martes, 19 de marzo del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nadie pudo escribir, la Historia de la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en La vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Analizando la luz de las galaxias pequeñas y de brillo débil que orbitan a la Vía Láctea, un equipo de científicos cree haber descubierto la masa mínima para las galaxias en el universo: 10 millones de veces la masa del Sol. Esta masa podría ser el “bloque de construcción” más pequeño conocido de la sustancia misteriosa e invisible denominada “materia oscura”. Las estrellas que se forman dentro de estos bloques se agrupan y se convierten en galaxias.

                   ¿Filametos de materia oscura? ¿Dónde?

Los científicos saben muy poco sobre las propiedades microscópicas de la materia oscura” aunque dicen que constituye aproximadamente las cinco sextas partes de toda la materia en el universo (bueno, al menos eso es lo que se cree antes de haberlo demostrado).

  

Son muchas las cosas que no sabemos y, de cada una de ellas, nosotros los humanos, creamos hipótesis y hacemos conjeturas, construimos modelos y, con los datos que hemos podido reunir, dejamos expuesta una teoría de lo que pudo ser. De esa manera hemos creado la “historia” de cómo se formó nuestro Sistema solar a partir de una explosión de supernova que creando una nebulosa sería el origen, hace algunos miles de millones de años, de todo el sistema planetario en el que está la Tierra y nos cobijamos nosotros.

A mayor escala y viajando mucho más lejos en el Tiempo, también hemos “recreado” el escenario que suponemos que pudo existir cuando “nació” el universo, cuando dio comienzo la existencia del Tiempo y apareció el Espacio, se creó la materia y comenzaron a formarse los objetos que hoy podemos contemplar por todo el inmenso Cosmos. De todo ello, de manera “misteriosa” (nadie sabe a ciencia cierta como fue), apareceron los primeros signos de vida, primero en forma de rústicas criaturas y más elaboradas después, cuando con el paso de los años, pudieron evolucionar.

En nuestra región, situada en el interior del brazo de Orión a unos 30.000 años-luz del centro galáctico, las cosas se pudieron suceder, más o menos, como nos dicen al margen de la imagen, con algunas dudas y algunas preguntas sin contestar, así pudieron suceder, a grandes rasgos las cosas. Sin embargo, no es ese el tema que el título nos señala, nos vamos a centrar en la “vida” esa explosión de imaginación que ha tenido el universo para que, al menos en nuestro caso, haya alguien que comente sobre él y también, sobre esa maravilla que representamos: Seres Conscientes en un universo de materia, de explosiones y cambios, de energías sin fin.

Lo cierto es que, el recuerdo de los miles de millones de años de la historia de la vida, no ha podido ser inscrito en la memoria de los seres que la representan, al igual que los últimos millones de años no están grabados en la memoria de los seres humanos, los primeros naturalistas que se sintieron intrigados por los fósiles que encontraban, no pudieron presentir de qué manera aquello que estaban sacando a la luz del día, acabaría por servir para reconstruir el pasado a través de los archivos sedimentarios de la tierra.

De nada sirvieron los razonamientos poéticos y religiosos que les habían preparado para lo contrario. La realidad nos hizo descubrir un mundo distinto, una cronología distinta y una historia distinta. Resulta fácil comprender, en qué medida, los primeros  descubrimientos paleontológicos les pudieron parecer (en aquellos tiempos), por tanto, maravillosos y también, desconcertantes, hasta que punto aquella extraordinaria diversidad de formas de vida desaparecidas, su frecuente extravagancia y rareza y el encadenamiento asombroso que parecían ir revelando poco a poco, les debieron fascinar, pero también confundir.

Y, de esa manera, nuestra innata curiosidad, nos llevó a descubrir muchas clases de vida que existió en el pasado, incluso de seres monstruosamente grandes que extinguidos, sirvieron para que todos, antes sus descomunales restos, dejaran volar la imaginación y pudieran construir escenarios ya desaparecidos hacia millones de años. Claro que, todos aquellos descubrimientos, vinieron a ensanchar la mente de lo posible y la concepción de la historia de la vida en la Tierra y también, de manera paralela, hemos ido creando una historia más profunda, de unos 13.750.000 millones de años para la historia del propio universo. Pero, la historia que nos interesa, la de la vida, se remonta a unos 4.000 millones de años (al menos en nuestro planeta), que es el tiempo que tienen los fósiles más antiguo hallados en las rocas más viejas del planeta.

Ya el hombre de Neanderthal se interesaba por los fósiles.

El descubrimiento de edades anteriores a la aparición del hombre tuvo una enorme repercución, a finales del siglo XIX, mucho más allá de los círculos científicos, en buena parte porque reveló paisajes desaparecidos y poblados por criaturas extrañas, predominantemente mostruosas. Incluso en nuestros días los grandes vertebrados del pasado ejercen a menudo una especie de fascinación: ¿no se ha convertido acaso el mamut en el emblema de una cadena de supermercados y no resultan los nombres de muchos dinosaurios mucho más familiares, incluso para los niños, que los numerosos animales actuales?.

Esa familiaridad relativa con criaturas que hasta hace dos siglos, su existencia era inimaginable, es así mismo, un gran logro de la paleontología de los vertebrados sacados a la luz por la ciencia. Claro que, si hablamos de vida, no sólo de grandes animales se compone la gran relación que podríamos hacer de todas aquellas especies que poblaron nuestro planeta y de las que, el 99% están desaparecidas. Ahora, sólo el 1% de todas las especies vivientes siguen presentes y, las demás, por una u otra causa, quedaron extinguidas al no poder adaptarse, al ser eliminadas en las grandes extinciones… ¡y vaya usted a saber cómo!

Cuentan que, durante uno de sus viajes por el Mediterráneo, san Pablo, según la leyenda que circula, naufragó ante las costas de Malta. Habiendo logrado llegar a esa isla, fue mordido por una vibora. Encolerizado, maldijo entonces a todas las serpientes maltesas, por lo que sus lenguas bífidas se transformaron en piedra. Esas lenguas petrificadas, llamadas a veces “lenguas de san pablo”, son muy comunes en Malta; no son otra cosa que los dientes de los tiburones del período mioceno, cuyas formas evocan las lenguas bífidas de las serpientes.

El relato ilustra muy bien la fascinación que han ejercido desde tiempos inmemoriales ciertos fósiles sobre la imaginación humana y la forma en que pueden ser explicados los orígenes de esos objetos misteriosos, más allá de toda hipótesis científica, en los sistemas de pensamientos tradicionales. Sin embargo, jamás conoceremos las más antiguas de esas leyendas explicativas, ya que el interés por los fósiles se remonta a la prehistoria lejana, tal como nos lo demuestran los diversos descubrimientos arqueológicos.

En el transcurso de sus excavaciones en las cuevas de Arcy-sur-Cure,  en Borgoña, el célebre prehistoriador francés André Leroi Gourhan descubrió en un estrato correspondiente qal paleolítico medio una pequeña pero muy antigua “colección paleontológica” ; se trataba de un polípero y de un gasterópodo fósiles, y habían sido llevados a esa cueva por un hombre de Neardenthal. Hará más de 50.000 años posiblemente, que la atención de un “hombre fósil” se vio atraida por esos objetos curiosos, hasta el punto de que se los llevó consigo. No cabe duda de que nunca sabremos cuáles eran las interpretaciones que los hombres prehistóricos daban a los fósiles que recogían. En todo caso, ciertas conchas profundamente enterradas, le pudieron recordar a sus conchas actuales, y bien pudiera ser que se hubieran preguntado en aquel entonces qué hacían sobre las rocas unos animales que se encuentran habitualmente en el agua.

