, sus características propiedades: mientras que la una era luminosa y emitía radiaciones, la otra no lo era y, como consecuencia, no se dejaba ver.

 

No, esto no es la materia en la sombra de la que estamos tratando.

 

Existen aspirantes a ser materia en la sombra y, otro “caballero oscuro” lo tenemos en el Axión que es uno de los VIMPs  favoritos como el fotino y otros compañeros, una pléyade de nuevas partículas (también, ¿cómo no?) hipotéticas  que llegaron por consideraciones de simetría. Sin embargo, a diferencia de las partículas, sale de las Grandes Teorías Unificadas, que describen el universo en el segundo 10-35, más que de las teorías totalmente unificadas que operan en el Tiempo de Planck. La “materia oscura” se ha convertido en un caballo desbocado que nadie sabe hacia donde va, ni dónde pueda estar, ni de qué está formada, ni como se pudo originar… Sigue una larga lista de preguntas y conjeturas que pretenden ser las respuestas.

Neutrinos, fotones, quarks, leptones, hadrones: bariones y mesones, todos, en definitiva son lo mismo, distintos estados de la materia que conforman unos y otros en determinadas ocasiones, y, en cada momento, ocupan el lugar que les destina en Universo adoptando la forma que en ese preciso instante les corresponde. Claro que, todos estos, son objetos de nuestro Universo luminoso, el otro, el Universo en la Sombra, ni sabemos si puede estar realmente ahí.

Durante mucho tiempo, los físicos han sabido que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la partícula hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reserva del Tiempo (pasar la partícula al revés).

El nombre de simetría especular proviene de la imagen obtenida al reflejarse la luz en una superficie plana. Existen numerosos ejemplos de la simetría especular tanto en la naturaleza como en objetos artificiales.

Gráfica de la ruptura de simetría espontánea de la función

La simetría CPT es un principio fundamental de invariancia o simetría de las leyes físicas que establece que bajo transformaciones simultáneas que involucren la inversión de la carga eléctrica, la paridad y el sentido del tiempo las ecuaciones de evolución temporal de un proceso físico y las de un proceso análogo en que:

  1. Conjugación de carga (C).Todas las partículas se sustituyen por sus correspondientes antipartículas.
  2. Inversión de paridad (P). Se invierte la paridad espacial de proceso (esto tiene que ver con el intercambio de derecha e izquierda, y con el cambio en el espin de las partículas).
  3. Inversión temporal (T). Se invierte el sentido del tiempo.

son invariantes y vienen descritos por las mismas ecuaciones y arrojan los mismos resultados. Este último resultado se conoce como teorema CPT que afirma que toda la teoría cuántica de campos local que presente covariancia de Lorentz y venga definida por un Hamiltoniano hermítico, es invariante bajo una transformación CPT.

 

Un alto en el camino para una explicación: Dado que la antimateria tiene la misma masa que la materia, es decir son de la misma magnitud y signo (la definición de masa es positiva siempre), el efecto gravitacional de la antimateria no debe ser distinto de la materia, es decir, siempre sera un efecto atractivo. Pero, ¿acaso no importa la equivalencia establecida de antipartícula viajando al futuro = partícula viajando al pasado?

 

 

Estas medidas de alta precisión de la estructura hiperfina del antihidrógeno permiten verificar la simetría CPT con gran sensibilidad.

La respuesta es sí. Dicha equivalencia proviene de algo llamado simetría CPT (Charge-Parity-Time), y nos dice que la equivalencia entre las partículas y antipartículas no solo corresponde a realizar una transformación sobre la carga, sino también sobre la paridad y el tiempo. La carga no afecta la gravedad, pero la paridad y el tiempo si la afectan. En otras palabras, al modificarse el tiempo (poner el tiempo al reves) y el espacio (la paridad es “girar” el espacio), estamos alterando el espacio-tiempo, y como la teoría general de la relatividad lo afirma, es la geometría de este el que determina la gravedad. Pero, a la larga, la geometría vendrá dada por la cantidad de materia que el universo pueda contener.

 

Reflexión especular

 

Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es este el caso. El mundo visto en un espejo se desvía un tanto del mundo visto directamente, y lo mismo sucede con el mundo visto cuando la partícula pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el universo en cada uno de esos casos se cancelan una a la otra cuando miramos las tres inversiones combinadas.

Aunque esto es verdad, también es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que procupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?

Los axiones se propusieron por primera vez a finales de la década de 1970 para resolver un misterio en la física de partículas conocido como el problema CP fuerte, aunque más recientemente se han propuesto como candidatos para la materia oscura, que es la misteriosa sustancia que forma casi un cuarto de la masa/energía del universo. Si existen, los axiones sería muy ligeros e interaccionarían muy débilmente con la materia – propiedades que hacen que sean difíciles de encontrar. De hecho, ningún experimento en la Tierra ha descubierto por ahora pruebas de los axiones.

Los cálculos de los cosmólogos muestran que en un universo en expansión como lo es el nuestro, sería de esperar que los Axiones (si realmente existen) formen una radiación de fondo parecida a la radiación de microondas de fondo de tres grados. Las irregularidades en este fondo de Axiones lo que pueden desempeñar el papel de la “materia oscura”.

¿Estamos perdidos y hablamos de fotinos,  squarks, etc. Estas partículas que son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados y que nos son bien conocidas. Se nombran en analogía a sus compaleras : el squars es el compañero supersimétrico del quark, el fotino del fotón, etxc. Las más ligeras de estas partículas ¿podrían ser la materia oscuira?. Si es así, cada partícula probablemente pesaría al menos cuarenta veces más que un protón.

Así que hablamos de “Materia en la Sombra” en algunas versiones de la Teoría de Supercuerdas en las que existen  universos de materia en   la Sombra que existen paralelos al nuestro. Los dos universos separados cuando la Gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nuestro mundo, sólo a tavés de la Gravedad y, algunos creen que son, las candidatas perfectas para ocupar el sitio de la “materia oscura”.

Algunos hasta se atreven a mostrarnos la distribución de WIMPs en la Galaxia

 

¿WIMPs en el Sol?

Hasta el momento, todas las partículas “raras” que hemos mencionado aquí, como posibles candidatas a ser “materia oscura”, son hipotéticas. No hay pruebas de que ninguna de ellas se vayan a encontrar, de hecho, en la Naturaleza. Sin embargo, sería poco serio no prestar alguna atención a la idea y a los argumentos que con ella van aparejados -un diminuto rayo de esperanza- viene a apoyar la existencia de WIMPs.

