lunes, 26 de junio del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Entenderemos alguna vez la Gravedad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Las constantes de la Naturaleza    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

Resultado de imagen de Dos nuevos estudios realizados por investigadores de Australia, Austria y Alemania han puesto en entredicho la forma en la que entendemos la física de la gravedad

 

Dos nuevos estudios realizados por investigadores de Australia, Austria y Alemania han puesto en entredicho la forma en la que entendemos la física de la gravedad. Los descubrimientos, publicados en las revistas Astrophysical Journal y Monthly Notices of the Royal Astronomical Society, se basan en observaciones de galaxias enanas satélite o galaxias más pequeñas que se encuentran en el extrarradio de la gran galaxia espiral que es la Vía Láctea.

La Ley de la gravitación universal de Newton, publicada en 1687, sirve para explicar cómo actúa la gravedad en la Tierra, por ejemplo por qué cae una manzana de un árbol. El profesor Pavel Kroupa del Instituto de Astronomía Argelander de la Universidad de Bonn (Alemania) explicó que «a pesar de que su ley describe los efectos cotidianos de la gravedad en la Tierra, las cosas que podemos ver y medir, cabe la posibilidad de que no hayamos sido capaces de comprender en absoluto las leyes físicas que rigen realmente la fuerza de la gravedad».

Resultado de imagen de Ley de <a href=Newton de la Gravedad" width="304" height="276" />

La ley de Newton ha sido puesta en entredicho por distintos cosmólogos modernos, los cuales han redactado teorías contradictorias sobre la gravitación que intentan explicar la gran cantidad de discrepancias que se dan entre las mediciones reales de los sucesos astronómicos y las predicciones basadas en los modelos teóricos. La idea de que la «materia oscura» pueda ser la responsable de estas discrepancias ha ganado muchos adeptos durante los últimos años. No obstante, no existen pruebas concluyentes de su existencia.

En esta investigación, el profesor Kroupa y varios colegas examinaron «galaxias enanas satélite», cientos de las cuales deberían existir en la cercanía de las principales galaxias, incluida la Vía Láctea, según indican los modelos teóricos. Se cree que algunas de estas galaxias menores contienen tan sólo unos pocos millares de estrellas (se estima que la Vía Láctea, por ejemplo, contiene más de 200.000 millones de estrellas).

No obstante, a día de hoy sólo se ha logrado detectar treinta de estas galaxias alrededor de la Vía Láctea. Esta situación se atribuye al hecho de que, al contener tan pocas estrellas, su luz es demasiado débil como para que podamos observarlas desde una distancia tan lejana. Lo cierto es que este estudio tan detallado ha deparado resultados sorprendentes.

«En primer lugar, hay algo extraño en su distribución», indicó el profesor Kroupa. «Estas galaxias satélite deberían estar distribuidas uniformemente alrededor de su galaxia madre, pero no es el caso.»

Resultado de imagen de Once galaxias enanas que orbitan la Vía Láctea

Los investigadores descubrieron que la totalidad de los satélites clásicos de la Vía Láctea (las once galaxias enanas más brillantes) están situados prácticamente en un mismo plano que dibuja una especie de disco. También observaron que la mayoría de estas once galaxias rotan en la misma dirección en su movimiento circular alrededor de la Vía Láctea, de forma muy similar a como lo hacen los planetas alrededor del Sol.

La explicación de los físicos a estos fenómenos es que los satélites debieron surgir de una colisión entre galaxias más jóvenes. «Los fragmentos resultantes de un acontecimiento así pueden formar galaxias enanas en rotación», explicó el Dr. Manuel Metz, también del Instituto de Astronomía Argelander. Éste añadió que «los cálculos teóricos nos indican la imposibilidad de que los satélites creados contengan materia oscura».

Estos cálculos contradicen otras observaciones del equipo. «Las estrellas contenidas en los satélites que hemos observado se mueven a mucha más velocidad que la predicha por la Ley de la gravitación universal. Si se aplica la física clásica, esto sólo puede atribuirse a la presencia de materia oscura», aseveró el Dr. Metz.

Este enigma nos indica que quizás se hayan interpretado de forma incorrecta algunos de los principios fundamentales de la física. «La única solución posible sería desechar la Ley de la gravitación de Newton», indicó el profesor Kroupa. «Probablemente habitemos un universo no Newtoniano. De ser cierto, nuestras observaciones podrían tener explicación sin necesidad de recurrir a la materia oscura

Resultado de imagen de Ley de <a href=Newton de la Gravedad" width="304" height="202" />

Hasta ahora, la Ley de la gravitación de Newton sólo ha sido modificada en tres ocasiones: para incluir los efectos de las grandes velocidades (la teoría especial de la relatividad), la proximidad de grandes masas (la teoría general de la relatividad) y las escalas subatómicas (la mecánica cuántica). Ahora, las graves inconsistencias reveladas por los datos obtenidos sobre las galaxias satélite respaldan la idea de que hay que adoptar una «dinámica newtoniana modificada» (MOND) para el espacio.

La teoría MOND, propuesta en 1981, modifica la segunda ley de la dinámica de Newton para que con ella se pueda explicar la rotación a velocidad uniforme de las galaxias, que contradice las predicciones newtonianas que afirman que la velocidad de los objetos separados del centro será menor.

Los nuevos descubrimientos poseen implicaciones de gran calado para la física fundamental y para las teorías sobre el Universo. Según el astrofísico Bob Sanders de la Universidad de Groningen (Países Bajos), «los autores de este artículo aportan argumentos contundentes. Sus resultados coinciden plenamente con lo predicho por la dinámica newtoniana modificada, pero completamente contrarios a la hipótesis de la materia oscura. No es normal encontrarse con observaciones tan concluyentes.»

Para más información, consulte:

Instituto Argelander de Astronomía:
http://www.astro.uni-bonn.de

Astrophysical Journal:
http://www.iop.org/EJ/journal/apj

Monthly Notices of the Royal Astronomical Society:
http://www.wiley.com/bw/journal.asp?ref=0035-8711

Los grandes números distintivos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Las constantes de la Naturaleza    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Si alguna de estas constantes de la Naturaleza, variaran tan sólo una millonésima, la vida no estaría presente

“En la Física existen una serie de magnitudes que contienen información que es independiente del sistema de medida que elijamos, lo cual es muy valioso no sólo en los cálculos. Además, estos parámetros que fija la naturaleza aparecen en las ecuaciones como parámetros que debemos ajustar lo más que podamos para que nuestras predicciones y nuestros modelos se ajusten a la realidad en la medida de lo posible.

Y aquí es donde viene el problema. Que son parámetros, es decir, su valor cuantitativo no es deducible de la teoría y por tanto hay que medirlo. Y esto añade la dificultad no sólo de idear un experimento, sino de hacerlo lo bastante preciso como para que el modelo sirva para algo.

El Modelo Estándar por ejemplo, que es el paradigma actual en el que se mueve la física de partículas y que recoge las interacciones fundamentales tiene unos 25 parámetros que se deben ajustar. Parámetros tales como la carga eléctrica, la masa, el espín, las constantes de acoplamiento de los campos, que miden la intensidad que éstos tienen, etcétera.

