martes, 19 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nada muere… ¡Simplemente cambia y se transforma!

Autor por Emilio Silvera    ~    Archivo Clasificado en ese misterio    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo! : Blog de Emilio  Silvera V.

Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo! “Con el paso de los Eones, hasta la misma muerte tendrá que morir”. Nada permanece, comienza siendo una cosa y finaliza siendo otra.

agujeros negros binarios ¿La oirémos algún día?
              2018 agosto 21 : Blog de Emilio Silvera V.
         
Resultado de imagen de La casualidad quiso que la órbita de la Estación Espacial Internacional pasara por encima de la isla rusa de Matua
Resultado de imagen de La casualidad quiso que la órbita de la Estación Espacial Internacional pasara por encima de la isla rusa de Matua

 

 

Resultado de imagen de La casualidad quiso que la órbita de la Estación Espacial Internacional pasara por encima de la isla rusa de Matua

 

La casualidad quiso que la órbita de la Estación Espacial Internacional pasara por encima de la isla rusa de Matua, hev een el archipiélago de las Kuriles, instantes después de que el estratos volcánicos en erupción. Las imágenes que fueron tomando  los astronautas desde 350 Km de altura son impresionantes:

 

Resultado de imagen de La casualidad quiso que la órbita de la Estación Espacial Internacional pasara por encima de la isla rusa de MatuaResultado de imagen de La casualidad quiso que la órbita de la Estación Espacial Internacional pasara por encima de la isla rusa de MatuaImagen relacionadaImagen relacionada

 

El Caos y la destrucción que nos puede dar la variedad de colores, olores y sabores que junto con la belleza destruida o construida cambiará el paisaje del lugar donde puedan ocurrir acontecimientos como este que observan los tripulantes de la Estación Espacial Internacional, como bien se dice, desde su privilegiada atalaya.

Resultado de imagen de La grandiosidad de los volcanesResultado de imagen de La grandiosidad de los volcanesResultado de imagen de La grandiosidad de los volcanesResultado de imagen de La grandiosidad de los volcanes

Los volcanes han existido desde los inicios de la Tierra hace 4.500 millones de años. Si bien las erupciones volcánicas pueden destruir la flora y la fauna en su entorno, la lava enriquece el suelo con variados minerales. La mayor parte de los volcanes están situados a lo largo de los límites activos de las placas continentales. Los volcanes submarinos se hallan en regiones donde tienen lugar nueva formación de corteza terrestre, como en la dorsal oceánica. Estos volcanes pueden formar islas.

Los volcanes terrestres se encuentran, por lo general, en zonas de subducción, que se hallan especialmente en el Océano Pacifico. Los volcanes situados en las regiones costeras están distribuidos como una “sarta de perlas” y constituyen el anillo de fuego del Pacífico., en el que se encuentran más del 80% de los volcanes actuales. Además, los “puntos calientes” donde la fusión interna de la corteza crea magma, producen volcanes que son independientes de las placas continentales y sus limites. Un ejemplo de de este grupo lo constituyen los volcanes de Hawaii.

Flowing kilauea volcan GIF en GIFER - de ThorielLos Volcanes : Blog de Emilio Silvera V.

Los volcanes se alimentan de las cámaras magmáticas, una especie de bolsas de rocas fundidas, a más de 1 km bajo la corteza terrestre. Si la presión en la cámara sobrepasa un determinado nivel (que es que parece que ha ocurrido en el de la imagen), el magma asciende por fisuras y grietas y forma una chimenea volcánica.

En el interior de esas montañas están activos materiales en forma de gases, líquidos y sólidos, todo a altas temperatura y presión. Cuando se producen las explosiones las zonas circundantes son bombardeadas con materiales y enterradas bajo una gruesa capa de ceniza en poco tiempo. Es la erupción denominada piroclástica (como la ocurrida en el año 79 a.C. que sepultó la ciudad de Pompeya bajo una capa de cenizas de 25 cm. de espesor) y los materiales pueden llegar a formar una nube piroplástica de 1.000 Cº de temperatura que puede desplazarse a 1.000 Km/h.

                      Volcanes exposicion final (2) | PPT

Estas nubes lanzan tanta ceniza que cubren por completo la atmósfera, no deja pasar el Sol, y, la flora y la fauna lo sienten hasta tal punto que, a veces se ha provocado la extinción de especies.

Hay diferentes tipos de explosiones volcánicas y en cada una de ellas se producen diferentes acontecimientos pero, como sólo se trata de dejar una leve y sencilla reseña de lo que estamos viendo en la imagen, creo que con la explicación dada queda bien.

Hasta hace muy poco no podía predecir este tipo de fenómenos naturales y, la gente que vivía en poblaciones situadas cercas de las laderas volcánicas estaban en peligro auque raramente, se producían erupciones espontáneas sin avisos previos como los terremotos, los volcanes y sus actividades son controladas por sismógrafos.

lagos, lagunas, viajes

Los cráteres volcánicos, como parece ser el caso, están frecuentemente llenos de agua de lluvia y freáticas, formando lagos. Suele ocurrir que, tras una erupción volcánica, sean destruidos miles de kilómetros cuadrados de terreno a su alrededor y cambien por completo la orografía de la zona. Parece imposible pensar que la Naturaleza pueda recuperarse tras un acontecimiento de este tipo, sin embargo, las primeras muestras de vida vegetal aparecen a unos escasos tres meses del acontecimiento en los campos cubiertos por las cenizas ricas en minerales. Poco tiempo después, vuelven los animales y la vida, se reanuda, como si allí, nada hubiese pasado.

       Plantación de plataneras afectada por una colada del volcán de La Palma.

  “Hacia más de tres meses que la erupción del volcán de La Palma se dio por finalizada. Durante los 85 días que estuvo activo, afectó a 370 hectáreas de cultivos en la zona oeste de la isla: más del 60% eran plataneras; 18% viñas y 7% aguacates. Los municipios de Los Llanos de Aridane y Tazacorte fueron los más afectados. La lava sepultó terrenos que suponían el principal modo de vida para muchos palmeros y palmeras, de forma directa o indirecta. Y las tierras que sobrevivieron al paso de la lava han quedado aisladas o muy afectadas por la ceniza, llevando a agricultores a tener que tomar la decisión de arrancar sus cultivos y volver a sembrar, lo que alarga el periodo de espera hasta obtener frutos.”

