domingo, 19 de mayo del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cómo se pudieron formar las galaxias?

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

File:Cartwheel.galaxy.arp.750pix.jpg

Todavía, en pleno comienzo del siglo XXI, los cosmólogos no saben dar una explicación convincente de cómo se pudieron formar las galaxias. Lo cierto es que las galaxias no han tenido tiempo para formar cúmulos. Es posible que no consigamos llegar al entendimiento de cómo se pudieron formar las galaxias porque lo estamos mirando desde una perspectiva, o, desde un punto de vista muy estrecho. Es posible que el problema resida en que deberíamos mirar las cosas desde una escala mayor para así, poder entender cómo pudieron suceder las cosas, cómo se formaron los grandes cúmulos de galaxias.

Resultado de imagen de La sustancia cósmica que genera gravedad y no radiación

“Un equipo de científicos ha descodificado distorsiones débiles en los patrones de la luz más primitiva del Universo para cartografiar enormes estructuras similares a tubos, invisibles a nuestros ojos – llamadas filamentos – que sirven como autopistas para el transporte de materia hacia núcleos densos como son los cúmulos de galaxias.”

La génesis de las galaxias individuales se podría resolver por sí misma si pudiéramos entender bien la formación de los cúmulos. La idea nos conduce naturalmente a la cuestión de cómo se pueden haber formado concentraciones tan grandes de masa al comienzo de la vida del universo. Una de las ideas más sencillas sobre cómo puede haber sido el universo cuando los átomos se estaban formando es que, no importa lo que estuviese pasando, la temperatura era la misma en todas partes. Este se llama “Modelo Isotérmico”. Corresponde a la suposición de que la radiación en los comienzos del universo estaba diseminada iniformemente, estuviera o no agrupada la materia.

Resultado de imagen de Embriones de galaxias

La formación de galaxias es una de las áreas de investigación más activas de la astrofísica,  y en cierto sentido, esto también se aplica a la evolución de las galaxias. Sin embargo, hay algunas ideas que ya están ampliamente aceptadas. Actualmente, se piensa que la formación de galaxias procede directamente de las teorías de formación de estructuras,  formadas como resultado de las débiles fluctuaciones cuánticas en el despertar del Big Bang. Las simulaciones de N-cuerpos también han podido conjeturar sobre los tipos de estructuras, las morfologías y la distribución de galaxias que observamos hoy en nuestro Universo actual y, examinando las galaxias distantes, en el Universo primigenio. Nuestra Galaxia, la Vía Láctea puede contener algo más de cien mil millones de estrellas, otras más pequeñas sólo tienen mil millones y, algunas macro-galaxias pueden llegar a tener 600.000 mil millones de estrellas. Lo cierto es que hemos podido localizar galaxias situadas a más de 11.000 años-luz de la Tierra.

http://3.bp.blogspot.com/-JZweUMiOr30/TlI4XAA3e0I/AAAAAAAAAGo/JzB6D2f81IM/s1600/Choques+entre+galaxias.jpg

En ese (para nosotros) tan inconmensurable espacio de tiempo, las galaxias han tenido mucho tiempo para evolucionar y, gracias a nuestros modernos ingenios, las hemos podido localizar de todo tipo y en algunas de sus más extrañas configuraciones al fusionarse unas con otras por efecto de la Gravedad que, según todos los indicios, es el destino que el Universo tiene adjudicado para Andrómeda y la Vía Láctea dentro de algunos miles de millones de años.

Resultado de imagen de Colisión futura de la Galaxia Andrómeda con la Vía Láctea

Si desarrollamos las consecuencias matemáticas del Modelo Isotérmico, podremos encontrar que los tipos de concentraciones de masa se podrían haber formado en la infancia del universo y que, de esa manera, son muy fáciles de describir. Con la misma temperatura en todas partes, las fluctuaciones aleatorias ordinarias producirían concentraciones de masa de todos los tamaños, si quisieran encontrar una concentración del tamaño de un planeta, la habría. Lo mismo sucedería con concentraciones de masa del tamaño de estrellas y de galaxias, cúmulos, etc. En la jerga del astrofísico, las concentraciones de masa aparecerían a todas las escalas.

Así, de esa manera, la materia esparcida por todo el espacio y situada a lo largo y lo ancho de él, pudieron formar toda clase de objetos grandes y pequeños configurando galaxias que, como pequeños universos, lo contenían todo y, eran como universos en miniatura con sus mundos y estrellas y sustancia primigenia dispuesta para interaccionar con la radiación, el electromagnetismo y la Gravedad que serían responsables de la formación de nuevas estrellas y nuevas galaxias con la ayuda de la Gravedad viniera de donde viniera (no tenemos claro si en realidad es cierto que existe esa clase de materia invisible que la genera).

Resultado de imagen de embriones de galaxias

“Las mayores galaxias que existen en el universo, esferas gigantes repletas de estrellas, parecen surgir en los océanos cósmicos de gas frío. Así lo sugiere un estudio internacional liderado desde el Centro de Astrobiología, en Madrid. Sus resultados señalan que la formación de supergalaxias en el universo primitivo es un proceso diferente al conocido para el universo más cercano.”

 

 

Claro que, el modelo isotérmico sólo podemos encontrar una solución particularmente simple del problema de las galaxias, porque las concentraciones de masa más pequeñas crecen más rápido que las más grandes. Los primeros objetos que aumentarían serían cosas relativamente pequeñas llamadas protogalaxias, que contendrían quizá un millón de estrellas cada una. Estas protogalaxias se agruparían luego bajo influencias de la Gravedad para formar galaxias con todas las de la ley, que se reunirían a su vez para formar cúmulos y supercúmulos. el universo en este modelo se construiría “desde abajo”

Resultado de imagen de El cúmulo de galaxias Abell 1689 desvía la luz

Este cúmulo de galaxias es uno de los objetos más masivos del Universo visible. En esta fotogrrafía de la cámara avanzada para sondeos del Telescopio Espacial Hubble, se ve como Abell 1.689 curva el espacio tal como predijo la teoría de la gravedad de Einstein (las galaxias que hay detrás del cúmulo desvían la luz y producen múltiples imágenes curvadas).

Resultado de imagen de El cúmulo de galaxias Abell 1689 desvía la luz

“La lente gravitacional del cúmulo galáctico Abell 370. Al fotografiar el cúmulo de galaxias Abell 370, los astrónomos notaron la presencia de un arco poco común a la derecha de algunas galaxias del cúmulo. Imágenes posteriores permitieron identificar ese arco como el primer ejemplo conocido de una nueva clase de fenómeno astrofísico: un efecto de lente gravitacional causado por todo un cúmulo galáctico y ejercido sobre la imagen de las galaxias de fondo. La gravedad de Abell 370 causó la dispersión de la luz de las galaxias del fondo —y de otros objetos— y le hizo seguir múltiples caminos para llegar hasta nosotros.”