Ya no sólo se trata de averiguar el valor de cada una de ellas. Tampoco sabemos decir de antemano cuantas constantes fundamentales puede haber. Y es evidente que cuantas más constantes hay, más complicado se nos hace nuestro modelo.”

Resultado de imagen de Las constantes de la Naturaleza

Si miramos hacia atrás en el Tiempo podemos contemplar los avances que la Humanidad logró en los últimos tiempos, caigo en la cuenta de que poco a poco hemos sido capaces de identificar una colección de números mágicos y misteriosos arraigados en la regularidad de la experiencia.

¡Las constantes de la naturaleza!

Dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

Resultado de imagen de La constante de estructura fina

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la naturaleza. ¿Recordáis el 137? Ese número puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son, pero la razón de sus valores sigue siendo un secreto profundamente escondido.

Buscar esos secretos ocultos implica que necesitamos desentrañar la teoría más profunda de todas y la más fundamental de las leyes de la naturaleza: descubrir si las constantes de la naturaleza que las definen están determinadas y conformadas por alguna consistencia lógica superior o si, por el contrario, sigue existiendo un papel para el azar.

Si estudiamos atentamente las constantes de la naturaleza nos encontramos con una situación muy peculiar. Mientras parece que ciertas constantes estuvieran fijadas, otras tienen espacio para ser distintas de las que son, y algunas no parecen afectadas por ninguna otra cosa del ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­- o en el – universo.

¿Llegaron estos valores al azar?

¿Podrían ser realmente distintos?

¿Cuán diferentes podrían ser para seguir albergando la existencia de seres vivos en el universo?

En 1.986, el libro The Anthropic Cosmological Principle exploraba las diez maneras conocidas en que la vida en el universo era sensible a los valores de las constantes universales. Universos con constantes ligeramente alteradas nacerían muertos, privados del potencial para desarrollar y sostener la complejidad que llamamos vida.

En la literatura científica puede encontrarse todo tipo de coincidencias numéricas que involucran a los valores de las constantes de la naturaleza. He aquí algunas de las fórmulas propuestas (ninguna tomada en serio) para la constante  de estructura fina.

Valor experimental: 1/α = 137’035989561…

  • Lewis y Adams: 1/α = 8π (8π5 / 15)1/3 = 137’384
  • Eddington: 1/α = (162 – 16) / 2 + 16 – 1 = 137
  • Wiler: 1/α = (8π4 / 9)(245! / π5)1/4 = 137’036082
  • Aspden y Eagles: 1/α = 108π (8 / 1.843)1/6 = 137’035915

 

 

 

Resultado de imagen de La Teoría M

 

 

Por supuesto, si la teoría M da al fin con una determinación del valor de 1/α podría parecerse perfectamente a una de estas fórmulas especulativas. Sin embargo ofrecería un amplio y constante edificio teórico del que seguiría la predicción.

También tendría que haber, o mejor, que hacer, algunas predicciones de cosas que todavía no hemos medido; por ejemplo, las siguientes cifras decimales de 1/α, que los futuros experimentadores podrían buscar y comprobar con medios más adelantados que los que ahora tenemos, a todas luces insuficientes en tecnología y potencia.

Todos estos ejercicios de juegos mentales numéricos se acercan de manera impresionante al valor obtenido experimentalmente, pero el premio para el ingeniero persistente le corresponde a Gary Adamson, cuya muestra de 137-logía se mostraron en numerosas publicaciones.

Estos ejemplos tienen al menos la virtud de surgir de algún intento de formular una teoría de electromagnetismo y partículas. Pero hay también matemáticos “puros” que buscan cualquier combinación de potencias de números pequeños y constantes matemáticas importantes, como π, que se aproxime al requerido 137’035989561… He aquí algún ejemplo de este tipo.

  • Robertson: 1/α = 2-19/4 310/3 517/4 π-2 = 137’03594
  • Burger: 1/α = (1372 + π2)1/2 = 137’0360157

 

 

 

Unidades naturales que no inventó el hombre

 

Ni siquiera el gran físico teórico Werner Heisenberg pudo resistirse a la ironía o irónica sospecha de que…

“En cuanto al valor numérico, supongo que 1/α = 24 33 / π, pero por supuesto es una broma.”

Arthur Eddington, uno de los más grandes astrofísicos del siglo XX y una notable combinación de lo profundo y lo fantástico, más que cualquier figura moderna, fue el responsable impulsor de poner en marcha los inacabables intentos de explicar las constantes de la naturaleza mediante auténticas proezas de numerología pura. Él también advirtió un aspecto nuevo y especular de las constantes de la naturaleza.

“He tenido una visión muy extraña, he tenido un sueño; supera el ingenio del hombre decir qué sueño era. El hombre no es más que un asno cuando tiene que exponer este sueño. Se llamará el sueño del fondo, porque no tiene fondo.”

A. S. Eddington

 

“El conservadurismo recela del pensamiento, porque el pensamiento en general lleva a conclusiones erróneas, a menos que uno piense muy, muy intensamente.”

Roger Scruton

 

 

Todo lo que existe… ¡Tiene una explicación!

 

Hay que prestar atención a las coincidencias. Uno de los aspectos más sorprendentes en el estudio del universo astronómico durante el siglo XX, ha sido el papel desempeñado por la coincidencia: que existiera, que fuera despreciada y que fuera recogida. Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y a explorar y explorar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de unirlas.

Entró en escena Arthur Eddington; un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de la galaxia, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de verificar, en una prueba decisiva durante un eclipse de Sol, la veracidad de la teoría de Einstein en cuanto a que el campo gravitatorio del Sol debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segmentos de arco cuando pasaba cerca de la superficie solar, y así resultó.

Resultado de imagen de El número de Eddington

La imagen fue tomada en Leiden en el año 1923, y, aparecen de izquierda a derecha Einstein, P. Ehrenfest, W. de Sitter, A. Eddington y H. Lorentz

“Arthur Eddington creyó en las teorías de Einstein desde el principio, y fueron sus datos tomados durante el eclipse solar de 1919 los que dieron la prueba experimental de la teoría general de la relatividad. La amplia cobertura informativa de los resultados de Eddington llevó a la teoría de la relatividad, y al propio Einstein, a unos niveles de fama sin precedentes.

Arthur Eddington está considerado uno de los más importantes astrónomos ingleses del siglo XX. Se especializó en la interpretación de las observaciones de los movimientos de las estrellas en el Observatorio de Greenwich. En 1913, fue uno de los primeros científicos no alemanes en entrar en contacto con las primeras versiones de la teoría general de la relatividad, e inmediatamente se convirtió en un declarado partidario.”

( http://www.experientiadocet.com)

 

 

Resultado de imagen de El número de Eddington

Albert Einstein y Arthur Stanley Eddington se conocieron y se hicieron amigos. Se conservan fotos de los dos juntos conversando sentados en un banco en el jardín de Eddington en el año 1.930, donde fueron fotografiados por la hermana del dueño de la casa.

Aunque Eddington era un hombre tímido con pocas dotes para hablar en público, sabía escribir de forma muy bella, y sus metáforas y analogías aún las utilizan los astrónomos que buscan explicaciones gráficas a ideas complicadas. Nunca se casó y vivió en el observatorio de Cambridge, donde su hermana cuidaba de él y de su anciana madre.