De hecho, la polémica es continuada y no dejan de salir noticias sobre estos extraños objetos:

 

 

Desde hace ya años se propuso la existencia de partículas débilmente interactuantes o WIMPs para explicar la presencia de una masa que no podemos ver en ciertos fenómenos astronómicos, como en la rotación de galaxias. El 83% de la masa del Universo podría estar constituido por materia oscura cuya naturaleza nos es desconocida. Se ha realizado un esfuerzo por parte de diversos grupos de investigación a lo largo de todo el mundo para poder detectar esas partículas, que, por definición, son muy difíciles de detectar.

 

 

Foto

Uno de los cristales empleados en CoGeNT. Fuente: CoGeNT Collaboration.

 

El experimento italiano DAMA/LIBRA ha venido detectando una modulación anual en la detección de unas partículas que podrían ser WIMPs durante los últimos tiempos. Sin embargo, otros grupos de investigación no lograban ver lo mismo. Ahora, el grupo de investigadores del experimento CoGeNT informa que están viendo una señal similar a la detectada por los italianos, por lo que se confirmarían sus resultados…”

Más de lo mismo, nadie se pone de acuerdo, unos dicen una cosa y los otros la contraria y, mientras tanto, “Científicos” bien situados, que ganan bastante dinero por asistir y hablar, nos van contando en charlas y siminarios, todas esas cuestiones que, sobre los WIMPs, las partículas supersimétricas, los Universos en Sombra, la Materia Oscura y, toda esa pléyade de fascinantes incongruencias, tanto les gusta oir al público en general.

Pues, siendo así (que lo es), sigamos suponiendo, conjeturando, intuyendo y teorizando pero, por favor, con cierto decoro.

Emilio Silvera

¡Cuántas maravillas! Y, nuestra Mente, entre ellas

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

DUALIDAD ONDA - PARTÍCULA EN LA LUZ JUAN PABLO OSPINA LÓPEZ COD ...

¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

¡La Luz! Esa maravilla conformada por fotones
LAS MEJORES IMÁGENES DE ASTRONOMÍA: IMÁGENES 1
        Radiantes estrellas nuevas que brillan con la luz de la “juventud” en el azul ultravioleta de fotones

                      Se puede bajar en PDF

No sería descabellado decir  que las simetrías que vemos a nuestro alrededor, desde un arco iris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría decadimensional original. Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia. Por ejemplo, la fuerza de Gravedad generada por la presencia de la materia, determina la geometría del espacio-tiempo.

Dado el enorme poder de sus simetrías, no es sorprendente que la teoría de supercuerdas sea radicalmente diferente de cualquier otro de física.  De hecho, fue descubierta casi por casualidad. Muchos físicos han comentado que si este accidente fortuito no hubiese ocurrido, entonces la teoría no se hubiese descubierto hasta bien entrado el siglo XXI. Esto es así porque supone una neta desviación de todas las ideas ensayadas en este siglo. No es una extensión natural de tendencias y teorías populares en este siglo que ha pasado; permanece aparte.

 

 

Viajes en el tiempo y otros fenómenos: la teoría de la relatividad - La  Soga | Revista Cultural

Por el contrario, la teoría de la relatividad general de Einstein tuvo una evolución normal y lógica. En primer lugar, su autor, postula el principio de equivalencia. Luego reformuló principio físico en las matemáticas de una teoría de campos de la gravitación basada en los campos de Faraday y en el tensor métrico de Riemann. Más tarde llegaron las “soluciones clásicas”, tales el agujero negro y el Big Bang. Finalmente, la última etapa es el intento actual de formular una teoría cuántica de la gravedad. Por lo tanto, la relatividad general siguió una progresión lógica, un principio físico a una teoría cuántica.

 

 

                        Geometría → teoría de campos → teoría clásica → teoría cuántica.

Contrariamente, la teoría de supercuerdas ha estado evolucionando hacia atrás su descubrimiento accidental en 1.968. Esta es la razón de que nos parezca extraña y poco familiar, estamos aún buscando un principio físico subyacente, la contrapartida del principio de equivalencia de Einstein.

La teoría nació casi por casualidad en 1.968 cuando dos jóvenes físicos teóricos, Gabriel Veneziano y Mahiko Suzuki, estaban hojeando independientemente libros de matemáticas. Figúrense ustedes que estaban buscando funciones matemáticas que describieran las interacciones de partículas fuertemente interactivas. Mientras estudiaban en el CERN, el Centro Europeo de Física Teórica en Ginebra, Suiza, tropezaron independientemente con la función beta de Euler, una función matemática desarrollada en el S. XIX por el matemático Leonhard Euler. Se quedaron sorprendidos al que la función beta de Euler ajustaba casi todas las propiedades requeridas para describir interacciones fuertes de partículas elementales.

 

File:Beta function on real plane.png

      Función beta. Representación de la función valores reales positivos de x e y.

Según he leído, durante un almuerzo en el Lawrence Berkeley Laboratory en California, con una espectacular vista del Sol brillando sobre el puerto de San Francisco, Suzuki le explicó a Michio Kaku mientras almorzaban la excitación de , prácticamente por casualidad, un resultado parcialmente importante. No se suponía que la física se pudiera hacer de ese modo casual.

Tras el descubrimiento, Suzuki, muy excitado, mostró el hallazgo a un físico veterano del CERN. Tras oír a Suzuki, el físico veterano no se impresionó. De hecho le dijo a Suzuki que otro físico joven (Veneziano) había descubierto la misma función unas semanas antes. Disuadió a Suzuki de publicar su resultado. Hoy, esta función beta se conoce con el de modelo Veneziano, que ha inspirado miles de artículos de investigación iniciando una importante escuela de física y actualmente pretende unificar todas las leyes de la física.

 

Uno de los fundadores de la 'teoría de cuerdas', en el IFICMahiko Suzuki | Physics

            Gabriele Veneziano es un físico italiano                       Mahiko Suzuki

En 1.970, el Modelo de Veneziano-Suzuki (que contenía un misterio), fue parcialmente explicado cuando Yoichiro Nambu, de la Universidad de Chicago, y Tetsuo Goto, de la Nihon University, descubrieron que una cuerda vibrante yace detrás de sus maravillosas propiedades. Así que, como la teoría de cuerdas fue descubierta atrás y por casualidad, los físicos aún no conocen el principio físico que subyace en la teoría de cuerdas vibrantes y sus maravillosas propiedades. El último paso en la evolución de la teoría de cuerdas (y el primer paso en la evolución de la relatividad general) aún está pendiente de que alguien sea capaz de darlo.

 

    Así, Witten dice:

“Los seres humanos en el planeta tierra nunca dispusieron del marco conceptual que les llevara a concebir la teoría de supercuerdas de manera intencionada, surgió por razones del azar, por un feliz accidente. Por sus propios méritos, los físicos c del siglo XX no deberían haber tenido el privilegio de estudiar esta teoría muy avanzada a su tiempo y a su conocimiento. No tenían (ni tenemos mismo) los conocimientos y los prerrequisitos necesarios para desarrollar dicha teoría, no tenemos los conceptos correctos y necesarios.”

