martes, 25 de enero del 2022 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




En muchios aspectos, el Universo, sigue siendo misterioso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lo cierto es que, en su momento, ya desde el inicio del año 2.009 en el que se celebró el Año Internacional de la Astronomía, en muchos de mis artículos publicados en la colaboración que con la Organización Internacional tuve el honor de prestar, se hablaba de todos esos interesantes temas que, el universo nos presenta y que, inciden en el saber de la Naturaleza y del Mundo que nos acoge. Lo cierto es que todo, sin excepción, es Universo. ¡Nosotros también! Somos el producto de la materia evolucionada en las estrellas y en las explosiones supernovas que, depositadas en nuestro planeta, dio lugar a esa mezcla primordial (protoplasma vivo), del que surgió aquella primera célula replicante que escribió el primer capítulo de la historia de la vida.

 

LA QUÍMICA DE LAS ESTRELLAS

Los cambios se estaban produciendo a una velocidad cada vez mayor. Al siglo de Newton también pertenecieron, entre otros, el matemático Fermat; Römer, quien midió la velocidad de la luz; Grimaldi, que estudió la difracción; Torricelli, que demostró la existencia del vacío; Pascal y Boyle, que definieron la física de los fluidos…La precisión de los telescopios y los relojes aumentó notablemente, y con ella el número de astrónomos deseosos de establecer con exactitud  la posición de las estrellas y compilar catálogos estelares cada vez más completos para comprender la Vía Láctea.

La naturaleza de los cuerpos celestes quedaba fuera de su interés: aunque se pudiera determinar la forma, la distancia, las dimensiones y los movimientos de los objetos celestes, comprender su composición no estaba a su alcance. A principios del siglo XIX, William Herschel (1738-1822), dedujo la forma de la Galaxia, construyó el mayor telescopio del mundo y descubrió Urano. Creía firmemente que el Sol estaba habitado.

         Hasta llegar a conocer nuestra situación astronómica…

Al cabo de pocos años, nacía la Astrofísica, que a diferencia de la Astronomía (ya llamada  -”clásica o de posición”-), se basaba en pruebas de laboratorio. Comparando la luz emitida por sustancias incandescentes con la recogida de las estrellas se sentaban las bases de lo imposible: descubrir la composición química y la estructura y el funcionamiento de los cuerpos celestes. Estaba mal vista por los astrónomos “serios” y se desarrolló gracias a físicos y químicos que inventaron nuevos instrumentos de análisis a partir de las demostraciones de Newton sobre la estructura de la luz.

En 1814, Joseph Fraunhofer (1787-1826) realizó observaciones básicas sobre las líneas que Wollaston había visto en el espectro solar: sumaban más de 600 y eran iguales a las de los espectros de la Luna y de los planetas; también los espectros de Póux, Capella y Porción son muy similares, mientras que los de Sirio y Cástor no lo son. Al perfeccionar el  espectroscopio con la invención de la retícula de difracción (más potente y versátil que el prisma de cristal), Fraunhofer observó en el espectro solar las dos líneas del sodio: así se inició el análisis espectral de las fuentes celestes.

Mientras, en el laboratorio, John Herschel observó por primera vez la equivalencia entre los cuerpos y las sustancias que los producen, Anders J. Anhström (1814-1868) describía el espectro de los gases incandescentes y los espectros de absorción y Jean Foucault (1819-1874) comparó los espectros de laboratorio y los de fuentes celestes. Gustav Kirchhoff (1824-1887) formalizó las observaciones en una sencilla ley que cambió la forma de estudiar el cielo; “La relación entre el poder de emisión y de absorción para una longitud de onda igual es constante en todos los cuerpos que se hallan a la misma temperatura”. En 1859, esta ley empírica, que relacionaba la exploración del cielo con la física atómica, permitía penetrar en la química y la estructura de los cuerpos celestes y las estrellas. De hecho, basta el espectro de una estrella para conocer su composición. Y, con la espectroscopia, Kirchhoff y Robert Bunsen (1811-1899) demostraron que en el Sol había muchos metales.

Sobre la variabilidad del espectro de la luz solar1 Energía del sol

La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un  nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron  que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.

                     EL DIAGRAMA HR: EL CAMINO HACIA EL FUTURO

El padre Ángelo Secchi (1818-1878) fue el primero en afirmar que muchos espectros estelares poseen características comunes, una afirmación refrendada hoy día con abundantes datos. Secchi clasificó las estrellas en cinco tipos, en función del aspecto general de los espectros. La teoría elegida era correcta: el paso del color blanco azulado al rojo oscuro indica una progresiva disminución de la temperatura, y la temperatura es el parámetro principal que determina la apariencia de un espectro estelar.

HISTORIA DE LA ESPECTROFOTOMETRIA timeline | Timetoast timelinesHistoria de la mecánica cuántica v2

Más tarde, otros descubrimientos permitieron avanzar en Astrofísica: Johan Balmer (1825-1898) demostró que la regularidad en las longitudes de onda de las líneas del espectro del hidrógeno podía resumirse en una sencilla expresión matemática; Pieter Zeeman (1865-1943) descubrió que un campo magnético de intensidad relativa influye en las líneas espectrales de una fuente subdividiéndolas en un número de líneas proporcional a su intensidad, parámetro que nos permite medir los campos magnéticos de las estrellas.

Cómo está constituido el núcleo de los átomos? - Foro NuclearNúcleo Atómico El núcleo atómico se origina en el big bang, la gran  explosión logró que los protones y neutrones se pudieran unir. Se forma por  protones. - ppt descargar

En otros descubrimientos empíricos la teoría surgió tras comprender la estructura del átomo, del núcleo atómico y de las partículas elementales. Los datos recogidos se acumularon hasta que la física y la química dispusieron de instrumentos suficientes para elaborar hipótesis y teorías exhaustivas. Gracias a dichos progresos pudimos asistir a asociaciones como Faraday y su concepto de “campo” como “estado” del espacio en torno a una “fuente”; Mendeleiev y su tabla de elementos químicos; Maxwell y su teoría electromagnética;  Becquerel y su descubrimiento de la radiactividad; las investigaciones de Pierre y Marie Curie; Rutherford y Soddy y sus experimentos con los rayos Alfa, Beta y Gamma; y los estudios sobre el cuerpo negro que condujeron a Planck a determinar su constante universal; Einstein y su trabajo sobre la cuantización de la energía para explicar el efecto fotoeléctrico, Bohr y su modelo cuántico del átomo; la teoría de la relatividad especial de Einstein que relaciona la masa con la energía en una ecuación simple…Todos fueron descubrimientos que permitieron explicar la energía estelar y la vida de las estrellas, elaborar una escala de tiempos mucho más amplia de lo que jamás se había imaginado y elaborar hipótesis sobre la evolución del Universo.

En 1911, Ejnar Hertzsprung (1873-1967) realizó un gráfico en el que comparaba el “color” con las “magnitudes absolutas” de las estrellas y dedujo la relación entre ambos parámetros. En 1913, Henry Russell (1877-1957) realizó otro gráfico usando la clase espectral en lugar del color y llegó a idénticas conclusiones.

El Diagrama de Hertzsprung-Russell (diagrama HR) indica que el color, es decir, la temperatura, y el espectro están relacionados, así como el tipo espectral está ligado a la luminosidad. Y debido a que esta también depende de las dimensiones de la estrella, a partir de los espectros puede extraerse información precisa sobre las dimensiones reales de las estrellas observadas. Ya solo faltaba una explicación de causa-efecto que relacionara las observaciones entre si en un cuadro general de las leyes.

El progreso de la física y de la química resolvió esta situación, pues, entre otros avances, los cálculos del modelo atómico de Bohr reprodujeron las frecuencias de las líneas del hidrógeno de Balmer. Por fin, la Astrofísica había dado con la clave interpretativa de los espectros, y las energías de unión atómica podían explicar el origen de la radiación estelar, así como la razón de la enorme energía producida por el Sol.

Las líneas espectrales dependen del número de átomos que las generan, de la temperatura del gas, su presión, la composición química y el estado de ionización. De esta forma pueden determinarse la presencia relativa de los elementos en las atmósferas estelares, método que hoy también permite hallar diferencias químicas muy pequeñas, relacionadas con las edades de las estrellas. Así, se descubrió que la composición química de las estrellas era casi uniforme: 90 por ciento de hidrógeno y 9 por ciento de helio (en masa, 71% y 27%, respectivamente). El resto se compone de todos los elementos conocidos en la Tierra.