Eddington creía que a partir del pensamiento puro sería posible deducir leyes y constantes de la naturaleza y predecir la existencia en el universo de cosas como estrellas y galaxias. ¡Se está saliendo con la suya!

Entre los números de Eddington, uno lo consideró importante y lo denominó “número de Eddington”, que es igual al número de protones del universo visible. Eddington calculó (a mano) este número enorme y de enorme precisión en un crucero trasatlántico concluyendo con esta memorable afirmación.

Resultado de imagen de El número de Eddington

“Creo que en el universo hay

15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296

protones y el mismo número de electrones.”

 

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080. Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente.

Durante la década de 1.920, cuando Eddington empezó su búsqueda para explicar las constantes de la naturaleza, no se conocían bien las fuerzas débil y fuerte, y las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la gravedad y las fuerzas electromagnéticas.

No siempre sabemos valorar la grandeza a la que puede llegar la mente humana: “… puedan haber accedido a ese mundo mágico de la Naturaleza para saber ver primero y desentrañar después, esos números puros y adimensionales …”

Eddington las dispuso en tres grupos o tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y del electrón:

mp / me ≈ 1.840

La inversa de la constante de estructura fina:

2πhc / e2 ≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón:

e2 / Gmpme ≈ 1040

A éstas unió o añadió su número cosmológico, NEdd ≈ 1080.

¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran Número [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día.

Eddington a  estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafío de la ciencia teórica.

“¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física demostrará que alguna o todas ellas pueden ser prescindibles?

¿Podrían haber sido diferentes de los que realmente son?”

 

De momento, con certeza nadie ha podido contestar a estas dos preguntas que, como tantas otras, están a la espera de esa Gran Teoría Unificada del Todo, que por fin nos brinde las respuestas tan esperadas y buscadas por todos los grandes físicos del mundo. ¡Es todo tan complejo! ¿Acaso es sencillo y no sabemos verlo? Seguramente un poco de ambas cosas; no será tan complejo, pero nuestras mentes aún no están preparadas para ver su simple belleza. Una cosa es segura, la verdad está ahí, esperándonos.

Para poder ver con claridad no necesitamos gafas, sino evolución. Hace falta alguien que, como Einstein hace 100 años, venga con nuevas ideas y revolucione el mundo de la física que, a comienzos del siglo XXI, está necesitada de un nuevo y gran impulso. ¿Quién será el elegido? Por mi parte me da igual quién pueda ser, pero que venga pronto. Quiero ser testigo de los grandes acontecimientos que se avecinan, la teoría de supercuerdas y mucho más.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Aquí cada día, elegimos una cuestión distinta que se relaciona, de alguna manera, con la ciencia que está repartida en niveles del saber denominados: Matemáticas, Física, Química,Astronomía, Astrofísica, Biología, Cosmología… y, de vez en cuando, nos preguntamos por el misterio de la vida, el poder de nuestras mentes evolucionadas y hasta dónde podremos llegar en nuestro camino, y, repasamos hechos del pretérito que nos trajeron hasta aquí. Bueno, de hecho, también especulamos con eso que llamamos futuro, y, nos preguntamos si estamos haciendo bien las cosas para evitar que, podamos crear alguna especie artificial que nos esclavice.

info

Algunos postulan que el Universo surgió de la nada, y, desde luego, la Nada, como la Eternidad o la Infinito, ¡no existen! Tengo claro que, si surgió… ¡Es porque había! Hablamos de una singularidad, un punto de densidad y energías infinitas de donde pudo surgir todo lo que existe, le llamamos Big Ban y, al menos por el momento, es el Modelo más aceptado. Sin embargo, seguros seguros de que así sea… ¡No lo podemos estar! Existen muchas incognitas y preguntas sin contestar sobre ese supuesto suceso que… más de diez millones de años más tarde, nos trajo hasta aquí.

Lo que sucede primero, no es necesariamente el principio. Antes de ese “Principio”, suceden algunas cosas que nosotros no hemos podido o sabido percibir. Sin embargo, hay cosas que no cambian nunca. Hace tiempo, los sucesos que constituían historias eran las irregularidades de la experiencia. Sabemos que lo que no cambia son las Constantes de la Naturaleza pero, tampoco cambia el Amor de una madre por un hijo, la salida y la puesta del Sol, nuestra curiosidad, y otras muchas cosas que conviven con nosotros en lo cotidiano.

                                                                    Hay cosas en la Naturaleza que son inmutables

Poco a poco, los científicos llegaron a apreciar el misterio de la regularidad y lo predecible del mundo. Pese a la concatenación de movimientos caóticos e impredecibles de átomos y moléculas, nuestra experiencia cotidiana es la de un mundo que posee una profunda consistencia y continuidad. Nuestra búsqueda de la fuente de dicha consistencia atendía primero a las leyes de la Naturaleza que son las que gobiernan como cambian las cosas. Sin embargo, y al mismo tiempo, hemos llegado a identificar una colección de números misteriosos arraigados en la regularidad de la apariencia. Son las Constantes de la Naturaleza que, como la carga y la masa del electrón o la velocidad de la luz, le dan al Universo un carácter distintivo y lo singulariza de otros que podríamos imaginar. Todo esto, unifica de una vez nuestro máximo conocimiento y también, nuestra infinita ignorancia.

http://extremisimo.com/wp-content/uploads/2009/09/swift-m31.jpg

                              En esta galaxia también  están presentes las constantes de la Naturaleza

Esos números misteriosos (el valor de esas constantes fundamentales), son medidos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invariancia. Sin embargo, no podemos explicar sus valores. ¿Por qué la constante de estructura fina vale 1/137? Nadie puede contestar a esa “simple” pregunta. Sabemos que ahí, en esa constante, están involucrados los tres guarismos h, e, y c. El primero es la constante de Planck (la mecánica cuántica), el segundo el Electrón (el electromagnetismo), y, el tercero, la velocidad de la luz (la relatividad especial de Eisntein).

A pesar del cambio incesante y la dinámica del mundo visible, existen aspectos misteriosos del ritmo del Universo que son inquebrantables en su constancia, así lo podemos comprobar en la fuerza gravitatoria o en la velocidad de la luz en el vacío entre otros. Son estas misteriosas cosas invariables las que hacen de nuestro Universo el que es y lo distingue de otros muchos que pudiéramos imaginar. Existe un hilo invisble que teje incesante una continuidad a lo largo y a lo ancho de toda la Naturaleza: Algunas cosas cambian para que todo siga igual.

 Mira, la estrella cometa

Allí lejos, en esos otros mundos que, situados en galaxias lejanas son parecidos al nuestro, seguramente también, pasarán las mismas cosas que aquí.

En regiones lejanas del Universo, por muy extrañas que nos pudieran parecer, también estarían regidas por las mismas constantes de la Naturaleza que en la nuestra, el Sistema solar. Esas constantes están presentes en todas partes y, al igual que las cuatro fuerzas fundamentales, disponen que todo transcurra como debe ser.

Así que, tomando como patrón universal esas constantes, podemos esperar que ciertas cosas sean iguales en otros lugares del espacio además de la Tierra, lo único que in situ, conocemos. Hasta donde nuestros conocimientos han llegado también parece razonable pensar que dichas constantes fueron y serán las mismas en otros tiempos además de hoy, ya que, para algunas cosas, ni la historia ni la geografía importan. De hecho, quizá sin un substrato semejante de realidades invariables no podrían existir corrientes superficiales de cambio ni ninguna complejidad de mente y materia. Todos sabemos, por ejemplo que, si la carga del electrón variara aunque sólo fuese una diez millonésima parte de la que es, la vida no podría existir.