Así es la Naturaleza, y, como tantas veces se dijo aquí, algo se destruye para que algo surja a la vida. ¿Esperanza después de la muerte?

emilio silvera

2.015 ha sido nombrado el Año Internacional de la Luz

Autor por Emilio Silvera    ~    Archivo Clasificado en ese misterio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sabemos que la luz es una forma de radiación electromagnética a la que el ojo humano es sensible y sobre la cual dependen nuestra consciencia visual del universo y sus contenidos.

La velocidad de la luz al propagarse a través de la materia es menor que a través del vacío y depende de las propiedades dieléctricas del medio y de la energía de la luz. La relación entre la velocidad de la luz en el vacío y en un medio se denomina índice de refracción del medio:  {\displaystyle n={\frac {c}{v}}}

 

 

La línea amarilla muestra el tiempo que tarda la luz en recorrer el espacio entre la Tierra y la Luna, alrededor de 1,26 segundos. (Wikipedia)
Dependiendo del medio en el que se mueve, desarrolla una velocidad u otra, aunque siempre nos viene a la mente su velocidad en el vacío de 299.792,458 metros por segundo que es el límite impuesto por nuestro universo para que algo se mueva, nada puede alcanzar más de esa velocidad, ya que, a medida que el objeto se acerca a ese límite, su masa aumenta, es decir, la energía de iniercia se convierte en masa como lo predice la Teoría de la Relatividad Especial.
Se denomina con el nombre de efecto fotoeléctrico a la emisión de electrones por un metal al ser irradiado con radiación electromagnética. Einstein construyó este trabajo inspirado por uno anterior de Max Planc, en el que decía que la radiación de cuerpo negro se hacia mediante paquetes discretos que él llamó cuantos y, más tarde Einstein llevando la idea un poco más lejos, demostró que no sólo los objetos calientes radian, sino que todos lo hace y a esos pequeños paquetes los llamó fotones.
El efecto fotoeléctricoconsiste en la emisión de electrones por un material al incidir sobre él una radiación electromagnética (luz visible o ultravioleta), en general). A veces se incluyen en el término otros tipos de interacción entre la luz y la materia
Resultado de imagen de 1905 el año de Einstein
En 1905, el mismo año que descubrió su teoría de la relatividad especial, Albert Einstein propuso una descripción matemática de este fenómeno que parecía funcionar correctamente y en la que la emisión de electrones era producida por la absorción de cuantos de luz que más tarde serían llamados fotones. En un artículo titulado “Un punto de vista heurístico sobre la producción y transformación de la luz” mostró como la idea de partículas discretas de luz podía explicar el efecto fotoeléctrico y la presencia de una frecuencia característica para cada material por debajo de la cual no se producía ningún efecto. Por esta explicación del efecto fotoeléctrico Einstein recibiría eñ Premio Nobel de Física en 1921.
Científicos consiguen congelar la luz y hacerla sólida. Al menos así ha sido publicado en distintos medios

Los fotones, las partículas de las que está hecha la luz, no se comportan como muchas otras partículas porque no tienen masa. Esto hace que no interaccionen entre ellas y por tanto no se unan unas a otras para formar elementos mayores y más complejos, como sí hacen otras partículas fundamentales.

Sin embargo, en los últimos años varios equipos científicos de todo el mundo han logrado jugar con esta característica y, de alguna forma, burlarla, deteniendo la luz y congelándola, convirtiéndola en un sólido. Se trata de un fenómeno que nos recuerda a las películas de ciencia ficción (piensen en los sables láser de La guerra de las galaxias), pero en cuyo conocimiento los investigadores avanzan cada día más. Los últimos, un equipo de la Universidad de Princeton que ha logrado convertir la luz en cristal, según sus conclusiones.

Nos interesa explorar, y eventualmente controlar y dirigir, los flujos de energía a nivel atómico. Lo han conseguido interconectando fotones, las partículas elementales de la luz, de forma que se quedasen fijos en un lugar como si estuviesen congelados. Los resultados de sus experimentos podrían servir para desarrollar nuevos y exóticos metamateriales, además de ayudar a avanzar en el conocimiento sobre el estudio fundamental de la materia.

“Es algo que nadie había visto antes, un nuevo comportamiento de la luz”, explica Andrew Houck, profesor asociado de ingeniería eléctrica y uno de los investigadores. “Nos interesa explorar, y eventualmente controlar y dirigir, los flujos de energía a niver atómico”, dice Hakan Türeci, uno de los miembros del equipo.

Para lograrlo, construyeron una estructura hecha de materiales superconductores con más de cien mil millones de átomos ensamblados para funcionar como uno solo y la situaron junto a un cable superconductor por el que transitaban fotones. Esos fotones, debido a mecanismos propios de la física cuántica, adoptaron algunas de las propiedades del átomo, como por ejemplo las interacciones entre ellos, algo que normalmente no ocurre con los fotones. Así, el equipo logró que fluyesen como si fuesen parte de un líquido o que se congelasen como si fuesen un cristal sólido.

Los científicos han estudiado el comportamiento de la luz durante años, que a veces corresponde al de una onda y otras al de una partícula. Con este experimento, han podido inventarle uno nuevo. “Hemos provocado una situación en la que la luz se comporta efectivamente como una partícula, en el sentido de que dos fotones pueden interaccionar con fuerza. En un momento oscila de delante hacia atrás como si fuera un líquido, y en otro directamente se congela”, explica Türeci.

Los ordenadores actuales no ‘entienden’ la física cuántica

Esta investigación es parte del esfuerzo que científicos de todo el mundo están poniendo para intentar responder algunas preguntas fundamentales del comportamiento de las partículas subatómicas, cuestiones que no es posible contestar ni siquiera utilizando los ordenadores más potentes de los que disponemos hoy en día.