 

El estado actual de la teoría M - La Ciencia de la Mula Francis

 

Actualmente, como ha quedado dicho en este mismo , Edwar Witten es el físico teórico que, al frente de un equipo de físicos de Princeton, lleva la bandera de la teoría de supercuerdas con aportaciones muy importantes en el desarrollo de la misma. De todas las maneras, aunque los resultados y avances son prometedores, el camino por andar es largo y la teoría de supercuerdas en su conjunto es un edificio con muchas puertas cerradas de las que no tenemos las llaves acceder a su interior y mirar lo que allí nos aguarda.

 

 

Ni con colección de llaves podremos abrir la puerta que nos lleve a la Teoría cuántica de la gravedad que, según dicen, subyace en la Teoría M, la más moderna versión de la cuerdas expuesta por E. Witten y que, según contaron los que estuvieron presentes en su presentación, Witten les introdujo en un “universo” fascinante de inmensa belleza que, sin embargo, no puede ser verificado por el experimento.

El problema está en que nadie es lo suficientemente inteligente para resolver la teoría de campos de cuerdas o cualquier otro enfoque no perturbativo de teoría. Se requieren técnicas que están actualmente más allá de nuestras capacidades. Para encontrar la solución deben ser empleadas técnicas no perturbativas, que son terriblemente difíciles. Puesto que el 99 por ciento de lo que conocemos sobre física de altas energías se basa en la teoría de perturbaciones, esto significa que estamos totalmente perdidos a la hora de encontrar la verdadera solución de la teoría.

 

10 dimensiones? La teoría de cuerdas dice que el universo puede tener mucho más que 4 dimensiones

            ¿Por qué diez dimensiones?

Uno de los secretos más profundos de la teoría de cuerdas, que aún no es bien comprendido, es por qué está definida sólo en diez, once y veintiséis dimensiones. Si calculamos cómo se rompen y se vuelven a juntar las cuerdas en el espacio N-dimensional, constantemente descubrimos que pululan términos absurdos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos indeseados aparecen multiplicados por (N-10). Por consiguiente, para hacer que desaparezcan estas anomalías, no tenemos otra elección cuántica que fijar N = 10. La teoría de cuerdas, de hecho, es la única teoría cuántica conocida que exige completamente que la dimensión del espacio-tiempo esté fijada en un único, el diez.

 

Serie de Ramanujan-Sato - Wikipedia, la enciclopedia libreLa bella teoria: La función modular de Ramanujan y la teoría de cuerdas

 

      La bella Teoría de las funciones Modulares de Ramanujan

Por desgracia, los teóricos de cuerdas están, por el momento, completamente perdidos explicar por qué se discriminan las diez dimensiones.  La respuesta está en las profundidades de las matemáticas, en un área denominada funciones modulares.

Al manipular los diagramas de lazos1 de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el 10 aparecen en los lugares más extraños. Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del este. Quizá si entendiéramos mejor el trabajo de este genio indio, comprenderíamos por qué vivimos en nuestro universo actual.

 

                   Qué es la teoría de cuerdas? – Ciencia de Sofá

                      Como nunca nadie ha visto las “cuerdas” cada cual la imagina a su manera

Cuando nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de , es imposible verificarla.

Materia on X: "En el día de la aproximación a pi (22/7), recordamos al genio Srinivasa Ramanujan, que "vio en sueños" esta fórmula https://t.co/36JbWZvFAH https://t.co/AOBfMyW79c" / X

 

Una serie particularmente importante ya que ha sido usada para obtener dos mil millones de cifras del número pi

El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.

Dispersas oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. extraña función contiene un término elevado a la potencia veinticuatro.

 

Ramanujan

                 La magia esconde una realidad

El 24 aparece repetidamente en la obra de Ramanujan. Este es un ejemplo de lo que las matemáticas llaman números mágicos, que aparecen continuamente donde menos se esperan por razones que nadie entiende.   Milagrosamente, la función de Ramanujan aparece también en la teoría de cuerdas. El número 24 que aparece en la función de Ramanujan es también el origen de las cancelaciones milagrosas que se dan en la teoría de cuerdas.  En la teoría de cuerdas, cada uno de los veinticuatro modos de la función de Ramanujan corresponde a una vibración física de la cuerda. Cuando quiera que la cuerda ejecuta sus movimientos complejos en el espacio-tiempo dividiéndose y recombinándose, deben satisfacerse un gran número de identidades matemáticas altamente perfeccionadas. Estas son precisamente las entidades matemáticas descubiertas por Ramanujan. Puesto que los físicos añaden dos dimensiones más cuando cuentan el número total de vibraciones que aparecen en una teoría relativista, ello significa que el espacio-tiempo debe tener 24 + 2 = 26 dimensiones espacio-temporales.

 

 

comprender este misterioso factor de dos (que añaden los físicos), consideramos un rayo de luz que tiene dos modos físicos de vibración. La luz polarizada puede vibrar, por ejemplo, o bien horizontal o bien verticalmente. Sin embargo, un campo de Maxwell relativista Aµ cuatro componentes, donde µ = 1, 2, 3, 4. Se nos permite sustraer dos de estas cuatro componentes utilizando la simetría gauge de las ecuaciones de Maxwell.  Puesto que 4 – 2 = 2, los cuatro campos de Maxwell originales se han reducido a dos. Análogamente, una cuerda relativista vibra en 26 dimensiones.  Sin embargo, dos de estos modos vibracionales pueden ser eliminados rompemos la simetría de la cuerda, quedándonos con 24 modos vibracionales que son las que aparecen en la función de Ramanujan.

f(a,b) = \sum_{n=-\infty}^\infty a^{n(n+1)/2} \; b^{n(n-1)/2}

“En matemática, la función theta de Ramanujan generaliza la forma de las funciones theta de Jacobi, a la vez que conserva sus propiedades generales. En particular, el producto triple de Jacobi se puede escribir elegantemente en términos de la función theta de Ramanujan. La función toma nombre de Srinivasa Ramanujan, y fue su última gran contribución a las matemáticas.”

 

¡La Ciencia! ¿Cómo podríamos definirla?

Como un revoltijo de hilos entrecruzados que son difíciles de seguir, así son las matemáticas de la teoría de cuerdas

Cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el 8. Por lo tanto, el número crítico para la supercuerda es 8+2=10. Este es el origen de la décima dimensión que exige la teoría. La cuerda vibra en diez dimensiones porque requiere estas funciones de Ramanujan generalizadas para permanecer auto consistente. Dicho de otra manera, los físicos no tienen la menor idea de por qué 10 y 26 dimensiones se seleccionan como dimensión de la cuerda. Es como si hubiera algún tipo de numerología profunda que se manifestara en estas funciones que nadie comprende. Son precisamente estos números mágicos que aparecen en las funciones modulares elípticas los que determinan que la dimensión del espacio-tiempo sea diez.

