jueves, 23 de marzo del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cuanta materia hay en nuestro Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física y cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                                       La constante de Hubble en función de la Densidad Crítica

La cantidad total de Materia del Universo se da generalmente en términos de una cantidad llamada Densidad Crítica, denotada por Omega  (Ω). Esta es la densidad de la materia que se necesita para producir un universo plano. Si la Densidad efectivamente observada es menor o mayor que ese parámetro, en el primer caso el Universo es abierto, en el segundo es cerrado. La Densidad Crítica no es muy grande; corresponde aproximadamente a un protón por metro cúbico de espacio. Puede que no parezca mucho, dado el número inmenso de átomos en un metro cúbido de lodo, pero no debemos olvidar que existe una gran cantidad de espacio “vacío” entre las galaxias.

Cuando contemplamos imágenes como la de arriba, nos resulta engoñoso y no imaginamos las inmensas distancias que las separan. Las galaxias están muy retiradas las unas de las otras. Andrómedra y la Vía Láctea están a 2,3 años-luz perteneciendo al mismo Grupo Local.

Algunos números que definen nuestro Universo:

  • El de fotones por protón
  • La razón densidades de Materia Oscura y Luminosa.
  • La Anisotropía de la Expansión.
  • La falta de homogeneidad del Universo.
  • La Constante Cosmológica.
  • La desviación de la expansión respecto al valor crítico.
  • Fluctuaciones de vacío y sus consecuencias.
  • ¿Otras Dimensiones?

”distribución_materia_oscura_y_materia_bariónica”

En las últimas medidas realizadas, la  Densidad crítica que es la densidad necesaria para que la curvatura del universo sea cero, ha dado el resultado siguiente:  r0 = 3H02/8pG = 1.879 h2 10-29 g/cm3, que corresponde a una densidad tan baja la de la masa de 2 a 3 átomos de hidrógeno por metro cúbico (siempre, por supuesto obviando la incertidumbre en la constante de Hubble).

Estimar la cantidad de materia luminosa del universo es una cosa muy fácil de hacer. Sabemos el brillo que tiene una estrella media, así que podemos hacer una estimación del de estrellas de una galaxia distante. Podemos contar entonces el número de galaxias en un volumen dado de espacio y sumar las masas que encontramos. Dividiendo la masa por el volumen del espacio obtenemos la densidad media de materia en ese volumen. Cuando llevamos a cabo esta operación, obtenemos que la densidad de la materia luminosa es aproximadamente entre el uno o dos % menor de la densidad crítica; es decir, menos de lo que se necesita para cerrar el universo.

 

Se ha tratado de medir la Densidad Crítica del Universo para poder saber en qué clase de universo estamos y, parece que es plano, la DC calculada resulta ser cerca de la ideal para que el universo sea plano y, si es así, nunca se producirá un Big Crunch, la expansión nos llevaría hacia una muerte térmica que se produciría al llegar al cero absoluto, es decir, -273 ºC. Los Cosmólogos llaman Omega a la cantidad de materia del universo y según la que realmente tenga podría ser un universo plano, abierto o cerrado.

Por otro lado, está lo bastante cerca del valor crítico para hacer una pausa. Después de todo, esta fracción podría haber sido en principio de una billonésima o trillonésima, y también podría haber sucedido que fuese un millón de veces la materia necesaria para el cierre. ¿Por qué, entre todas las masas que podría tener el universo, la masa de materia luminosa medida está cerca del valor crítico?

 

Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico, simplemente podría deberse a un accidente cósmico; las cosas sencillamente “resultan” de ese modo. Me costaría mucho aceptar una explicación y supongo que a otros también. Es tentador decir que el Universo tiene en realidad la masa crítica, pero que de algún modo no conseguimos verla toda.

Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia entre las densidades observadas y la crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito religioso, la fe de creer en lo que no podemos ver ni tocar y, la Ciencia, amigos míos, es otra cosa.