Es como resolver preguntas sobre aerodinámica observando un modelo de aeroplano en un túnel de viento, es decir, a través de una simulación física en vez de con cálculos digitalesLos equipos de computación con los que trabajan los científicos no sirven porque funcionan siguiendo la mecánica tradicional, que describe cómo es el mundo de los objetos cotidianos en una escala muy amplia, desde los planetas hasta los átomos y moléculas. Pero el mundo de los fotones y otras partículas de tamaño inferior al átomo funciona siguiendo las reglas de la mecánica cuántica, que incluye propiedades en apariencia imposibles e incomprensibles, como por ejemplo que varias partículas estén relacionadas en cuanto a su comportamiento a pesar de estar distanciadas por cientos de kilómetros.

Cuando los ordenadores cuánticos lleguen, habremos dado otro inmenso salto hacia el futuro.

Esa diferencia en cuanto a sus características limita la capacidad de los ordenadores de trabajar con estos componentes subatómicos. Simplemente, no puede calcular qué harán ante unos u otros estímulos. De forma que la comunidad científica lleva tiempo intentando crear un nuevo tipo de ordenador basado en las normas de la física cuántica, con el convencimiento de que así podrán responder a muchas de las preguntas que les intrigan de esta rama del conocimiento. Para crear esa nueva computadora, sin embargo, hace falta tiempo y profundizar en la investigación de estos fenómenos, creándose así un círculo que retrasa las respuestas.

Otra corriente dentro del estudio de la física cuántica, dentro de la que se enmarca el trabajo de los científicos de Princeton, apuesta por dejar de lado los ordenadores y desarrollar nuevas herramientas que imiten el comportamiento de las subpartículas. El inconveniente es que estas herramientas tendrán una utilidad más limitada que la de un ordenador cuántico, pero la ventaja está en que en teoría podrán crearse sin necesidad de responder previamente a cuestiones más complejas y avanzadas.

“Es como resolver preguntas sobre aerodinámica observando un modelo de aeroplano en un túnel de viento, es decir, a través de una simulación física en vez de con cálculos digitales”, explica una entrada en el blog Scienceblog.

En este caso, la herramienta desarrollada es muy pequeña y sus posibilidades son limitadas, pero los investigadores confían en poder ampliarla, así como aumentar el número de interacciones entre fotones, aumentando su capacidad de simular situaciones complejas. En el futuro esperan poder observar la luz en estados aún más extraños, como por ejemplo un superfluido o un aislante.”

Cuando sepamos lo que es la luz… ¡Sabremos lo que es el Universo… y, también nosotros! Porque, al fin y al cabo, ¿No somos luz?

emilio silvera

No es Oro, todo lo que reluce

Autor por Emilio Silvera    ~    Archivo Clasificado en ese misterio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de El Bosón de Higgs
          El Bosón de Higgs, la partícula que ¿dá masa al resto de las partículas…

Reportaje de Prensa

 

 

La partícula del siglo se desvanece

 

Los indicios de algo más importante que el bosón de Higgs resultan ser un espejismo estadístico

Interior del detector ATLAS. CERN / QUALITY

Después de ocho meses de experimentos, publicaciones, teorías y rumores, la misteriosa partícula entrevista el invierno pasado se ha esfumado. Los responsables de los principales experimentos del acelerador de partículas más grande del mundo, el LHC, confirmaron ayer que no se ha podido confirmar la existencia de ese “higgs pesado” que se asomó a sus detectores en diciembre de 2015.

Detector CMS del LHC, en Ginebra

 

 

Habría sido un descubrimiento histórico, mucho más importante que el del bosón de Higgs

El anuncio se hizo durante la ICHEP 2016, la mayor conferencia anual de física de partículas, que se celebra estos días en Chicago (EE UU). Los resultados de los dos grandes detectores, ATLAS y CMS, incluyen un año completo de datos en los que el LHC ha funcionado al doble de potencia. Muchos físicos esperaban que esta nueva remesa de experimentos permitiría descubrir nueva física, fenómenos que se salen del modelo estándar que describe, por ahora a la perfección, los quarks, bosones y el resto de partículas fundamentales que componen la materia.

La partícula del siglo se desvanece. Los indicios de algo más importante que el bosón de Higgs resultan ser un espejismo estadístico

La partícula que apareció en diciembre era un bosón de unos 750 gigaelectronvoltios, seis veces más masa que el bosón de Higgs. Lo más interesante es que se salía del modelo estándar y por lo tanto podía ser la primera señal de todo un nuevo territorio de la física descrito por teorías aún por confirmar, como la supersimetría. Sería un descubrimiento histórico, mucho más importante que el del bosón de Higgs, por todos los enigmas sobre el universo que permitiría investigar.

Los resultados acumulados por el detector CMS, filtrados en la noche del jueves, han apagado la hoguera: ya no hay ni rastro de los indicios observados en diciembre. La partícula soñada no era más que una fluctuación estadística.

¿Por qué los dos experimentos vieron exactamente los mismos indicios de una nueva partícula y justo con la misma masa? La respuesta de los científicos ayer fue que en estadística, como en el resto del universo, también hay extrañas coincidencias que no significan nada.

Noticias

Nebulosas Planetarias y estrellas enanas blancas

Autor por Emilio Silvera    ~    Archivo Clasificado en ese misterio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 File:Ngc2392.jpg

    

                                  NGC 2392 es una nebulosa planetaria en la constelación de Gérminis

En la imagen de arriba contemplamos la Nebulosa del Esquimal o del Payaso, NGC 2392, que forma un conjunto vistoso. Por su curiosa apariencia, que recuerda a la cara de una persona rodeada por una capucha, recibe también los nombres de Nebulosa Esquimal. Se encuentra, según autores, a unos 3000 o/ 5000 años-luz de la Tierra.