En el análisis final, el origen de la teoría decadimensional es tan misterioso como el propio Ramanujan. Si alguien preguntara a cualquier físico del mundo por qué la naturaleza debería existir en diez dimensiones, estaría obligado a responder “no lo sé”. Se sabe en términos difusos, por qué debe seleccionarse alguna dimensión del espacio tiempo (de lo contrario la cuerda no puede vibrar de una cuánticamente autoconsistente), pero no sabemos por qué se seleccionan estos números concretos.

 

Ghhardy@72.jpg

  Godfrey Harold Hardy

G. H. Hardy, el mentor de Ramanujan,  trató de estimar la capacidad matemática que poseía Ramanujan.   Concedió a David Hilbert, universalmente conocido y reconocido uno de los mayores matemáticos occidentales del siglo XIX, una puntuación de 80.   A Ramanujan le asignó una puntuación de 100.  Así mismo, Hardy se concedió un 25.

Por desgracia, ni Hardy ni Ramanujan parecían interesados en la psicología a los procesos de pensamiento mediante los cuales Ramanujan descubría estos increíbles teoremas, especialmente cuando diluvio material brotaba de sus sueños con semejante frecuencia.   Hardy señaló:

“Parecía ridículo importunarle sobre como había descubierto o ese teorema conocido, cuando él me estaba mostrando media docena cada día, de nuevos teoremas”.

 

Srinivasa Ramanujan y la teoría de cuerdas | Miki's Blog ...

                             Ramanujan

Hardy recordaba vivamente:

-”Recuerdo una vez que fui a visitarle cuando estaba enfermo en Putney.  Yo había tomado el taxi 1.729, y comenté que el numero me parecía bastante feo, y que esperaba que no fuese mal presagio.”

– No. -Replicó Ramanujan postrado en su cama-. Es un número muy interesante; es el número más pequeño expresable una suma de dos cubos en dos formas diferentes.

(Es la suma de 1 x 1 x 1  y 12 x 12 x 12, y la suma de 9 x 9 x 9  y  10 x 10 x 10).

Era capaz de recitar en el acto teoremas complejos de aritmética cuya demostración requeriría un ordenador moderno.

Srinivasa Aiyangar Ramanujan | Biografías e Historia

En 1.919 volvió a casa, en la India, donde un año más tarde murió  enfermo.

El legado de Ramanujan es su obra, que consta de 4.000 fórmulas en cuatrocientas páginas que llenan tres volúmenes de notas, todas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario o, lo que es más frustrante, sin ninguna demostración.  En 1.976, sin embargo, se hizo un nuevo descubrimiento.   Ciento treinta páginas de borradores, que contenían los resultados del último año de su vida, fueron descubiertas por casualidad en una caja en el Trinity Collage.   Esto se conoce ahora con el de “Cuaderno Perdido” de Ramanujan.

 

Comentando cuaderno perdido, el matemático Richard Askey dice:

“El de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”.  Lo que él consiguió era increíble.  Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.

 

Una maravillosa y "sencilla" identidad de Ramanujan - Gaussianos

Una maravillosa y «sencilla» identidad de Ramanujan

Por mi parte creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna,   la única capaz de unir la mecánica quántica y la Gravedad.

 

        Fórmula de Ramanujanpara  determinar los decimales de pi

Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca vísto, él trabajaba otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie.   Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro.   Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.

Como saben los físicos, los “accidentes” no aparecen sin ninguna razón.  Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente.  Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego.  Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.

 

                                           Nuestro mundo asimétrico hermosas simetrías

Aquí es precisamente donde entra el trabajo de Ramanujan.  Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan.  ¡Increíble!   Pero, cierto.

Aunque el perfeccionamiento matemático introducido por la teoría de cuerdas ha alcanzado alturas de vértigo y ha sorprendido a los matemáticos, los críticos de la teoría aún la señalan su punto más débil.  Cualquier teoría, afirman, debe ser verificable.   Puesto que ninguna teoría definida a la energía de Planck de 1019 miles de millones de eV es verificable, ¡La teoría de cuerdas no es realmente una teoría!

El principal problema, es teórico más que experimental.  Si fuéramos suficientemente inteligentes, podríamos resolver exactamente la teoría y encontrar la verdadera solución no perturbativa de la teoría.  Sin embargo, esto no nos excusa de encontrar algún medio por el que verificar experimentalmente la teoría, debemos esperar señales de la décima dimensión.

 

Volviendo a Ramanujan…

Es innegable lo sorprendente de su historia, un muchacho pobre con escasa preparación y arraigado como pocos a sus creencias y tradiciones, es considerado como una de los mayores genios de las matemáticas del siglo XX. Su legado a la teoría de números, a la teoría de las funciones theta y a las series hipergeométricas, además de ser invaluable aún sigue estudiándose por muchos prominentes matemáticos de todo el mundo. Una de sus fórmulas más famosas es la que aparece más arriba en el lugar número 21 de las imágenes expuestas y utilizada para realizar aproximaciones del Pi con más de dos millones de cifras decimales. Otra de las sorprendentes fórmulas descubiertas por Ramanujan es un igualdad en que era “casi” un número entero (la diferencia era de milmillonésimas). De hecho, durante un tiempo se llegó a sospechar que el número era efectivamente entero. No lo es, pero este hallazgo sirvió de base la teoría de los “Cuasi enteros”. A veces nos tenemos que sorprender al comprobar hasta donde puede llegar la mente humana que, prácticamente de “la nada”, es capaz de sondear los misterios de la Naturaleza para dejarlos al descubierto ante nuestros asombros ojos que, se abren como platos ante tales maravillas.

Publica: emilio silvera

Para saber más: “HIPERESPACIO”, de Michio Kaku,( 1996 CRÍTICA-Grijalbo Mondadori,S.A. Barcelona) profesor de física teórica en la City University de Nueva York. Es un especialista a nivel mundial en la física de las dimensiones superiores ( hiperespacio). Despide el libro con unas palabras preciosas:
”Algunas personas buscan un significado a la vida a través del beneficio, a través de las relaciones personales, o a través de experiencias propias. Sin embargo, creo que el estar bendecido con el intelecto para adivinar los últimos secretos de la naturaleza da significado suficiente a la vida”.