Así mismo, el desarrollo de la Física ha permitido perfeccionar los modelos teóricos y explicare de forma coherente que es y como funciona una estrella. Dichos modelos sugirieron nuevas observaciones con las que se descubrieron tipos de estrellas desconocidas: las novas, las supernovas, los púlsares con periodos o tiempos que separan los pulsos, muy breves…También se descubrió que las estrellas evolucionan, que se forman grupos que luego se disgregan por las fuerzas de marea galácticas.

La Radioastronomía, una nueva rama de la Astronomía, aportó más datos sobre nuestra Galaxia, permitió reconstruir la estructura de la Vía Láctea y superar los límites de la Astronomía óptica.

Se estaban abriendo nuevos campos de estudio: los cuerpos galácticos, los cúmulos globulares, las nebulosas, los movimientos de la galaxia y sus características se estudiaron con ayuda de instrumentos cada vez más sofisticados. Y cuanto más se observaba más numerosos eran los objetos desconocidos descubiertos y más profusas las preguntas. Se descubrieron nuevos y distintos tipos de galaxias fuera de la nuestra; examinando el efecto Doppler, se supo que todas se alejaban de nosotros y, lo que es más, que cuanto más lejanas están más rápidamente se alejan.

                                                   

                                El Telescopio Hubble nos muestra esta imagen del Universo Profundo

Acabábamos de descubrir que el Universo no terminaba en los límites de la Vía Láctea, sino que se había ampliado hasta el “infinito”, con galaxias y objetos cada vez más extraños. Sólo en el horizonte del Hubble se contabilizan 500 millones de galaxias. Y los descubrimientos continúan: desde el centro galáctico se observa un chorro de materia que se eleva más de 3.000 a.l. perpendicular al plano galáctico; se observan objetos como Alfa Cygni, que emite una energía radial equivalente a diez millones de veces la emitida por una galaxia como Andrómeda; se estudian los cuásares, que a veces parecen mas cercanos de lo que sugieren las mediciones del efecto Doppler; se habla de efectos de perspectiva que podrían falsear las conclusiones… Y nos asalta una batería de hipótesis, observaciones, nuevas hipótesis, nuevas observaciones, dudas…

Todavía no se ha hallado una respuesta cierta y global. Un número cada vez mayor de investigadores está buscándola en miles de direcciones. De esta forma se elaboran nuevos modelos de estrellas, galaxias y objetos celestes que quizá sólo la fantasía matemática de los investigadores consiga concretar: nacen los agujeros negros, los universos de espuma, las cadenas…

Encontrar Grafeno en el espacio ya no es una sorpresa, toparnos de bruces con océanos de metano… ¡tampoco!, hallar colonias de bacterias vivienda a muchos kilómetros de altura no es una nnovedad, saber que en las estrellas se fabrican los materiales aptos para hacer posible la química de la vida… nos maravilla pero ya, no es causa de asombro. Cada día damos un paso más hacia el saber del “mundo”, de la Naturaleza, del Universo en fin.

En la actualidad, el número de investigadores centrados en problemas relacionados con la evolución estelar, la Astrofísica y las teorías cosmo-genéticas es tan elevado que ya no tiene sentido hablar de uno en particular, ni de un único hilo de investigación. Al igual que ocurre con otras ramas científicas las Astronomía se ha convertido en un trabajo de equipo a escala internacional que avanza sin cesar en una concatenación de innovaciones, inventos, nuevos instrumentos, interpretaciones cada vez más elaboradas y, a menudo más difíciles de entender incluso para los investigadores que avanzan con infinidad de caminos paralelos. Es una situación que ya vaticinaba Bacon en tiempos de Galileo.

Hasta la Astronomía se ha hiper-especializado y, por ejemplo, quienes estudian problemas particulares de la física de las estrellas pueden desconocerlo todo sobre planetas y galaxias. También el lenguaje es cada vez más técnico, y los términos, capaces de resumir itinerarios de investigación, son complejos de traducir al lenguaje común. Así, mientras la divulgación avanza a duras penas entre una jungla de similitudes y silogismos, las informaciones que proceden de otras disciplinas son aceptadas por los científicos y los resultados de cada cual se convierten en instrumentos para todos.

La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.

Las investigaciones sobre planetas, estrellas, materia interestelar, galaxias y Universo van paralelas, como si fueran disciplinas independientes, pero en continua osmosis. Y mientras la información sobre el Sol y los cuerpos del Sistema solar es más completa, detallada y fiable, y las hipótesis sobre nuestra Galaxia hallan confirmación, el Universo que empezamos a distinguir más allá de nuestros limites no se pareced a lo que hace un siglo se daba por sentado. Y mientras los modelos matemáticos dibujan uno o mil universos cada más abstractos y complejos, que tienen más que ver con la filosofía que con la observación, vale la pena recordar como empezó nuestro conocimiento hace miles de años.

Otros nos indicaron la dirección a seguir pero, la dureza del camino…, esa, la tuvimos que hacer nosotros. Es decir, en cada época y lugar, los que estuvieron, miraron hacia atrás para ver lo que hicieron sus ancestros y, con aquellas enseñanzas, tener la guía del camino a seguir, o, por el contrario, si los resultados no fueron biuenos, rechazarlos. Lo cierto es que, al igual que nosotros, los que vengan detrás partirán con alguna ventaja aunque tengan que hacer su propio recorrido que, ni mucho menos tienen el camino despejado y, la niebla de la ignorancia sigue siendo espesa, aunque algo más suave que la que nosotros nos encontramos.

Ahora, amigos, después de este breve repaso por una pequeña parte de la Historia de la Astronomía, al menos tendréis una idea más cercana  del recorrido que, la Humanidad, ha tenido que realizar para conocer mejor el Universo.

Los datos aquí reseñados tienen su origen en diversas fuentes que, de aquí y de allá, han sido tomadas para recomponer un mensaje que les lleve a todos algunos mensajes de como ocurrieron los acontecimientos en el pasado para que fuera posible nuestro presente.

emilio silvera

Los misterios del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los “ojos” de ALMA atisban super-cúmulos de proto-estrellas

 

Astronomía y Astrofísica : Blog de Emilio Silvera V.Astronomía y Astrofísica : Blog de Emilio Silvera V.

 Los cúmulos globulares aparecen como brillantes aglomeraciones de hasta un millón de estrellas. Y, cuando éstas anomalías gravitatorias  aparecen solas se forman las proto-estrellas que, tras un tiempo acumulando material y densificando el núcleo, pasan a la Secuencia Principal.

2020 noviembre 19 : Blog de Emilio Silvera V.

 

Los cúmulos globulares aparecen como brillantes aglomeraciones de hasta un millón de estrellas antiguas, son uno de los objetos más antiguos del Universo. Si bien están presentes en gran cantidad alrededor y dentro de muchas galaxias, los ejemplares recién nacidos son extremadamente raros y las condiciones necesarias para su aparición no habían sido detectadas hasta ahora.

g/ - TechnologyIAA60_Maquetación 1.qxd

Usando el Atacama Large Millimeter/submillimeter Array (ALMA), en Chile, un grupo de astrónomos descubrió lo que podría ser el primer cúmulo globular a punto de nacer que se conozca: una nube de gas molecular increíblemente masiva y densa pero aún sin estrellas.

La foto del día del espacio - La Nebulosa de Orión

En lugares como este es donde se forman las estrellas, los mundos y… ¿La vida?

“Podemos estar en presencia de uno de los más antiguos y extremos modos de formación estelar en el Universo”, dijo el astrónomo Kelsey Johnson, de la Universidad de Virginia en Charlottesville y autor principal de un artículo que será publicado en el Astrophysical Journal. “Este interesante objeto parece arrancado directamente del Universo temprano”, agrega Johnson, “descubrir un objeto que tiene todas las características de un cúmulo globular, pero que aún no haya comenzado a formar estrellas, es como encontrar un huevo de dinosaurio a punto de eclosionar”.

Este objeto, al que el astrónomo se refiere irónicamente como el Petardo, se encuentra a aproximadamente 50 millones de años luz, al interior de una famosa dupla de galaxias en colisión (NGC 4038 y NGC 4039) conocidas como las galaxias Antena. Las fuerzas gravitacionales generadas por el proceso de fusión entre ambas están desencadenando una cantidad colosal de formaciones estelares, gran parte de ellas al interior de densos cúmulos.