                       Esas constantes hacen posible nuestra presencia aquí

La invariancia de las constantes hace posible que nuestro Universo contenga las maravillas que podemos en él observar. Sin embargo, a lo largo de la historia muchos se han empeñado en hacerlas cambiar…pero no lo consiguieron. No pocas veces tenemos que leer en la prensa o revistas “especializadas” noticas como estas:

“Nueva evidencia sostiene que los seres humanos vivimos en un área del Universo que está hecha especialmente para nuestra existencia. ¿Según los cientificos? Esto es lo que más se aproxima a la realidad. El controversial hallazgo se obtuvo observando una de las constantes de la naturaleza, la cual parece ser diferente en distintas partes del cosmos.”

 

Desde luego, no estoy muy conforme con esto, ya que, si es verdad que nosotros no podríamos vivir junto a un Agujero negro gigante, que por otra parte, no deja de ser un objeto singular que se sale de lo corriente. La normalidad son estrellas y planetas que, en las adecuadas circunstancias, tendrán las mismas cosas que aquí podemos observar mirando al Sol y los planetas que lo circundan, donde unos podrán contener la vida y otros no, dado que la presencia de una atmósfera y agua líquida determina lo que en ellos pueda estar presente.

 

El problema de si las constantes físicas son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias conceptuales. Lo primero, uno de los pilares fundamentales de la relatividad especial es el postulado de que las leyes de la física son las mismas con independencia del observador. Esto fue una generalización de lo que ya se sabía cuando se comenzó a estudiar el campo electromagnético, pero todo lo que sabemos en la actualidad nos lleva a concluir que Lo que ocurra en la Naturaleza del Universo está en el destino de la propia Naturaleza del Cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismos sometidos a principios y energías que, en la mayoría de los casos, se pueden escapar a nuestro actual conocimiento.

 

Los posibles futuros de nuestro universo

 

Yo aconsejaría a los observadores que informaron y realizaron “el estudio” (que se menciona más arriba) que prestaran más atención o que cambiaran los aparatos e instrumentos de los que se valieron para llevarlo a cabo, toda vez que hacer tal afirmación, además de osados, se les podría calificar de incompetentes.

De estar en lo cierto, tal informe se opondría al principio de equivalencia de Albert Einstein, el cual postula que las leyes de la física son las mismas en cualquier región del Universo. “Este descubrimiento fue una gran sorpresa para todos”, dice John Webb, de la Universidad de New South Wales, en Sidney (Australia ), líder del estudio que sigue diciendo: Aún más sorprendente es el hecho de que el cambio en la constante parece tener una orientación, creando una “dirección preferente”, o eje, a través del Universo. Esa idea fue rechazada más de 100 años atrás con la formulación de la teoría de la relatividad de Einstein que, de momento, no ha podido ser derrocada (aunque muchos lo intentaron).

profesor diseño grafico, profesor diseño web, curso illustrator, curso photoshop, curso dreamweaver, diseno grafico, diseño web

                                Los autores de tal “estudio” se empeñaron en decir que:

“La Tierra se ubica en alguna parte del medio de los extremos, según la constante “alpha”. Si esto es correcto, explicaría por qué dicha constante parece tener un valor sutilmente sintonizado que permite la química, y por lo tanto la vida, como la conocemos.

Con un aumento de 4% al valor de “alpha”, por ejemplo, las estrellas no podrían producir carbón, haciendo nuestra bioquímica imposible, según información de New Scientist.”

 

Siendo cierto que una pequeña variación de Alfa, no ya el 4%, sino una simple diezmillonésima, la vida no podría existir en el Universo. Está claro que algunos, no se paran a la hora de adquirir una efímera notoriedad, ya que, finalmente, prevalecerá la verdad de la invariancia de las constantes que, a lo largo de la historia de la Física y la Cosmología, muchas veces han tratado de hacerlas cambiantes a lo largo del tiempo, y, sin embargo, ahí permanecen con su inamovible estabilidad.

Veamos por encima, algunas constantes:

La Constante de Gravitación Universal: G

La primera constante fundamental es G, la que ponemos delante de la fórmula de la gravedad de Newton. Es una simple constante de proporcionalidad pero tambien ajusta magnitudes: se expresa en N*m2/Kg2.

G = (6{,}67428\pm 0{,}00067) \cdot 10^{-11}~\mathrm{\frac{m^3}{kg \cdot s^2}}

Es tal vez la constante peor medida (sólo se está seguro de las tres primeras cifras…), y como vemos la fuerza de la gravedad es muy débil (si no fuera porque siempre es atractiva ni la sentiríamos).

La Constante Electrica: K

                                             No confundir con la constante K de Bolzman para termodinamica y gases…

La ley de Coulom es practicamente igual a la de la gravitación de Newton, si sustituimos las masas por las cargas, es inversa al cuadrado de la distancia y tiene una constante de proporcionalidad llamada K.  La constante es la de de Coulomb y su valor para unidades del SI es K = 9 * 109Nm2C2

La velocidad de la luz c = 299.792.458 m/s y se suele aproximar por 3·10^8m/s

Según la teoría de la relatividad de Einstein, ninguna información puede viajar a mayor velocidad que la luz. Científicos australianos afirman, sin embargo, haber desarrollado las fórmulas que describen viajes más allá de este límite. ¡Será por soñar!

Que la velocidad de la luz es una constante se comprobó hasta la saciedad en diversos experimentos, como el famoso experimento Michelson-Morley que determinó mediante un interferómetro que la velocidad de la luz no dependía de la velocidad del objeto que la emitía, esto descartó de golpe la suposición de que hubiera un “eter” o sustancia necesaria por la que se propagara la luz.

En su lugar aparecieron las famosas transformaciones de Lorentz. La contracción de Lorentz explicaba el resultado del experimento. La rapidez constante de la luz es uno de los postulados fundamentales (junto con el principio de causalidad y la equivalencia de los marcos de inercia) de la Teoría de la Relatividad Especial.

Así que, amigos míos, esas cantidades conservarán su significado natural mientras la ley de gravitación y la de la propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos. A tal respecto Max Planck solía decir:

“Por lo tanto, al tratarse de números naturales que no inventaron los hombres, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos” .

 

 

 

 

En sus palabras finales alude a la idea de observadores situados en otros lugares del Universo que definen y entienden esas cantidades de la misma manera que nosotros, sin importar que aparatos o matemáticas pudieran emplear para realizar sus comprobaciones.

Estaba claro que Planck apelaba a la existencia de constantes universales de la Naturaleza como prueba de una realidad física completamente diferente de las mentes humanas. Pero él quería ir mucho más lejos y utilizaba la existencia de estas constantes contra los filósofos positivistas que presentaban la ciencia como una construcción enteramente humana: puntos precisos organizados de una forma conveniente por una teoría que con el tiempo sería reemplazada por otra mejor. Claro que Planck reconocía que la inteligencia humana, al leer la naturaleza había desarrolado teorías y ecuaciones para poder denotarlas pero, sin embargo, en lo relativo a las constantes de la naturaleza, éstas habían surgido sin ser invitadas y, como mostraban claramente sus unidades naturales (unidades de Planck) no estaban escogidas exclusivamente por la conveniencia humana.