Desde la Noche de los Tiempos… ¡Queremos conocer el Universao!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Conoces La Energía De Los Seres De Luz Humanos? | Gran Hermandad BlancaSERES De LUZ - Oración para nuestros Guías Espirituales,... | Facebook
   También nosotros somos cuantos de luz. Estamos hechos de “materia cósmica” elaborada en las estrellas

¡El Universo! Gracias a la Astronomía, la Astrofísica y otras disciplinas y estudios relacionados, estamos conociendo cada día lo que en realidad es nuestro Universo que, nos tiene deparadas muchas, muchas sorpresas y maravillas que ni podemos imaginar. ¡Son tantas las cosas que aún tenemos que aprender de éste Universo Inmenso!

 

          Vía Láctea: Todo lo que sabemos sobre nuestra galaxia

https://www.esquire.com/es/ciencia/a44200737/james-webb-telescopio-espacial-primeras-estrellas-historia/

El telescopio espacial James Webb podría haber encontrado por fin las primeras estrellas surgidas en el Universo

                         Las primeras estrellas aparecieron después de cientos de millones de años

El Telescopio James Webb capta una impresionante imagen de una estrella recién nacida que lanza chorros gigantes. Pie de foto, A la velocidad de la luz, tomaría aproximadamente 1,6 años recorrer la longitud de los chorros de HH212.4

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.

 

       Una superburbuja en la Gran Nube de Magallanes | Ciencia

 

Los astrónomos del Telescopio Espacial Hubble de la NASA, han capturado dos grupos completos de estrellas masivas que pueden estar en las primeras etapas de su fusión.

Los racimos se encuentran a 170.000 años luz de distancia de la Gran Nube de Magallanes, una pequeña galaxia satélite de nuestra Vía Láctea.

 

                                                         

 

Si la Gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica, es decir, el “omega negro” como lo llaman los astrónomos en relación a la cantidad de materia que hay en nuestro Universo y de la que depende si es un Universo plano, abierto o cerrado.

 

                                            El universo es cerrado, abierto o es... - Astronomía en tu bolsillo | FacebookLuz antigua - Alan Lightman

 

En esos modelos, la geometría espacial depende de la energía y el contenido de masa en todo el universo, y más precisamente, de su densidad promedio o “densidad crítica” definida por el parámetro “Ω” (Omega).

Con soluciones clave como las ecuaciones de Friedmann, que explican una homogénea expansión del espacio, se puede hacer el cálculo sobre la posible densidad del universo; el cual viene en tres formas posibles; abierto, cerrado o plano; y para ejemplificar estas formas podemos representarlas en una imagen de dos dimensiones y reflejar su efecto en un triángulo.

 

Enséñame de Ciencia - En física, las ecuaciones de campo de Einstein son un  conjunto de diez ecuaciones de la teoría de la relatividad general de  Albert Einstein, que describen la interacción

 

Ecuación de campo de Einstein de la Relatividad General. Las ecuaciones de Einstein tienen implicaciones sobre cómo la masa y la energía interactúan y afectan el espacio a su alrededor, lo que trajo preguntas interesantes. Si la masa y la energía pueden cambiar la forma del espacio (Esto debido a su efecto en el espacio-tiempo); entonces, a gran escala, ¿la totalidad de masa y energía en el universo influirán su forma?

 

                                              WMAP 7 | Francis (th)E mule Science's NewsEl blog de Antares: diciembre 2013

 

Podemos concretar con de manera muy exacta y resultados muy fiables los últimos resultados de los datos enviados por WMAP. Estos resultados muestran un espectro de fluctuaciones gaussiano y (aproximadamente) invariante frente a la escala que coincide con las predicciones de los modelos inflacionarios más generales.

 

                                                         Materia y Energía oscuras | ME GUSTA LA FÍSICA

Hemos hecho el reparto sin saber, a ciencia cierta, si la materia y la energía oscura existen

El Universo estaría compuesto por un 4 por ciento de materia bariónica, un 23 por ciento de “materia oscura” y un 73 por ciento de energía oscura. Sólo falta por confirmar el “pequeño” detalle de que, la “materia oscura” existe realmente. (¿)

La expansión del Universo, su velocidad, no se corresponde con la cantidad de materia que vemos, y, un buen día, alguien tuvo la ocurrencia de idear esa “materia oscura” que no podemos ver y que es la causante de la aceleración del Universo, y, como no podía ser de otra maneta, todos los astrónomos y cosmólogos, que no podían contestar a la pregunta de por qué se aceleraba el Universo de esa manera, se agarraron a la “dichosa y salvadora” materia oscura que les solucionó el problema.  ¡Por el momento!

 

                                   

 

Simulaciones por ordenador ha ido facilitando el conocimiento necesario para saber cuando y cómo nacieron aquellas primeras estrellas en nuestro joven Universo. Para que comenzaran a brillar aquellos primeros astros hicieron falta el paso de algunos millones de años.

Sobre unos doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

 

                 Qué es un agujero negro? | Euronews

 

Cuando esas primeras estrellas agotaron el combustible nuclear de fusión, tras unos pocos millones de años, explosionaron y se convirtieron en enormes Agujeros Negros como en de la imagen de arriba que es uno de los agujeros negros más grandes y masivos descubierto en la Historia de la Astronomía por un equipo de Astrónomos que le han calculado una masa de 17.000 millones de soles, está ubicado en el corazón de una galaxia muy distante como indica una Nota de Le Monde que publicó la noticia.

 

Blog de Emilio Silvera V.

El curioso parecido de la primera imagen de un agujero negro - AS.com

Astronomía y Astrofísica : Blog de Emilio Silvera V.Así es como se forma un agujero negro

Descubren un agujero negro invisible a 1.000 años luz de la Tierra, el más cercano que se conoce | CienciaBlog de Emilio Silvera V.

 

Lo que hemos llegado a descubrir en nuestro Universo es mucho más de lo que podíamos imaginar. Las sorprendentes imágenes y los sucesos que la producen mediante complejos mecanismos que, tras muchas observaciones, simulaciones, Modelos y estudios hemos llegado a comprender, nos habla de un Universo dinámico y eternamente cambiante en el que, cualquier cosa que podamos imaginar… ¡Podría ser posible!

Emilio Silvera v.

¿La estructura del Universo? Ya la vamos conociendo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

“Lo más evidente en este sentido es la falta de oxígeno, que es el componente más abundante en el cuerpo y también esencial para su existencia. Pero igual ocurre con el carbono, que moriríamos si desapareciera o un caso más peculiar aún, se trata del rarísimo elemento conocido como molibdeno, que es el encargado de producir ácido úrico, siendo ésta la única manera que tiene el cuerpo humano de destruir los materiales nitrogenados dañinos. Un tema similar lo encontramos en el vanadio, del que tan solo tenemos una décima de gramo pero aun así lo necesitamos para subsistir.”