“Las Galaxias Antennae, también conocidas como NGC 4038 y NGC 4039, son dos galaxias espirales similares a la Vía Láctea, ubicadas a 65 millones de años luz de distancia en la constelación de Corvus (el Cuervo). Eventualmente, los núcleos de las dos galaxias se fusionarán y surgirá una nueva galaxia elíptica gigante.”

Descubren un 'huevo de dinosaurio' cósmico a punto de eclosionar

Pero lo que hace único al Petardo es su enorme masa concentrada en un espacio relativamente pequeño y sin la presencia de estrellas en él. Todos los cúmulos similares observados anteriormente por los astrónomos están repletos de estrellas. El calor y la radiación de esas estrellas han alterado considerablemente el ambiente circundante, borrando cualquier evidencia de sus fríos y tranquilos inicios.

Gracias a ALMA, los astrónomos pudieron encontrar y estudiar detalladamente un ejemplo prístino de un cúmulo en su estado original, antes que las estrellas cambien para siempre sus características únicas. Esto proporcionó a los astrónomos un primer vistazo de las condiciones que pueden haber llevado a la formación de muchos cúmulos globulares (si no todos).

Las galaxias Antena observadas en luz visible con el telescopio espacial Hubble (superior), extensas nubes de gas molecular (derecha). (Inferior) Primer cúmulo globular en formación que se haya identificado. (Foto: ALMA)

“Nebulosas con este potencial se habían considerado hasta ahora adolescentes, posteriores al inicio de la formación estelar”, dijo Johnson. “Esto significaba que el semillero ya se había alterado. Y para entender la formación de un cúmulo globular necesitas ver su verdadero origen”, agregó.

La mayoría de los cúmulos globulares se formaron durante un ‘baby boom’ ocurrido hace aproximadamente 12 mil millones de años, en los inicios de las galaxias. Cada una contiene densas agrupaciones de hasta un millón de estrellas de segunda generación, estrellas con concentraciones de metales pesados notoriamente bajas, lo que indica que se formaron muy temprano en la historia del Universo. Nuestra propia Vía Láctea es conocida por contener al menos unos 150 cúmulos de estas características, aunque podría contener muchos más.

A través del Universo se siguen formando cúmulos de estrellas de diferentes tamaños. Es posible, aunque muy improbable, que los más grandes y densos terminan transformándose en cúmulos globulares.

Omega Centauri: el Cúmulo Globular más Brillante – astronomia-iniciacion.com

El cúmulo globular Omega Cantauri con diez millones de estrellas

“La probabilidad de supervivencia para que un cúmulo de estrellas joven y masivo se mantenga intacto es muy baja, de alrededor del uno por ciento” dijo Johnson. “Fuerzas externas e internas tienden a separar estos objetos, ya sea formando cúmulos abiertos como las Pléyades o desintegrándolos completamente para formar parte del halo galáctico”.

Sin embargo, los astrónomos piensan que el objeto que observaron con ALMA, que contiene gas molecular equivalente a 50 millones de veces la masa del Sol, es lo suficientemente denso como para tener una buena probabilidad de ser uno de los afortunados en convertirse en cúmulo estelar.

Los cúmulos globulares evolucionan rápidamente, en sólo un millón de años, desde su estado embrionario carente de estrellas. Esto significa que el objeto descubierto por ALMA está pasando por una etapa muy especial de su vida, ofreciendo a los astrónomos una oportunidad única de estudiar un componente importante del Universo temprano.

El telescopio ALMA capta un explosivo nacimiento de estrellasTelescopio ALMA capta unos impresionantes "fuegos artificiales" estelares

Los datos de ALMA también indican que la nube del Petardo se encuentra bajo una presión extrema, aproximadamente 10 mil veces mayor que las típicas presiones interestelares, lo que apoya las teorías que señalan que para formar cúmulos globulares se requieren altas presiones.

Al explorar las galaxias Antena, Johnson y su equipo observaron las débiles emisiones de las moléculas de monóxido de carbono, lo que les permitió obtener imágenes y características de distintas nubes de gas y polvo. La falta de indicador térmico apreciable –revelador de la presencia de gas calentado por estrellas cercanas– confirma que este objeto recién descubierto aún se encuentra en su estado prístino, sin alteraciones.

Posteriores estudios con ALMA pueden revelar nuevos ejemplos de supercúmulos de proto-estrellas en las galaxias Antena y en otras galaxias en colisión, aportando luces sobre los orígenes de estos antiguos objetos y su función en la evolución galáctica. (Fuente: OBSERVATORIO ALMA/DICYT).

Reportaje de Prensa.

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 Sí, a pesar de la expansión de Hubble, las galaxias, de manera inexplicable, se pudieron formar. ¿Que retuvo allí la materia para hacerlo posible?

File:Cartwheel.galaxy.arp.750pix.jpg

Todavía, en pleno comienzo del siglo XXI, los cosmólogos no saben dar una explicación convincente de cómo se pudieron formar las galaxias. Lo cierto es que las galaxias no han tenido tiempo para formar cúmulos. Es posible que no consigamos llegar al entendimiento de cómo se pudieron formar las galaxias porque lo estamos mirando desde una perspectiva, o, desde un punto de vista muy estrecho. Es posible que el problema resida en que deberíamos mirar las cosas desde una escala mayor para así, poder entender cómo pudieron suceder las cosas, cómo se formaron los grandes cúmulos de galaxias.

La génesis de las galaxias individuales se podría resolver por sí misma si pudiéramos entender bien la formación de los cúmulos. La idea nos conduce naturalmente a la cuestión de cómo se pueden haber formado concentraciones tan grandes de masa al comienzo de la vida del universo. Una de las ideas más sencillas sobre cómo puede haber sido el universo cuando los átomos se estaban formando es que, no importa lo que estuviese pasando, la temperatura era la misma en todas partes. Este se llama “Modelo Isotérmico”. Corresponde a la suposición de que la radiación en los comienzos del universo estaba diseminada iniformemente, estuviera o no agrupada la materia.

Los secretos de la formación de los cúmulos de galaxiasPrimeras galaxias del Universo surgieron en forma similar a Vía Láctea |  ALMA

Simulan en vídeo la evolución de las galaxias durante 13.000 millones de  añosEl telescopio Hubble hace un extraño descubrimiento de “galaxias vacías” |  Ciencia | La República

La formación de galaxias es una de las áreas de investigación más activas de la astrofísica,  y en cierto sentido, esto también se aplica a la evolución de las galaxias. Sin embargo, hay algunas ideas que ya están ampliamente aceptadas. Actualmente, se piensa que la formación de galaxias procede directamente de las teorías de formación de estructuras,  formadas como resultado de las débiles fluctuaciones cuánticas en el despertar del Big Bang. Las simulaciones de N-cuerpos también han podido conjeturar sobre los tipos de estructuras, las morfologías y la distribución de galaxias que observamos hoy en nuestro Universo actual y, examinando las galaxias distantes, en el Universo primigenio. Nuestra Galaxia, la Vía Láctea puede contener algo más de cien mil millones de estrellas, otras más pequeñas sólo tienen mil millones y, algunas macro-galaxias pueden llegar a tener 600.000 mil millones de estrellas. Lo cierto es que hemos podido localizar galaxias situadas a más de 11.000 años-luz de la Tierra.

http://3.bp.blogspot.com/-JZweUMiOr30/TlI4XAA3e0I/AAAAAAAAAGo/JzB6D2f81IM/s1600/Choques+entre+galaxias.jpg

En ese (para nosotros) tan inconmensurable espacio de tiempo, las galaxias han tenido mucho tiempo para evolucionar y, gracias a nuestros modernos ingenios, las hemos podido localizar de todo tipo y en algunas de sus más extrañas configuraciones al fusionarse unas con otras por efecto de la Gravedad que, segú todos los indicios, es el destino que el Universo tiene adjudicado para Andrómeda y la Vía Láctea dentro de algunos miles de millones de años.