Es cierto que siempre, a lo largo de la Historia, hemos tenido pensadores y naturalistas. La Historia natural es un término cuya definición es problemática, en tanto que diversas disciplinas la abordan de manera diferente. Muchas de estas concepciones incluyen el estudio de las cosas vivientes (por ejemplo, la biología, incluyendo botánica, zoología y ecología); otras concepciones extienden el término al campo de la paleontología, la geografía y la bioquímica, así como a la geología, astronomía y la física. Lo cierto es que, al final del camino, todas esas disciplinas se encuentras, es decir, están de una u otra manera relacionadas. Todo en el Universo tiene una conexión que no siempre podemos ver o comprender.

Claro que, algunos pensadores griegos ya especularon con las viejas conchas fósiles que se hallaban dentro de las piedras y que eran el orgien de especulaciones “geológicas” de algunos que, como Jenófanes o Heródoto, quiénes habían comprendido la naturaleza auténtica de ciertas conchas fósiles y habían sacado conclusiones pertinentes, aquellos restos de organismos marinos, encontrados tierra adentro, demostraba que los mares, se extendían en otras épocas mucho más allá de sus límites actuales.

Lo cierto es que, hacer historia de la vida en nuestro planeta es imposible, sólo podemos ir atando cabos a medida que se encuentran huellas de ella en las viejas rocas, y, como la vida consciente tardó mucho más en llegar… ¡Carece de historia, toda vez que no existieron cronistas para escribirla! Así, nos vemos abocados a especular juntando todos los datos que hemos podido reunir y, de esas especulaciones, hemos formado un conjunto, si no plausible en su totalidad, sí aceptable mientras no encontremos más respuestas a la gran pregunta: ¿Cómo surgió la vida en la Tierra, y, es nuestro planeta el único lugar del Universo que la contiene?

Claro que, si creemos que la vida es ciudadana del universo sin fronteras, no debemos perder de vista la Panspermia, esas esporas viajeras que llegan a los mundos y en ellos, se posan y dejan pasar el tiempo para que, las condiciones locales, las radiaciones exteriores y propias del lugar, hagan su trabajo para que, con el tiempo suficiente por delante, puedan emerger y crecer hasta llegar a conformar seres con ideas y pensamientos.

Los animales unicelulares han descubierto el método más corto para comer las plantas. La muerte y el sexo han de crearse para que los organismos pluricelulares sean capaces de envejecer y dejar de funcionar como una cooperativa colonial de células. Los animales han descubierto como comerse a otros animales. Por encima de todo, ha evolucionado una especie inteligente, una especie tan lista que ha llegado a descubrir una vía para poder salir de la Tierra y llevar todo el proceso de la evolución hasta el extremo.

Nunca nadie ha sabido explicar lo que es la Vida a pesar de que también siempre nos lo hemos preguntado. Cuál es su origen y cómo surgieron los seres vivos que conocemos y que tenemos a nuestro alrededor, así como aquellos que con el paso de tiempo no supieron adaptarse y se extinguieron. La especie humana, la única que en nuestro planeta alcanzó la plenitud de conciencia, siempre ha tratado de responder a esa pregunta: ¿Qué es la Vida? Pero siempre también, resultó un gran problema el poder responderla y las Ciencias Naturales nunca pudo confeccionar una respuesta plausible. Hemos podido llegar a saber que sin los materiales fabricados en las estrellas, la vida no sería posible en nuestro Universo. Así muchos, dicen que somos…

¡Polvo de estrellas!

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo –nos preguntamos- la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la Ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.

image

La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Sin embargo, la vida es distinta porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un pepel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida. A grandes rasgos entendemos cómo pueden haber evolucionado las moléculas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de forma tan compleja.

Según todos los indicios, en los primeros años del planeta, los continentes que hoy conocemos estaban todos unidos formando la denominada Pangea. El movimiento de las placas tectónicas terrestres logró que estos se separaran y, con el transcurso de millones de años, llegaron a adquirir la moderna forma que hoy conocemos. En todo ese transcurrir y, mientras tanto, una serie de condiciones nuevas aparecieron para hacer posible el surgir de la vida.

Distribución de los continentes hace 260 millones durante el Pérmico. El súper continente con forma de “C” es Pangea; dentro de la C se localizan los océanos Paleo-Tetis al norte y Tetis al sur; separando ambos océanos se sitúa el continente Cimmeria; cerrando la “C” al noreste se sitúan los micro continentes de China del Norte y China del Sur; mientras que el resto del globo está ocupado por el océano Panthalassa.

Microfósiles de sedimentos marinos. “Microfósil” es un término descriptivo que se aplica al hablar de plantas o animales fosilizados cuyo tamaño es menor de aquel que puede llegar a ser analizado por el ojo humano. Normalmente se utilizan dos rasgos diagnósticos para diferenciar microfósiles de eucariotas y procariotas.

A partir de todos los fragmentos que la ciencia ha podido ir acumulando, ¿qué tipo de planeta podemos recomponer y qué porcesos tuvieron que darse para que, la vida, tal como la conocemos pudiera surgir? Sin temor a equivocarnos podemos afirmar que, cuando se formó el mar de Warrawoona la Tierra ya era un planeta biológico. Además, las mediciones de isótopos de carbono indican que ya podía haber comenzado la gran liberación ecológica de la fotosíntesis. No podemos tener la certeza si entre los microorganismos de aquel entonces había cianobacterias reproductoras de oxígeno, pero la presencia de cualquier tipo de organismo fotosintético en el océano de Warrawoona es de por sí muy informativa, pues nos permite colocar un punto de calibración en el árbol de la vida.

Image

Los estromatolitos forman parte del registro fósil y son los responsables del oxígeno de la Tierra

Son la evidencia de vida más antigua que se conoce en la Tierra. Las rocas ígneas más antiguas de la Tierra están en Groenlandia y tienen 3800 millones de años. Los estromatolitos más antiguos son de Warrawoona, Australia y tienen unos 3500 millones de años (Precámbricos – Arqueanos). La edad de la Tierra como planeta acrecionado se calcula en 4500 millones de años. La teoría dice que, dadas las condiciones en esa época, los primeros habitantes de la Tierra debieron ser organismos unicelulares, procariontes, y anaerobios. Por tanto, los estromatolitos forman parte del registro fósil más importante de la vida microbiológica temprana. Pero además, vida microscópica fototrófica.

En la nueva concepción de la evolución microbiana que simboliza el árbol, los organismos fotosintéticos aparecen relativamente tarde y se diversifican mucho después del origen de la vida y de la divergencia de los principales dominios de la biología. Si la materia orgánica de Warrawoona es producto de la fotosíntesis, hay que concluir que para entonces la evolución de la vida ya debía llevar en marcha un buen tiempo.