 

                                               10 curiosidades sobre el cuerpo humano

“Casi el 99% de la masa del cuerpo humano está formada por seis elementos: oxígeno, carbono, hidrógeno, nitrógeno, calcio y fósforo. Solo alrededor del 0,85% está compuesto por otros cinco elementos: potasio, azufre, sodio, cloro y magnesio. Los 11 son necesarios para la vida.”

 

De qué estás hecho? 73% del cuerpo humano proviene de la explosión de estrellas masivas | RPP Noticias

Somos “Polvo de Estrellas” allí se “fabricaron los materiales de los que estamos hechos

“¿Te suenan el disprosio, erbio, gadolinio, holmio o el lutecio? Pues de esos también tenemos en el cuerpo, aunque no generados por nosotros mismos, sino que entran a través de la comida, la bebida o el aire. Después hay elementos que están asociados a algún tipo de alimento en particular, como por ejemplo el litio, cuya presencia está asociada a las patatas, naranjas y lechugas.
Y por último, vamos a hablar del cobalto, un metal muy usado en la industria química para producir desde imanes a cuchillas de afeitar y que se enlaza con el carbono para producir vitamina B12, esencial para nuestro organismo.
                             Genes arquitectos del cerebro - Revista Mètode
Mapa de conexions cerebrals / Human Connectome Project. P. Hagmann P et al.-PLoS Biol

“El cerebro de los humanos modernos es el resultado de la evolución de un plan de construcción (Bauplan) que comienza a diseñarse hace 500 millones de años. Fue un proceso iniciado en los cordados basales (animales marinos que vivían inmersos en la arena) que dio origen al primer plan de construcción del sistema nervioso central; este se modificó progresivamente y fue compartido por todos los vertebrados. Detrás de este proceso están las redes génicas, actores clave para dar identidad a las distintas regiones del cerebro. Este escenario evolutivo proporciona la base para los estudios que tratan de entender lo que se «conserva» y lo que es «nuevo» entre distintos vertebrados, así como también de los mecanismos subyacentes implicados en este proceso. Este artículo explora el papel de los estudios genoarquitectónicos en esta aventura científica.”

Todos los vertebrados tienen un origen evolutivo común, es decir que tienen un ancestro común. La Evolución, el medio, las condiciones específicas de cada especie… Puso a cada cual en su siti

 

http://4.bp.blogspot.com/-_-GM3dYLW1c/UUnJUPRQPuI/AAAAAAAAMII/-egqkBd1Do8/s1600/m42_wittich_960.jpg

Moléculas orgánicas sorprendentemente complejas en una galaxia vecina

Moléculas orgánicas sorprendentemente complejas y esenciales para la Vida

Los astrónomos tienen localizadas un buen número de Nebulosas Moleculares gigantes. Sin Nubes masivas de Gas y Polvo interestelar compuestas fundamentalmente por moléculas.

Su diámetro típico es de más de 100 años luz t las masas varían entre unos pocos de cientos de miles hasta los diez millones de masas solares.

 

Nebulosa de reflexión | El nido del astrónomo

Las Nebulosas Moleculares Gigantes (NMGs) consisten generalmente en moléculas de Hidrógeno (H2, 73% en masa), átomos de Helio  (He, 25%), partículas de polvo el 1%, Hidrógeno atómico (H I), menos del 1% y un rico cóctel de moléculas interestelares menos del 1%.

 

Sistemas planetarios formándose en Orión |La radiación de las estrellas masivas define la forma de los nuevos sistemas  planetarios

En la Nebulosa de Orión se han detectado varios sistemas planetarios en formación

 

        Nebulosas : Blog de Emilio Silvera V.Hallada una biomolécula en regiones de formación estelar | Actualidad | Investigación y Ciencia

La anatomía Jedi de Orión B - NaukasCienciaes.com: Urea en el centro de la Vía Láctea. Hablamos con Izaskun Jiménez-Serra. | Podcasts de CienciaExplosión estelar evapora cometas y revela moléculas alrededor de joven estrella

                                                  Moléculas esenciales para la vida

Así, cuando en estas Nebulosas se forman nuevos sistemas planetarios, en esos nuevos mundos están presentes los ingredientes para la vida que, si cuentan con la química, la radiación, agua líquida, atmósfera, en ellos, como en la Tierra… ¡Surgirá la Vida!

 

 

 

PPT - Módulo 1 Física de partículas PowerPoint Presentation, free download  - ID:5595477

 

Bajo la “definición basada en Quarks y Leptones” , las partículas elementales y compuestas formadas de Quarks (en púrpura) y leptones (en verde) serían la materia; mientras los Bosones “izquierda” (en rojo) no serían materia. Sin embargo, la energía de interacción inherente a partículas compuestas (por ejemplo, Gluones, que implica a los protones y los neutrones) contribuye a la masa de la materia ordinaria.

 

Resultado de imagen de Las antipartículas

Resultado de imagen de Las antipartículas

Resultado de imagen de TABLA DE LAS PRINCIPALES PROPIEDADES DE LAS PARTÍCULAS PORTADORAS DE LAS INTERACCIONES FUNDAMENTALESArchivo:Interacciones del modelo estándar de la física de particulas.png - Wikipedia, la enciclopedia libre
El Modelo Estándar de la Física de Partículas (aunque no es perfecto), es una buena herramienta para trabajar en el mundo cuántico de las partículas y las fuerzas que con ellas interaccionan para que todo el universo puede ser como lo observamos.
No podemos olvidar que todo lo grande está hecho de cosas pequeñas
                               http://1.bp.blogspot.com/_IP-xhn2P2rQ/TIfX2PjXiyI/AAAAAAAAFaw/e8IhhYqiNIo/s1600/3a.jpg
No todas las Teorías de lo que se piensa del Universo  y su destino son ciertas
Breve historia del Universo : Blog de Emilio Silvera V.El origen del Universo? ¡Cómo puedo saberlo yo! : Blog de Emilio Silvera V.Lo que creemos que sabemos : Blog de Emilio Silvera V.Preguntamos pero, ¿sabemnos responder? II : Blog de Emilio Silvera V.Libre albedrío? : Blog de Emilio Silvera V.
Desde aquel primer momento, cuando comenzó el Tiempo, el instante en el nació el Universo surgido de una enorme fluctuación de “vacío”  que eyectó el contenido de una singularidad a otro plano en el que se creó el Espacio-Tiempo y la materia que, más tarde, se convertirían en estrellas y galaxias, Púlsares y Quásares, mundos y Vida.

                                     

 

Imagen en infrarrojo medio obtenida por la cámara FORCAST del observatorio SOFIA. La foto, del núcleo de la Vía Láctea, muestra al Anillo Circunnuclear de …

Imaginaos ahora este instante en que los

murmullos se arrastran discretamente y las

espesas tinieblas llenan el gran navío del

Universo.