Si desarrollamos las consecuencias matemáticas del Modelo Isotérmico, podremos encontrar que los tipos de concentreaciones de masa se podrían haber formado en la infancia del universo y que, de esa manera, son muy fáciles de describir. Con la misma temperatura en todas partes, las fluctuaciones aleatorias ordinarias producirían concentraciones de masa de todos los tamaños, si quisieran encontrar una concentración del tamaño de un planeta, la habría. Lo mismo sucedería con concentraciones de masa del tamaño de estrellas y de galaxias, cúmulos, etc. En la jerga del astrofísico, las concentraciones de masa aparecerían a todas las escalas.

Así, de esa manera, la materia esparcida por todo el espacio y situada a lo largo y lo ancho de él, pudieron formar toda clase de objetos grandes y pequeños configurando galaxias que, como pequeños universos, lo contenían todo y, eran como universos en miniatura con sus mundos y estrellas y sustancia primigenia dispuesta para interaccionar con la radiación, el electromagnetismo y la Gravedad que serían responsables de la formación de nuevas estrellas y nuevas galaxias.

Claro que, el modelo isotérmico sólo podemos encontrar una solución particularmente simple del problema de las galaxias, porque las concentraciones de masa más pequeñas crecen más rápido que las más grandes. Los primeros objetos que aumentarían serían cosas relativamente pequeñas llamadas proto-galaxias, que contendrían quizá un millón de estrellas cada una. Estas proto-galaxias se agruparían luego bajo influencias de la Gravedad para formar galaxias con todas las de la ley, que se reunirían a su vez para formar cúmulos y supercúmulos. el universo en este modelo se construiría “desde abajo”

El cúmulo de galaxias Abell 1689 desvía la luz | Imagen astronomía diaria -  ObservatorioImágenes de lentes gravitacionales - Astronomía - 2021

Este cúmulo de galaxias es uno de los objetos más masivos del Universo visible. En esta fotografía de la cámara avanzada para sondeos del Telescopio Espacial Hubble, se ve como Abell 1689 curva el espacio tal como predijo la teoría de la gravedad de Einstein (las galaxias que hay detrás del cúmulo desvían la luz y producen múltiples imágenes curvadas).

Claro que, en todo esto nos encontramos con un gran inconveniente: ¡No ha habido tiempo para que ese placentero agrupamiento bajo la influencia de la Gravedad haya podido tener lugar lugar desde el momento de la creación, es decir, desde lo que entendemos por Big Bang! Sin embargo y a pesar de ello, ahí las tenemos y podemos contemplarlas en toda su belleza y esplendor pero, ¿Cómo pudieron llegar aquí? En realidad, nadie lo sabe.

Hay algunas colecciones de galaxias muy grandes y complejas en el cielo. Nos vemos forzados a concluir que el universo no puede haber tenido una temperatura constante durante el desparejamiento. Es decir, no quiero decir nada contra la existencia de las galaxias, simplemente hago notar que las galaxias no pueden existir si suponemos que la radiación estaba unida y uniformemente distribuida en la infancia del universo. Claro que:

¡Si la radiación marcha junto con la materia y la materia con las galaxias, la radiación de microondas cósmica sería contradictoria!

 

 

Si la radiación no se hubiera dispersado uniformemente, con independencia de la materia del universo, ¿?dónde hubiera estado? Siguiendo el procedimiento normal de la física teórica, consideraremos a continuación la tesis opuesta. Suponemos que en el comienzo del Universo la materia y la radiación estaban unidas. Si era así, allí donde se encontrara una concentración de masa, también habría una concentración de radiación. En la jerga de la física se dice que esta situación es “adiabática”. Aparece siempre que tienen lugar en las distribuciones del gas cambios tan rápidos que la energía no puede transferirse fácilmente de un punto al siguiente.

http://paolera.files.wordpress.com/2012/11/hst_macs0647_z11.jpg

En esta imagen obtenida con el Hubble, se observa una lejana proto-galaxia. Una proto-galaxia, es un objeto que dará una galaxia como resultado de su evolución; una galaxia naciente o en formación. Una galaxia muy lejana, es vista muy joven ya que su luz tarda en llegar a nosotros, por eso se dice que “vemos el pasado”. MACS0647-JD, es una galaxia hecha y derecha, pero tan lejana que la vemos como era hace mucho tiempo atrás. Está a 13 mil millones de años luz de casa. Como ese es el tiempo que tarda su luz en llegar a nosotros, la vemos como era hace ese tiempo atrás. Si tenemos en que el Universo se formó hace casi unos 14 mil millones de años (aproximadamente), eso convierte a este objeto en una galaxia de las primeras en formarse. Al verla como un agalaxia naciente, debería estar llena de estrellas brillantes y calientes.

Sabemos que,  para hacer galaxias, la materia del universo tuvo que estar muy bien distribuida en agregados cuando se formaron los átomos. Llamaremos a esto “darle un empukon al proceso”. Un corolario necesario es que en condiciones adiabáticas, la radiación debe de  haber comenzado siendo agrupada también.

Aquí se pretende representar el pasado y el futuro del universo que, se expandió primero de manera muy rápida, después más lenta, y de nuevo la velocidad aumentó, de manera tal que el recorrido represrenta una especie de S que nos habla del pasado y del futuro.

Entre los otros muchos procesos en marcha en aquellos primeros momentos del nacimiento del universo, en aquel tiempo, uno de los principales parámetros a tener en es el de la rápida expansión, ese proceso que ha venido a ser conocido como inflación. Es la presencia de la inflación la que nos conduce a la predicción de que el universo tiene que ser plano.

Se pudieron formar los núcleos y los átomos de la materia que se constituyeron en moléculas y cuerpos.

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; todos hemos podido ver una botella de líquido explotar si alcanzada la congelación, el contenido se expande y el recipiente no puede contenerlo. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

Claro que no es fácil explicar cómo a medida que el espacio crece debido a esa expansión, se hace más y más voluminoso cada vez y también, cada vez menos denso y más frío. Lo que realmente sorprende es la inmensa magnitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1060  longitudes de Planck. Acordáos de aquellos números que en aquel que titulé,  ¿Es viejo el Universo?, os dejaba allí expuestos unos interesantes sobre nuestro universo. Volvamos a verlos:

- La edad actual del universo visible ≈ 1060 tiempos de Planck

- Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

- La masa actual del Universo visible ≈ 1060 masas de Planck

- Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

- Densidad actual del universo visible ≈10-120 de la densidad de Planck

- Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

- Temperatura actual del Universo visible ≈ 10-30 de la Planck

La escala del Universo | La Ciencia y sus DemoniosEscala del Universo 2: los elementos del mundo a escala real - aulaPlaneta

                             La variedad

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción. Lo cierto es que, son tan grandes y tan pequeñas esos números y fracciones que, para nosotros, no tienen significación  consciente, no las podemos asimilar al tratarse, como se dice más arriba, de medidas sobrehumanas. Si un átomo aumentara en esa proporción de 1060 no tendría cabida en el Universo, el átomo sería mayor.

Hermosos GIFs del espacio y el universo - 100 imágenes animadas

                                                          Una galaxia es un universo en miniatura

Decíamos que en 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una naranja. No debe sorprendernos pues, que el inflación esté ligado a este proceso. Es cierto que cuando oímos por primera vez este proceso inflacionista, podamos tener alguna dificultad con el índice de inflación que se expone sucedió en el pasado. Nos puede llevar, en un primer momento, a la idea equivocada de que se han violado, con un crecimiento tan rápido, las reglas de Einstein que impiden viajar más veloz que la luz, y, si un cuerpo material viajó la línea de partida que señalan los 10-35 segundos aquella otra que marca la dimensión de una naranja…¡su velocidad excedió a la de la luz!

What Is Dark Energy?

Claro que la respuesta a que algo sobrepasara la velocidad de la luz, c, es sencilla: NO, nada ha sido en nuestro universo más rápido que la luz viajando, y la explicación está en el hecho cierto de que no se trata de algo pudiera ir tan rápido, sino que, por el contrario, en lugar de que un objeto material viajara por el espacio, lo que ocurrió es que fue el espacio mismo el que se infló -acordaos de la masa de pan que crece llevando las pasas como adorno-, y, , esa expansión hace que las galaxias -las pasas de la masa-, se alejen cada vez más las unas de las otras, haciendo el universo más grande y frío cada vez.

Así que, con la expansión o inflación, ningún cuerpo material se movió a grandes velocidades en el espacio, ya que, fue el espacio mismo el que creció y, de alguna manera, su tremenda expansión, incidió sobre los objetos que contenía que, de esa manera, pasaron de estar muy juntos a estar muy separados. Las reglas contra el viaje a velocidades superiores a la de la luz sólo se aplican al movimiento al movimiento dentro del espacio, no al movimiento del espacio. Así no hay contradicción, aunque a primera vista pudiera parecerlo.