Las observaciones geológicas indican que hace tres mil quinientos millones de años la atmósfera de la Tierra contenía nitrógeno, dióxido de carbono y vapor de agua, pero muy poco oxígeno libre. La mayoría de las inferencias acerca de ambientes antiguos se realizan a partir de pistas sutiles que nos proporcionan la geoquímica; la signatura sedimentaria del oxígeno, sin embargo, es muy llamativa: bandas de color rojo vivo en rocas con silex ricos en hermatita (Fe2 O3), un mineral de óxido de hierro.

En la actualidad, nuestros conocimientos de la vida y ambientes arcaicos son a un tiempo frustrantes y emocionantes: frustrantes por las pocas certezas que tenemos y, sólo muchas hipótesis a partir de los datos dispersos que se van obteniendo, emocionante porque sabemos algo, por poco que esto pueda ser, es estimulante contar con un punto de partida que nos permita continuar en el estudio y la observación, seguir experimentando para que, algún día, sepamos a ciencia cierta, de donde pudo venir la vida.

Es verdad que las rocas más antiguas que podemos identificar nos indican la presencia de organismos complejos ¿qué clase de células vivían en aquellos tiempos aún más lejanos? En última instancia, ¡cuál será el verdadero origen de la vida?

Ademas de las cianobacterias, la microflora puede incluir algas (verdes y diatomeas), hongos, crustaceos, insectos, esporas, polen, rodofitas, fragmentos y sedimentos de todo tipo. La variedad biologica de cada comunidad estromatolitica dependerá de condiciones ambientales e hidrológicas: hipersalino, dulceacuicola, intermareales, submareales, fuertes corrientes, moderadas nulas, calidos, templado, altitud (afecta a la exposicion de la luz uv). En la superficie, es rugosa, porosa y cubierta por mucilago, filamentos, etc. Las particulas de carbonato van quedadonde atrapadas, hasta que la cementacion por crecimiento de cristales, forma una capa mas, de esta forma la estructura aumenta de tamaño.

La Tierra es el tercer planeta del Sistema Solar. Esta situación orbital y sus características de masa la convierten en un planeta privilegiado, con una temperatura media de unos 15º C, agua en forma líquida y una atmósfera densa que pudo evolucionar, con oxígeno y otros ingredientes, condiciones imprescindibles para el desarrollo de la vida.

La creencia general es que hace unos 4.600 millones de años la corteza de la Tierra comenzó a consolidarse y las erupciones de los volcanes empezaron a formar la atmósfera, el vapor de agua y los océanos. El progresivo enfriamiento del agua y de la atmósfera permitió el nacimiento de la vida, iniciada en el mar en forma de bacterias y algas, de las que derivamos todos los seres vivos que habitamos hoy nuestro planeta tras un largo proceso de evolución biólogica.

Aun los organismos más simples son máquinas moleculares extraordinariamente sofisticadas. Las primeras formas de vida tenían que ser muchísimo más sencillas. Necesitamos encontrar una familia de moléculas lo bastante simples como para formarse por procesos químicos y lo bastante complejas como para servir de cimiento a la evolución de las células vivas. Una molécula capaz de contener información y estructura suficientes como para replicarse a sí mismas y, al cabo, para dirigir la síntesis de otros componentes que puedan canalizar la replicación con una eficiencia cada vez mayor.

ESTRUCTURA DE LA CELULA BACTERIANA

Unas moléculas, en fin, que pudieran iniciar una trayectoria evolutiva que permitiera a la vida emanciparse de los procesos físicos que le dieron nacimiento, sintetizando las moléculas necesarias para el crecimiento en lugar de incorporarlas de su entorno y captando energía química o solar para alimentar el funcionamiento de la célula.

El descubrimiento de las enzimas de ARN, o ribosomas, realizado de forma independiente y aproximadamente al mismo tiempo por el bioquímico de Yale Sidney Altman, tuvo un efecto catalítico sobre el pensamiento acerca del origen de la vida.

Los enzimas de ARN (llamadas “ribozimas” o “aptazimas”) son moléculas de ARN capaces de autorreplicarse a temperatura constante en ausencia de proteínas. Utilizan la llamada replicación cruzada, en la que dos enzimas se catalizan el uno al otro de forma mutua. Este proceso permite entender cómo surgió la vida, pero los biotecnólogos las usan para algo mucho más prosaico. Estos enzimas de ARN pueden ser utilizados para detectar una gran variedad de compuestos, incluyendo muchos relevantes en diagnóstico médico. El compuesto orgánico se liga al aptazima, que se replica exponencialmente, amplificando exponencialmente la concentración del compuesto hasta permitir que sea fácilmente detectado.

En palabras del filósofo de la biología Iris Fry, esta extraordinaria molécula se alzó como “el huevo y la gallina al mismo tiempo” en el rompecabezas del orgien de la vida. La vida, esa misteriosa complejidad que surgió a partir de la “materia inerte” que, bajo ciertas y complejas condiciones, dio lugar a que lo sencillo se conviertiera en complejo, a que lo inerte pudiera despertar hasta los pensamientos.

Sabemos que, en ciertas condiciones prebióticas, los aminoácidos se forman fácilmente, así quedó demostrado por Stanley Miller en su gamoso experimento. Como los ácidos nucléicos, pueden unirse para formar péptidos, las cadenas de aminoácidos que se pliegan para formar proteínas funcionales.

Hay teorías para todos los gustos, y, el afamado Freeman Dyson, un renombrado físico que ha pensado profundamente sobre el origen de la vida, sugiere que en realidad la vida comenzó en dos ocasiones, una por la vía del ARN y otra vez por vía de las proteínas. Las células con proteínas y ácidos nucleicos interactivos habrían surgido más tarde en función protobiológica.  Y, está claro que, la innovación por alianzas es uno de los principales temas de la evolución.

phylogenetic_tree-es.png

En el árbol de la vida, nosotros (“tan importantes”), sólo somos una pequeña ramita.

Hay muchos procesos que son de una importancia extrema en la vida de nuestro planeta y, dado que los organismos fotosintéticos (o quimiosinteéticos) no pueden fraccionar isótopos de carbono en más de unas treinta parte por 1.000, necesitamos invocar la participación de otros metabolismos para poder explicar los resultados de las mediciones que se han realizado. Los candidatos más probables son bacterias que se alimentan de metano en los sedimentos. Estas bacterias obtienen tanto el carbono como la energía del gas natural (CH4) y, al igual que los organismos fotosintéticos, son selectivos con los isótopos. A causa de su preferencia química por el 12CHfrente al 13CH4, los microbios que se alimentan de metano fraccionan los isótopos de carbono en unas veinte o vejnticinco partes por 1.000 en los ambientes donde el metano es abundante. ¿Habeis pensado en la posibilidad de que esos organismos fotosintéticos estén presentes en Titán? ¡El fetín está servido!

               Los océanos de metano de Titán podrían ser una buena fuente de vida

La fotosíntesis anoxigénica se da en los organismos que utiliza la energía de la luz del sol, dióxido de carbono (sustrato a reducir) y sulfuro de hidrógeno (en lugar del agua) como dador de electrones que se oxida, se fabrican glúcidos y se libera azufre a el medio acuoso donde habitan o se aloja en el interior de la bacteria.