La edad de NGC 2392 se estima en unos 10.000 años, y está compuesta por dos lóbulos elípticos de materia saliendo de la estrella moribunda. Desde nuestra perspectiva, unos de los lóbulos está delante del otro.

Se cree que la forma de la nebulosa se debe a un anillo de material denso alrededor del ecuador de la estrella expulsado durante la fase de gigante roja. Este material denso es arrastrado a una velocidad de 115.000 km/h., impidiendo que el viento estelar, que posee una velocidad mucho mayor, empuje la materia a lo largo del ecuador. Por el contrario, este viento de gran velocidad (1,5 millones de km/h) barre material por encima y debajo de la estrella, formando burbujas alargadas. Estas burbujas, de 1 año luz de longitud y la mitad de anchura, tienen filamentos de materia más densa. No obstante, las líneas que van de dentro a afuera en el anillo exterior (en la capucha) no tienen todavía explicación, si bien su origen puede deberse a la colisión entre gases de baja y alta velocidad.

La Nebulosa del Esquimal fue descubierta por William Herschel  el 17 de enero de 1787.

MyCn18: la nebulosa Reloj de Arena

                                                               La Nebulosa Reloj de Arena

Una nebulosa planetaria es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado,  expulsada durante la fase de rama asintótica gigante que atraviesan las estrellas gigantes rojas  en los últimos momentos de sus vidas.

Las nebulosas planetarias son objetos de gran importancia en astronpmía,  debido a que desempeñan un papel crucial en la evolución química de las Galaxias,  devolviendo al medio interestelar metales pesados  y otros productos de la nucleosíntesis de las estrellas (como Carbono, Nitrógeno, xígeno, Calcio… y otros).  En galaxias lejanas, las nebulosas planetarias son los únicos objetos de los que se puede obtener información útil acerca de su composición química.

File:NGC6543.jpg

La Nebulosa Ojo de Gato.  Imagen en falso color (visible y rayos X) tomada por el tomada por el Hubble.

La gama y diseños de Nebulosas Planetarias es de muy amplio abanico y, en esa familia de Nubulosas podemos admirar y asombrarnos con algunas que, como la famosa Ojo de Gato (arriba), nos muestra una sinfonía de arquitectónica superpuesta que ni la mente del más avispado arquitecto habría podido soñar.

Enanas Blancas son estrellas misteriosas que, como residuos de otras que fueron, se resisten a “morir” y quedan envueltas en ese manto precioso de nebulosas planetarias durante siglos. Las formas y colores de estas maravillosas figuras han llamado desde siempre la atención de los astrónomos y astrofísicos que se han devanado los sesos para averiguar los mecanismos que allí se han tenido que producir para que esas nebulosas se dejen ver con esas fabulosas formas de exóticas figuras.

fisica

Una enana blanca es una pequeña y densa estrella que es el resultado final de la evolución de todas las estrellas (por el ejemplo el Sol), excepto las muy masivas. Según todos los estudios y observaciones, cálculos, modelos de simulación, etc., estas estrellas se forman cuando, al final de la vida de las estrellas medianas, agotan el combustible de fusión nuclear, se produce el colapso de sus núcleos estelares, y quedan expuestas, cuando las partes exteriores de la estrella son expulsadas al espacio interestelar formar una Nebulosa Planetaria. En el centro de la Nebulosa, queda denudo un puntito blanco que es, la estrella enana blanca.

 

El Núcleo se contrae bajo su propia gravedad hasta que, habiendo alcanzado un tamaño similar al de la Tierra , se ha vuelto tan densa (5 x 10 ^8 Kg/m3) que sólo evita su propio colapso por la preseión de degeneración de los electrones ( saben los electrones son fermiones que estando sometidos al Principio de exclusión de Pauli, no pueden ocupar niguno de ellos el mismo lugar de otro al tener el mismo número cuántico y, siendo así, cuando se juntan demasiado, se degeneran y comienzan una frenética carrera que, en su intensidad, , incluso frenar la implosión de una estrella -como es el caso de las enanas blancas).

Las enanas blancas se forman con muy altas temperaturas superficiales (por encima de los 10 000 K) debido al calor atrapados en ellas, y liberado por combustiones nucleares previas y por la intensa atracción gravitacional que sólo se ve frenada por la degeneración de los electrones que, finalmente, la estabilizan como estrella enana blanca.

estrellas

Este tipo de estrellas, con el paso del tiempo, se enfrían gradualmente, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30 por ciento de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades de 10 ^-3 – 10 ^-4 veces la del Sol, pasan desapercibidas. La máxima máxima posible de una enana blanca es de 1,44 masas solares, el límite de Shandrasekhar. Un objeto de masa mayor se contraería aún más y se convertiría en una estrella de neutrones o, de tener mucha masa, en un agujero negro.

Visión artística de una enana blanca, Sirio B – Crédito: NASA, ESA y G. Bacon (STScl)

Las enanas blancas son estrellas calientes y pequeñas, generalmente del tamaño de la Tierra, por lo que su luminosidad es muy baja. Se cree que las enanas blancas son los residuos presentes en el centro de las nebulosas planetarias. Dicho de otra manera, las enanas blancas son el núcleo de las estrellas de baja masa que quedan después de que la envoltura se ha convertido en una nebulosa planetaria.

El núcleo de una enana blanca consiste de material de electrones degenerados. Sin la posibilidad de tener nuevas reacciones nucleares, y probablemente después de haber perdido sus capas externas debido al viento solar y la expulsión de una nebulosa planetaria, la enana blanca se contrae debido a la fuerza de gravedad. La contracción hace que la densidad en el núcleo aumente hasta que se den las necesarias para tener un material de electrones degenerados. Este material genera presión de degeneración, el cual contrarresta la contracción gravitacional.

                         Procyon B, una débil enana blanca.

Al ser estudiadas más a fondo las propiedades de las enanas blancas se encontró que al aumentar su masa, su radio disminuye. A partir de esto es que se encuentra que hay un límite superior la masa de una enana blanca, el cual se encuentra alrededor de 1.4 masas solares (MS). Si la masa es superior a 1.4 MS la presión de degeneración del núcleo no es suficiente detener la contracción gravitacional. Este se llama el límite de Chandrasekhar.