Claro que, en todo esto nos encontramos con un gran inconveniente: ¡No ha habido tiempo para que ese placentero agrupamiento bajo la influencia de la Gravedad haya podido tener lugar lugar desde el momento de la creación, es decir, desde lo que entendemos por Big Bang! Sin embargo y a pesar de ello, ahí las tenemos y podemos contemplarlas en toda su belleza y esplendor pero, ¿cómo pudieron llegar aquí? En realidad, nadie lo sabe.

Hay algunas colecciones de galaxias muy grandes y complejas en el cielo. Nos vemos forzados a concluir que el universo no puede haber tenido una temperatura constante durante el desparejamiento. Es decir, no quiero decir nada contra la existencia de las galaxias, simplemente hago notar que las galaxias no pueden existir si suponemos que la radiación estaba unida y uniformemente distribuida en la infancia del universo. Claro que:

¡Si la radiación marcha junto con la materia y la materia con las galaxias, la radiación de microondas cósmica sería contradictoria!

 

 

Resultado de imagen de La sustancia cósmica que genera gravedad y no radiación

Debajo de ésta imagen nos dicen:

“Hallan indicios de “materia oscura” unida al Cosmos. La evidencia muestra nuevos fenómenos físicos que podrían ser debido a la extraña y desconocida “materia”.”

Si la radiación no se hubiera dispersado uniformemente, con independencia de la materia del universo, ¿?dónde hubiera estado? Siguiendo el procedimiento normal de la física teórica, consideraremos a continuación la tesis opuesta. Suponemos que en el comienzo del Universo la materia y la radiación estaban unidas. Si era así, allí donde se encontrara una concentración de masa, también habría una concentración de radiación. En la jerga de la física se dice que esta situación es “adiabática”. Aparece siempre que tienen lugar en las distribuciones del gas cambios tan rápidos que la energía no puede transferirse fácilmente de un punto al siguiente.

http://paolera.files.wordpress.com/2012/11/hst_macs0647_z11.jpg

En esta imagen obtenida con el Hubble, se observa una lejana proto-galaxia. Una proto-galaxia, es un objeto que dará una galaxia como resultado de su evolución; una galaxia naciente o en formación. Una galaxia muy lejana, es vista muy joven ya que su luz tarda en llegar a nosotros, por eso se dice que “vemos el pasado”. MACS0647-JD, es una galaxia hecha y derecha, pero tan lejana que la vemos como era hace mucho tiempo atrás. Está a 13 mil millones de años luz de casa. Como ese es el tiempo que tarda su luz en llegar a nosotros, la vemos como era hace ese tiempo atrás. Si tenemos en que el Universo se formó hace casi unos 14 mil millones de años (aproximadamente), eso convierte a este objeto en una galaxia de las primeras en formarse. Al verla como un agalaxia naciente, debería estar llena de estrellas brillantes y calientes.

Sabemos que,  para hacer galaxias, la materia del universo tuvo que estar muy bien distribuida en agregados cuando se formaron los átomos. Llamaremos a esto “darle un empukon al proceso”. Un corolario necesario es que en condiciones adiabáticas, la radiación debe de  haber comenzado siendo agrupada también.

Aquí se pretende representar el pasado y el futuro del universo que, se expandió primero de manera muy rápida, después más lenta, y de nuevo la velocidad aumentó, de manera tal que el recorrido represrenta una especie de S que nos habla del pasado y del futuro.

Entre los otros muchos procesos en marcha en aquellos primeros momentos del nacimiento del universo, en aquel tiempo, uno de los principales parámetros a tener en es el de la rápida expansión, ese proceso que ha venido a ser conocido como inflación. Es la presencia de la inflación la que nos conduce a la predicción de que el universo tiene que ser plano.

Se pudieron formar los núcleos y los átomos de la materia

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; todos hemos podido ver una botella de líquido explotar si alcanzanda la congelación, el contenido se expande y el recipiente no puede contenerlo. No debería sert demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

Claro que no es fácil explicar cómo a medida que el espacio crece debido a esa expansión, se hace más y más voluminoso cada vez y también, cada vez menos denso y más frío. Lo que realmente sorprende es la inmensa magnitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1060  longitudes de Planck. Acordáos de aquellos números que en aquel que titulé,  ¿Es viejo el Universo?, os dejaba allí expuestos unos interesantes sobre nuestro universo. Volvamos a verlos:

- La edad actual del universo visible ≈ 1060 tiempos de Planck

- Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

- La masa actual del Universo visible ≈ 1060 masas de Planck

- Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

- Densidad actual del universo visible ≈10-120 de la densidad de Planck

- Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

- Temperatura actual del Universo visible ≈ 10-30 de la Planck

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción. Lo cierto es que, son tan grandes y tan pequeñas esos números y fracciones que, para nosotros, no tienen significación  consciente, no las podemos asimilar al tratarse, como se dice más arriba, de medidas sobrehumanas. Si un átomo aumentara en esa proporción de 1060 no tendría cabida en el Universo, el átomo sería mayor.

Decíamos que en 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una naranja. No debe sorprendernos pués, que el inflación esté ligado a este proceso. Es cierto que cuando oímos por primera vez este proceso inflacionista, podamos tener alguna dificultad con el índice de inflación que se expone sucedió en el pasado. Nos puede llevar, en un primer momento, a la idea equivocada de que se han violado, con un crecimiento tan rápido, las reglas de Einstein que impiden viajar más veloz que la luz, y, si un cuerpo material viajó la línea de partida que señalan los 10-35 segundos aquella otra que marca la dimensión de una naranja…¡su velocidad excedió a la de la luz!

Claro que la respuesta a que algo sobrepasara la velocidad de la luz, c, es sencilla: NO, nada ha sido en nuestro universo más rápido que la luz viajando, y la explicación está en el hecho cierto de que no se trata de algo pudiera ir tan rápido, sino que, por el contrario, en lugar de que un objeto material viajara por el espacio, lo que ocurrió es que fue el espacio mismo el que se infló -acordaos de la masa de pan que crece llevando las pasas como adorno-, y, , esa expansión hace que las galaxias -las pasas de la masa-, se alejen cada vez más las unas de las otras, haciendo el universo más grande y frío cada vez.

Así que, con la expansión o inflación, ningún cuerpo material se movió a grandes velocidades en el espacio, ya que, fue el espacio mismo el que creció y, de alguna manera, su tremenda expansión, incidió sobre los objetos que contenía que, de esa manera, pasaron de estar muy juntos a estar muy separados. Las reglas contra el viaje a velocidades superiores a la de la luz sólo se aplican al movimiento al movimiento dentro del espacio, no al movimiento del espacio. Así no hay contradicción, aunque a primera vista pudiera parecerlo.