Otra característica es que los organismos fotosinteticos anoxigénicos contienen bacterioclorofila, un tipo de clorofila exclusiva de los foto-organotrofos, usan longitudes de onda de luz que no son absorbidas por las plantas. Estas bacterias contienen también carotenoides, pigmentos encargados de la absorción de la energía de la luz y posterior transmisión a la bacterioclorofila. El color de estos pigmentos dan el nombre a estas bacterias: bacterias púrpuras del azufre y bacterias verdes del azufre. En las cianobacterias los pigmentos captadores de luz son las ficobilinas, por lo tanto se les nombra, bacterias azules.

Cualquiera de estas imágenes de arriba nos cuenta una larga y compleja historia de cómo se pudieron formar cada uno de los ahí representados, y, en cualquiera de sus fases, formas y colores, es toda una gran obra de la Ingenieria de la Naturaleza que, al fin y al cabo, es la única fuente de la que debemos beber para saciar nuestra sed de sabiduría y alejar la ignorancia que nos abruma.

No pocas veces he dejado aquí constancia de que, el Universo, en todas sus regiones, por muy alejadas que estén, se rige por unas leyes que están presentes en todas parte por igual, y, así lo confirman mil observaciones y mil proyectos que a tal efecto se han llevado a buen término. Por ejemplo, mediaciones precisas de isótopos de azufre en muestras de Marte traídas a la Tierra por meteoritos demuestran que muy pronto en la historia del planeta vecino el ciclo del azufre estaba dominado por procesos atmosféricos que producían un fraccionamiento independiente de la masa.

Valles en Marte. (ESA) La región de Valles Marineris, que tiene una longitud de 4.000 kilómetros y una anchura de 600 kilómetros, es el sistema de cañones más grande conocido en el sistema solar, con profundidades que llegan a los diez kilómetros.

Basándose en este descubrimiento del fraccionamiento independiente de la masa, se dirigió la atención sobre las rocas terrestres más antiguas. Para sorpresas de muchos geoquímicos, lo que se hayó fue que el yeso y la pirita de las sucesiones sedimentarias más antiguas de la Tierra  también como en Marte, han dejado constancias del fraccionamiento independiente de la masa de los isótopos de azufre. Al igual que en Marte, en la Tierra primitiva la química del azufre se encontraba al parecer influenciada por procesos fotoquímicos que sólo pueden producirse en una atmósfera pobre en oxígeno. La etapa del oxígeno comenzó en nuestra atmósfera a comienzos del eón Ptoterozoico. En suma, todos los caminos de la biogeoquímica llevan al mismo sitio, es decir, lo que pasa aquí pudo pasar allí y, al decir allí, quiero decir en cualquier planeta de cualquier galaxia. Las leyes fundamentales de la Naturaleza son, las mismas en todas partes. No existen sitios privilegiados.

                                                 Es difícil imaginarse hoy una Tierra sin oxígeno

Dos equipos independientes de investigadores descubrieron que el oxígeno gaseoso apareció en la atmósfera terrestre unos 100 millones de años antes del evento de la gran oxidación de hace 2400 millones de años. Es decir, cuando cambió la antigua atmósfera y el planeta se equipo con la que hoy conocemos.

Resultado de imagen de El Oxígeno es un gas muy reactivo

El oxígeno es un gas muy reactivo, no existe de manera libre durante un largo período de tiempo, pues forma óxidos o reacciona con otras sustancias de manera rápida. Si está presente en la atmósfera es porque las plantas lo reponen continuamente. Antes de la invención de la fotosíntesis y durante muchos cientos de millones de años no había oxígeno libre en la Tierra.

En los estratos geológicos se pueden encontrar pruebas de la existencia de un momento en el que se produjo una gran oxidación mineral, prueba de que el oxígeno se encontraba ya libre en la atmósfera terrestre por primera vez y en gran cantidad. A este hecho se le ha denominado evento de gran oxidación, o GOE en sus siglas en inglés, y fue un hecho dramático en la historia de la Tierra. Este oxígeno permitió más tarde la aparición de vida animal compleja. Los geólogos creían que durante el GOE los niveles de oxígeno subieron rápidamente desde niveles prácticamente despreciables.

Las Bacterias: Amigas y Enemigas

                                     El mundo bacteriano es fascinante

Con estas bacterias es posible obtener dos tipos de celdas microbianas o baterías. Unas llamadas celdas de sedimento emplean el lodo donde habitan estos microorganismos; ahí, se produce energía simplemente conectando un electrodo en la parte donde, a cierta profundidad, no hay oxígeno, con otro electrodo que se encuentre en presencia de oxígeno.

¿Cómo respondió la vida a la revolución del oxígeno? Podemos imaginar, un “holocausto de oxígeno” que habría llevado a la muerte y la extinción a innumerables linajes de microorganismos anaeróbicos. Pero hace dos mil doscientos millones de años los ambientes anóxicos no desaparecieron; simplemente, quedaron relegados bajo una capa oxigenada de agua y sedimentos superficiales.

Aquello permitió a la Tierra dar cobijo a una diversidad biológica sin precedentes. Los microorganismos anaeróbicos mantuvieron un papel esencial en el funcionamiento de los ecosistemas, igual que en la actualidad.

Correr es un ejercicio aeróbico

En la primera fase de cualquier ejercicio aeróbico, el oxígeno se combina con la glucosa procedente del glucógeno. Al cabo de unos minutos, cuando el cuerpo nota que escasea el azúcar, empieza a descomponer las grasas. Entonces disminuye un poco el rendimiento, mientras el cuerpo se adapta al cambio de origen de su energía. Superado este punto, se vuelve a los niveles y sensaciones normales, pero se queman grasas en lugar de glucosa.

De otro lado, los organismos que utilizan, o al menos toleran el oxígeno se expandieron enormemente. La respiración aeróbica se convirtió en una de las formas principales de metabolismo en las bacterias, y las bacteria quimiosintéticas que obtienen energía de la reacción entre oxígeno e hidrógeno o iones metálicos se diversificaron a lo largo de la frontera entre ambientes ricos en oxígeno y ambientes pobres en oxígeno. Desde ese momento, la Tierra comenzó a convertirse en nuestro mundo.

Nuestro mundo, rico en agua líquida que cubre el 71% de la superficie del planeta, y, su atmósfera con un 78% (en volumen) de Nitrógeno, un 21 de Oxígeno y un 0,9 de Argón, además de dióxido de carbono, hidrógeno y otros gases en cantidades mucho menores que, permiten que nuestros organismos encuentren el medio indóneo para poder vivir. Otros muchos factores presentes en la Tierra contribuyen a que nuestra presencia aquí sea posible.

Las algas verdeazuladas también son llamadas bacterias verdeazuladas porque carecen de membrana nuclear como las bacterias. Sólo existe un equivalente del núcleo, el centroplasma, que está rodeado sin límite preciso por el cromatoplasma periférico coloreado. El hecho de que éstas se clasifiquen como algas en vez de bacterias es porque liberan oxígeno realizando una fotosíntesis similar a la de las plantas superiores. Ciertas formas tienen vida independiente, pero la mayoría se agrega en colonias o forma filamentos. Su color varía desde verdeazulado hasta rojo o púrpura dependiendo de la proporción de dos pigmentos fotosintéticos especiales: la ficocianina (azul) y la ficoeritrina (rojo), que ocultan el color verde de la clorofila.