Debido a la existencia de este límite es que las estrellas de entre 1.4 MS y 11 MS deben perder masa para poder convertirse en enanas blancas. Ya explicamos que dos medios de pérdida de masa son los vientos estelares y la expulsión de nebulosas planetarias. Sin embargo, existen otras posiblidades que se puedan dar en este tipo de estrellas que son muy densas. Por ejemplo, si cerca de alguna de ellas reside otra estrella que esté lo bastante cerca, la enana blanca, poco a poco, puede ir robándole masa a la estrela compañera hasta que, llegado a un punto, ella misma se recicla y se convierte en una estrella de Neutrones.

enanas
 
A esto dar lugar la unión de dos enanas blancas o una enana blanca colisionando con una estrella de neutrones

Después de que una estrella se ha convertido en enana blanca, lo más probable es que su destino sea enfriarse y perder brillo. Debido a que las enanas blancas tienen una baja luminosidad, pierden energía lentamente, por lo que pueden permanecer en etapa en el orden de años. Una vez que se enfrían, se vuelven rocas que se quedan vagando por el Universo. Este es el triste destino de nuestro Sol.

La detección de enanas blancas es difícil, ya que son objetos con un brillo muy débil. Por otro lado, hay ciertas diferencias en las enanas blancas según su masa. Las enanas blancas menos masivas sólo alcanzan a quemar hidrógeno en helio. Es decir, el núcleo de la estrella nunca se comprime lo suficiente como alcanzar la temperatura necesaria para quemar helio en carbono. Las enanas blancas más masivas sí llevan a cabo reacciones nucleares de elementos más pesados, es decir, en su núcleo podemos encontrar carbono y oxígeno.


Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha). enana blanca tiene una temperatura en la superficie de 35.500 K.

Allá por el año 1908, siendo Chandrasekhar un avanzado estudiante de física, vivía en Madrás, en la Bahía de Bengala (En cuyo Puerto trabajó Ramanujan), y, estando en  aquella ciudad el célebre científico Arnold Sommerfeld, le pidió audiciencia y se pudo entrevistar con él que, le vino a decir que la física que estudiaba estaba pasada, que se estaban estudiando nuevos caminos de la física y, sobre todo, uno a cuya teoría se la llamaba mecánica cuántica que podía explicar el comportamiento de lo muy pequeño.



blancas
                  El joven Chandrasekhar

Cuando se despidieron Sommerfeld dio a Chandrasekhar la prueba de imprenta de un artículo técnico que acaba de escribir. Contenía una derivación de las leyes mecanocuánticas que gobiernan grandes conjuntos de electrones comprimidos en volúmenes pequeños, por ejemplo ( este caso) en una estrella enana blanca.

A partir de aquel artículo, Chandrasekhar buscó más información y estudió estos fenómenos estelares que desembocaban en enanas blancas. Este tipo de estrella habían descuibiertas por las astrónomos a través de sus telescopios. Lo misterioso de las enanas blancas era su densidad extraordinariamente alta de la materia en su interior, una densidad muchísimo mayor que la de cualquier otra cosa que los seres humanos hubieran encontrado antes. Chandrasekhar no tenía forma de saberlo cuando abrió un libro de Eddintong que versaba sobre la materia, pero la lucha por desvelar el misterio de alta densidad le obligaría fibnalmente a él y a Eddintong a afrontar la posibilidad de que las estrellas masivas, cuando mueren, pudieran contraerse para formar agujeros negros.

astrofisica

De las enanas blancas más conocidas y cercanas, tenemos a Sirio B. Sirio A y Sirio B son la sexta y la séptima estrellas en orden de proximidad a la Tierra, a 8,6 años-luz de distancia, y Sirio es la estrella más brillante en nuestro cielo. Sirio B orbita en torno a Sirio de la misma manera que lo hace la Tierra alrededor del Sol, pero Sirio B tarde 50 años en completar una órbita a Sirio y la Tierra 1 año al Sol.

Eddintong describía como habían estimado los astrónomos, a partir de observaciones con telescopios, la masa y la circunferencia de Sirio B. La masa era de 0,85 veces la masa del Sol; la circunferencia media 118.000 km. Esto significaba que la densidad media de Sirio B era de 61.000 gramos por centímetro cúbico, es decir 61.000 veces mayor que la densidad del agua. “Este argumento se conoce ya hace algunos años -nos decía Eddintong-” Sin embargo, la mayoría de los astrónomos de aquel tiempo, no se tomaban en serio tal densidad, Sin embargo, si hubieran conocido la verdad que conocemos: (Una masa de 1,05 soles, una circunferencia de 31.000 km y una densidad de 4 millones de gramos por cm3), la habrían considerado aún más absurda.

teorica

Arriba la famosa Nebulosa planetaria ojo de Gato que, en su centro luce una estrella enana blanca de energéticas radiaciones en el ultravioleta y que, a medida que se vaya enfriando, serán de rayos C y radio que, dentro de unos 100 millones de años vieja y fria, será más rojiza y se habrá convertido en un cadáver estelar.

Aquellos trabajos de Chandraskar y Eddintong desembocaron en un profundo conocimiento de las estrellas de neutrones y, se llego a saber el por qué conseguian el equilibrio que las estabilizaba a través de la salvación que, finalmente encontraban, en la mecánica cuántica, cuando los electrones degenerados por causa del Principio de esclusión de Pauli, no dejaban que la fuerza gravitatoria continuara el proceso de contracción de la estrella y así, quedaba estabilizada como estrella de neutrones.

De la misma manera, se repetía el proceso estrellas más masivas que, no pudiendo ser frenadas en su implosión gravitatoria por la degeneración de los electrones, sí que podia frenarse la Gravedad, mediante la degeneración de los Neutrones. Cuando esa estrella más masiva se contraía más y más, el Principio de exclusión de pauli que impide que los fermiones estén juntos, comenzaba su trabajo e impedía que los neutrones (que son fermiones), se juntaran más, entonces, como antes los electrones, se degeneraban y comenzaban a moverse con velocidades relativistas y, tan hecho, impedía, por sí mismo que la Gravedad consiguiera comprimir más la masa de la estrella que, de manera, quedaba convertida, finalmente, en una Estrella de Neutrones.