Chakespeare en Emrique V (Acto IV, esc. 1)

 

Cómo se busca la materia oscura?Qué es la materia oscura?

Desconociendo de qué está hecha esa misteriosa e hipotética “materia oscura” la representan de mil formas y maneras. Aunque la realidad es que, si existe, parece que es invisible, que no emite radiación, que genera Gravedad, y, las partículas que las conforman… ¡tampoco las conocemos!

Hay que reconocer que tenemos moral

Pero sigamos con las palabras de Chakespeare

 

La nueva teoría sobre la materia oscura: viene de una quinta dimensión y  usa un 'puente' para llegar al universo visible

Nos dicen que todo el Universo está permeado por la “materia oscura” que no se puede ver

Esas palabras nos podría valer ahora a nosotros para extrapolarlas a este tiempo y haciendo un ejercicio de imaginación, convertir esas tinieblas en la “materia oscura”, esa clase de materia que no podemos ver y que nos soluciona, de un plumazo, el inmenso problema de de la estructura del Universo. Esa clase de materia “transparente” que no emite radiación, podría explicar el ritmo a grandes escalas que hemos podido observar en el comportamiento del Universo y que no sabíamos a qué era debido. Bueno, no lo sabíamos hasta “la llegada de la Materia Oscura”…”ahora sí lo sabemos”, o, al menos, eso dicen algunos.

 

             

Sabemos, por ejemplo que, en el centro de la Galaxia, en Sagitario A, reside un gran monstruo que tiene tres millones de masas solares y, en la imagen de arriba podemos ver a un grupo de estrellas que lo orbitan en un perído de 15 años. Hemos hablado aquí de ese lugar, del Centro galáctico y, también de otras regiones que tienen inmensos Agujeros Negros que, al ser singularidades, hacen que el tiempo allí se distorsione y que el espacio adquiera una curvatura infinita.

 

Qué es y para qué sirve la materia oscura?

 

Sin embargo, la “materia oscura” no está compuesta por esos objetos exóticos y, según los cosmólogos, es otra cosa diferente, algo que no sabemos lo que es, algo que no podemos ver, algo que no tenemos ni idea de cómo se pudo formar ni de cuanto tiempo lleva aquí y de qué clase de partículas estará formada. “La Materia Oscura” es, en realidad, un auténtico misterio. Todos hablan de ella pero, nadie sabe lo que es.

 

Gargoyle Statues Are Back In Vogue | Esculturas, Dragones y EstatuasGalería de imágenes con los mejores gifs animados de dragones, imágenes animadas con movimiento de dragones fanta… | Dragones, Criaturas de fantasía, Arte de dragónUnicornio una criatura de amor puro | Centro Esotérico RossanaBosque De Hadas Y Unicornio - Un Hada Monta Un Unicornio Blanco Por Un Camino En El Bosque Mágico Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres De Derecho. Image 27316942.

 

Hablar de la “materia oscura” es para mí como hacerlo de esos personajes y animales míticos que sólo están en la mente del autor que nos narra una historia en la que, pueden estar presentes los Unicornios y también los más extraños personajes y animales que sólo existen en las peores pesadillas de mundos inimaginables.

 

Materia oscuraSegún Stephen Hawking, los agujeros negros no son tal y como los concebimos | National GeographicUn indicio de la violación de la simetría entre materia y antimateria en neutrinosViajes en el tiempo: 5 teorías - OlaXero

 

Nos hablan de materia fría y caliente, de agujeros negros, o, incluso de “cuerdas cósmicas” para que sean los representantes de la “materia oscura” que provoca el movimiento inusual en el alejamiento de las estrellas y galaxias.

Con la Materia Oscura nos pasa como cuando un enfermo terminar recibe la noticia de que ha aparecido un medicamento milagroso que podría curar su mal. Allí ponen todas sus esperanzas. Puede parecer extraño que los cosmólogos pongan todas sus esperanzas  en comprender el Universo centrándolo en una materia tan misteriosa como esa, pero eso es lo que está sucediendo en nuestros días.

Y no es que se trate  simplemente de agarrarse a un “clavo ardiendo”: aprovecharnos de la ignorancia de la naturaleza de la materia oscura para adjudicarle todas las propiedades que se requieran para resolver los problemas más inmediatos. ¿Qué falta hace conocer las propiedades de esta clase de materia para que nos resuleven el problema de la formación de las galaxias?

 

Modelos cosmológicosEl modelo cosmológico estándar – Entre cientIFIC@sModelos Cosmológicos 4º EsoFilosofía de la Ciencia Capítulo 3 "Modelos Cosmológicos y Realidad" - YouTube

 

Cuando nos encontramos con un problema desconocido del que ignoramos los motivos que lo producen, rápidamente construimos un modelo hipotético que lo resuelve y, nuestra ignorancia, queda a salvo y fuera de la vista de los demás. Según las leyes de la mecánica de Newton, la velocidad de una estrella a lo largo de su órbita depende de la masa de la galaxia contenida dentro de la órbita de la estrella. Sin embargo, la masa visible es mucho menor que lo esperado. ¿Dónde está la masa que falta?

De la misma manera, las galaxias en el Universo se agrupan en cúmulos y supercúmulos de galaxias que para mantenerse unidos necesitan una inmensa cantidad de materia que genere la fuerza de gravedad necesaria para conseguirlo. Sin embrtgo, la masa requerida no se observa ¿Dónde está?

 

Materia oscura supermasiva? | Actualidad | Investigación y CienciaMateria oscura, estrellas y agujeros negros supermasivos: así es la simulación más detallada del universo - InfobaeMateria oscura tendría partículas tan grandes como una célula humana | SophimaniaNueva teoría dice que la materia oscura actúa como una partícula conocida | Ciencias.pe

                   Lo único seguro es que… ¡No sabemos lo que es! Y, en último caso… ¡Si es que es!

¿Cómo podríamos detectar la presencia de la Materia Oscura? ¿Cuál será la naturaleza de la Materia Oscura? ¿Será posible que los objetos que constituyen la materia oscura del universo (si es que finalmente existe esa materia), estén formados por partículas que no hemos llegado a conocer por no emitir radiación y ser diferentes a los Quarks, Leptones y Hadrones? Algunos físicos antiguos muy famosos que fueron nombrados Sir por la reina de Inglaterra, decían que la materia se generaba de manera espontanea en nuestro universo a partir de una sustancia cósmica primera. ¿ Será esa sustancia cósmica o Ylem (como la llamaban los clásicos griegos), a la materia que estos llaman oscura?