Mientras que las plantas superiores presentan dos clases de clorofila llamadas A y B, las algas verdeazuladas contienen sólo la de tipo A, pero ésta no se encuentra en los cloroplastos, sino que se distribuye por toda la célula. Se reproducen por esporas o por fragmentación de los filamentos pluricelulares. Las algas verdeazuladas se encuentran en hábitats diversos de todo el mundo. Abundan en la corteza de los árboles, rocas y suelos húmedos donde realizan la fijación de nitrógeno. Algunas coexisten en simbiosis con hongos para formar líquenes. Cuando hace calor, algunas especies forman extensas y, a veces, tóxicas floraciones en la superficie de charcas y en las costas. En aguas tropicales poco profundas, las matas de algas llegan a constituir unas formaciones curvadas llamadas estromatolitos, cuyos fósiles se han encontrado en rocas formadas durante el precámbrico, hace más de 3.000 millones de años. Esto sugiere el papel tan importante que desempeñaron estos organismos cambiando la atmósfera primitiva, rica en dióxido de carbono, por la mezcla oxigenada que existe actualmente. Ciertas especies viven en la superficie de los estanques formando las “flores de agua”.

Sin descanso se habla de quer nosotros, con nuestro comportamiento estamos cambiando la atmósfera de la Tierra, que contaminamos y que, de seguir así, podemos acabar con la vida placentera en el planeta. Tal exageración queda anulada por la realidad de los hechos.

Gigantescas ciudades son una buena muestra de nuestra presencia aquí, y, ¿qué duda nos puede caber? Nuestro morfología nos ha convertido en el ser vivo dominante en el planeta. Sin embargo, no somos los que más hemos incidido en sus condiciones. Si se estudia la larga historia de la vida en la Tierra, podremos ver que una inmensa cantidad de especies han interactuado con la biosfera para modificar, en mayor o menor medida los ecosistemas del mundo. En realidad, la especie que cambió el planeta de manera radical, la que en verdad modificó la Tierra hasta traerla a lo que hoy es, creando una biosfera nueva a la que todas las especies se tuvieron que adaptar (también nosotros), esa especie que, aunque diminuta en su individualidad forma un gigantesco grupo, no son otras que las cianobacterias.

De esa manera, si el oxígeno trajo consigo un cambio revolucionario, las heroínas de la revolución fueron las cianobacterias. Fósiles extraordinarimente bien conservados en síles de Siberia de mil quinientos millones de años de edad demuestran que las bacterias verdeazuladas se diversificaron tempranamente y se han mantenido hasta la actualidad sin alterar de manera sustancial su forma. La capacidad de cambiar con rapidez, pero persistir indefinidamente, compendia la evolución bacteriana.

Las cianobacterias comparten con algunas otras bacterias la habilidad de tomar el N2 del aire, donde es el gas más abundante, y reducirlo a amonio (NH4), una forma que todas las células pueden aprovechar. Los autótrofos que no pueden fijar el N2, tienen que tomar nitrato (NO3-), que es una sustancia escasa. Esto les ocurre por ejemplo a las plantas. Algunas cianobacteria son simbiontes de plantas acuáticas, como los helechos del género Azolla, a las que suministran nitrógeno. Dada su abundancia en distintos ambientes las cianobacterias son importantes para la circulación de nutrientes, incorporando nitrógeno a la cadena alimentaria, en la que participan como productores primarios o como descomponedores.

La resistencia general de las bacterias a la extinción es bien conocida, las bacterias que hayan sobrevivido al cepillo de dientes, a media tarde se habrán multiplicado hasta el extremo de recubrir nuevamente el interior de la boca. Además, las bacterias saben habérselas muy bien con medios cambiantes. El aire, por ejemplo, está lleno de bacterias; un plato de leche colocado en el alfeizar de la ventana no tarda en fermentar.

Nosotros tenemos un “convenio” de simbiosis con muchas bacterias que conviven con nuestra especie que sin ellas, no podría existir. ¿Os acordáis de aquel trabajo sobre las mitocondrias? El cuerpo humano, en seco, tiene un diez por ciento de bacterias.

emilio silvera

La Paradoja de Fermi

Autor por Emilio Silvera    ~    Archivo Clasificado en La vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen desde la vía láctea tomada desde la Tierra.

La paradoja de Fermi: ¿por qué aún no se ha detectado vida extraterrestre?

El científico Italiano señaló que el conocimiento humano o las observaciones sobre la Galaxia son incorrectas o incompletas.

Reportaje de Prensa

 

Resultado de imagen de Sólo en la Vía Láctea 200.000 millones de estrellas

 

 

 

 

Según algunas estimaciones, solamente en la galaxia en la que está ubicado el sistema solar -la vía láctea- habría más de 200.000 millones de estrellas, en las se encontrarían, al menos, 100.000 millones de planetas. Con tal volumen de cuerpos celestes, no sería de extrañar que, al menos en uno de ellos, se dieran las condiciones necesarias para que hubiese surgido la vida.

Sin embargo, a pesar de que a lo largo de la historia se ha intentado establecer contacto con otras civilizaciones, hasta ahora los resultados han sido nulos. Esta realidad llevó al científico italiano Enrico Ferni a formular su paradoja: “la creencia común de que el Universo posee numerosas civilizaciones avanzadas tecnológicamente, combinada con nuestras observaciones que sugieren todo lo contrario, es paradójica, sugiriendo que nuestro conocimiento o nuestras observaciones son defectuosas o incompletas”.

Su afirmación contradice los argumentos que defienden que es muy probable que haya vida extraterrestre. De esta forma, niega que los cálculos hechos hasta la fecha sobre la posibilidad de que haya vida en planetas cercanos sean acertados, ya que de ser así, ya se habrían encontrado esos lugares habitados.

Sin embargo, hay otras teorías que dan validez a las estimaciones y contradicen a la paradoja de la vida de Ferni, intentando dar una explicación sobre por qué no se han encontrado pruebas de vida en otros planetas.

  • Resultado de imagen de Se reciben señales encriptadas de otros mundos que no sabe,os entender
Figuras grabadas en la placa de la sonda espacial Pioneer 10 informando a una posible civilización extraterrestre sobre la presencia de vida humana en la Tierra.

Existen y utilizan señales encriptadas

 

Imagen relacionada

 

Las señales puede ser que estén llegando pero… ¡No sabemos descifrar sus mensajes!

 

Esta teoría fue formulada por Edward Snowden, el ex-empleado de la CIA famoso por filtrar información sobre el espionaje llevado a cabo por la Agencia de Seguridad Nacional de Estados Unidos.

En un programa de radio en el que participó junto con el astrofísico y divulgador científico Neil deGrasse Tyson, Snowden afirmó que “lo que estamos escuchando -que podría ser un show de televisión alienígena, o una llamada telefónica, o un mensaje de GPS, lo que sea- es imposible para nosotros diferenciarlo de la radiación de fondo de microondas“.

Lo que quiere decir es que el universo desprende multitud de ondas y, entre ellas, alguna civilización podría haber camuflado sus comunicacionespara que otras, como la terrícola, no pudiese identificarlas.