Empleamos todos los medios a nuestro alcance e ideamos nuevos ingenios para poder asomarnos a las escalas más extremas del universo, con los telescopios queremos llegar las primeras galxias y, con los aceleradores de partículas nos queremos asomar a ese momento primero en el que se formó la materia.

A los cien millones de años el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro billa un quásar blancoazulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

File:Supercúmulo de Virgo.jpg

Nuestras galaxias vecinas del supercúmulo de Virgo están relativamente cerca; la expansión del Universo aún no ha tenido tiempo de alejarlas a las distancias-unas decenas de millones de años-luz a las que las encontraremos .   El Universo es aún altamente radiactivo.  Torrentes de rayos cósmicos llueven a través de nosotros en cada milisegundo, y si hay vida en ese tiempo, probablemente está en rápida mutación.

Hay algo que es conocido por el término técnico de desacoplamiento de fotones, en ese momento, la oscuridad es reemplazada por una deslumbrante luz blanca, se cree que ocurrió cuando el Universo tenía un millón de años.   El ubicuo gas cósmico en aquel momento se había enrarecido los suficientes como permitir que partículas ligeras –los fotones- atraviesen distancias grandes sin chocar con partículas de materia y ser reabsorbidas.

(Hay gran cantidad de fotones en reserva, porque el Universo es rico en partículas cargadas eléctricamente, que generan energía electromagnética, cuyo cuanto es el fotón.) Es esa gran efusión de luz, muy corrida al rojo y enrarecida por  la expansión del Universo, la que los seres humanos, miles de millones de años después, detectaran con radiotelescopios y la llamaran la radiación cósmica de fondo de microondas. Esta época de “sea la luz” tiene un importante efecto sobre la estructura de la materia.  Los electrones, aliviados del constante acoso de los fotones, son libres de establecerse en órbita alrededor de los núcleos, formando átomos de hidrógeno y de helio.

Sí, de todo eso hemos podido saber pero, cómo se pudieron formar las galaxias a pesar de la expansión del universo? ¿por qué la materia se pudo agrupar y no salió despedida y se dispersó impidiendo esa formación? Lo cierto es que nadie sabe contestar esa pregunta y, se estima, se cree, se piensa que, allí podría haber estado presente una especie de “materia” o “sustancia” cósmica que no emitía radiación y que, generando gravedad, podría haber retenido la materia de manera suficiente para que se pudieran formar las galaxias.

¡Es todo tan complejo!

emilio silvera

¡Materia – Antimateria! ¿Habrá universos de antimateria?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 File:Just your average backyard low energy anti-proton accelerator (2280414954).jpg

                                                                      Acelerador de antiprotones del CERN

 Allá por el año 2011, los medios publicaron la noticia: “El experimento Alpha del Laboratorio Europeo de Física de Partículas (CERN) ha conseguido atrapar átomos de antimateria durante más de 1.000 segundos, 16 minutos, lo que les permitirá a estudiar sus propiedades en detalle, según explicó un artículo publicado en ‘Nature Physics.

El antihidrógeno | Tecnologías de la Información y de la Comunicaciónhector on Twitter: "Cansado de ver esos átomos de hidrógeno con el electrón  a su alreadedor girando como un hula-hoop, me he creado mi propio modelo.  No es exacto pero es mejor

                   Protón y anti-protón

Para hablar de antimateria lo tenemos que hacer de antipartículas, es decir, partículas subatómicas que tienen la misma masa que otras partículas y valores iguales opuestos de otra propiedad o propiedades. Por ejemplo, la antipartícula del electrón es el positrón, que tiene una carga positiva igual en módulo a la carga negativa del electrón. El antiprotón tiene una carga negativa igual en módulo a la carga positiva del protón. El neutrón y el antineutrón tienen momentos magnéticos con signos opuestos en sus espines.

Universidad Nacional de Colombia Departamento de Física Asignatura Física  de Semiconductores Tarea No 31 Premios Nobel Profesor: Jaime Villalobos  Velasco. - ppt descargar

“Paul Dirac compartió en 1933 el Premio Nobel de Física con Erwin Schrödinger «por el descubrimiento de nuevas teorías atómicas productivas». Dirac obtuvo la cátedra Lucasiana de matemáticas de la Universidad de Cambridge donde ejerció como profesor de 1932 a 1969.

Namaste Meditacion - ECUACIÓN DE DIRAC ❤️ Ella dijo: “Dime algo bonito” Él  le dijo: (∂ + m) ψ = 0 Esta es la ecuación de Dirac, y es la más bonita

La ecuación de Dirac describe las amplitudes de probabilidad para un electrón solo. Esta teoría de una sola partícula da una predicción suficientemente buena del espín y del momento magnético del electrón, y explica la mayor parte de la estructura fina observada en las líneas espectrales atómicas.

Función de onda cuántica | Física | Khan Academy en Español - YouTube

       Función de onda cuántica de Schrödinger

“La ecuación de Schrödinger, desarrollada por el físico austríaco Erwin Schrödinger en 1925, describe la evolución temporal de una partícula subatómica masiva de naturaleza ondulatoria y no relativista. Es de importancia central en la teoría de la mecánica cuántica, donde representa para las partículas microscópicas un papel análogo a la segunda ley de Newton en la mecánica clásica. Las partículas microscópicas incluyen a las partículas elementales, tales como electrones, así como sistemas de partículas, tales como núcleos atómicos.”

Paul Adrien Maurice Dirac, considerado uno de los padres de la mecánica cuántica, a la que dio una formulación elegante y precisa, tal punto que su texto es aún utilizado hoy en día. Él predijo la existencia del Positrón, la antipartícula del Electrón. Le concedieron el Premio Nobel de Física en 1933 (compartido con su colega Erwing Schrödinger.

La existencia de antipartículas es predicha por la mecánica cuántica relativista, cuando una partícula y su correspondiente antipartícula colisionan ocurre la aniquilación. La antimateria consiste en materia hecha de antipartículas.

ANTIHIDROGENO: EN EL CAMINO PARA OBTENERLO EN REPOSO; PROFESOR Oelert  Walter – UNIVERSITAMUn misterio subatómico: ¿a dónde se fue toda la antimateria? - BBC News  Mundo

Por ejemplo, el anti-hidrógeno consiste en un antiprotón con un antielectrón (positrón) orbitando. El antihidrógeno ha sido creado artificialmente en el laboratorio. El espectro del antihidrógeno no debería ser idéntico al del hidrógeno. Parece que el Universo está formado mayoritariamente por materia (ordinaria) y la explicación de la ausencia de grandes cantidades de antimateria debe ser incorporada en modelos cosmológicos que requieren el uso de teorías de gran unificación de partículas elementales.

Los físicos del CERN han obligado a los átomos de anti-hidrógeno a quedarse, lo que potencialmente nos ofrecen una mejor visión de cómo se comporta la antimateria. Primeramente, los investigadores informaron de la captura de anti-hidrógeno, el de antimateria más simple. Pero su captura en ese momento se limitaba a de dos décimas de segundo. Ese intervalo se ha ampliado en más de 5.000 veces. En un estudio publicado el 5 de junio de 2011 en Nature Physics por este grupo de investigadores (ALFA) se informa de este mismo logro por un tiempo de 16 minutos y 40 segundos.

Por qué hay una relación entre la constante de estructura fina, las  estrellas y galaxias? - QuoraConstante de Estructura Fina | Stargazer

Constante de estructura fina. En física, las constantes son eso: Un número constante. Siempre. En cualquier lugar. Para toda la eternidad. Te muevas hacia un lado o hacia otro, gires, patalees o te revuelques. No importa cómo lo midas… es constante.

Pero de todas las constantes universales conocidas, hay una muy especial:

 

Le dicen “alfa” (α) o Constante de Estructura Fina, y tiene la particularidad de ser adimensional, es decir, no tiene unidades. Es solo un número:

Algo parecido a 1/137…

La particularidad de ésta constante es que puedes calcularla, usando otras constantes:

Tomas la velocidad de la luz, la carga de un electrón, la constante de Plank, la permisividad del vacío, el número cuatro y el número pi. Acomodas esos números de determinada manera y el resultado es un hermoso número adimensional que con toda seguridad es constante ya que está formado por otras constantes.