Enanas Blancas, estrellas misteriosas



Al formarse la estrella de neutrones la estrella se colapsa hasta formar una esfera perfecta con un radio de tan solo unos 10 kilómetros. En este punto la presión neutrónica de Fermi resultante compensa la fuerza gravitatoria y estabiliza la estrella de neutrones. Apenas una cucharilla del material que conforma una estrella de neutrones tendría una masa superior a 5 x 10 ^12 kilogramos.

Los modelos de estrellas de neutrones que se han logrado construir utilizando las leyes físicas presentan varias capas. Las estrella de neutrones presentarían una corteza de hierro muy liso de, aproximadamente, un metro de espesor. Debajo de corteza, prácticamente todo el material está compuesto por núcleos y partículas atómicas fuertemente comprimidos formando un “cristal” sólido de materia nucleica.

Son objetos extremadamente pequeños u densos que surgen cuando estrellas masivas sufren una explosión supernova del II, el núculeo se colapsa bajo su propia gravedad y puede llegar hasta una densidad de 10 ^17 Kg/m3. Los electrones y los protones que están muy juntos se fusionan y forman neutrones. El resultado final consiste solo en neutrones, cuyo material, conforma la estrella del mismo . Con una masa poco mayor que la del Sol, tendría un diámetro de sólo 30 Km, y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la humkanidad. Cuanto mayor es la masa de una estrella de neutrones, menor será su diámetro. Está compuesta por un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeado por más o menos una corteza sólida de 1 km de grosor compuesta de elementos como el hierro. Los púlsares son estrellas de neutrones magnetizadas en rotación. Las binarias de rayos X masivas también se piensan que contienen estrellas de neutrones.

universo

Todos aquellos argumentos sobre el comportamiento de las enanas blancas vinieron a desembocar en la paradoja de Edddintong que, en realidad, fue resuelta por el Joven Chandrasekhar en el año 1925 al leer un artículo de R.H. Fowler “Sobre la materia densa”. La solución residía en el fallo de las leyes de la física que utilizaba Eddintong. Dichas leyes debían ser reemplazadas por la nueva mecánica cuántica, que describía la presión en el interior de Sirio B y otras enanas blancas como debida no al calor sino a un fenómeno mecanocuántico : los movimientos degenerados de los electrones, también llamado degeneración electrónica.

La degeneración electrónica es algo muy parecido a la claustrofia humana. Cuando la materia es comprimida hasta una densidad 10.000 veces mayor que la de una roca, la nube de electrones en torno a cada uno de sus núcleos atómicos se hace 10.000 veces más condensada, Así, cada electrón queda confinado en una “celda” con un volumen 10.000 veces menor que el volumen en el que previamente podía moverse. Con tan poco espacio disponible, el electrón, como nos pasaría a cualquiera de nosotros, se siente incómodo, siente claustrofobia y comienza a agitarse de manera incontrolada, golpeando con enorme fuerza las paredes de las celdas adyacentes. Nada puede deternerlo, el electrón está obligado a ello por las leyes de la mecánica cuántica. Esto está producido por el Principio de esclusión de Pauli que impide que dos fermiones estén juntos, así que, fuerza es, la que finalmente posibilita que la estrella que se comprime más y más, quede finalmente, constituida estable como una enana blanca.

emilio silvera

¡Nuestro cerebro! ¿sabremos algún día, todo lo que encierra?

Autor por Emilio Silvera    ~    Archivo Clasificado en ese misterio    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cerebro 3D

Este conjunto de modelos del cerebro humano consiste en 300 partes. Se ha dado mayor énfasis a las partes internas del cerebro, tronco cerebral y cerebelo -con las estructuras completamente detalladas, manteniendo la texturación simple. Además de los principales vasos sanguineos del cerebro, los nervios craneales también están incluídos en el conjunto, emanando de sus orígenes de forma exacta. Este elaborado sistema nervioso central disponible para todo el mundo rompe límites y se ajusta perfectamente al cráneo y otras parters del conjunto.

http://www.anatomia3d.com/3d-brain-v4.jpg

Aunque es mucho lo que hemos conseguido conocer de nuestro cerebro y su funcionamiento, mucho más es lo que nos queda por conocer. Ahí, en todo ese conglomerado de complejas estructuras que juntas, forman un todo, es de donde surge la Conciencia y, para poder entender como ocurre tal maravilla, debemos antes y es preciso que entendamos primero como funciona el cerebro: su arquitectura, su desarrollo y sus funciones dinámicas, su organización anatómica y la increíble dinámica que llega a generar. Todo ella nos llevará a tener una odea del por qué puede, a partir de está increíble “maquina de la naturaleza” surgir la conciencia.

Lo hemos comentado aquí en muchas ocasiones. El cerebro se cuenta entre los objetos más complicados del Universo y es, sin duda, una de las estructuras más notables que haya podido producir la evoluciòn y, si pensamos que toda esa inmensa complejidad ha tenido su origen en los materiales creados en las estrellas, no tendremos otra opción que la del asombro. ¿A partir de la materia “inerte” llegaron los pensamientos?

Antes incluso del advenimiento de la moderna neurociencia, se sabía ya que el cerebro era necesario para la percepción, los sentimientos y los pensamientos. Lo que no está tan claro es por qué la conciencia se encuentra causalmente asociada a ciertos procesos cerebrales pero no a otros.