Empleamos todos los medios a nuestro alcance e ideamos nuevos ingenios para poder asomarnos a las escalas más extremas del universo, con los telescopios queremos llegar las primeras gaalxias y, con los aceleradores de partículas nos queremos asomar a ese momento primero en el que se formó la materia.

A los cien millones de años el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro billa un quásar blancoazulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

File:Supercúmulo de Virgo.jpg

Nuestras galaxias vecinas del supercúmulo de Virgo están relativamente cerca; la expansión del Universo aún no ha tenido tiempo de alejarlas a las distancias-unas decenas de millones de años-luz a las que las encontraremos .   El Universo es aún altamente radiactivo.  Torrentes de rayos cósmicos llueven a través de nosotros en cada milisegundo, y si hay vida en ese tiempo, probablemente está en rápida mutación.

Hay algo que es conocido por el término técnico de desacoplamiento de fotones, en ese momento, la oscuridad es reemplazada por una deslumbrante luz blanca, se cree que ocurrió cuando el Universo tenía un millón de años.   El ubicuo gas cósmico en aquel momento se había enrarecido los suficientes como permitir que partículas ligeras –los fotones- atraviesen distancias grandes sin chocar con partículas de materia y ser reabsorbidas.

Resultado de imagen de La materia oscura

                 Siempre hicimos lo mismo… ¡Cuando no sabemos imaginamos lo que podría ser!

(Hay gran cantidad de fotones en reserva, porque el Universo es rico en partículas cargadas eléctricamente, que generan energía electromagnética, cuyo cuanto es el fotón.) Es esa gran efusión de luz, muy corrida al rojo y enrarecida por  la expansión del Universo, la que los seres humanos, miles de millones de años después, detectaran con radiotelescopios y la llamaran la radiación cósmica de fondo de microondas. Esta época de “sea la luz” tiene un importante efecto sobre la estructura de la materia.  Los electrones, aliviados del constante acoso de los fotones, son libres de establecerse en órbita alrededor de los núcleos, formando átomos de hidrógeno y de helio.

Sí, de todo eso hemos podido saber pero, ¿cómo se pudieron formar las galaxias a pesar de la expansión del universo? ¿por qué la matería se pudo agrupar y no salió despedida y se dispersó impidiendo esa formación? Lo cierto es que nadie sabe contestar esa pregunta y, se estima, se cree, se piensa que, allí podría haber estado presente una especie de “materia” o “sustancia” cósmica que no emitía radiación y que, generando gravedad, podría haber retenido la materia de manera suficiente para que se pudieran formar las galaxias.

¡Es todo tan complejo!

emilio silvera

¡La “materia oscura”!

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Imágenes de "materia oscura"

 

Según los modernos postulados, el universo está impregnado de esa sustancia transparente que han dado en llamar “materia oscura” y que es, la responsable, del comportamiento de las galaxias y el movimiento de las estrellas.

 

Imaginaos ahora este instante en que los

murmullos se arrastran  discretamewnte t las

espesas tinieblas llenan el gran navío  del universo.

William Shakespeare

Enrique V, Acto IV. esc. 1

 

Imagen relacionada

 

El descubrimiento de la idea de la “materia oscura” nos lleva a un escenario que “revela” que la mayor parte del Universo está compuesto por materia que no podemos ver. Es de lo más natural preguntar que efecto debe tener éste “descubrimiento” sobre el problema de explicar la estructura a gran escala.

 

 

Resultado de imagen de Imágenes de "materia oscura"

 

Puede parecer extraño que los cosmólogos pongan sus esperanzas de comprender el universo en una materia tan misteriosa, que no pueden ver, que no saben de qué está formada, no emite radiación, y, sin embargo, si genera Gravedad. Eso es lo que está sucediendo en nuestros días. Todos se agarran, como el que se ahoga, al clavo ardiendo de la “materia oscura”, sin tener en cuenta nuestra gran ignorancia de la naturaleza de la supuesta “materia oscura” a la que le adjudican todas las propiedades necesarias para que resuelva todos los problemas inmediatos que, de otra manera, nos deja en un callejón sin salida.

Resultado de imagen de La materia oscura y la formaciçón de galaxias

        Dicen que las galaxias actuales tienen más materia oscura y por eso giran mucho más rápidas

De hecho parece que no necesitan conocer los detalles de cómo se comporta la “materia oscura” para comprender como resuelve el problema de la formación de galaxias. Con el conocimiento de la “materia oscura” parece que tienen la pieza final que necesitaban para completar el rompecabezas y recomponener el cuadro de cómo el Universo llegó a ser lo que es. Las galaxias se pudieron formar, a pesar de la expansión de Hubble, gracias a la presencia de la “materia oscura” que generó la Gravedad suficiente para retener la materia.

Resultado de imagen de La materia oscura y la formaciçón de galaxias

La idea básica respecto al papel de la “materia oscura” es fácil de comprender. La principal dificultad para imaginar como evolucionó el universo tiene que ver con el hecho de que, si el Cosmos entero está hecho de materia normal, la formación de galaxias no puede empezar hasta muy avanzado el “juego”, después de que el Universo se hubiera enfriado hasta el punto en el que pudieran existir átomos y la radiación se puede desaparejar. Para entonces, la expansión de Hubble hubiera diseminado tantro la materia que la Gravedad por sí misma no hubiera sido lo bastante fuerte para reunir cúmulos antes de que todo se escapara de su alcance… ¿Quyé estaba presente entonces allí que retenía la materia normal para que las galaxias se pudieran formar?

Resultado de imagen de La materia oscura y la formaciçón de galaxias

“La existencia de la materia oscura quedó confirmada a partir de 1974, aunque hasta 1980 aún se la llamaba “masa perdida” (“missing mass”) o “masa no visible” (“unseen mass”). Fritz Zwicky usó por primera vez el término “materia oscura” (“dunkle Materie” en alemán) en 1933, pero las estimaciones de la masa del disco galáctico de la Vía Láctea por James Jeans (1922) y Jacobus Kapteyn (1922) ya habían indicado la presencia de “estrellas oscuras” (tres estrellas tan poco luminosas que no se veían por cada una que era visible), algo que Jan Hendrik Oort confirmó en 1932. Nos cuenta la historia de la materia oscura galáctica Virginia Trimble (Departamento de Física y Astronomía, Universidad de California) en “The discovery of dark matter,” DV2010 – Darkness Visible, IoA Cambridge, August 2-6 2010.”

Extraído de: https://www.tispain.com/2012/02/la-materia-oscura-influye-en-la.html - Te interesa saber

Imagen relacionada

Todos, hasta el el LHC han querido participar en la carrera desenfrenada para encontrar los elementos esenciales que podrían componer esa “materia oscura” que dicen ser la responsable del Universo que podemos observar.