Hay vida inteligente, pero no desarrollada

 

 

Resultado de imagen de Vida inteligente no desarrollada en otros mundos

 

 

Algunos científicos creen que en la actualidad puede haber vida inteligente en otros planetas que no se haya desarrollado tanto como los habitantes de la Tierra. Según esta hipótesis, los habitantes de estos cuerpos celestes estarían a niveles similares de avance tecnológico como en la Edad Media en el globo terráqueo.

Este desarrollo les permitiría sobrevivir y, cada vez más, avanzar de forma similar a como lo han hecho los terrícolas. Sin embargo, la tecnología conocida no sería suficiente como para comunicarse mediante ondas que fuesen detectables.

Existen y se intentan comunicar, pero son indetectables

 

 

Resultado de imagen de Mensajes de otros mundos que no comprendemos

 

 

Las formas actuales de comunicación se deben, en su mayoría, a estupendas casualidades. Para que se inventase el telégrafo, el teléfono o internet, se dio la situación de que personas concretas estuvieran en el sitio correcto y en un momento determinado tuvieran la idea decisiva para hacer tales avances.

Seguramente, si estas personas no hubieran existido, otras tecnologías similares pero a la vez diferentes habrían tomado su lugar. Por ejemplo, un sistema de comunicación basado en el entrelazamiento cuántico, un método que utiliza el entrelazamiento de fotones.

Según las teorías de algunos científicos, este podría ser uno de los sistemas que utilizaran los habitantes de otros planetas extraterrestres. Por una cuestión de incompatibilidad, si esta hipótesis fuera cierta, no sería posible detectar sus comunicaciones, ni que ellos detectaran las que salen de la Tierra.

La baja disponibilidad de recursos limita a todas las sociedades

 

 

 

Resultado de imagen de La no disponibilidad de recursos avanzados nos limita para encontrar vida extreaterrestre

 

 

De la misma forma que en la Tierra la crisis del petróleo, el calentamiento global o la sobrepoblación pueden limitar el crecimiento y desarrollo de la humanidad, en otros planetas ocurriría lo mismo.

Esta teoría fue formulada por Jacob Haqq-Misra y Seth Baum, dos investigadores de la Universidad Estatal de Pensilvania. Mientras que Enrico Fermi pensaba que el resto de civilizaciones podrían haberse exterminado a ellas mismas mediante armas, los científicos estadounidenses creen que los recursos finitos de cada planeta pueden frenar el crecimiento exponencial que permitiría en un momento determinado propiciar un contacto entre civilizaciones.

Baum y Haqq-Misra piensan que todas las civilizaciones que presuntamente hay en el espacio están intentando, igual que la terrestre, establecer contacto con el resto. Sin embargo, debido a que el progreso es muy lento y las distancias son muy grandes esta meta nunca sería posible.

La Vida es imparable

Autor por Emilio Silvera    ~    Archivo Clasificado en La vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Noticias Ciencia y tecnología

La Agencia Espacial Estadounidense (NASA) ha detectado la existencia de dos seres vivos a casi 200 metros bajo la capa de hielo de la Antártida, en plena oscuridad, un descubrimiento que altera las teorías sobre las condiciones en las que se puede de
Sorpresa a 200 metros bajo el hielo

 

 

 

La NASA descubre dos seres vivos a 200 metros bajo el hielo de la Antártida

 

 

 

 

EFE

La Agencia Espacial Estadounidense (NASA) ha detectado la existencia de dos seres vivos a casi 200 metros bajo la capa de hielo de la Antártida, en plena oscuridad, un descubrimiento que altera las teorías sobre las condiciones en las que se puede desarrollar la vida.

En un comunicado, la Agencia Espacial asegura haber hallado un Lyssianasid Amphipod, una criatura parecida a un camarón o gamba, y de unos 8 centímetros de tamaño. Además, encontró lo que parecía ser el tentáculo de una medusa, de unos 30 centímetros.

Un equipo de la NASA introdujo una pequeña cámara de vídeo a través de la gruesa capa de hielo, y la hizo descender en la profundidad marina, donde reina la oscuridad.

Resultado de imagen de Descubrimiento asombroso de la NASA      El crustáceo rompe los principios sobre las condiciones en que puede haber vida

“El crustáceo rompe los principios sobre las condiciones en que puede haber vida“

 

A unos 190 metros, se detectó y se fotografió al crustáceo que, pese a su pequeño tamaño, ha logrado romper los principios establecidos hasta ahora sobre las condiciones extremas en las que puede haber vida.

Hasta ahora, los científicos creían que sólo unos cuantos microbios eran capaces de vivir en estas condiciones.

Resultado de imagen de El descubrimiento de la NASA podría llevar a realizar expediciones en busca de vida a lugares hasta ahora descartados en el espacio, como planetas o lunas congeladas.

El descubrimiento de la NASA podría llevar a realizar expediciones en busca de vida a lugares hasta ahora descartados en el espacio, como planetas o lunas congeladas.

“Estabamos trabajando con la presunción de que no íbamos a encontrar nada”, dijo el científico de la NASA Robert Bindschadler, quien presentará el vídeo del descubrimiento en la reunión de mañana, miércoles, de la American Geophysical Union. “Es un camarón que te gustaría tener en el plato”, bromeó.

El científico matizó que el Lyssianasid amphipod no es exactamente un camarón o gamba, aunque sí es un primo lejano de esta especie.

¡La Vida! Ese gran misterio

Autor por Emilio Silvera    ~    Archivo Clasificado en La vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿La Vida? Algo que no sabemos explicar pero, lo intentamos. Como dice Kauffman: “la vida cristaliza a partir de un nivel crítico de diversidad molecular, debido a que…”. A mí me gusta decir decir, que la vida es,  ¡el estado más evolucionado de la materia! Algo tan sorprendente y complejo que no hemos podido -todavía- explicar.

Aquí surgió la vida que conocemos. El planeta y su entorno, tenían todos los ingredientes necesarios para que, tal maravilla, pudiera surgir a un Universo que, siendo tan inmensamente grande y estar lleno de asombrosos objetos y sucesos, ninguno de ellos, se podría comparar con este que llamamos vida y que, asciende desde la materia “inerte” hasta los pensamientos.

Sean cuales sean los orígenes de la vida, las teorías que incluyen redes, conexiones y criticalidad auto organizada proporcionan unas ideas nuevas y poderosas sobre el modo en que funciona la vida una vez que ha surgido. Claro que, el origen de la vida ha hecho que muchas mentes despiertas y dotadas de un profundo entendimiento, emitan teorías que, aunque no todas puedan ser reflejo de lo que la vida es, hay que admitir que cada una de ellas, al menos nos indica un posible camino por el que la vida pudo surgir.

Dichas teorías o especulaciones en algunos casos, han ofrecido un ejemplo sorprendente de la medida en que la complejidad de los seres vivos (sin duda, lo más complejo que existe en el universo) podría estar basada en una profunda sencillez, cuyo secreto, está escondido en la materia.