Los cosmólogos suponen que los cúmulos de galaxias están impregnados de “materia oscura”, esa especie de sustancia cósmica que se busca sin éxito, ya que, no hemos sido capaces hasta el momento de inventar ingenios que la puedan detectar al carecer (según se cree) del efecto de radiación que tiene la materia bariónica formada por protones y neutrones, es decir, por Quarks y Leptones.

 

Tendremos que imaginar satélites y sondas que, de alguna manera, puedan detectar grandes halos galácticos que encierren la tan buscada materia oscura y que, al parecer, hace que nuestro Universo sea lo conocemos y, es la responsable del ritmo al que se alejan las galaxias, es decir, la expansión del Universo.

Esos halos, tendrían muchas veces las masas que podemos ver en la Materia luminosa de las estrellas, planetas, galaxias y nosotros mismos. La teoría de la materia oscura y su presencia en cúmulos y supercúmulos ha sido “descubierta” (o inventada para tapar nuestra ignorancia) en época relativamente cercana para que prevalezca entre los astrónomos la unanimidad respecto a su contribución a la masa total del universo. El debate continúa, está muy vivo y, es el tema tan candente e importante que, durará bastante tiempo mientras algún equipo de observadores no pueda, de una vez por todas, demostrar que, la “materia oscura” existe, que nos digan donde está, y, de qué está conformada y como actúa. Claro que, cuando se haga la suma de materia luminosa y oscura, la densidad de la masa total del universo no será todavía mayor del 30% del valor crítico. A todo esto, ocurren sucesos que no podemos explicar y, nos preguntamos si en ellos, está implicada la “Materia oscura”, o, por el contrario, está tirando de nuestro Universo, otros universos vecinos.

NGC 6397

Inusual colisión de enanas blancas y también, se ha podido detectar la más abarrotada colisión de cúmulos galácticos que han sido identificados al combinar información de tres diferentes telescopios. El resultado brinda a los científicos una posibilidad de aprender lo que ocurre con algunos de los más grandes objetos en el universo que chocan en una batalla campal cósmica de inusitada fuerza y descomunal emisión de energía.

MACSJ0717.5+3745

Usando del Observatorio de rayos-X Chandra, el Telescopio Espacial Hubble y el Observatorio Keck de Hawai, los astrónomos fueron capaces de determinar la geometría tridimensional y el movimiento en el sistema MACSJ0717.5+3745 localizado a 5.4 mil millones de luz de la Tierra. Los investigadores encontraron que cuatro distintos cúmulos de galaxias están envueltos en una triple fusión, la primera vez que un fenómeno así es documentado.

MACSJ0717.5+3745 etiquetado

La composición de imagen (arriba) muestra el cúmulo de galaxias masivo MACSJ0717.5+3745. El color del gas caliente está codificado con colores mostrar su temperatura. El gas más frío es mostrado como un púrpura rojizo, el gas más caliente en azul y las temperaturas intermedias en púrpura. Las repetidas colisiones en el cúmulo son causadas por una corriente de galaxias, polvo y “materia oscura” -conocida filamento- de 13 millones de años luz.

Se han obtenido Imágenes (MACSJ0717) que muestran cómo cúmulos galácticos gigantes interactúan con su entorno en escalas de millones de años luz. Es un sistema hermoso para estudiar cómo los cúmulos crecen mientras el material cae en ellos a lo largo de filamentos. Simulaciones por ordenador muestran que los cúmulos de galaxias más masivos deben crecer en regiones donde filamentos de gran escala de gas intergaláctico, galaxias, y materia desconocida intersectan, pero…

¿Cuál debe ser la Masa del Universo?

 

Claro que la idea de masa perdida se introdujo porque la densidad observada de la materia del universo está cerca del valor crítico. Sin embargo, hasta comienzos de los ochenta, no se tuvo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que entonces se ha conocido como “universo inflacionista”. Desde entonces, la teoría ha sufrido numerosas modificaciones técnicas, pero los puntos centrales no han cambiado.

nuestra conversación de hoy, diremos que el aspecto principal del universo inflacionista es que estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico. Esta predicción viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. los otros muchos procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.