Los cosmologos suponen, en pro de sus argumentaciones, que existe un candidato a “materia oscura” que dejó muy pronto de interaccionar con la radiación en el Big Bang; por ejemplo en el primer segundo. Esta situación aparecería si la interacción de las partículas de materia negra con radiaciones dependería de las colisiones  entre las dos y, por tanto, se volviera pequeña cuando la temperatura cayera bajo cierto nivel. En tal caso, la “materia oscura” podría comenzar a acumularse bajo la influencia de la Gravedad mucho antes de la formación de átomos. La presión de la radiación no impediría este tipo de acumulación, porque nuestra hipótesis es que esa radiación no podría presionar sobre la “materia oscura” como sobre la materia ordinaria.

Resultado de imagen de La materia oscura y la formaciçón de galaxias

La Gravedad generada por esa ingente cantidad de “materia oscura” haría aparecer “hoyos” en la geometría del espacio-tiempo y, en ellos, se acumularon grandes cantidades de materia bariónica para formar las galaxias.

Si eso ocurrió de esa manera, entonces, la materia normal era libre de agregarse en grandes concentraciones formando cúmulos inmensos de galaxias gracias a la existencia primera de la “materia oscura” que posibilitó, de esa manera, que todo eso fuera posible.

Resultado de imagen de La materia oscura y la formaciçón de galaxias

Si damos por supuesto que todo eso fue así, ahora nos encontramos ante el dilema de contestar:

- ¿Cómo  explicar la estructura de la “materia oscura”?

- ¿Qué es y de qué está hecha la “materia oscura”?

- ¿Cómo puede ser invisible, no emitir radiación y en cambio generar Gravedad?

emilio silvera

Otra nueva teoría cosmológica

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nuestro Universo estaría "montado" sobre una burbuja que se expande en otra dimensión, según la nueva teoría de un equipo de investigadores de la Universidad de Uppsala

Nuestro Universo estaría “montado” sobre una burbuja que se expande en otra dimensión, según la nueva teoría de un equipo de investigadores de la Universidad de Uppsala - Suvendu Giri

¿Está el Universo “montado” sobre una enorme burbuja en expansión?

Imagen relacionada

 

Un nuevo modelo basado en la Teoría de Cuerdas logra prescindir de la necesidad de que exista la misteriosa energía oscura

 

Reportaje de ABA-Ciencia

 

 

 

 

 

 

 

 

Un equipo de investigadores de la Universidad de Uppsala ha ideado un nuevo modelo para explicar el Universo, uno que parece ser capaz de resolver el enigma de la energía oscura. En un artículo recién aparecido en Physical Review Letters, los científicos proponen un nuevo concepto, según el cual el Universo entero se estaría desplazando sobre una burbuja que se expande en una dimensión adicional.

Parece complicado, es cierto, pero es una forma de evitar la necesidad de una energía oscura. Desde hace ya más de dos décadas se sabe que el Universo está en expansión, y no solo eso, sino que esa expansión es acelerada. Lo cual significa que el Universo no solo sigue creciendo, sino que lo hace cada vez más deprisa. La explicación convencional pasa por la existencia de un tipo de energía (la energía oscura), que lo permea todo y que «empuja» al Universo a expandirse más y más rápido. Comprender la naturaleza y la forma en que funciona esa energía oscura se ha convertido en uno de los principales enigmas de la Física.

¿Una explicación en la teoría de cuerdas?

 

 

Resultado de imagen de Las cuerdas vibrantes de la Teoría

 

Durante mucho tiempo, los físicos han esperado a que la Teoría de Cuerdas proporcionara una respuesta. Pero no ha sido así. Según esa teoría, toda la materia que nos rodea está formata por una serie de objetos diminutos y vibrantes, las cuerdas. La teoría también requiere la existencia de más dimensiones espaciales, además de las tres que conocemos. Durante los últimos 15 años, diversos modelos de la Teoría de Cuerdas han tratado de explicar la energía oscura. Sin embargo, esos modelos han ido recibiendo críticas cada vez más duras, y cada vez más investigadores se convencen de que ninguno de los modelos propuestos hasta la fecha es viable.

Resultado de imagen de nuestro Universo estaría «montado» sobre una burbuja que se está expandiendo en una dimensión adicional

En su artículo, Souvik Banerjee, Ulf Danielsson, Giuseppe Dibitetto, Suvendu Giri y Marjorie Schillo proponen un nuevo modelo en el que nuestro Universo estaría «montado» sobre una burbuja que se está expandiendo en una dimensión adicional. El Universo entero estaría acomodado en el borde de esa burbuja en expansión, y toda la materia que contiene correspondería a los extremos de las cuerdas que se extienden hacia la dimensión adicional.

En su trabajo, los investigadores de la Universidad de Uppsala también muestran que la expansión de burbujas de este tipo puede darse dentro del marco de la propia Teoría de Cuerdas. Por eso, resulta concebible que, además de la nuestra, existan más burbujas, cada una de ellas correspondiente a otro Universo.

Imagen relacionada

                      Un universo sin materia oscura

De esta forma, el modelo proporciona un nuevo y sugerente punto de vista de la creación, evolución y destino del Universo en que vivimos, uno que prescinde por completo de la necesidad de una energía oscura y que podría allanar el hasta ahora tortuoso camino para los métodos de prueba previstos por la Teoría de Cuerdas.

¿como se formaron las galaxias?

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

¡El Universo! ¿Sabía que nosotros íbamos a venir?

Parece conveniente hacer una pequeña reseña que nos explique que es un principio en virtud del cual la presencia de la vida humana está relacionada con las propiedades del Universo.  Como antes hemos comentado en otros trabajos, existen varias versiones del principio antrópico.  La menos controvertida es el principio antrópico débil, de acuerdo con el cual la vida humana ocupa un lugar especial en el Universo porque puede evolucionar solamente donde y cuando se den las condiciones ademadas para ello.  Este efecto de selección debe tenerse en cuenta cuando se estudian las propiedades del Universo.

Imagen relacionada

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida.  La implicación de que el Universo fue de alguna manera diseñado para hacer posible la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que, nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida. Sin embargo, algunos han tratado de hacer ver lo imposible.

¿Cómo se pudieron formar las galaxias, a pesar de la expansión de Hubble? ¿Qué había allí para retener la materia impidiendo que ésta se dispersara? Hay preguntas que, a estas alturas, nadie sabe contestar y, para ocultar la inmensa ignorancia que llevamos con nosotros… inventamos cosas tales como… ¡la materia oscura! Que, puede que exista algo parecido a ella y que, sin embargo, sin tener idea de qué se pueda tratar, hablamos y hablamos cuando ni sabemos su origen, su composición, o, incluso si es cierto que pueda existir.