Resultado de imagen de funcionamiento de las células a niveles de genes

Son muchos los misterios que a todos los niveles subyacen en lo que conocemos como vida, por ejemplo, en el funcionar de las células, al nivel de los genes que aportan las instrucciones que gobiernan lo que a veces se llama de una manera imprecisa la maquinaria de la célula. Estas instrucciones se encuentran en última instancia codificadas en el ADN, las grandes moléculas de las que están constituidos los genes; pero tanto la maquinaria como la estructura del cuerpo están hechas de proteínas. Elementos tales como el pelo y las uñas de los dedos, así como los músculos, son tipos de proteínas y también lo son sustancias como la hemoglobina, que transporta el oxígeno en la sangre, y las enzimas, que son los catalizadores biológicos esenciales que favorecen las reacciones químicas importantes para la vida.

http://apod.nasa.gov/apod/image/0707/trifid_spitzer_f.jpg

Las propias proteínas son grandes moléculas formadas por subunidades llamadas aminoácidos, y esta es la razón por la que resulta tan intrigante el descubrimiento de que los aminoácidos existen en el tipo de nubes interestelares a partir de las cuales se forman las estrellas como el Sol y los planetas como la Tierra y todos los que vemos en nuestro Sistema solar.

Resultado de imagen de El código genético que está en el ADN contiene instrucciones para fabricar proteínas

El código genético que está en el ADN contiene instrucciones para fabricar proteínas y, luego, estas proteínas realizan las tareas de que se compone la vida. Pero, en este proceso hay otro paso que resulta sorprendente. Cuando un gen se activa (cómo y por qué sucede esto va más allá de los objetivos de esta explicación), la información que interesa en ese momento se copia primero en una molécula muy similar llamada ARN. Posteriormente, la maquinaria de la célula lee el ARN y actúa según sus instrucciones para fabricar la proteína adecuada.

Este proceso de dos pasos probablemente nos esté diciendo algo sobre el modo en que se originó la vida, y existe alguna posibilidad de que el ARN se “inventara” antes que el ADN. En la situación que describe Kauffman,  la “cristalización” de la vida tiene lugar en el nivel de las proteínas, en una sopa química rica en aminoácidos, donde surgieron las primeras redes autocatalíticas de la vida; en este modelo encaja fácilmente la posibilidad de que el ARN participara en una fase temprana y que, posteriormente, las presiones evolutivas asociadas con la competencia entre las distintas redes autocatalíticas pudieran haber conducido al sistema a la situación que vemos en la actualidad.

Los puntos relevantes que aconsejan estos pensamientos en la investigación desarrollada sobre el modo en que funcionan las células son, por un lado, el hecho de que los genes actúan para controlar la maquinaria celular y, por otro (siendo éste el aspecto crucial) que los genes pueden afectarse mutuamente, cuando un gen activa o desactiva a otro.

Cuando fueron desarrollados estos trabajos de investigación se pensaba que había unos cien mil genes diferentes en el ADN humano –es decir, en el genoma humano-. Desde entonces, el proyecto del genoma humano ha demostrado que tal estimación era excesiva, y que sólo hay alrededor de un tercio de dicho número de genes para especificar lo que debe ser una criatura humana.

Resultado de imagen de La evolución con el tiempo transforma una especie en otra

A todo esto, no tenemos más remedio que admitir que la evolución es un hecho, al igual que lo es la forma elíptica de la órbita que describe un planeta alrededor del Sol. Tanto en el registro fósil como en los diversos estudios realizados sobre la vida actual en la Tierra, se puede encontrar un número considerable de pruebas relativas al modo en que actúa la evolución, transformando una especie en otra. La teoría de la selección natural, a la que llegaron de manera independiente Charles Darwin y Alfred Russell Wallace en la segunda mitad del siglo XIX, es un modelo que ofrece una explicación  de por qué se produce la evolución, del mismo modo que la teoría de la gravedad, desarrollada por Newton durante la segunda mitad del siglo XVII, es un modelo que explica porque los planetas describen órbitas elípticas. Ni la teoría, ni el modelo, constituyen la última palabra sobre la cuestión que abordan. De hecho, la teoría de Newton fue mejorada por la de Einstein a principios del siglo XX, que descubrió un modelo más completo para explicar cómo actúa la Gravedad –la teoría general de la relatividad- y, de la misma manera, en el ámbito de los estudios sobre la vida, vendrán otras nuevas maneras y formas de ver y enfocar los problemas que nos lleven a un entendimiento más amplia y fidedigno de cómo la vida se puedo abrir camino partiendo de la “materia inerte” hasta las pensamientos.

 

 

La hipotesis de la reina roja es una hipótesis de la teoria evolutiva que toma su nombre de un relato de Lewis Carroll, donde Alicia entra en un mundo donde por más que se mueva parece que no avance en absoluto debido a que el mundo a su alrededor -a su vez- tambien se mueve. Se trata en realidad de un libro escrito por Matt Ridley en 1993 donde el autor publica sus ideas respecto a ciertas cuestiones relacionadas con la coevolucion de algunas especies y la influencia del sexo es la evolución.

Claro que, la Vida, tiene una regla esencial que, de no cumplirse, esa clase de vida está abocada a su desaparición, es decir, los individuos que sobreviven son aquellos que mejor se adaptan al medio-ambiente, es lo que se conoce como “la supervivencia del más apto”.

Imagen relacionada

En alguna ocasión os he hablado aquí (en relación a la biología evolutiva) a eso que se conoce como “el efecto de la Reina Roja”, según el personaje que aparece en Alicia en el País de las maravillas, de Lewis Carroll, que debe correr tan rápido como pueda, con el fin de permanecer en el mismo lugar.

El final de toda la historia desemboca, aparentemente, en un proceso de coevolución, en el que todas las especies implicadas en una red sufren cambios cuando una de ellas cambia, impulsará de forma natural los ecosistemas complejos desde los extremos hacia la interesante zona de la criticalidad autoorganizada, en la transición de las fases que se producen al borde del caos. Si un grupo de organismos está bloqueado en una estrategia estable, es probable que una mutación que afecte a una de las especies desbloquee la red, permitiendo su evolución.

La evolución por selección natural garantizará que un cambio perjudicial para las especies implicadas vaya desapareciendo a lo largo de varias generaciones; pero todo cambio beneficioso se propagará, y al hacerlo, desbloqueará otras redes, impulsando el sistema hacia el borde del caos. En el otro lado de la transición de las fases, en el régimen caótico, sucederá lo mismo, pero a la inversa. Dado que las reglas del juego de la vida cambian con cada generación, cualquier grupo de individuos que consiga hasta cierto punto aislarse del caos, reduciendo el número de sus conexiones con el mundo exterior, tendrá una oportunidad de evolucionar por selección natural, hasta llegar a un estado que se beneficia de las oportunidades que hayan podido surgir.

Hemos podido ver cómo, las interacciones entre especies, lo pueden cambiar todo y, casi siempre, desemboca en la supremacía de una que, generalmente, produce la extinción de la otra. Siendo eso así (que lo es) –aunque no en todos los casos-), tendremos que tener sumo cuidado cuando llegado el momento, podamos contactar por primera vez con seres de otros mundos que, no sabemos de qué propiedades podrán estar dotados física y mentalmente y, si sus morfologías y organismos son compatibles con los nuestros y con nuestro propio entorno.

Cuando tratamos de cuestiones que afectan a la vida, todo se nos vuelve complejo e ininteligible, es una de las disciplinas que no hemos podido llegar a dominar bien, dado que, como decía por ahí arriba, estamos tratando con lo más complejo que en el universo habita ¡La Vida!.