 

                    En busca de una carga eléctrica que delate a la materia oscuraRespuestas XXII: Materia oscura. – Ciencia de Sofá

 

Lo cierto es que andamos perdidos. Hay cosas en el vasto universo que no podemos explicar. La idea básica del papel de la materia oscura es fácil de entender. Como todos hemos llegado a saber, partimos de una dificultad primera que no hemos sabido resolver, nadie ha podido imaginar cómo evolucionó el universo, ya que tiene que ver con el hecho de que, si el cosmos entero está hecho de materia normal, la formación de galaxias no pudo haber empezado hasta muy avanzado el “juego”, después de que el universo se ha enfriado hasta el punto de que pueden existir átomos y la radiación se pueda desaparejar. Para entonces, la expansión de Hubble habría diseminado tanto la materia que la gravedad por sí sola no sería suficientemente fuerte para reunir cúmulos antes de que  todo se escapara de su alcance. Entonces, si eso es así (que lo es)… ¿Cómo puñetas se formaron las galaxias?

 

 

Debajo de esta imagen de Wikipedia (Una espectacular colisión frontal entre dos galaxias vista desde el Hubble” href=”http://es.wikipedia.org/wiki/Telescopio_espacial_Hubble“>Telescopio espacial Hubble de la NASA de la Galaxia Lenticular), podemos leer los párrafos de abajo que, en algunos de sus tramos denotan nuestra ignorancia. Y, así ha sido siempre, hablamos y hablamos y no dejamos de hablar de… ‘lo que no sabemos! En realidad, nadie sabe, como pudieron formarse las galaxias.

“La formación de las galaxias es una de las áreas de investigación más activas de la astrofísica,  y en cierto sentido, esto también se aplica a la evolución de las galaxias. Sin embargo, hay algunas ideas que ya están ampliamente aceptadas. Se piensa que la formación de galaxias procede directamente de las teorías de formación de estructuras, formadas como resultado de las débiles fluctuaciones cuánticas en el despertar del Big Bang. Pero, con seguridad, nadie sabe como pudieron formarse las galaxias a pesar de la expansión de Hubble.

 

 

 

¿Y si la materia oscura no importa? Para todo aquellos escépticos, un matemático italiano ha conseguido lo nunca antes visto. El hombre ha llegado a través de una serie de fórmulas complejas y con extraordinaria similitud, trazar las curvas de la rotación de las galaxias espirales sin necesidad de materia oscura. Dicho de otra forma, a través de sus cálculos, el matemático ha representado la fuerza que mantiene unidas a las galaxias sin la necesidad de materia oscura. El trabajo de Carati frente al razonamiento deductivo de toda la comunidad científica.

Hasta ahora todos los experimentos científicos tenían a la materia oscura como parte esencial del entendimiento de las galaxias, para explicar aquello que no vemos. Si contamos la cantidad de masa en las galaxias espirales como la nuestra y luego tomamos el modelo de su rotación, obtenemos una imagen muy diferente a la que empíricamente se observa. La cantidad de masa en el centro de las galaxias espirales es enorme pero las estrellas exteriores se mueven alrededor de los discos galácticos con tanta rapidez que deberían volar hacia el espacio interestelar.

 

Los tres misteriosos factores que hicieron posible nuestro universo

Hablamos de energía y materia oscura como de algo familiar que está ahí… ¡Pero nadie la ha visto!

Lo cierto es que, no todos están de acuerdo con la existencia de la materia oscura y creen que los fenómenos que observamos se deben a otros parámetros que nos son desconocidos, e, incluso, podría tratarse de alguna propiedad desconocida de la Fuerza de la Gravedad, o, ¿por qué no? podrían ser fluctuaciones del vacío que rasgan el espacio-tiempo y dejan entrar, en nuestro universo, esa fuerza misteriosa que incide directamente en el comportamiento de nuestras galaxias y estrellas…lo cierto es que, no sabemos, realmente lo que pueda ser el motor conductor de esa anomalía observada y, sin embargo, ahí estamos con “la materia oscura por aquí” “la materia oscura por allá” y, la representamos de mil maneras distintas para poder convencer, a los escéptico.

 

El Hubble Detecta los Grupos de Materia Oscura más Pequeños Jamás Conocidos

“El Hubble Detecta los Grupos de Materia Oscura más Pequeños Jamás Conocidos. Utilizando el telescopio espacial Hubble de la NASA y una nueva técnica de observación, los astrónomos han descubierto que la materia oscura forma grupos mucho más pequeños que los conocidos previamente.”

El colmo de los colmos está en noticias como esta: “3 marzo 2012. Los astrónomos que usan datos del Telescopio Hubble de la NASA han observado lo que parece ser un grupo de materia oscura que es parte de restos de un naufragio entre los cúmulos masivos de galaxias. El resultado podría desafiar las teorías actuales sobre la materia oscura que predicen que las galaxias deberían estar ancladas a la sustancia invisible, incluso durante el choque de una colisión.

Abell 520 es una fusión gigante de cúmulos de galaxias situadas a 2,4 mil millones de años luz de distancia. La materia oscura no es visible, aunque su presencia y la distribución se encuentra indirectamente a través de sus efectos. La materia oscura puede actuar como una lupa, curvar la luz y causar la distorsión de las galaxias y cúmulos detrás de ella. Los astrónomos pueden usar este efecto, llamado lente gravitacional, para inferir la presencia de materia oscura en los cúmulos de galaxias masivas”.

¿”…han observado lo que parece ser un grupo de materia oscura que es parte de restos de un naufragio entre los cúmulos masivos de galaxias”? ¿Qué tontería es esa?

                                  http://farm5.static.flickr.com/4082/4926930572_8c5822e95c.jpg

Imágenes como estas tratan de explicar lo que no tiene explicación y, explican a su conveniente manera lo que ahí se está viendo y que, no es, necesariamente, lo que la explicación que se nos da quiere dar a entender.

Un grupo de astrónomos que utilizó telescopios de ESO anunció en abril una sorprendente falta de “materia oscura” en la galaxia dentro de la vecindad del Sistema Solar. Pero, me pregunto yo, si no sabemos como es la materia oscura, ¿de qué manera podemos detectar su falta o su presencia?

Por otra parte, el galimatías que se está formando en torno a la materia oscura es descomunal. ¿Cuántos estudios se han realizado con resultados dispares? Unos dicen que la materia oscura “se observa alrededor de las Galaxias” y otros, por el contrario, vienen a decirnos que la falta de materia oscura en las galaxias es desconcertante.

Así las cosas, tenemos que convenir en una realidad que nadie puede negar: La materia oscura (al menos de momento) es algo intangible, algo hipotético que se ha pensado que podría existir a partir de las anomalías observadas en el comportamiento de las galaxias y que nadie sabe explicar a qué puede ser debido y, en esas estábamos cuando llegó la idea “luminosa” y mencionó la “materia oscura” y, todos se lanzaron en tropel sobre ella, ¡era la salvación!

Emilio Silvera V.