Lo curioso es que, aunque sea una mezcla de otras constantes, ese número tiene sentido físico real: define entre otras cosas los niveles de energía de los átomos, y puede ser determinada midiendo las franjas del espectro de luz que emiten las estrellas, o las bandas oscuras de la luz absorbida por los gases galácticos.

Energía, origen y final de materia y antimateria | Ciencia Fácil - Blogs  hoy.es

Las partículas subatómicas de materia, protones, neutrones y electrones tienen particulas homólogas de antimateria. la materia y la antimateria se juntan se aniquilan en una explosión de energía. como el átomo de hidrógeno se compone de un protón unido a un electrón, un átomo de antihidrógeno contiene un antiprotón y un positrón.

Origen del Universo: ya se conoce cuál es la cantidad precisa de materiaEstas 4 piezas de evidencia ya nos han llevado más allá del Big Bang

La Materia, aunque estamos en vías de adquirir profundos conocimientos de sus secretos, a pesar de eso, nos es aún (en ciertos aspectos) una gran desconocida, ya que, se habla de materia extraña, materia oscura o materia fértil y, luego, habrá clases de materia que ni podemos suponer, como por ejemplo, ¿Qué clase de materia será, la que se crea al morir una estrella masiva se forma un agujero negro que, por medio de la Gravedad, comprime  la materia común hasta límites tan extremos y desconocidos que desaparece de mundo nuestro y sólo deja sentir la enorme fuerza de gravedad que genera, de tal manera que en ese lugar, dejan de existir el tiempo y el espacio?

Imagen relacionada

Es tanta la ignorancia que atesoramos sobre la materia que, tapar huecos que para nosotros no tienen explicación, hablamos de cosas extrañas como la “materia oscura” que, finalmente, podría estar representada por una sustancia cósmica, o, la sustancia primigenia del Cosmos, que los clásicos griegos llamaron Ylem (la sustancia cósmica), algo que no sabemos lo que es ni de qué estar compuesta, no emite radiación y resulta invisible, y, al parecer, según nos dicen, lo único que deja “ver”  o “sentir” es la Gravedad que genera y que incide en el devenir del Universo.

 En realidad, aún no tenemos claro ni cómo pudieron formarse las galaxias a pesar de la expansión de la expansión de Hubble, ya que, según la expansión del universo la materia tendría que haberse disparado en todas las direcciones y expandiéndose hacia las lejanas regiones del Espacio que nacía. Sin embargo, algo la “agarró”, la tuvo que retener allí para que las galaxias se pudieran formar, ¿Qué clase de gravedad y por qué estaba generada la mantuvo allí?

La sustancia cósmica? ¡La semilla de la materia! : Blog de Emilio Silvera V.

¿Estaría allí presente una especie de “sustancia cósmica” o Ylem?

Claro que, el comportamiento de la materia es así por el simple hecho de que está conformada por minúsculas partículas (unas más elementales que otras) que, se rigen por el principio de la Mecánica cuántica, y, allí, amigos míos, nada de lo que ocurre está asociado a lo que nos dicta el sentido común. El micro de las partículas subatómicas es extraño y, en él se pueden dar fenómenos que no podemos llegar a comprender, o, que nos cuesta comprender. No obstante, algunos de esos fenómenos sí que han sido descubiertos por los físicos y, de esa manera, han ayudado a que conozcamos mejor el mundo en el que vivimos.

Veamos por:

Resultado de imagen de La condensación de Bose-Einstein

                                          La NASA ha creado el Conensado de Bose-Einstein

Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental explicar el fenómeno de la super-fluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se formar un condensado de Bose-Einstein, en el que varios miles de átomos forman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli no sólo a los electrones, sino a los fermiones; no a los bosones.

Resultado de imagen de La radiación sincrotrón .II. LAS MARAVILLAS DE LA LUZ

Cuando una partícula cargada se mueve a velocidades relativistas e interacciona con un campo magnético emite la denominada radiación sincrotrón. La radiación sincrotrón es la que produce una partícula cargada; por ejemplo, un electrón, gira en un campo magnético. En función de la energía del electrón, los fotones emitidos pueden tener energías de radio, de rayos X o mayores.

Resultado de imagen de El satélite FermiRADIACIÓN SINCROTRÓN

La observación del fenómeno ha sido posible gracias al satélite Fermi, especializado en rayos gamma, que con un gran telescopio conocido como LAT (Large Area Telescope, por sus siglas en inglés). su puesta en órbita, en junio de 2008, el LAT ha monitoreado la nebulosa del Cangrejo.

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo   un magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es: ¡materia! La materia es la luz, la energía, el magnetismo, en  definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas (aunque a veces no podamos verla).

                                    Sea fuere, la rotación del neutrón nos da la a esas preguntas

¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo , está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos. Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma que las partículas corrientes forman la materia ordinaria.

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un anti-deuterón. entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros anti-núcleos más complicados aún si se abordara el problema con más .”

Descubrimiento del núcleoFenómenos Nucleares Primer Semestre – IV Medio.  Comprender los procesos  de radiactividad natural.  Calcular masas atómicas promedio.   Caracterizar. - ppt descargar

¿Qué no será capaz de inventar el hombre descubrir los misterios de la naturaleza? Podemos recordar (aunque ha pasado mucho tiempo) lo que hizo Rutherford para identificar la primera partícula nuclear (la partícula Alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyen para conseguir llegar al conocimiento del átomo y del núcleo ; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los Gluones, las partículas mediadoras de la fuerza nuclear fuerte.  , ¿Qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.

¡Hablamos de tantas cosas! fluctuaciones de partículas de Higgs dadoras de masa que dicen haber encontrado en el LHC

Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de alguna actividad inusual que delate interacciones materia-antimateria.

Ciencia: Increíble Atrapan y Guardan Átomos de Antimateria en Cern – … y  Suiza en españolEl experimento ALPHA del CERN observa el color de la antimateria por  primera vez | CPAN - Centro Nacional de Física de Partículas,  Astropartículas y Nuclear

                                                              Atrapan y guardan átomos de anti-materia

38 átomos de antimateria atrapados en el Laboratorio, En el experimento Alpha desarrollado en el CERN se combinan positrones y anti-protones para producir anti-hidrógeno / NIELS MADSEN / ALPHA / SWANSEA

El 22 marzo de 2011 se produjo la creación de 18 núcleos de antihelio-4, lo que fue un hito en la física de alta energía. Una de las grandes cuestiones que crean problemas a los cosmólogos y físicos de partículas es la distribución de materia y antimateria en el universo. Ciertamente parece que la materia predomina en el cosmos, pero las apariencias pueden engañar. Puede que simplemente vivamos en un rincón del universo que parece estar dominado por la materia. Con logros este, algunos hablan ya de galaxias de antimateria. Lo cierto es que, hoy, encontramos que hay un poco de antimateria extra en nuestro rincón gracias al de la colaboración STAR en el RHIC del Laboratorio Nacional Brookhaven en los Estados Unidos.

En fin amigos, que como siempre estamos diciendo, nos queda mucho por saber sobre el comportamiento de la materia y, hasta donde ésta puede llegar con la evolución a la que está abocada por el transcurso del tiempo, las energías y el ritmo del Universo que, como sabemos, es un ritmo en el que el Tiempo, tiene un papel estelar.

Capturan átomos de antimateria durante más de 16 minutosPuede una solución al problema de Antimateria de Materia esconderse en el  bosón de Higgs?

Si tuviéramos delante de nuestros ojos átomos de materia-antimateria aumentados millones de veces, no sabríamos distinguir cuál es uno y otro, nos parecerían exactamente iguales y, sólo al juntarse y destruirse mutuamente, podríamos estar seguros de que eran dos clases de materia distintas en sus cargas e iguales, en todo lo demás.

La Materia, en cada momento, está conformada en el nivel que las muchas transiciones de fase ha producido en ella mediante los mecanismos que la Naturaleza tiene ello, y, desde luego, una porción de ella puede estar hoy formando el lecho de un rumoroso río, podría estar formando de un fértil árbol que proporciona una sabrosa fruta, o, ¿por qué no? Podría estar formando parte de un exótico agujero negro. Cualquier cosa que podamos pensar sobre la materia, en realidad es posible. Sólo se necesita tiempo para que el cambio, finalmente, se pueda producir.