Abell 370: Lente gravitacional de un cúmulo de galaxias

Abell 370 La lente gravitacional distorsiona la Imagen y nos enseña, a la derecha, algo que nos parece una inmensa cuerda cósmica , ¿que podrá ser en realidad? la materia a lo largo y ancho del universo se reparte de manera que, se ve concentrada en cúmulos de galaxias y supercúmulos que son las estructuras más grandes conocidas y, dentro de ellas, están todos los demás objetos que existen. Claro que, deajndo a un lado esas fluctuaciones de vacío y, la posible materia desconocida.

El proceso mediante el cual la fuerza fuerte se congela es un ejemplo de un cambio de fase, similar en muchos aspectos a la congelación del agua. el agua se convierte en hielo, se expande; una botella de leche explotará si la dejamos en el exterior en una noche de invierno de gélido frío. No debería ser demasiado sorprendente que el universo se expanda del mismo modo al cambiar de fase.

La distancia a una galaxia lejana se determina estudiando la luz proveniente de estrellas de tipo Cefeidas Variables. El expectro de la luz estelar revela la velocidad a la que se mueve la galaxia (Efecto Doppler) y la cantidad de expansión que ha sufrido el universo que la luz salió de su fuente.

Lo que es sorprendente es la enorme amplitud de la expansión. El tamaño del Universo aumentó en un factor no menor de 1050. Este es tan inmenso que virtualmente no tiene significado para la mayoría de la gente, incluido yo mismo que, no pocas veces me cuesta asimilar esas distancias inconmensurables del Cosmos. Dicho de otra manera, pongamos, por ejmplo, que la altura de los lectores aumentara en un factor tan grande como ese, se extenderían de un extremo al otro del Universo y, seguramente, faltaría sitio. Incluso un sólo protón de un sólo átomo de su cuerpo, si sus dimensiones aumentaran en 1050, sería mayor que el mismo universo. En 10-35 segundos, el universo pasó de algo con un radio de curvatura mucho menor que la partícula elemental más pequeña a algo como el tamaño de una naranja grande. No es extraño que el inflación esté ligado a este proceso.

Comparación entre un modelo de expansión desacelerada (arriba) y uno en expansión acelerada (abajo). La esfera de referencia es proporcional al factor de escala. El universo observable aumenta proporcionalmente al tiempo. En un universo acelerado el universo observable aumenta más rápidamente que el factor de escala con lo que cada vez podemos ver mayor del universo. En cambio, en un universo en expansión acelerada (abajo), la escala aumenta de manera exponencial mientras el universo observable aumenta de la misma manera que en el caso anterior. La cantidad de objetos que podemos ver disminuye con el tiempo y el observador termina por quedar aislado del resto del universo.

Cuando ( mucho tiempo ya) leí por primera vez acerca del universo inflacionario, experimenté dificultades para poder asimilar el índice de inflación. ¿No violaría un crecimineto tan rápido las reglas impuestas por la relatividad de Eintien que marcaban el límite de la velocidad en el de la luz en el vacío? Si un cuerpo material viajó de un extremo de una naranja a otro en 10-35 segundos, su velocidad excedió a la de la luz en una fracción considerable.

“OPERA ha medido la velocidad de los neutrinos y ha encontrado que se propagan a una velocidad mayor que la luz.” Esa fue la Noticia que pretendía quitar la primacía a los fotones de ser los corredores más rápidos del Universo, los científicos dijeron que:
“Los neutrinos sacan una ventaja de 20 metros a los fotones al recorrer los 730 kilómetros”. La noticia fue publicada cuando un grupo de físicos italianos midieron mal la velocidad de los neutrinos y, dejaba en entredicho la teoría de la relatividad especial de Einstein. Sin embargo, pocos días más tarde, se tuvieron que desdecir.