En tanto que objeto y sistema, el cerebro humano es especial: su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo al que ordena qué funciones debe desarrollar en cada momento dependiendo de tal o cual situación dada y también su relación con el mundo exterior a él que, por medio de los sentidos, le hace llegar información de todo lo que ocurre para que pueda ado0ptar en cada momento, las medidas más adecuadas. Su carácter único hace que ofrecer una imagen fidedigna del cerebro, que pueda expresar todo lo que es, se convierta en un reto extraordinario que, en este momento, la ciencia no puede cumplir. Sin embargo, sí que puede, al menos, dar alguna que otra pista de lo que el cerebro y la conciencia puedan llegar a ser y aunque, aún lejos de una imagen completa, sí se puede dar una imagen parcial que siempre será mejor que nada, especialmente si nos da la suficiente información como para tener, una idea aproximada, de lo que el cerebro y la conciencia que surge de él, pueden llegar a ser.

 

Es como una inmensa galaxia en sí mismo, el cerebro humano es una obra notable de la Naturaleza y se calcula que en su interior, cien mil millones de neuronas hacen posible una maravilla que aún, la Ciencia no llegado a comprender. El diez por ciento de esas neuronas son células piramidales que generan una red muy compleja (intercambio e interacicones entre ellas, lo que se conoce como diálogo neuronales) y llegan a construir mil millones de millones de de conexiones sinápticas que logran que nosotros, los poseedores de tal maravilla, estemos logrando comprender, a medida que esa “máquina” evoluciona, lo que el Universo es.

Si nos paramos a pensar en el hecho cierto de que, el cerebro humano adulto, con poco más de un kilo de peso, contiene unos cien mil millones de células nerviosas o neuronas, La capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de 30 mil millones de neuronas y más de un billón de conexiones o sinapsis. Si contarámos una sinapsis cada segundo, tardaríamos 32 millones de años en completar el recuento. Si consideramos el número posible de circuitos neuronales, tenemos que habernósla con cifras hiperastronómicas: 10 seguido de un millón de ceros. No existe en el Universo ninguna optra cosa de la que pueda resultar una cantidad igual. Incluso el número de partículas del universo conocido es de 10 seguido de tan sólo 79 ceros. En comparación con el número de circuitos neuronales…¡No es nada!

Las neuronas de las que existen una gran variedad de formas, poseeen unas proyecciones arborescentes llamadas dendritas mediante las cuales realizan las conexiones sinápticas. posee asímismo una proyección única más larga, el axón, que establece conexiones sinápticas con las dendritas o directamente con el cuerpo celular de otras neuronas. Nadie ha contado con precisión los diferentes tipos de neuronas del cerebro, pero uhna estima groso modo de unos cincuenta tipos seguramente no sería excesiva. La longitud y patrones de ramificación de las dendritas y el axón de un tipo determinado de neurona caen dentro de un rango de variación determinado, pero incluso dentro de un mismo tipo, no existen dos células iguales.

Cada una de las neuronas tiene un cuerpo celular.  Del cuerpo de la célula se proyectan unas largas fibras en forma de raíz.  Como hemos dicho, hay dos tipos de fibra: axones y dendritas.  Cada neurona tiene un axón largo que envía impulsos eléctricos a otras neuronas.  Cada neurona tiene un número variable de dendritas las cuales tienen muchas ramas.  El axón de una neurona se conecta a las dendritas de otras neuronas.  El punto en el que conectan se llama sinapsis (vamos a explorarla más adelante). Las dendritas recogen la información hacia la célula y los axones envían la información a otras células.

Todo este entramado tiene mucho que ver con los pensamientos. Aquí se fraguan los procesos del pensamiento.  Al aprender, tener una idea, recordar algo, sentirse activado sexualmente, comunicar, etc. las neuronas están recibiendo y transmitiendo información a través del cerebro.  Las células del cerebro se comunican entre sí a través de un proceso electroquímico.  Cada vez que pensamos, aprendemos y nos comunicamos, una neurona envía un impulso nervioso por su axón. El axón de una célula cerebral hace varios miles de conexiones con muchos miles de otras células cerebrales. El punto donde una neurona se conecta a otra se llama sinapsis. Cuando un impulso nervioso (mensaje bioquímico electro-magnético) surge por el axón, es disparado a través del espacio sináptico a través de un mensajero químico, llamado neurotransmisor, hacia la dendrita de la neurona receptora.

El impulso nervioso viaja a lo largo del axón de la célula del cerebro, a través del espacio sináptico a otra célula del cerebro y así sucesivamente. Cuando una neurona se activa a otra de esta manera, es como si un interruptor se encendiera. Las neuronas se encienden, como una línea de fichas de dominó cayendo.  Esta actividad es el proceso que crea el camino del pensamiento complejo, llamado también trazas de la memoria o caminos neuronales.

       Como en una inmensa nebulosa en la que se encienden aquí y allí el resplandor de las estrellas

Una caracterísitica clave de los patrones neuronales que se puede observar al microscopio es su densidad y extensión y se vislumbran los puntos luminosos donde fotones energéticos sirven de mensajeros con electrones para transmitir los impulsos eléctricos necesarios que transportan la informacion. El cuerpo de una neurona mide cincuenta micrones (milesimas de milímetro) de diámetro, si bien la longitud del axón puede variar entre unos micrones y más de un metro, En un tejido como la corteza cerebral,  las neuronas se encuentran en paquetadas con una enorme densidad; si todas se tiñeran con la plata utilizada en la llamada tinción de Golgi, que se utiliza para verlas al microscopio, la sección microscópica teñida sería completamente negra.

Otra de las características primordiales es el extraordinario aporte sanguíneo que sustenta a estya jungla. A través de grandes arterias que alimentan una extensa red de capilares, el cerebro recibe una gran cantidad de oxígeno y la glucosa que precisa para ser el órgano metabólicamente más activo del cuerpo. La regulaci`´on del flujo sanguineo es de una exquisita perfección incluso hasta el nivel de las neuronas individuales, dado que la actividad sináptica depende fuertemente del aporte sanguineo y de la oxigenación.