 

La velocidad de c incide en todo el universo

Las constantes de la Naturaleza inciden en todos nosotros y, sus efectos, están presentes en nuestras mentes que, sin ellas, no podrían funcionar de la manera creadora e imaginativa que lo hacen. Ellas le dan el ritmo al Universo y hacen posible que todo transcurra como debe transcurrir.

Es curioso comprobar que, una de las paradojas de nuestro estudio del Universo circundante es que a medida que las descripciones de su funcionamiento se hacen más precisas y acertadas, también se alejan cada vez más de toda la experiencia humana que, al estar reducidas a un ámbito muy local y macroscópico, no puede ver lo que ocurre en el Universo en su conjunto y, por supuesto, tampoco en ese otro “universo” de lo infinitesimal que nos define la mecánica cuántica en el que, cuando nos acercamos, podemos observar cosas que parecen fuera de nuestro mundo, aunque en realidad, sí que están aquí.

 

La revolución de la mecánica cuántica empieza a materializarse, y el qubit es el principal protagonista. Siendo la unidad mínima de información de este extraño mundo, permitirá procesar toda la información existente en segundos. La revolución de la mecánica cuántica empieza a materializarse, y el qubit es el principal protagonista. Siendo la unidad mínima de información de este extraño mundo, permitirá procesar toda la información existente en segundos.


No podemos descartar la idea de que, en realidad, puedan existir “seres también infinitesimales” que, en sus “pequeños mundos” vean transcurrir el tiempo como lo hacemos nosotros aquí en la Tierra. En ese “universo” especial que el ojo no puede ver, podrían existir otros mundos y otros seres que, como nosotros, desarrollan allí sus vidas y su tiempo que, aunque también se rigen por las invariantes constantes universales, para ellos, por su pequeñez, el espacio y el tiempo tendrán otros significados. Si pensamos por un momento lo que nosotros y nuestro planeta significamos en el contexto del inmenso universo… ¿No viene a suponer algo así?

Einstein nos dejó dichas muchas cosas interesantes sobre las constantes de la Naturaleza en sus diferentes trabajos. Fue su genio e intuición sobre la teoría de la relatividad especial la que dotó a la velocidad de la luz en el vacío del status especial como máxima velocidad a la que puede transmitirse información en el Universo. El supo revelar todo el alcance de lo que Planck y Stoney simplemente habían supuesto: que la velocidad de la luz era una de las constantes sobrehumanas fundamentales de la Naturaleza.

 

La luz se expande por nuestro Universo de manera isotrópica, es decir, se expande por igual en todas las direcciones. Así actúan las estrellas que emiten su luz o la bombilla de una habitación. Cuando es anisotrópica, es decir que sólo se expande en una dirección, tendríamos que pensar, por ejemplo, en el foco de un teatro que sólo alumbra a la pianista que nos deleita con una sonata de Bach.

                                         La luz de las estrellas: Podemos ver como se expande por igual en todas las direcciones del espacio (Isotrópica)

Claro que, cuando hablamos de las constantes, se podría decir que algunas son más constantes que otras. La constante de Boltzmann es una de ellas, es en realidad una constante aparente que surje de nuestro hábito de medir las cosas en unidades. Es sólo un factor de conversión de unidades de energía y temperatura. Las verdaderas constantes tienen que ser números puros y no cantidades con “dimensiones”, como una velocidad, una masa o una longitud.

Las cantidades con dimensiones siempre cambian sus valores numéricos si cambiamos las unidades en las que se expresan.

                                                     Las constantes fundamentales determinan el por qué, en nuestro Universo, las cosas son como las observamos.

Y, a todo esto, la teoría cuántica y de la Gravitación gobiernan reinos muy diferentes que tienen poca ocasión para relacionarse entre sí. Mientras la una está situada en el mundo infinitesimal, la otra, reina en el macrocosmos “infinito” del inmenso Universo. Sin embargo, las fuerzas que rigen en el mundo de los átomos son mucho más potentes que las que están presentes en ese otro mundo de lo muy grande. ¡Qué paradoja!

¿Dónde están los límites de la teoría cuántica y los de la relatividad general? Somos afortunados al tener la respuesta a mano, Las unidades de Planck nos dan la respuesta a esa pregunta:

Supongamos que tomamos toda la masa del Universo visible y determinamos la longitud de onda cuántica. Podemos preguntarnos en que momento esa longitud de onda cuántica del Universo visible superará su tamaño. La respuesta es: Cuando el Universo sea más pequeño que la longitud de Planck (10-33 centímetros), más joven que el Tiempo de Planck (10-43 segundos) y supere la Temperatura de Planck (1032 grados). Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender a qué se parece el mundo a una escala menor que la Longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la Gravedad.

El satélite Planck un observatorio que explora el universo lleva el mismo nombre del fundador de la teoría cuántica será pura coincidencia?. Credito: ESA. La Gravedad cuántica queda aún muy lejos de nuestro entendimiento.

La Relatividad General la teoría de Einstein de la gravedad, nos da una base útil para matemáticamente modelar el universo a gran escala -, mientras que la Teoría Cuántica nos da una base útil para el modelado de la física de las partículas subatómicas y la probabilidad de pequeña escala, de la física de alta densidad de energía de los inicios del universo – nanosegundos después del Big Bang – en la cuál la relatividad general sólo la modela como una singularidad y no tiene nada más que decir sobre el asunto.

Las teorías de la Gravedad Cuántica pueden tener más que decir, al extender la relatividad general dentro de una estructura cuantizada del espacio tiempo puede ser que nosotros podamos salvar la brecha existente entre la física de gran escala y de pequeña escala, al utilizar por ejemplo la Relatividad Especial Doble o Deformada.

    ¡Es tanto lo que nos queda por saber!

El día que se profundice y sepamos leer todos los mensajes subyacentes en el número puro y adimensional 137, ese día, como nos decía Heinsemberg, se habrán secado todas las fuentes de nuestra ignorancia. Ahí, en el 137, Alfa (α) Constante de estructura Fina, residen los secretos de la Relatividad Especial, la Velocidad de la Luz, c, el misterio del electromagnetismo, el electrón, e, y, la Mecánica Cuántica, es decir el cuanto de acción de Planck, h.

emilio silvera

¿Podría ser el valor de G decreciente?

Autor por Emilio Silvera    ~    Archivo Clasificado en Las constantes de la Naturaleza    ~    Comentarios Comments (13)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando, en este contexto se menciona G, nos estamos refiriendo a la constante universal de la gravitación y, al menos para mí, es inconcebible que dicha constante pueda variar con el tiempo. La Gravedad es una fuerza de la Naturaleza que hace posible que nuestro universo sea tal como lo podemos observar. Las galaxias, los cúmulos y supercúmulos, pequeñas y grandes estructuras que están afectadas por la gravedad que, de alguna manera, es la responsable de la geometría del universo, es la que conforma el ser del espacio y, en algunos cqasos extremos, también del tiempo.

La fuerza gravitatoria que se produce en presencia de masas… ¡No parece variar!