File:Cartwheel.galaxy.arp.750pix.jpg

Todavía, a mitad de la segunda década del siglo XXI, los cosmólogos no saben dar una explicación convincente de cómo se pudieron formar las galaxias. Lo cierto es que las galaxias no han tenido tiempo para formar cúmulos. Es posible que no consigamos llegar al entendimiento de cómo se pudieron formar las galaxias porque lo estamos mirando desde una perspectiva, o, desde un punto de vista muy estrecho. Es posible que el problema resida en que deberíamos mirar las cosas desde una escala mayor para así, poder entender cómo pudieron suceder las cosas, cómo se formaron los grandes cúmulos de galaxias.

Resultado de imagen de La génesis de las galaxias

La génesis de las galaxias individuales se podría resolver por sí misma si pudiéramos entender bien la formación de los cúmulos. La idea nos conduce naturalmente a la cuestión de cómo se pueden haber formado concentraciones tan grandes de masa al comienzo de la vida del universo. Una de las ideas más sencillas sobre cómo puede haber sido el universo cuando los átomos se estaban formando es que, no importa lo que estuviese pasando, la temperatura era la misma en todas partes. Este se llama “Modelo Isotérmico”. Corresponde a la suposición de que la radiación en los comienzos del universo estaba diseminada iniformemente, estuviera o no agrupada la materia.

Resultado de imagen de La génesis de las galaxias

La formación de galaxias es una de las áreas de investigación más activas de la astrofísica,  y en cierto sentido, esto también se aplica a la evolución de las galaxias. Sin embargo, hay algunas ideas que ya están ampliamente aceptadas. Actualmente, se piensa que la formación de galaxias procede directamente de las teorías de formación de estructuras,  formadas como resultado de las débiles fluctuaciones cuánticas en el despertar del Big Bang. Las simulaciones de N-cuerpos también han podido conjeturar sobre los tipos de estructuras, las morfologías y la distribución de galaxias que observamos hoy en nuestro Universo actual y, examinando las galaxias distantes, en el Universo primigenio. Nuestra Galaxia, la Vía Láctea puede contener algo más de cien mil millones de estrellas, otras más pequelas sólo tienen mil millones y, algunas macrogalaxias pueden llegar a tener 600.000 mil millones de estrellas. Lo cierto es que hemos podido localizar galaxias situadas a más de 11.000 años-luz de la Tierra.

En ese (para nosotros) tan inconmensurable espacio de tiempo, las galaxias han tenido mucho tiempo para evolucionar y, gracias a nuestros modernos ingenios, las hemos podido localizar de todo tipo y en algunas de sus más extrañas configuraciones al fusionarse unas con otras por efecto de la Gravedad que, segú todos los indicios, es el destino que el Universo tiene adjudicado para Andrómeda y la Vía Láctea dentro de algunos miles de millones de años.

Si desarrollamos las consecuencias matemáticas del Modelo Isotérmico, podremos encontrar que los tipos de concentreaciones de masa se podrían haber formado en la infancia del universo y que, de esa manera, son muy fáciles de describir. Con la misma temperatura en todas partes, las fluctuaciones aleatorias ordinarias producirían concentraciones de masa de todos los tamaños, si quisieran encontrar una concentración del tamaño de un planeta, la habría. Lo mismo sucedería con concentraciones de masa del tamaño de estrellas y de galaxias, cúmulos, etc. En la jerga del astrofísico, las concentraciones de masa aparecerían a todas las escalas.

Así, de esa manera, la materia esparcida por todo el espacio y situada a lo largo y lo ancho de él, pudieron formar toda clase de objetos grabdes y pequeños configurando galaxias que, como pequeños universos, lo contenían todo y, eran como universos en miniatura con sus mundos y estrellas y sustancia primigenia dispuesta para interaccionar con la radiación, el electromagnetismo y la Gravedad que serían responsables de la formación de nuevas estrellas y nuevas galaxias.

Claro que, el modelo isotérmico sólo podemos encontrar una solución particularmente simple del problema de las galaxias, porque las concentraciones de masa más pequeñas crecen más rápido que las más grandes. Los primeros objetos que aumentarían serían cosas relativamente pequeñas llamadas protogalaxias, que contendrían quizá un millón de estrellas cada una. Estas protogalaxias se agruparían luego bajo influencias de la Gravedad para formar galaxias con todas las de la ley, que se reunirían a su vez para formar cúmulos y supercúmulos. el universo en este modelo se construiría “desde abajo”

Resultado de imagen de El cúmulo de galaxias Abell 1689 desvía la luz

Este cúmulo de galaxias es uno de los objetos más masivos del Universo visible. En esta fotogrrafía de la cámara avanzada para sondeos del Telescopio Espacial Hubble, se ve como Abell 1.689 curva el espacio tal como predijo la teoría de la gravedad de Einstein (las galaxias que hay detrás del cúmulo desvían la luz y producen múltiples imágenes curvadas).

Claro que, en todo esto nos encontramos con un gran inconveniente: ¡No ha habido tiempo para que ese placentero agrupamiento bajo la influencia de la Gravedad haya podido tener lugar lugar desde el momento de la creación, es decir, desde lo que entendemos por Big Bang! Sin embargo y a pesar de ello, ahí las tenemos y podemos contemplarlas en toda su belleza y esplendor pero, ¿cómo pudieron llegar aquí? En realidad, nadie lo sabe.

Hay algunas colecciones de galaxias muy grandes y complejas en el cielo. Nos vemos forzados a concluir que el universo no puede haber tenido una temperatura constante durante el desparejamiento. Es decir, no quiero decir nada contra la existencia de las galaxias, simplemente hago notar que las galaxias no pueden existir si suponemos que la radiación estaba unida y uniformemente distribuida en la infancia del universo. Claro que:

¡Si la radiación marcha junto con la materia y la materia con las galaxias, la radiación de microondas cósmica sería contradictoria!

 

 

Si la radiación no se hubiera dispersado uniformemente, con independencia de la materia del universo, ¿?dónde hubiera estado? Siguiendo el procedimiento normal de la física teórica, consideraremos a continuación la tesis opuesta. Suponemos que en el comienzo del Universo la materia y la radiación estaban unidas. Si era así, allí donde se encontrara una concentyración de masa, también habría una concentración de radiación. En la jerga de la física se dice que esta situación es “adiabática”. Aparece siempre que tienen lugar en las distribuciones del gas cambios tan rápidos que la energía no puede transferirse fácilmente de un punto al siguiente.

http://paolera.files.wordpress.com/2012/11/hst_macs0647_z11.jpg

En esta imagen obtenida con el Hubble, se observa una lejana proto-galaxia. Una proto-galaxia, es un objeto que dará una galaxia como resultado de su evolución; una galaxia naciente o en formación. Una galaxia muy lejana, es vista muy joven ya que su luz tarda en llegar a nosotros, por eso se dice que “vemos el pasado”. MACS0647-JD, es una galaxia hecha y derecha, pero tan lejana que la vemos como era hace mucho tiempo atrás. Está a 13 mil millones de años luz de casa. Como ese es el tiempo que tarda su luz en llegar a nosotros, la vemos como era hace ese tiempo atrás. Si tenemos en que el Universo se formó hace casi unos 14 mil millones de años (aproximadamente), eso convierte a este objeto en una galaxia de las primeras en formarse. Al verla como un agalaxia naciente, debería estar llena de estrellas brillantes y calientes.