Claro que, con esto pasa como pasó con estos “veloces” neutrinos que, algunos decían haber comprobado que corrían más rápidos que la luz, y, sin embargo, todo fue un error de cálculo en el que no se tuvieron en algunos parámetros presentes en las mediciones y los aparatos que hacían las mismas. Aquí, podría pasar algo parecido y, la respuesta la podemos encontrar en aquella analogía con la masa de pan. Durante el período de inflación es el espacio mismo -la masa de pan- lo que está expandiéndose. Ningún cuerpo material (acordaos que en aquella masa estaban incrustadas las uvas que hacían de galaxias y, a medida que la masa se inflaba, las uvas -galaxias- se alejaban las unas de las otras pero, en realidad, ninguna de estas uvas se mueven, es la masa lo que lo hace.

                               El Universo se expande

Las reglas contra los viajes a mayor velocidad que la de la luz sólo se aplican al movimiento del espacio. Así no hay contradicción, aunque a primera vista pueda parecer que sí. Las consecuencias del período de rápida expansión se pueden describir mejor con referencia a la visión einsteniana de la gravitación. de que el universo tuviera 10-35 segundos de edad, es de suponer que había algún tipo de distribucón de la materia. A cauda de esa materia, el espacio-tiempo tendrá alguna forma característica. Supongamos que la superficie estaba arrugada antes de que se produjera la inflación. Y, de esa manera, cuando comenzó a estirarse, poco a poco, tomó la forma que podemos detectar de “casi” plana conforme a la materia que contiene.

La Galaxia NGC 4388 y su Inmensa Nube de Gas

En todo esto, hay un enigma que persiste, nadie sabe contestar cómo, a pesar de la expansión de Hubble, se pudieron formar las galaxias. La pregunta sería: ¿Qué clase de materia estaba allí presente, para evitar que la materia bariónica no se expandiera sin rumbo fijo por todo el universo y, se quedara el tiempo suficiente para formar las galaxias? Todo ello, a pesar de la inflación de la que hablamos y que habrái impedido su formación. Así que, algo tenía que existir allí que generaba la gravedad necesaria para retener la materia bariónica hasta que esta, pudo formar estrellas y galaxias.

No me extrañaria que, eso que llaman materia oscura, pudiera ser como la primera fase de la materia “normal” que, estándo en una primera fase, no emite radiaciones ni se deja ver y, sin embargo, sí que genera la fuerza de Gravedad para que nuestro Universo, sea tal como lo podemos observar.

En imagenes como , los “expertos” nos dicen cosas como:

“La materia oscura en la imagen de varias longitudes de onda de arriba se muestra en un falso color azul, y nos enseña detalles de como el cúmulo distorsiona la luz emitida por galaxias más distantes. En de gas muy caliente, la materia normal en falso color rojo, son fruto de los rayos-X detectados por el Observatorio de Rayois X Chandra que orbita alrededor de la Tierra.”

 

Algunas galaxias individuales dominadas por materia normal aparecen en colores amarillentos o blanquecinos. La sabiduría convencional sostiene que la materia oscura y la materia normal son atraídas lo mismo gravitacionalmente, con lo que deberían distribuirse homogéneamente en Abell 520. Si se inspecciona la imagen superior, sin embargo, se ve un sorprendente vacío de concentración de galaxias visibles a lo largo de la materia oscura. Una respuesta hipotética es que la discrepancia causada por las grandes galaxias experimentan algún efecto de “tirachinas” gravitacional.

Una hipótesis más arriesgada sostiene que la materia oscura está chocándo consigo misma de alguna forma no gravitacional que nunca se había visto antes..? (esto está sacado de Observatorio y, en el texto que se ha podido traducir podemos ver que, los astrónomos autores de dichas observaciones, tienen, al menos, unas grandes lagunas en sus explicaciones y, tratándo de taparlas hacen aseveraciones que nada tienen que ver con la realidad).

emilio silvera

En el futuro, sabremos del Universo de otra manera

Autor por Emilio Silvera    ~    Archivo Clasificado en Física y cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡UN SIGLO DESDE QUE SE PUBLICÓ LA RG!