Nadie ha sabido responder a la pregunta de si las constantes de la naturaleza son realmente constantes o llegará un momento en que comience su transformación. Hay que tener en que para nosotros, la escala del tiempo que podríamos considerar muy grande, en la escala de tiempo del universo podría ser ínfima. El universo, por lo que sabemos, tiene 13.700 millones de años. Antes que nosotros, el reinado sobre el planeta correspondía a los dinosaurios, amos y señores durante 150 millones de años, hace ahora de ello 65 millones de años.  Mucho después, hace apenas 2 millones de años, aparecieron nuestros antepasados directos que, después de una serie de cambios evolutivos desembocó en lo que somos hoy.

 

Mucho tiempo ha pasado que esta imagen era el presente, y, sin embargo, para el Universo supone una ínfima fracción marcada por el Tic Tac cósmico de las estrellas y galaxias que conforman la materia de la que provenimos. Es un gran misterio para nosotros que sean las estrellas las que fabrican los materiales que, más tarde, llegan a conformar a seres vivos que, en algunos caso, tienen consciencia.

 

“La ciencia no puede resolver el misterio final de la Naturaleza.  Y esto se debe a que, en el último análisis, nosotros somos del misterio que estamos tratando de resolver”.

Max Planck

De acuerdo con su perspectiva universal, en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que ahora lleva el de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Se conocen las Unidades de Planck.

Planck con sus unidades nos llevo al extremo de lo pequeño

Mp = (hc/G)½ = 5’56 × 10-5 gramos
Lp = (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032      ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales sean medidas por las inteligencias más diversas con los métodos más diversos.”

 

 

 

Planck, en sus palabras finales alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros, ya que, al ser números naturales que no inventaron los hombres, todos los seres inteligentes del Universo  tendrían que hallar el mismo resultado. No importa en qué planeta pudieran habitar, si son seres inteligentes, empleando los grafos más extraños que a nosotros nada nos pudiera decir, lo cierto es que hay un lenguaje universal: ¡Las matemáticas! que, independientemente de los guarismos empleados, al final de todo 2 x 5 = 10 y 2 + 2 + 2 + 2 + = 10. Empleen las ecuaciones o fórmulas que puedan con los números que puedan utilizar, no podrán variar los resultados de los números puros y adimensionales creados por la Naturaleza: Esas constantes que persisten en el tiempo y nunca cambian y que hacen de nuestro universo el que podemos observar, además de posible la vida. A esos extraterrestres, también, la constante de estructura fina le daría 1/137.

“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” Nos decía Planck. Su intuición le llevaba a comprender que, con el paso del tiempo, nosotros estaríamos adquiriendo por medio de pequeñas mutaciones, más amplitud en nuestros sentidos, de manera tal que, sin que nos diéramos nos estábamos acercando más y más al mundo real.

 

En 1970 los físicos D. Buraham y D. Weinberg se encontraron con un fenómeno curioso proyectaban la luz de un láser sobre un cristal de borato de calcio o de bario. Observaron que al aumentar la intensidad del láser, además del potente haz que atravesaba el cristal que se veía al otro lado, aparecía un tenue halo de luz con los colores del arco iris alrededor del haz transmitido. Habían descubierto la “subconversión paramétrica”.
El cristal convierte, de vez en , un fotón ultravioleta del láser en dos fotones de menor energía, uno polarizado verticalmente (sobre el cono rojo) y otro horizontalmente (sobre el cono azul). Si consideramos las intersecciones (puntos de color verde) no estarán polarizados ni verticalmente ni horizontalmente, sino que tendrán una “polarización indefinida” y habremos obtenido un estado que sólo tiene explicación en física cuántica. Se dice que dichos fotones están “entrelazados”.
Visto frontalmente sería así.
                Entrelazamiento cuántico

Una de las paradojas de nuestro estudio del universo circundante es que a medida que las descripciones de su funcionamiento se hacen más precisas y acertadas, también se alejan vez más de toda la experiencia humana.Nuestros sentidos nos traicionan y nos hacen ver, a través de nuestras mentes, un mundo distinto al real, es decir, nosotros configuramos nuestra propia “realidad” de esa otra realidad verdadera que está presente en la Naturaleza y que no siempre podemos contemplar y, cuando llegamos a contemplarla, no llegamos a comprenderla… del todo.

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

                                                                                                      Grandes cúmulos de galaxias

La identificación de constantes adimensionales de la naturaleza  α (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Todos los físicos del mundo, sin excepción, deberían tener en el lugar más prominente de sus casas, un letrero con un número: 137. Así les recorfdaría lo que no sabemos. Dentro de ese número puro adimensional están escondidos los secretos del electromagnetismo (e), del cuanto de acción de Planck (h), es decir, la mecánica cuántica, y, también, la misteriosa y fantástica relatividad (c), la velocidad de la luz. Para los científicos de un mundo remoto, perdido en una galaxia en los confines del universo, sin importar qué signos pudieran emplear para hallar la respuesta, al final de sus estudios, tambhién a ellos, les surgiría el número 137, la constante de estrucutra fina que tantos secretos esconde.

Lo único que en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

                                             Extraños mundos que pudieran ser

Después llegó Dirac (el que predijo la existencia del positrón) y, por una serie de números y teorías propuestas  Eddintong en aquellos tiempos, decidió abandonar la constancia de la constante de gravitación de Newton, G. Sugirió que estaba decreciendo en proporción directa a la edad del universo en escalas de tiempo cósmicas. Es decir, la Gravedad en el pasado era mucho más potente y se debilitaba con el paso del tiempo.

Así pues, en el pasado G era mayor y en el futuro será menor que lo que mide hoy. veremos que  la enorme magnitud de los tres grandes números (1040, 1080 y 10120) es una consecuencia de la gran edad del universo: todas aumentan con el paso del tiempo.

La propuesta de Dirac provocó un revuelo entre un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, pero escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.

 

“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.

 

La propuesta de Dirac levantó controversias entre los físicos, y Edward Teller en 1.948, demostró que si en el pasado la gravedad hubiera sido como dice Dirac, la emisión de la energía del Sol habría cambiado y la Tierra habría mucho más caliente en el pasado de lo que se suponía normalmente, los océanos habrían estado hirviendo en la era precámbrica, hace doscientos o trescientos millones de años, y la vida tal como la conocemos no habría sobrevivido, pese a que la evidencia geológica entonces disponible demostraba que la vida había existido hace al menos quinientos millones de años.

                              George Gamow

Edward Teller

                               Edward Teller

El eufórico George Gamow era buen amigo de Teller y respondió al problema del océano hirviente sugiriendo que podía paliarse si se suponía que las coincidencias propuestas por Dirac eran debidas a una variación temporal en e, la carga del electrón, con e2 aumentando con el tiempo requiere la ecuación.

Por desgracia, la propuesta de Gamow de una e variable tenía todo de consecuencias inaceptables para la vida sobre la Tierra. Pronto se advirtió que la sugerencia de Gamow hubiera dado como resultado que el Sol habría agotado hace tiempo todo su combustible nuclear, no estaría brillando hoy si e2 crece en proporción a la edad del universo. Su valor en el pasado demasiado pequeño habría impedido que se formaran estrellas como el Sol. Las consecuencias de haber comprimido antes su combustible nuclear, el hidrógeno, hubiera sido la de convertirse primero en gigante roja y después en enana blanca y, por el camino, en el proceso, los mares y océanos de la Tierra se habrían evaporado y la vida habría desaparecido de la faz del planeta.