Manual de laboratorio para el análisis del semenPrimeros auxilios: Desarrollo EmbrionarioMetilación del ADN - Wikipedia, la enciclopedia libre

El ADN del esperma tiene una firma’ (característica única) que sólo puede ser reconocida por un óvulo de la misma especie. Esto permite la fecundación e incluso puede explicar cómo una especie desarrolla su propia identidad genética. Cuando contemplamos que cosas así son posibles, llegamos a ser conscientes de que la materia, puede adoptar formas y evolucionar hasta niveles de inconcebibles transiciones de fase que, la lleve en un viaje maravilloso desde lo inerte hasta lo que podemos considerar vivo.

Resultado de imagen de Los robots del futuro tendrán sentimientos

En el futuro serán muchas las cosas que habrán cambiado y lo que hoy es mañana no será. ¿llegaremos a lo antinatural por el camino emprendido. No creo que eso sea posible. Sin embargo, hay aspectos de la Inteligencia Artificial que me produce escalofríos.

¿Qué seremos nosotros dentro de 10 millones de años? ¿Estaremos aún aquí? ¿En qué forma y cómo habremos evolucionado? ¿Qué cambios se habrán producido en nosotros? Y, si hemos conseguido vencer ese período de tiempo, lo que de verdad espero es que la Humanidad o lo que pueda ser en lo que se convierta, si tiene consciencia de SER desarrollada, que al menos, con los cambios y mutaciones, no pierda ese bien tan preciado que llamamos  SENTIMIENTOS aunque, para entonces, pudieran estar hechos o generados por antimateria.

¡Es todo tan complejo!

emilio silvera

¿Qué será la materia? ¿Cómo puede adoptar tantas formas?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

http://francisthemulenews.files.wordpress.com/2010/08/dibujo20100822_hoag_object_a1515_2146_hubble_space_telescope1.png

            Aunque de extraña y atípica figura, también, esta galaxia, está hecha de materia

Tiene y encierra tantos misterios la materia que estamos aún a años-luz de saber y conocer sobre su verdadera naturaleza. Es algo que vemos en sus distintas formas materiales que configuran y conforman todo lo material desde (creemos) las partículas elementales hasta las montañas y los océanos. Unas veces está en estado “inerte” y otras, se eleva hasta la vida que incluso,  en ocasiones, alcanza la consciencia de SER. Sin embargo, no acabamos de dilucidar de dónde viene su verdadero origen y que era antes de “ser” materia. ¿Existe acaso una especie de sustancia cósmica anterior a la materia? Y, si realmente existe esa sustancia… ¿Dónde está? Tenemos un Modelo plausible de la creación del Universo que nos dice de dónde surgió y cómo se formaron los primeros átomos de materia pero, sospecho que… ¡No es suficiente!

Descubren restos de la materia prima original del Universo

Con esta imagen se publicó que se habían descubiertos restos de la materia prima del universo. Sin embargo, no es mucho lo que de ello podemos asegurar y, en cualquier parte que podamos mirar nos dan más o menos, las mismas respuestas sobre lo que la materia es:

Densidad como Propiedad de la materia - Monografias.comCuáles son las propiedades generales de la materia? (Con jemplos)Materia - Concepto, propiedades, clasificación y ejemplosClase1

“Materia es todo aquello que tiene localización espacial, posee una cierta cantidad de energía, y está sujeto a cambios en el tiempo y a interacciones con aparatos de medida. En física y filosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, etc.”

En Ginebra,  los físicos en el centro de investigación CERN están logrando colisiones de alta carga energética de partículas subatómicas en su intento por recrear las condiciones inmediatamente posteriores al Big Bang con el cual (suponemos) que comenzó el Tiempo al nacer el Universo 13.700 millones de años atrás. Mucho se ha criticado al LHC y, sin embargo, es un gran paso adelante que nos posibilitará saber, como es el Universo y, nos descubrirá algunos de sus secretos. Hará posible que avancemos en el conocimiento sobre de dónde venimos, cómo el universo temprano evolucionó, cómo tienen y adquieren su masa las partículas y, algunas cosas más.

Qué es la "luz líquida" y por qué se le considera el quinto estado de la  materia - BBC News Mundo2.000 expertos se citan online en el congreso de Física de la Materia  Condensada del CSIC | MadridPress periódico digital de noticias de Madrid,  España y mundo

Lo cierto es que, adentrarse en el universo de las partículas que componen los elementos de la Tabla Periódica, y en definitiva, la materia conocida, es verdaderamente fantástico”. Esos pequeños objetos que no podemos ver, de dimensiones infinitesimales, son, en definitiva, los componentes de todo lo que contemplamos a nuestro alrededor: Las montañas, ríos, Bosques, océanos, los más exoticos animales y, hasta nosotros mismos, estamos hechos de Quarks y Leptones que, en nuestro caso, han podido evolucionar hasta llegar…¡A los pensamientos!

 

 

Resultado de imagen de Desde los Quarks hasta los pensamientosLa física cuántica revela la unión entre mente, emoción y materia | El Adán  Buenos Ayres

 

Desde los Quarks hasta los pensamientos, es decir, a partir de lo material se crea ese otro “universo” metafísico y exento de materia que, no sabemos explicar por qué, es más poderoso que lo que podemos ver y tocar. ¿de qué estarán hechos los pensamientos?

 

Estas dos familias de partículas (Quarks y Leptones) conforman todo lo que podemos ver a nuestro alrededor, la materia del Universo y, si la “materia oscura” en realidad existe, no sabemos de qué pueda estar hecha y las clases de partículas que la puedan conformar. Habrá que esperar y, de momento, hablaremos de lo que conocemos.

 

 

Protactinio | Qué es, características, yacimientos, usos, aplicaciones,  extracciónSe cumplen 94 años del hallazgo del protactinio | El Bolígrafo

 

Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Sí, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

Elementos transuranicosHallan cuatro nuevos elementos transuránidos | Vanguardia.com

                              Los transuránicos son elementos artificiales que no existen en la Naturaleza

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

¡Parece que la materia está viva!

Controlan la 'danza' de los electrones del helio

                                  A la derecha la imagen captada de la danza de los electrones del Helio

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

Joseph John Thomson físico inglés descubridor de los electrones

                  Josepth John Thomson

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

Una de las cámaras más rápidas del mundo capta movimiento de electrones

Aunque no se trata propiamente de la imagen real de un electrón, un equipo de siete científicos suecos de la Facultad de Ingeniería de la Universidad de Lund consiguieron captar en vídeo por primera vez el movimiento o la distribución energética de un electrón sobre una onda de luz, tras ser desprendido previamente del átomo correspondiente.

Captan por vez primera imágenes en tiempo real de dos átomos vibrando en  una molécula | Noticias de la Ciencia y la Tecnología (Amazings® / NCYT®)

Previamente dos físicos de la Universidad Brown habían mostrado películas de electrones que se movían a través de helio líquido en el International Symposium on Quantum Fluids and Solids del 2006. Dichas imágenes, que mostraban puntos de luz que bajaban por la pantalla fueron publicadas en línea el 31 de mayo de 2007, en el Journal of Low Temperature Physics.

En el experimento que ahora nos ocupa y dada la altísima velocidad de los electrones el equipo de investigadores ha tenido que usar una nueva tecnología que genera pulsos cortos de láserde luz intensa (“Attoseconds (Un attosegundo es una unidad de tiempo equivalente a la trillonésima parte de un segundo… 1 as = 10−18 s).

¡No por pequeño, se es insignificante! Recordémoslo, todo lo grande está hecho de cosas pequeñas.

Haga clic para mostrar el resultado de "Louis de Broglie" número 12Difracción de electrones - Wikipedia, la enciclopedia libre

Louis de Broglie y su difracción de electrones

La juventud debería ser la etapa más creativa' | Comunidad Valenciana | EL  MUNDOEfecto fotoeléctrico - Wikipedia, la enciclopedia libre

El joven Einstein y su Efecto fotoeléctrico

En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones.)

Resultado de imagen de dualidad onda corpusculo | Ondas, Particulas

Dualidad onda-partícula (o el electrón como onda en el espacio de momentos)  - La Ciencia de la Mula Francis

Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

El fotón es la partícula elemental responsable de las manifestaciones cuánticas del fenómeno electromagnético. Es la partícula portadora de todas las formas de radiación electromagnética, incluidos los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas y las ondas de radio.