Sabemos que,  para hacer galaxias, la materia del universo tuvo que estar muy bien distribuida en agregados cuando se formaron los átomos. Llamaremos a esto “darle un empukon al proceso”. Un corolario necesario es que en condiciones adiabáticas, la radiación debe de  haber comenzado siendo agrupada también.

Aquí se pretende representar el pasado y el futuro del universo que, se expandió primero de manera muy rápida, después más lenta, y de nuevo la velocidad aumentó, de manera tal que el recorrido represrenta una especie de S que nos habla del pasado y del futuro.

Entre los otros muchos procesos en marcha en aquellos primeros momentos del nacimiento del universo, en aquel tiempo, uno de los principales parámetros a tener en es el de la rápida expansión, ese proceso que ha venido a ser conocido como inflación. Es la presencia de la inflación la que nos conduce a la predicción de que el universo tiene que ser plano.

    Se pudieron formar los núcleos y los átomos de la materia

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. Cuando el agua se convierte en hielo, se expande; todos hemos podido ver una botella de líquido explotar si alcanzanda la congelación, el contenido se expande y el recipiente no puede contenerlo. No debería sert demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

Claro que no es fácil explicar cómo a medida que el espacio crece debido a esa expansión, se hace más y más voluminoso cada vez y también, cada vez menos denso y más frío. Lo que realmente sorprende es la inmensa magnitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1060  longitudes de Planck. Acordáos de aquellos números que en aquel que titulé,  ¿Es viejo el Universo?, os dejaba allí expuestos unos interesantes sobre nuestro universo. Volvamos a verlos:

- La edad actual del universo visible ≈ 1060 tiempos de Planck

- Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

- La masa actual del Universo visible ≈ 1060 masas de Planck

- Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

- Densidad actual del universo visible ≈10-120 de la densidad de Planck

- Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

- Temperatura actual del Universo visible ≈ 10-30 de la Planck

   No debemos perder de vista la maravilla de los cuantos

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción. Lo cierto es que, son tan grandes y tan pequeñas esos números y fracciones que, para nosotros, no tienen significación  consciente, no las podemos asimilar al tratarse, como se dice más arriba, de medidas sobrehumanas. Si un átomo aumentara en esa proporción de 1060 no tendría cabida en el Universo, el átomo sería mayor.

Decíamos que en 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo con el tamaño de una naranja. No debe sorprendernos pués, que el inflación esté ligado a este proceso. Es cierto que cuando oímos por primera vez este proceso inflacionista, podamos tener alguna dificultad con el índice de inflación que se expone sucedió en el pasado. Nos puede llevar, en un primer momento, a la idea equivocada de que se han violado, con un crecimiento tan rápido, las reglas de Einstein que impiden viajar más veloz que la luz, y, si un cuerpo material viajó la línea de partida que señalan los 10-35 segundos aquella otra que marca la dimensión de una naranja…¡su velocidad excedió a la de la luz!

Claro que la respuesta a que algo sobrepasara la velocidad de la luz, c, es sencilla: NO, nada ha sido en nuestro universo más rápido que la luz viajando, y la explicación está en el hecho cierto de que no se trata de algo pudiera ir tan rápido, sino que, por el contrario, en lugar de que un objeto matrerial vciajara por el espacio, lo que ocurrió es que fue el espacio mismo el que se infló -acordáos de la masa de pan que crece llevando las pasas como adorno-, y, , esa expansión hace que las galaxias -las pasas de la masa-, se alejen cada vez más las unas de las otras, haciendo el universo más grande y frío cada vez.

Así que, con la expansión o inflación, ningún cuerpo material se movió a grandes velocidades en el espacio, ya que, fue el espacio mismo el que creció y, de alguna manera, su tremenda expansión, incidió sobre los objetos que contenía que, de esa manera, pasaron de estar muy juntos a estar muy separados. Las reglas contra el viaje a velocidades superiores a la de la luz sólo se aplican al movimiento al movimiento dentro del espacio, no al movimiento del espacio. Así no hay contradicción, aunque a primera vista pudiera parecerlo.

Resultado de imagen de El cúmulo de galaxias Abell 1689 desvía la luz

Especulan pero… El secreto de formación de las galaxias… ¡No lo sabe nadie! Es posible que estuviera allí presente una especie de sustancia cósmica que, generando gravedad, retuviera a la materia para que se pudieran formar… ¡Quién sabe!

Empleamos todos los medios a nuestro alcance e ideamos nuevos ingenios para poder asomarnos a las escalas más extremas del universo, con los telescopios queremos llegar las primeras gaalxias y, con los aceleradores de partículas nos queremos asomar a ese momento primero en el que se formó la materia.

A los cien millones de años el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro billa un quásar blancoazulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

Cúmulo de Galaxias de Virgo

Nuestras galaxias vecinas del supercúmulo de Virgo están relativamente cerca; la expansión del Universo aún no ha tenido tiempo de alejarlas a las distancias-unas decenas de millones de años-luz a las que las encontraremos .   El Universo es aún altamente radiactivo.  Torrentes de rayos cósmicos llueven a través de nosotros en cada milisegundo, y si hay vida en ese tiempo, probablemente está en rápida mutación.

Hay algo que es conocido por el término técnico de desacoplamiento de fotones, en ese momento, la oscuridad es reemplazada por una deslumbrante luz blanca, se cree que ocurrió cuando el Universo tenía un millón de años.   El ubicuo gas cósmico en aquel momento se había enrarecido los suficientes como permitir que partículas ligeras –los fotones- atraviesen distancias grandes sin chocar con partículas de materia y ser reabsorbidas.

(Hay gran cantidad de fotones en reserva, porque el Universo es rico en partículas cargadas eléctricamente, que generan energía electromagnética, cuyo cuanto es el fotón.) Es esa gran efusión de luz, muy corrida al rojo y enrarecida por  la expansión del Universo, la que los seres humanos, miles de millones de años después, detectaran con radiotelescopios y la llamaran la radiación cósmica de fondo de microondas. Esta época de “sea la luz” tiene un importante efecto sobre la estructura de la materia.  Los electrones, aliviados del constante acoso de los fotones, son libres de establecerse en órbita alrededor de los núcleos, formando átomos de hidrógeno y de helio.