Gamow tuvo varias discusiones con Dirac sobre estas variantes de su hipótesis de G variable. Dirac dio una interesante respuesta a Gamow con respecto a su idea de la carga del electrón, y con ello la constante de estructura fina, pudiera estar variando.

Recordando sin duda la creencia inicial de Eddington en que la constante de estructura fina era un racional, escribe a Gamow en 1.961 hablándole de las consecuencias cosmológicas de su variación con el logaritmo de la edad del universo.

“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, pero los experimentadores dicen que no es un entero, de modo que bien podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad también estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión ella y los neutrinos, pero esto ha fracasado.”

File:Orbital s1.png

 

 

En mecánica cuántica, el comportamiento de un electrón en un átomo se describe por un orbital, que es una distribución de probabilidad más que una órbita. En la figura, el sombreado indica la probabilidad relativa de «encontrar» el electrón en punto cuando se tiene la energía correspondiente a los números cuánticos dados. Pensemos que si la carga del electrón variara, aunque sólo fuese una diezmillonésima , los átomos no se podrían constituir, las moléculas consecuentemente tampoco y, por ende, ni la materia… ¡Tampoco nosotros estaríamos aquí! ¡Es tan importante el electrón!

Dirac no iba a suscribir una e variable fácilmente, como solución al problema de los grandes números. Precisamente, su científico más importante había hecho comprensible la estructura de los átomos y el comportamiento del electrón, y dijo que existía el positrón. Todo ello basado en la hipótesis, compartida por casi todos, de que e era una verdadera constante, la misma en todo tiempo y todo lugar en el universo, un electrón y su carga negativa eran exactas en la Tierra y en el más  alejado planeta de la más alejada estrella de la galaxia Andrómeda. Así que Gamow pronto abandonó la teoría de la e variable y concluyo que:

“El valor de e se mantiene en pie el Peñón de Gibraltar durante los últimos 6×109 años.”

 

 

 

                         El Peñón de Gibraltar, tan familiar e inamovible decía Dirac

Pero lo que está claro es que, ocurre siempre en ciencia, la propuesta de Dirac levantó una gran controversia que llevó a cientos de físicos a realizar pruebas y buscar más a fondo en el problema, lo que dio lugar a nuevos detalles importantes sobre el tema.

Alain Turing, pionero de la criptografía, estaba fascinado por la idea de la gravedad variable de Dirac, y especuló sobre la posibilidad de probar la idea a partir de la evidencia fósil, preguntando si “un paleontólogo podría decir, a partir de la huella de un animal extinto, si su peso era el que se suponía”.

El gran biólogo J.B.S. Haldane se sintió también atraído por las posibles consecuencias biológicas de las teorías cosmológicas en que las “constantes” tradicionales cambian con el paso del tiempo o donde los procesos gravitatorios se despliegan de acuerdo con un reloj cósmico diferente del de los procesos atómicos (¿será precisamente por eso que la relatividad general – el cosmos –, no se lleva con la mecánica cuántica – el átomo –?).

Tales universos de dos tiempos habían sido propuestos por Milne y fueron las primeras sugerencias de que G podría no ser constante. Unos procesos, la desintegración radiactiva o los ritmos de interacción molecular, podrían ser constantes sobre una escala de tiempo pero significativamente variables con respecto a la otra. Esto daba lugar a un escenario en el que la bioquímica que sustentaba la vida sólo se hacía posible después de una particular época cósmica, Haldane sugiere que:

“Hubo, de hecho, un momento en el que se hizo posible por primera vez vida de cualquier tipo, y las formas superiores de vida sólo pueden haberse hecho posibles en una posterior.  Análogamente, un cambio en las propiedades de la materia puede explicar algunas de las peculiaridades de la geología precámbrica.”

Este imaginativo escenario no es diferente del que se conoce como “equilibrio interrumpido”, en el que la evolución ocurre en una sucesión discontinua de brotes acelerados entre los que se intercalan largos periodos de cambio lento. Sin embargo, Haldane ofrece una explicación para los cambios.

Lo que tienen en común todas estas respuestas a las ideas de Eddington y Dirac es una apreciación creciente de que las constantes de la naturaleza desempeñan un papel cosmológico vital:

Existe un lazo entre la estructura del universo en conjunto y las locales internas que se necesitan para que la vida se desarrolle y persista. Si las constantes tradicionales varían, entonces las teorías astronómicas tienen grandes consecuencias para la biología, la geología y la propia vida.

No podemos descartar la idea ni abandonar la posibilidad de que algunas “constantes” tradicionales de la naturaleza pudieran estar variando muy lentamente el transcurso de los miles de millones de años de la historia del universo. Es comprensible por tanto el interés por los grandes números que incluyen las constantes de la naturaleza. Recordemos que Newton nos trajo su teoría de la Gravedad Universal, que más tarde mejora Einstein y que, no sería extraño, en el futuro mejorará algún otro con una nueva teoría más completa y ambiciosa que explique lo grande (el cosmos) y lo pequeño (el átomo), las partículas (la materia) y la energía por interacción de las cuatro fuerzas fundamentales.

¿Será la teoría de Supercuerdas ese futuro?

emilio silvera

La Naturaleza y sus secretos que tratamos de desvelar

Autor por Emilio Silvera    ~    Archivo Clasificado en Las constantes de la Naturaleza    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                                                                  No, el Universo no es infinito pero… ¡Nos lo parece!

Hay que prestar atención a las coincidencias. Uno de los aspectos más sorprendentes en el estudio del Universo astronómico durante el siglo xx ha sido el papel desempeñado por la coincidencia: que existiera, que fuera despreciada y que fuera reconocida. Cuando los físicos empezaron a apreciar el papel de los constantes en el dominio cuántico y a explorar y explotar la nueva teoría de la Gravedad de Einstein para describir el Universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de unirlas.

Entró en escena Arthur Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de la galaxia, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de revificar, en una prueba decisiva, durante un eclipse de Sol, la veracidad de la teoría de Einstein en cuanto a que el campo gravitatorio del Sol debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1,75 segundos de arco cuando pasaba cerca de la superficie solar, y así resulto.

                    Einstein y Eddintong en el jardin de la casa de éste último

Albert Einstein y Arthur Stanley Eddington, se conocieron y se hicieron amigos. Se conservan fotos de los dos juntos conversando sentados en un banco del jardín de Eddington en el año 1.939, don se fueron fotografiados por la hermana del dueño de la casa.

Aunque Eddington era un hombre tímido con pocas dotes para hablar en público, sabía escribir de forma muy bella, y sus metáforas y analogías aún las utilizan los astrónomos que buscan explicaciones gráficas a ideas complicadas.

Eddington creía que a partir del pensamiento puro sería posible deducir leyes y constantes de la Naturaleza y predecir la existencia en el Universo de cosas como estrellas y Galaxias. ¡Se está saliendo con la suya! Entre los números de Eddington que él consideraba importante y que se denomino “numero de Eddington”, que es igual al número de protones del Universo visible. Eddington calculó (amano) este número enorme y de enorme precisión en un crucero trasatlántico (ya lo he contado otras veces), concluyendo con esta memorable afirmación:

“Creo que en el Universo hay

15.747.724.136.275.002.577.605.653.968.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296

protones y el mismo número de electrones.”