El fotón tiene una masa invariante cero, y viaja en el vacío con una velocidad constante c. Como todos los cuantos, el fotón presenta tanto propiedades corpusculares como ondulatorias (“dualidad onda-corpúsculo“). Se comporta como una onda en fenómenos como la refracción que tiene lugar en una lente, o en la cancelación por interferencia destructiva de ondas reflejadas; sin embargo, se comporta como una partícula cuando interactúa con la materia para transferir una cantidad fija de energía, que viene dada por la expresión:

 

E={\frac  {hc}{\lambda }}=h\nu

donde h es la constante de Planckc es la velocidad de la luz\lambda  es la longitud de onda y \nu  la frecuencia de la onda. Esto difiere de lo que ocurre con las ondas clásicas, que pueden ganar o perder cantidades arbitrarias de energía. Para la luz visible, la energía portada por un fotón es de alrededor de 3.44×10–19 julios; esta energía es suficiente para excitar las células oculares fotosensibles y dar lugar a la visión.”

El comportamiento corpuscular de la luz: momento lineal del fotón —  Cuaderno de Cultura Científica

“En física newtoniana el momento lineal, p, también llamado cantidad de movimiento, de un cuerpo se define como el producto de la masa de ese cuerpo por su velocidad, esto es, p = m·v . De donde resulta que el momento lineal del fotón es inversamente proporcional a su longitud de onda, p = h/λ”

Además de energía, los fotones llevan también asociado un momento lineal y tienen una polarización. Siguen las leyes de la mecánica cuántica, lo que significa que a menudo estas propiedades no tienen un valor bien definido para un fotón dado. En su lugar se habla de las probabilidades de que tenga una cierta polarización, posición o momento lineal. Por ejemplo, aunque un fotón puede excitar una molécula, a menudo es imposible predecir cuál será la molécula excitada.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

Definicion De Fuerza Gravitacion - onlinecitasgoodslekla's diaryQué es la fuerza electromagnética? ⚡️ » Respuestas.tips

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

                  Joseph Weber

Jujuy Aprende en Casa - El Interferómetro de Michelson

El interferómetro funciona enviando un haz de luz que se separa en dos haces; éstos se envían en direcciones diferentes a unos espejos donde se reflejan de regreso, entonces los haces al combinarse presentarán interferencia.

Pink Crossing GIF by xponentialdesign - Find & Share on GIPHY

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

Motions of the planets put new limit on graviton mass – Physics World

El Gravitón (se supone) que es el Bosón intermediario de la fuerza de Gravedad

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es cero, su carga es cero, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones. Tenemos varios proyectos en marcha de la NASA y otros Organismos oficiales que buscan las ondas gravitatorias de los agujeros negros, de colisiones entre estrellas de neutrones y de otras fuentes análogas que, según se cree, nos hablará de “otro universo”, es decir, nos dará información desconocida hasta ahora y sabremos “ver” un universo distinto al reflejado por las ondas electromagnéticas que es el que ahora conocemos.

          ¿Espuma cuántica? Si profundizamos mucho en la materia…

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.

El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

“Una investigación ha llevado a pensar que, la materia se construye sobre fundamentos frágiles. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interior de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común. Estas dos partículas, protones y neutrones, se comportan como si en su interior, los quarks de los que están hechas ambas partículas, lucharan por escapar del confinamiento a que se ven sometidos por la fuerza nuclear fuerte por medio de los Gluones que forman un océano en el que se ven confinados sin remedio. De hecho, nunca nadie ha podido ver a un quark libre.”

Así que, si estudiamos el vacío cuántico, parece que eso permitirá a los físicos someter a prueba a la Cromo Dinámica Cuántica y buscar sus efectos más allá de la física conocida. Por ahora, los cálculos demuestran que la QCD describe partículas basadas en quarks de forma precisa, y que la mayor parte de nuestra masa viene de quarks virtuales y gluones que burbujean en el vacío cuántico.

Se cree que el campo de Higgs hace también su pequeña contribución, dando masa a los quarks individuales, así como a los electrones y a otras varias partículas. El campo de Higgs también crea masa a partir del vacío cuántico, en forma de bosones virtuales de Higgs. De modo que si el LHC confirma la existencia del bosón de Higgs (como ya hizo), eso significará que toda la realidad es virtual, es menos virtual de lo que se pensaba. No creo que hasta el momento, y, a pesar de las declaraciones salidas desde el CERN, se tenga la seguridad de haber detectado el Bosón de Higgs (creo que han faltado explicaciones),

De todo lo anterior, no podemos obtener una respuesta cierta y científicamente probada de que todo eso sea así, más bien, los resultados indican que todo eso “podría ser así”, lo que ocurre es que, los científicos, a veces se dejan llevar por las emociones. Al fin y al cabo, ellos como el común de los mortales, también son humanos.

      Ya nos gustaría saber cómo es, ese vacío cuántico y qué pasa allí

Fluctuaciones de vacío! ¿Que son? : Blog de Emilio Silvera V.

Noésis(Νόησις) — El antiparmenídeo efecto Casimir en el vacío...

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles que no se pueden eliminar de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven. Hace un par de días que hablamos de ello.

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.

No puedo dejar de referirme al vacíotheta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una funciónn de Bloch en un cristal.

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

                              ¡Es tánto lo que hay pero que no podemos ver!

Si buscamos por ahí podremos leer explicaciones como esta: “En la Teoría cuántica de campos,  el vacío cuántico (también llamado el vacío) es el estado cuántico con la menor energía posible. Generalmente no contiene partículas físicas. El término “Energía de punto cero” es usado ocasionalmente como sinónimo para el vacío cuántico de un determinado campo cuántico.

Increíble! La física descubre que en el vacío existe esta fuerza - VIX

El vacío absoluto no existe. El espacio que se puede considerar vacío porque no se aprecia materia en él, está repleto de partículas energéticas que surgen de la “nada” y vuelven a desaparecer, para repetir continuamente dicha mecánica de están y no están. ¿De dónde vienen?

De acuerdo a lo que se entiende actualmente por vacío cuántico o “estado de vacío”, este “no es desde ningún punto de vista un simple espacio vacío” , y otra vez: “es un error pensar en cualquier vacío físico como un absoluto espacio vacío.” De acuerdo con la mecánica cuántica, el vacío cuántico no está verdaderamente vacío sino que contiene ondas electromagnéticas fluctuantes y partículas que saltan adentro y fuera de la existencia.

Los planetas que orbitan una estrella ¿se mueven siempre en un plano  horizontal imaginario que atraviesa a la estrella por su ecuador? - Quora

Según las modernas teorías de las partículas elementales, el vacío es un objeto físico, se puede cargar de energía y se puede convertir en varios estados distintos. Dentro de su terminología, los físicos hablan de vacíos diferentes. El tipo de partículas elementales, su masa y sus interacciones están determinados por el vacío subyacente. La relación entre las partículas y el vacío es similar a la relación entre las ondas del sonido y la materia por la que se propagan. Los tipos de ondas y la velocidad a la que viajan varía dependiendo del material.”

Como nos dicen en este anuncio del Kybalion, nada es estático en el Universo y, todo está en continuo movimiento o vibración. Habréis oído hablar de la energía de punto cero que permanece en una sustancia en el cero absoluto (cero K). Está de acuerdo con la teoría cuántica, según la cual, una partícula oscilando con un movimiento armónico simple no tiene estado estacionario de energía cinética nula. Es más, el Principio de Incertidumbre no permite que esta partícula esté en reposo en el punto central exacto de sus oscilaciones. Del vacío surgen sin cesar partículas virtuales que desaparecen en fracciones de segundo, y, ya conocéis, por ejemplo, el Efecto Casimir en el que dos placas pueden producir energía negativa surgidas del vacío.

Efecto Casimir - Wikipedia, la enciclopedia libre

De todas las maneras, en este momento sabemos tanto de la espuma cuántica como de nuestra presencia en el Universo, es decir, nada. Todo son conjeturas, suposiciones e hipótesis que nos hacen imaginar lo que pueda existir a la distancia de Planck. Claro que  en una longitud de 10-35 metros, sí que es fácil imaginar que lo que podamos ver allí sería simplemente una especie de espuma cuántica asociada a lo que estimamos que sería la gravedad cuántica.

emilio silvera