Resultado de imagen de La Gravedad en el Cosmos

 

La Teoría de Einstein de la Relatividad General, vino a facilitarnos una visión del Cosmos más real, con sus parámetros pudimos entender muchas cosas que antes, estaban en la más completa oscuridad.

Cada año que pasa, con el insistente trabajo de los científicos, logramos avances de mucho valor en la comprensión de nuestro Universo, y, 2.015, no podía ser una excepción.

Hemos sabido utilizar la Radiación Electromagnética para poder “ver” y entender el Universo captando la luz que viene del pasado y que los telescopios recogen para transformarlas en imágenes, y, de la misma manera, hemos sabido utilizar la radio-astronomía para estudiar el fondo de radiación cósmica, los chorros de rayos alimentados por agujeros negros en los núcleos galácticos y se han podido descubrir estrellas de neutrones en forma de púlsares. La Astronomía de Rayos X nos ha dado la interacción entre estrellas de neutrones y agujeros negros. Los Rayos infrarrojos nos han dado evidencia de la existencia de agujeros negros súper masivos en el núcleo de nuestro propia Galaxia, es decir, Sag-A.

El Centro Galáctico – Un Misterio de Radio

Un lugar complejo y misterioso el Centro de nuestra Galaxia. Allí reside un monstruoso Agujero Negro, Sagitarius A que debora todo cuanto traspase la línea de iras y no volveras, el límite del horizonte de sucesos para ser engullido para siempre, sea cual fuere la materia de la que se trate entrara a integrarse en la masa del Agujero Negro en la Singularidad.

Sabemos que la Gravedad es el motor de muchos de los procesos que se producen en nuestro Universo y gran parte de su acción es inevitable a la radiación electromagnética. Si la radiación electromagnética nos aporta los ojos con los que ver el universo (a través de los grandes telescopios), la radiación gravitatoria nos proporcionará los oídos con los que escucharlo.

relatividad.org/bhole/detector-ondas-g.jpg" alt="" width="304" height="228" />

Si bien es verdad que, actualmente, aún estamos sordos y los susurros que emite la Gravedad por medio de las Ondas Gravitacionales, no han sido captados a nuestra conveniencia. Pero en los años próximos habrá una red ultra-sensible de Detectores Terrestres que se completará con observatorios espaciales dispuestos a oír ese “universo gravitacional!, que cubrirán un rango de frecuencia entre los nano-hercios hasta varias decenas de Kilohercios, y que inevitablemente descubrirán fenómenos totalmente inesperados y nos darán, una nueva perspectiva del Universo que ahora, está limitada porque sólo lo podemos “ver” en el rango de la luz, es decir, de lo que nos proporcionan los fenómenos electromagnéticos.

Las ondas gravitacionales nos dan información muy diferente a la que nos da la luz. ¿Qué pasa cuando chocan dos estrellas de neutrones, ¿Qué ondas se forman? ¿A qué velocidad se mueven por el Espacio?

Las ondas gravitacionales serán los nuevos mensajeros del Cosmos y en los años 90 aparecieron los primeros detectores de Ondas Gravitacionales que, haciendo honor a la verdad, aún no han tenido todo el éxito esperado. Sin embargo, con LIGO, Virgo, GEO600, TAMA han estado trabajando durante algunos años y, los datos por ellos captados, no han sido suficientemente precisos para poder decir que se han captado los Ondas Gravitacionales. Sin embargo, con las nuevas generaciones de Detectores de Ondas Gravitatorias como el japonés KAGRA, y otros que vendrán en el futuro, al final se conseguirán captar esas Ondas que, según parece, necesitan un ajuste muy fino de captación, toda vez que, la Gravedad, es la más débil de todas las fuerzas fundamentales. De hecho, aún estamos a la caza del Gravitón, esa partícula mensajera de la fuerza.