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080. Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente. En el Universo existen grandes números que lo definen y la Ciencia ha sabido dar con ellos para poder comprender mejor.

Durante la década de 1.920, cuándo Eddington empezó su búsqueda para explicar las constantes de la Naturaleza, no se conocían bien las fuerzas débil y fuerte de la Naturaleza, y las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la Gravedad y las fuerzas electromagnéticas.

“El Número adimensional es un número que no tiene unidades físicas que lo definan y por lo tanto es un número puro. Los números adimensionales se definen como productos o cocientes de cantidades que sí tienen unidades de tal forma que todas éstas se simplifican. Dependiendo de su valor estos números tiene un significado físico que caracteriza unas determinadas propiedades para algunos sistemas.”

Eddington las dispuso en tres grupos o tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y electrón:

mpr/me 1840

la inversa de la constante de estructura fina:

2phc/e2≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón;

22/Gmpr me 1040

A estas añadió su número cosmológico:

 N Edd ≈ 1080

A estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafió de la ciencia teórica: ¿Son estas cuatro constantes irreducibles, o una unificación posterior de la Física demostrará que alguna o todas ellas pueden ser prescindibles ? ¿Podrían haber sido diferentes de lo que realmente son?

De momento con certeza, nadie ha podido contestar a estas dos preguntas que, como tantas otras, están a la espera de esa Gran teoría Unificada del Todo que, por fín, nos brinde las respuestas tan esperadas y buscadas por todos los grandes físicos del mundo.

Según parece, el Tiempo que afecta a la vida de los seres vivos y de las cosas compuestas de materia -nada permanece y todo cambia-, están situadas en un plano distinto al que ocupan esas otras “cosas” que llamamos ¡constantes universales! y que son, las responsables de que nuestro mundo, nuestro universo,  sea como es. Son aquellos parámetros que no cambian a lo largo del universo: La carga del electrón, la masa del protón, la velocidad de la luz en el vacío, la constante de Planck, la constante gravitacional y también la magnética, o, la constante de estructura fina. Se piensa que son todas ellas ejemplos de constantes fundamentales de la Naturaleza.

Poco a poco, los científicos llegaron a apreciar el misterio de la regularidad y lo predecible del mundo. Pese a la concatenación de movimientos caóticos e impredecibles de átomos y moléculas, nuestra experiencia cotidiana es la de un mundo que posee una profunda consistencia y continuidad. Nuestra búsqueda de la fuente de dicha consistencia atendía primero a las leyes de la Naturaleza que son las que gobiernan como cambian las cosas. Sin embargo, y al mismo tiempo, hemos llegado a identificar una colección de números misteriosos arraigados en la regularidad de la apariencia. Son las Constantes de la Naturaleza que, como las que antes hemos relacionado dan al Universo un carácter distintivo y lo singulariza de otros que podríamos imaginar. Todo esto, unifica de una vez nuestro máximo conocimiento y también, nuestra infinita ignorancia.

            La fuerza de la Gravedad es una constante que se deja notar

¡Es todo tan complejo!

 ¿Acaso es sencillo y no sabemos verlo? Seguramente, un poco de ambas cosas. Pudiera ser que, ni todo sea tan complejo y que, nuestras mentes, aún no están preparadas para ver la simple belleza que subyace en todas las cosas del Universo, de la Naturaleza que, cuando al fin las podemos comprender, a veces, incluso nos sorprendemos de la sencillez con la que el “mundo” se expresa. Una cosa es segura, la verdad está ahí, esperándonos.

Por ejemplo: Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón crea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz. Pudimos llegar a discernir eso y mucho más haciendo que la comprensión se abriera paso en nuestras mentes que, no por ello, dejaron de teorizar y de imaginar como sería el Universo y las reglas que lo rigen.

“La creciente distancia entre la imaginación del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”

El mundo que nosotros percibimos es “nuestro mundo”, el verdero es diferente, y,  como nos dice Planck en la oración entrecomillada arriba, cada vez estamos más cerca de la realidad, a la que, aunque no nos pueden llevar nuestros sentidos, si no llevarán la intuición, la imaginación y el intelecto.

Está claro que la existencia de unas constantes de la Naturaleza nos dice que sí, que existe una realidad física completamente diferente a las realidades que la Mente Humana pueda imaginar. La existencia de esas constantes inmutables dejan en mal lugar a los filósofos positivistas que nos presentan la ciencia como una construcción enteramente humana: puntos precisos organizados de una forma conveniente por una teoría que con el tiempo será reemplazada por otra mejor, más precisa. Claro que, tales pensamientosm quedan fuera de lugar cuando sabemos por haberlo descubierto que las constantes de la naturaleza han surgido sin que nosotros las hallamos invitado y ellas se muestran como entidades naturales que no han sido escogidas por conveniencia humana.

 unsw_white_dwarf

 

 

Físicos de la University of New Wales (UNSW) tienen una teoría cuando menos controvertida, y es la de que la constante de estructura fina, α (alpha), en realidad no es constante. Y estudian los alrededores de una enana blanca lejana, con una gravedad más de 30.000 veces mayor que la de la tierra, para comprobar su hipótesis.

En 1999 un equipo de físicos anunció la detección de variaciones en el valor de α. Ahora, otro grupo de la misma universidad están usando el Telescopio Espacial Hubble para observar una enana blanca con el objeto de medir α con gran precisión. El argumento es que se cree que los exóticos campos de energía escalar podrían alterar el valor de α en lugares donde existe un intenso campo gravitatorio. Estos campos de energía escalar son campos que aparecen en teorías que combinan el Modelo Estándar de la Fisica de Partículas, con la Teoría de la Relatividad General de Einstein.

Todos los procesos de la Naturaleza, requieren su tiempo. Todo pasa cuando tiene que pasar. Esta escala temporal está controlada por el hecho de que las constantes fundamentales de la naturaleza sean:

 

t(estrellas) ≈ (Gmp2 / hc)-1 h/mpc2 ≈ 1040 ×10-23 segundos ≈

≈ 10.000 millones de años

No esperaríamos estar observando el universo en tiempos significativamente mayores que t(estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el universo en tiempos mucho menores que t(estrellas) porque no podríamos existir; no había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t(estrellas) desde el Big Bang.

Porque eso es así es por lo que tenemos que pensar que posibles civilizaciones extraterrestres presentes en otros mundos, habrán llegado aquí (al universo), casi al mismo tiempo que nosotros y, seguramente, sus recorridos serán los mismos o muy parecidos a los nuestros desde que pudieron surgir a partir de la “materia inerte” y evolucionar para generar pensamientos adquiriendo la consciencia de Ser.

En la imagen de arriba de una Nebulosa planetaria, contemplamos la escena de una estrella moribunda que fue necesaria para que, los materiales biológicos que nos conformaron a los seres vivos, pudieran estar presentes en el Universo. Sin ese tiempo de t(estrellas) = a 10.000 millones de años, difícilmente podríamos estar ahora aquí tratando de estos temas.

emilio silvera