Claro que, aunque nuestro entorno sea el ideal no podemos dejar que todo transcurra sin  que nosotros, estemos pendientes de los comportamientos y, de no vigilar nuestro propio cuidado, las cosas podrían terminar de manera muy desagradable. De hecho, más de uno se ve abocado a su desaparición precisamente por no prestar atención a su propia vida que, siendo tan valiosa, se la deja escapar por unos placeres mal entendidos. La moderación es la madre de la razón.

Pero, como tántas veces hemos dicho aquí, la vida debe pulular por todas partes. De hecho científicos del Instituto de tecnología de Georgia en los Estados Unidos, descubren bacterias en la atmósfera de la Tierra por miles de millones. Como si de una burbuja que envolviera la Tierra se tratara, a una distancia de 9 kilómetros sobre la Tierra se han descubierto células de bacterias y hongos en un hostil lugar para la vida.  El frío, la luz ultravioleta y la sequedad no hacen de este punto un lugar propicio para la vida, pero los científicos han detectado un 20% de células de bacterias y hongos entre lo que en un principio se creía que solo era polvo.

Han descubierto bacterias mutantes en la Estación Espacial Internacional y los científicos temen por la propia seguridad de la Estación y también, de los que la ocupan. Según se ha publicado “Para ellas, ni siquiera las durísimas condiciones del espacio exterior son un obstáculo insalvable. De hecho, sobreviven incluso a las gélidas temperaturas que hay más allá de la atmósfera terrestre. Y lo hacen sin agua, sin nutrientes y sin nada que las proteja de la intensa y letal radiación del Sol y las estrellas. Las bacterias llevan viviendo dentro y fuera de la Estación Espacial Internacional desde que ésta empezara a ensamblarese, a finales de 1998. Y ahora se están convirtiendo en un problema serio, tanto para su estructura como para la integridad física de sus ocupantes.”

La isla flotante de los microbios

Erik Zettler
                            Algunas de las bacterias encontradas en el plástico flotante

Ha salido publicado que: “La actividad humana sobre el planeta produce inquietantes consecuencias. Los científicos han descubierto una gran multitud de microbios que han colonizado con éxito las islas de plástico que flotan sobre los océanos. Los microorganismos que forman estas comunidades representan un hábitat ecológico nuevo provocado por el hombre. Los investigadores tienen un nombre para ello. Lo denominan la «plastisfera».

En un estudio recientemente publicado en Environmental Science & Technology, los científicos de la Asociación de Educación del Mar (SEA), la Woods Hole Oceanographic Institution (WHOI) y el Laboratorio de Biología Marina (MBL), todos en Woods Hole, Massachusetts (EE.UU), analizaron desechos plásticos marinos recuperados de la superficie del mar en varios lugares del Océano Atlántico Norte. La mayoría eran fragmentos de un tamaño milimétrico.”

Lo cierto es, amigos míos que la Vida, en cuento se le da la más mínima oportunidad… ¡ Surge por doquier! Y todavía muchos no creen que pueda existir vida en otros planetas, otros mundos que, como la misma Tierra, les proporcione el medio necesario para formar un habitat y multiplicarse de mil maneras y formas.

emilio silvera

¿Cómo Surgió la Vida?

Autor por Emilio Silvera    ~    Archivo Clasificado en La vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Las Células de Combustible Podrían Tener la Respuesta

 

 

 

Cómo surgió la vida a partir de un ambiente tóxico e inhóspito en nuestro planeta hace miles de millones de años sigue siendo un profundo misterio. Los investigadores han simulado las condiciones de una Tierra primitiva en tubos de ensayo, incluso confeccionando algunos de los ingredientes básicos de la vida. Pero cómo estos ingredientes se unieron en células vivas, y cómo la vida fue primero capaz de generar energía, sigue siendo desconocido.

Un nuevo estudio dirigido por Laurie Barge del Laboratorio de Propulsión a Chorro de la NASA, ha detectado una forma única de estudiar los orígenes de la vida: las células de combustible.

 

Las pilas o células de combustible se encuentran en los coches especializados, aviones y naves espaciales de la NASA, tales como el ahora retirado transbordador espacial. Las células son similares a estas pilas en la generación de electricidad y la energía, pero requieren de combustible, como el gas de hidrógeno. En este nuevo estudio, las células de combustible se utilizan para probar las reacciones químicas que se cree que han dado lugar al desarrollo de la vida.

“Algo sobre la Tierra llevó a la vida, y creemos que un factor importante fue que el planeta proporciona energía eléctrica en el fondo del mar”, dijo Barge. “Ahora, gracias a las células de combustible el equipo ha podido probar diferentes materiales y ambientes que podrían haber ayudado al surgimiento de la vida, puede que no directamente en la Tierra, pero si en Marte, en la luna Europa y en otros lugares del Sistema Solar”. investigadora.

Una de las funciones básicas de la vida como se conoce es la capacidad de almacenar y utilizar la energía. En las células, es una forma de metabolismo y consiste en la transferencia de electrones de una molécula a otra. El proceso es igual al que se produce en nuestro propio cuerpo, que nos aporta energía.

Las células de combustible podrían tener la respuesta a cómo surgió la vida
 

Las células de combustible podrían tener la respuesta a cómo surgió la vida. Image Credit: NASA/JPL

Las pilas de combustible son similares a las células biológicas, donde los electrones también se transfieren hacia y desde las moléculas. En ambos casos, esto da como resultado electricidad y energía. Para que una célula de combustible trabaje necesita, combustible, así como gas de hidrógeno, junto con electrodos y catalizadores, que ayudan a la transferencia de los electrones. Los electrones se transfieren desde un donante de electrones (tal como hidrógeno) a un aceptor de electrones (tal como oxígeno), lo que resulta en una corriente. En sus células, las enzimas que contienen metales –los catalizadores biológicos– transfieren electrones y generan energía para la vida.

En los experimentos del equipo, los electrodos de la célula de combustible y los catalizadores están hechos del material geológico primitivo que se cree que ha existido en la Tierra primitiva. Si este material puede ayudar a transferir electrones, los investigadores observarán una corriente eléctrica. Al probar diferentes tipos de materiales, estos experimentos en células de combustible permiten que los caminos se estrechen en la química que podría haber tenido lugar cuando la vida surgió por primera vez en la Tierra.

“Lo que estamos proponiendo aquí es simular procesos energéticos, lo que podría reducir la brecha entre los procesos geológicos de la Tierra primitiva y el surgimiento de la vida biológica en el planeta”, dijo Terry Kee coautor del trabajo de investigación de la Universidad de Leeds, Inglaterra.

“Vamos a volver atrás en el tiempo para probar los minerales específicos, tales como los que contienen hierro y níquel, y que habrían sido comunes en la Tierra primitiva y podrían haber dado lugar a un metabolismo biológico”, dijo Barge.

En JPL, las pilas de combustible no son sólo para el estudio de la vida, sino que también se están desarrollando trabajos para mejorar a largo plazo los viajes espaciales tripulados. Las pilas de combustible de hidrógeno puede producir agua, que se pueden reciclar y se utiliza como combustible de nuevo.

LA NASA