Sí, de todo eso hemos podido saber pero, ¿cómo se pudieron formar las galaxias a pesar de la expansión del universo? ¿por qué la matería se pudo agrupar y no salió despedida y se dispersó impidiendo esa formación? Lo cierto es que nadie sabe contestar esa pregunta y, se estima, se cree, se piensa que, allí podría haber estado presente una especie de “materia” o “sustancia” cósmica que no emitía radiación y que, generando gravedad, podría haber retenido la materia de manera suficiente para que se pudieran formar las galaxias.

¡Es todo tan complejo!

emilio silvera

¿Había algo antes del Big-Bang?

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (12)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ABC- Ciencia

http://3.bp.blogspot.com/-EgYu203xVYQ/TpZgFOU8FfI/AAAAAAAAAJU/q5xInJzoB-4/s1600/penrose-21.png

Según la teoría de la Cosmología Cíclica Conforme, de Sir Roger Penrose, el Universo vive un ciclo continuo e infinito de «creaciones»

“ A la izquierda: Imagen en el óptico de la nebulosa del Cangrejo tomada por el telescopio Hubble, a la que se han asignado colores falsos para resaltar los diferentes elementos químicos que la componen. La nebulosa abarca una distancia de unos 6 años luz. En el centro: Imagen del objeto en rayos XA la derecha: Recreación artística de la estrella de neutrones central, de apenas unos kilómetros de diámetro, con su campo magnético. El eje de rotación del púlsar queda representado por la línea vertical de color verde. Las franjas azules, paralelas al eje que forman los polos magnéticos del astro, simbolizan los haces de radiación emitidos por el objeto. Debido a la rápida rotación de la estrella, esos haces se orientan hacia la Tierra una vez cada 33 milisegundos. Cuando eso ocurre, desde nuestro planeta se observa un breve pulso de radiación electromagnética muy energética”
LaNebulosaseformó trásuna explosión deSupernova,claro que,eltérmino explosión,si estáreferido al Big Bang,sequedamuy cortoparadescribir todo loque allí,sesupone que pasó.
 NASA, ESA, J. Hester, A. Loll (ASU)
Héctor Socas, investigador del Instituto de Astrofísica de Canarias (IAC). Créditos: ACTPress.

 

POR HÉCTOR SOCAS NAVARRO/Investigador en el Instituto Astrofísico de Canarias (IAC)

 

Sir Roger Penrose es una leyenda viva de la Física. Durante el festival Starmus tuve el placer de escucharle explicando su controvertida teoría cosmológica. Su exposición fue tan elocuente, convincente e incluso divertida, que me causó una profunda impresión. A ver si en este artículo consigo explicarla de forma mínimamente coherente.

Estamos bastante seguros de que el Universo entero comenzó con lo que se llama el Big Bang (la «gran explosión») hace la friolera de 13,700 millones de años. En realidad, lo de la explosión no es una muy buena metáfora. Este nombre lo acuñó despectivamente el astrofísico Fred Hoyle durante la retransmisión de un programa de radio de la BBC en 1949. Hoyle se burlaba con él de la absurda teoría que había propuesto el sacerdote (además de físico y matemático) Georges Lemaître. El propio Einstein al principio tampoco creía en las ideas de Lemaître. El prejuicio de la época era que el Universo debía ser algo estático e inmutable. Pero las matemáticas de Lemaître eran impepinables.

Resultado de imagen de Lemaitre Y la expansión del Universo

Georges Lemaître y Albert Einstein que, tras muchas discuosiones…

Su solución de las ecuaciones de Einstein implicaba que el Universo debía estar o bienexpandiéndose o bien colapsando, cayendo sobre sí mismo como un edificio en demolición. Visto con perspectiva histórica, debe dar mucha rabia eso de que alguien coja las ecuaciones que son el trabajo de tu vida y las resuelva magistralmente para llegar a una conclusión que aborreces. Las discusiones entre Einstein y Lemaître, que llevaron al primero a proponer la existencia de una «constante cosmológica», merecerían un artículo aparte. Por lo pronto, baste decir que, como buen científico, Einstein acabó aceptando la evidencia, tanto teórica como empírica, que comenzaba a acumularse. Pese a sus prejuicios iniciales, terminó abrazando la idea de que, efectivamente, el Universo se estaba expandiendo.

La singularidad original

Se sabe que el universo tuvo un origen. Pero ¿de dónde provino? ¿Qué se originó exactamente? Sabemos que comenzó expandiéndose rápidamente, y que sus pequeñas partículas terminaron convirtiéndose en innumerables e inmensas galaxias. ¿Qué pasó antes? ¿Cómo eran las leyes físicas cuando todo empezó?

Imagen: geralt. Fuente: Pixabay.

La historia sería más o menos así: Al principio de los tiempos, todo el Universo estaba concentrado en una singularidad, un punto de densidad infinita que repentinamente estalló en ese instante inicial, saltando toda la materia, energía y espacio despedidos en todas direcciones. A medida que pasa el tiempo, la Física nos dice que las galaxias van a sentir el tirón gravitatorio unas de otras, y esto debería hacer que poco a poco se vayan frenando. Cuánto se van a frenar dependerá de cuánta masa haya en el Universo. Si hay mucha, la gravedad terminará por dominar, la expansión se detendrá y el Universo volverá a caer sobre sí mismo.

NASA / WMAP Science Team

Si hay poca, la atracción será incapaz de frenar la expansión y el Universo continuará expandiéndose por toda la eternidad, aunque a menor velocidad. La distinción es trascendental, con implicaciones hasta en el plano espiritual. Porque un Universo que vuelve a colapsar se presta a la perspectiva del ciclo infinito de big bang-big crunch, el ciclo continuo y eterno de creación y destrucción. Mientras que la otra posibilidad nos lleva a una insulsa muerte final de toda la existencia, más que nada por aburrimiento.

La sorpresa de la densidad crítica

Resultado de imagen de La Densidad Crítica del Universo

De la Densidad Crítica, o lo que los Cosmólogos llaman el Omega Negro (la materia existente en el Universo), dependerá su final. Tres podrían ser las clases de Universo en el que vivimos.

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas… y ¡vida!

La cantidad de masa (o, hablando con más precisión, de energía) que se necesita para pasar de un comportamiento a otro se llama «densidad crítica». No hace mucho, cuando yo estudiaba, sin ir más lejos (y créanme que tampoco hace tanto de eso), nos preguntábamos si en el Universo había más o menos densidad que la crítica. Parecía que no, que era muy pequeña, que no sería suficiente toda la masa para volver a cerrar el ciclo. Pero claro, en aquella época no se conocían la materia y la energía oscura. Si tenemos en cuenta estos factores, nos encontramos con uno de los grandes misterios de la cosmología moderna: ¡Resulta que tiene exactamente la densidad crítica!