SIORBXXVMXIp1NQRPTNcTUXTUP6Pcz0K4dHJ3JFyPWKrW4rDiRO8G0yf2vF2HwkLQYjs659BtRoktMOteRFvTzW57K/9s7/lp/8AyV0nZ7LEf8zvouiU3C68GZwO1Njh1AuA/s+bOQZt6wvNq9DdduuF5t6L2/tB/VxH/GPULyHbP9UdPqlNb42xxZqMVe1/ssSjTMmFtMbn75LDoZn3ouTJD3lJh3N4c1jVRCzdVhYrNRNUrARt0XMVTFc5ZdoCghM1ByJWbAclEOSolSwP/9k=" alt="Resultado de imagen de Púlsares binarios" name="P2FI0Hh-eOt2JM:" data-sz="f" />

Es cierto que hasta el día de hoy, ningún test de la RG con púlsares binarios involucra una de las nuevas predicciones más fantásticas de la teoría de Einstein: Los Agujeros Negros. Estos objetos son estrellas completamente colapsadas gravitacionalmente, con densidades tan altas que la fuerza gravitatoria que emite no permite que ni la luz se escape de su dominio.

Resultado de imagen de <a href=agujeros negros nasa hd" name="YNStaWgj6FdMyM:" data-src="https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcSgTV-XPbWwyTjhVSY1Ve7YYP0k-_xTIjAvPmP4ihdnFoavUAeGBA" data-sz="f" />

La existencia de los agujeros negros en el Universo ha sido comprobada de manera indirecta a través de la observación de las órbitas de estrellas tipo-S en el centro de la Vía Láctea. Esas observaciones nos han permitido deducir la existencia de un objeto muy compacto, Sag. A en el centro de nuestro propia Galaxia. Pero lo cierto es que no hemos podido determinar con meridiana claridad si este objeto, es, realmente, un Agujero Negro.

Resultado de imagen de Proyectos para encontrar las ondas gravitacionales LIGO

El Observatorio de Ondas Gravitacionales con Interferometría Láser (LIGO, por Laser Interferometer Gravitational-Wave Observatory) ha costado más de …

Resultado de imagen de Proyectos para encontrar las ondas gravitacionales LIGO

LISA ( laser interferometer space antenna) es un proyecto conjunto de la NASA y de la ESA para la búsqueda de ondas de gravedad.

Ondas Gravitacionales que se producen de muchas maneras según de produzca el evento que las produce.

    Proyecto Virgo para atrapar ondas gravitacionales

… están convencido de haber encontrado la evidencia de un universo holográfico en los datos recogidos por el detector de ondas gravitacionales GEO600 …

                                         LISA Pathfinder y las ondas gravitacionales – Gaia Ciencia

 

Sin embargo, para que esto funcione ya hemos dicho que es muy importante que las dos masas sólo se vean afectadas por la fuerza de la gravedad.
El Proyecto TAMA también busca esas ondas gravitacionales. Aquí la Representación de las ondas gravitacionales generadas por dos agujeros negros orbitando juntos.
Con las nuevas generaciones de detectores como el KAGRA Japonés, se espera que al fin podamos tener un registro fiable de esos sucesos del Cosmos que están bastante esquivos y, según parece lo que falla son las tecnologías que utilizamos para sus registros.
Pocas dudas nos pueden caber sobre el hecho de que, más temprano que tarde, dichas ondas serán encontradas y, desde luego, nos hablaran de otro universo, un universo que nos contará las cosas de otra manera. Así, unificando los datos obtenidos con las Ondas Electromagnéticas y las de la Gravedad, tendremos un Universo completo.
Todos estos movimientos y proyectos son fruto, y, vienen derivado de aquella Teoría de la Relatividad General que nos trajo una nueva manera de mirar el Cosmos, y, desde luego, nos puso en el camino adecuado para saber de los secretos del Universo.
emilio silvera
NOota: Algunos datos que se reflejan aquí han sido tomados de la última Revista de Física que edita la Real Sociedad Española de Física.