Entrando de lleno en toda esta complejidad que aún, no hemos podido llegar a desvelar en toda su inmensidad y sólo conocemos pequelas parcelas de su estructura y funcionamiento, podemos tener una idea (más o menos) acertada de lo muchom que nos queda por aprender de nosotros mismos, de nuestro cerebro y de nuestro centro neurálgico dónde se fabrican los pensamientos, surgen los sentimientos, se delata el dolor y la tristeza y, en fín, podríamos decir sin el menor temnor a equivocarnos que, aquí, en este complejo entramado que llamamos cerebro, en el que reside la conciencia y de donde surge la mente, está todo lo importante que nos hace diferentes a otros seres que, con nosotros comparten el mismo planeta. Gracias a ésta compleja “maquina” creada por la Naturaleza, podemos ser conscientes y “saber” del mundo, de nosotros, del universo en toda su magnitud y esplendor.

No pocas veces hemos podido oir: “El cerebro es como una gran computadora”. Lo cierto es que, no es verdad, nuestro cerebro, nuestra mente, es mucho más que ese algo artificial creado por el hombre y que, simplemente, trata de “imitar” de manera grosera, lo que el cerebro es. ¿Cómo puede una máquina generar sentimientos? Y, ¿Cómo puede pensar? Bueno, la inteligencia del ser humano (precisamente basada en este maravilloso cerebro del que hablamos), podrá crear sistemas que imiten y pretendan recrear lo que es un cerebro pero, al final del camino, será otra cosa muy diferente. No digo si mejor o peor, pero distinta.

Hemos examinado la escasa bibliografía fisiológioca existente que no es ucha más que la que había en la època de William James, por ejemplo, y hay que concluir diciendo que no existen pruebas suficientes para poder limitar los correlatos neuronales de la cionciencia al menos del cerebro completo. Eso sí, se ha podido descubrior que sólo una porción determinada de la actividad neuronal del cerebro, contribuye de forma directa a la conciencia -asó se ha podido determinar de complejos y profundos experimentos con estimulación y lesiones -o está relacionada de forma directa con aspectos de la experiencia consciente- como indican los estudios de registros de actividad neuronal. ¿Quiere esto decir que, en realidad, todavía sólo utilizamos una mínima parte del cerebro? No lo sabemos con certeza.

decir, a ciencia cierta, como surgen los pensamientos…¡No podemos! muchas son las hipótesis y teorías que al respecto circulan y que están directamente vinculadas a la experiencia, al mundo que nos rodea yb a la informaciòn que el cerebro recibe de sus ayudantes, los sentidos. Todo lo que el cerebro, de una u otra manera recibe, es debidamente archivado en su compartimento especial y, ahí se queda para cuando, habiendo surgido una situación que lo requiera, sacarlo a la superficie en forma de pensamiento actuante que, nos sirve para dar solución a estae o aquel problema que se nos pueda plantear. El cerebro, escoge en fracciones de segundo, una de las miles de posibles soluciones que se puedan aplicar a un específico problema, y, siempre, elige (como lo hace la naturaleza) el que mejor pueda dar cumplida cuenta del problema.

Los procesos que realiza nuestro cerebro,  son infinitamente superiores a los que realiza una computadora. Aunque, al igual que ésta, nuestro cerebro requiere de “programas”, sin los cuales sería imposible generar respuestas exitosas, ante los sucesos a los que estamos expuestos cada día.

Tenemos un programa para cada una de las cosas que hacemos a diario, desde que nos levantamos por la mañana hasta que nos acostamos por la noche. Incluso más allá de estas cosas que hacemos de manera parcialmente conciente, tenemos un programa para cada una de las actividades que nuestro cuerpo ejecuta de manera totalmente inconsciente. Entre estas, se encuentra la respiración, el latir del corazón, la circulación de la sangre, la división celular, la digestión, nuestra respuesta ante el peligro y el combate de los agentes infecciosos, por mencionar algunas; todas ellas, bajo el control de estructuras profundas de nuestro cerebro.

cerebro y computadora

Requerimos programas para todo,  incluso para cosas aparentemente tan sencillas como atarnos el cordón de los zapatos, la cual sin embargo, para alguien no familiarizado con esto, como un niño pequeño, resultaría una tarea casi imposible. En actividades más complejas, como fabricar un teléfono celular, conducir un auto o pilotear un avión, es muy evidente que se requiere contar con el programa adecuado, para asegurar el éxito en dichas actividades.

Claro que, nuestro cerebro es capaz de muchas más cosas que nunca podrá llevar a cabo ninguna computadora que, al fin y al cabo, siempre hará aquello para lo que la tengamos programada. Nunca una computadora (al menos eso creo en mi ignorancia), podrá de manera individual e independiente, generar ideas nuevas y originales que vayan encaminadas a desvelar como funciona este o aquel mistrio de la naturaleza como, por ejemplo, hacen a dirio los físicos del mundo.

Por extrañas razones y aunque es evidente que nuestro cerebro es mucho más importante que una computadora, cuando de asegurar su correcto funcionamiento se trata, seguimos muy pocas o ninguna recomendación para su cuidado. En principio, recibimos información o “programas” de todo tipo a través de  familiares, amigos, maestros, estudios, experiencias, observación del mundo que nos rodea, medios de comunicación o cualquier persona con la que interaccionamos.Y, de esa manera, evolucionamos y seguimos nuestro camino hacia un destino que no conocemos.

A todo esto, tenemos que convenir en un hecho cierto: ¡La energía del Universo está en nosotros! Se nos da un tiempo (si no surgen problemas) para que podamos desplegar la parte alicuota de intelecto que nos tocó en “suerte”, por “azar”, “genética” o vaya usted a saber el motivo de que, algunos tengan dotes superiores a las que otros tenemos y puedan “ver” con más facilidad la naturaleza de la Naturaleza. Creo que, todos los misterios del Universo, residen en nuestras mentes en las que, se encuentran todas las respuestas que podremos encontrar con el Tiempo. Precisamente por eso, se nos ha otorgado el don de poder luchar contra la entropía y, junto con las galaxias espirales, podemos generar entropía negativa que impide el deterioro ininterrumpido del “mundo”. ¿Estaremos llamados a más grandes proyectos?

emilio silvera