La radiación de fondo de microondas, una de las mayores evidencias de que ocurrió un Big Bang
La radiación de fondo de microondas, una de las mayores evidencias de que ocurrió un Big
Bang- WIKIPEDIA

La revelación de que la densidad del Universo es exactamente la crítica (con tanta precisión como somos capaces de medir), sacudió el mundo de la Física. Y es que, aunque sea en el plano subconsciente, se hace difícil no evocar la imagen de un creador para explicar tal coincidencia cósmica. La situación de crisis existencial se resolvió poco después, para alivio de muchos, con la llegada de la teoría de la inflación.

Por ponerlo en términos muy simples, esta teoría nos dice que durante la primera fracción de segundo (técnicamente, desde los 10-36 hasta los 10-32 segundos), el Universo sufrió una expansión tan brutalmente violenta, que el término «explosión» se queda muy corto para describir lo que ocurrió. La expansión en esa época fue acelerada exponencialmente, que es una forma que hay en Física de decir enormemente rápida.

Los cosmólogos suelen decir que todo lo que existe pasó de tener el tamaño de un átomo al de un melón. Por alguna razón se suele usar el melón como medida de referencia. Podrían decir que medía 30 centímetros, que era como un balón de baloncesto o como un florero grande. Pero no, parece que lo del melón lleva camino de convertirse en la unidad estándar de volumen cósmico, algo así como el campo de fútbol lo es hoy en día para medir áreas de monte quemado.

Archivo:Bicep2.jpg

La cuestión es que a este disparatado crecimiento del espacio, infinitamente más rápido que la luz, se le llama inflación. Es un poco contraintuitivo porque, en lenguaje cotidiano, el verbo inflar nos suena mucho más suave y benigno que explotar. Es bien conocido que los físicos no son muy buenos para poner nombres a las cosas. No entendemos bien cómo y por qué ocurrió la inflación salvo que parece estar relacionado con lo que se llama «gran unificación», la época en la que las tres fuerzas fundamentales de la naturaleza eran una, grande y única.

El Universo no se frena

El otro gran descubrimiento que ha tenido lugar desde los tiempos de Einstein es otro hallazgo reciente que también ha causado cierta zozobra existencial. Discutíamos antes las dos posibilidades sobre hasta qué punto sería la gravedad capaz de frenar la expansión del Universo, creando un ciclo continuo de explosión-colapso (Big Bang-Big Crunch) o bien una expansión que se iría ralentizando eternamente pero sin llegar nunca a detenerse del todo. Pues bien, hoy en día sabemos que no va a ser ni lo uno ni lo otro. Resulta que el Universo no se está frenando. No tiene visos de querer volver a colapsar pero tampoco está ralentizando su marcha.

Antes al contrario, las observaciones nos muestran que desde hace 5,000 millones de años (un tercio de su vida), el Universo ha dejado de frenarse y ¡ha comenzado a acelerar! Este resultado fue obtenido por dos grupos independientemente y ambos recibieron el Premio Nobel en 2011. Fue tan sorprendente que ninguno de los dos grupos se atrevió a publicarlo hasta que se enteraron de los resultados del otro. Para explicar el fenómeno, los teóricos han tenido que postular la existencia de una «energía oscura», que sería omnipresente en todo el espacio vacío.

El ciclo continuo de Penrose

Resultado de imagen de Universo Cíclico

Hasta aquí hemos explicado la cosmología moderna canónica, la visión aceptada mayoritariamente por los expertos en el tema. ¿Qué es, entonces, lo que añade Penrose? Pues, según su teoría, estas dos revelaciones, la inflación y la expansión acelerada del Universo, están íntimamente relacionadas. De hecho, serían la misma cosa. Para Penrose, el Universo vive un ciclo continuo e infinito de «creaciones», pero no en el modelo tradicional de explosión-colapso.

Una fotografía de Roger Penrose, tomada en 2005
Una fotografía de Roger Penrose, tomada en 2005- Festival della Scienza

En su lugar, Penrose postula que cada uno de los ciclos (que él llama eones) acaba con una fase de expansión acelerada que se convierte en la inflación del eón siguiente. Lo de Penrose no es una ocurrencia, es una teoría. Esto significa que ha resuelto las ecuaciones de la relatividad general y los números cuadran salvo por un factor de escala. Quiere decirse que las escalas del nuevo universo son mucho mayores, tanto en el espacio como en el tiempo.

De Universo a melón

Resultado de imagen de Un nuevo Universo ciclico después del final

Así, todo nuestro Universo en expansión acelerada, está camino de convertirse en lo que sería un melón del Universo siguiente. Y los miles de millones de años que dura esta expansión serían la breve fracción de segundo en aquel nuevo Universo. Quizás en un futuro increíblemente distante, habrá criaturas inconcebiblemente grandes y lentas en el siguiente eón, investigando esta época en la que vivimos hoy en día, a la que quizás den el absurdo nombre de inflación y quizás la consideren el origen de su universo. Una implicación particularmente profunda de todo esto es que, de ser cierto, estaríamos ahora mismo viviendo un nuevo big bang que comenzó hace 5,000 millones de años y lo estaríamos viendo transcurrir a cámara superlenta.

Sir Roger Penrose, sustentador de esta teoría, en el Festival della Scienza, Génova, 2011.

Quiero resaltar que esta teoría, llamada Cosmología Cíclica Conforme, no es la aceptada por la mayoría de los cosmólogos. Sin embargo, no hay nada incorrecto o erróneo en ella, que sepamos. Penrose es uno de los mayores expertos mundiales en la física de la relatividad general y la cosmología. Su teoría cumple con la física conocida y esto sí que es un mérito que le concede la comunidad. Al igual que hizo Lemaître hace un siglo, ha encontrado una solución matemática correcta a las ecuaciones de la Física que conocemos, pero es una solución que aborrecen sus colegas por razones más filosóficas que científicas.

Resultado de imagen de ondas gravitacionales

Un aspecto particularmente fascinante es que, como toda buena teoría, la naturaleza cuantitativa de la cosmología de Penrose le permite hacer predicciones. Las ecuaciones indican que los eones no son completamente independientes y algo de información se puede transmitir de uno a otro. En particular, las ondas gravitacionales (ésas que recientemente detectó el experimento LIGO) creadas por catástrofes cósmicas en el eón anterior podrían atravesar la época de la inflación y llegar hasta nuestros días. Estas ondas producirían patrones de anillos concéntricos en el fondo cósmico de microondas. Ni que decir tiene que muchos investigadores están ya manos a la obra buscando esos anillos. Si se encontraran, sería la primera observación de algo que ocurrió antes del Big Bang.

Héctor Socas Navarro es investigador del Instituto de Astrofísica de Canarias (IAC) y divulgador en «Coffe Break». El autor agradece al Dr Jose Alberto Rubiño por su lectura crítica y comentarios para mejorar este artículo.