sábado, 22 de julio del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Fluctuaciones cuánticas

Autor por Emilio Silvera    ~    Archivo Clasificado en Entrevista científica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 EL PAÍS
Viatcheslav Mukhanov | Físico teórico

“Si caes en un agujero negro no sientes nada”

El cosmólogo ruso explica por qué los humanos le debemos la vida a las fluctuaciones cuánticas

Viatcheslav Mukhanov, después de la entrevista.

Viatcheslav Mukhanov, después de la entrevista. Carlos Rosillo

A finales de los años setenta, en la Unión Soviética, Vitali Guínzburg, uno de los creadores de la bomba atómica, le sugirió a uno de sus estudiantes que se dedicase a la cosmología. Era un campo emergente que intentaba responder algunas de las preguntas más importantes para la humanidad, por ejemplo, cómo se originó el universo. Era solo un “bla, bla, bla, no había ninguna observación experimental”, ni visos de conseguirla, recuerda el físico teórico Viatcheslav Mukhanov, quien, a pesar de ello, decidió seguir el consejo de su superior.

En 1981, cuando aún era un estudiante de doctorado en el Instituto de Física y Tecnología de Moscú, Mukhanov publicó junto a su compañero Gennady Chibisov su teoría de que las galaxias se originaron por fluctuaciones cuánticas. Esas irregularidades de densidad a escala microscópica surgieron poco después del Big Bang, se amplificaron durante los primeros momentos de expansión del universo y evolucionaron durante 13.700 millones de años hasta transformarse en los cientos de miles de millones de galaxias agrupadas en cúmulos y supercúmulos que en la actualidad conforman el universo.

En 2013, el satélite Planck realizó el mapa más detallado del fondo cósmico de microondas, la luz más antigua del universo. En sus imágenes se apreciaban pequeñas diferencias de temperatura cuya explicación más plausible eran las fluctuaciones cuánticas que Mukhanov había predicho tres décadas antes.

Resultado de imagen de Tratando de recibir un mensaje extraterrestre

 

Si nos enviasen un mensaje extraterrestre de vuelta, el retardo sería de 48.000 años. Es imposible comunicarse

 

Mukhanov (Kanash, extinta URSS, 1952) emigró a Europa tras la caída de la URSS y actualmente es catedrático de cosmología en la Universidad Ludwig-Maximilians de Múnich (Alemania). Ha ganado algunos de los galardones más importantes en su área y en 2016 recibió, junto a Stephen Hawking, el Premio Fronteras del Conocimiento. De visita en España para ofrecer una conferencia en la Fundación BBVA, Mukhanov explica en esta entrevista por qué confirmar su nueva teoría puede estar más allá de nuestras capacidades como especie.

Pregunta. ¿Cuándo surgió su interés por la ciencia?

Respuesta. Cuando estaba en el colegio. Mis padres eran los dos de clase trabajadora y mi educación fue primordialmente autodidacta. Compraba libros. En la Unión Soviética, todos los libros se publicaban en grandes tiradas. Los había hasta en las ciudades provinciales, porque nadie quería comprarlos. Había libros de teoría cuántica de campos o gravitación con una tirada mucho mayor que los best sellers actuales. Después me mudé a Moscú para estudiar en el internado de Andréi Kolmogorov [un famoso matemático ruso], donde preparábamos el examen de acceso a la universidad.

P. ¿Cómo era formarse como científico en la URSS?

R. La URSS era un país horrible. Por ejemplo, necesitabas permiso para vivir en Moscú y sin él no podías trabajar en la ciudad. Era como conseguir un título aristocrático en la Edad Media. Hasta tener un teléfono era complicado. Tenías que ponerte a la cola y esperar 10 años. En 1992 me mudé a Suiza. Pensé que serían solo dos años. Pero, después, en Rusia, las cosas tomaron un cariz no muy bueno, especialmente para la ciencia. Fue el latrocinio de todo. Y continúa ahora.

Resultado de imagen de Las semillas de la vida vinieron del espacio

… pruebas de que los meteoritos contienen ciertos bloques de construcción del ADN, la molécula que porta las instrucciones genéticas para la vida.

 

 

Descubrimos las semillas de las que surgen las galaxias, los planetas, las estrellas y, finalmente, nuestra vida

 

P. ¿Cómo formuló su teoría de las fluctuaciones cuánticas?

En 1978 mi supervisor decidió emigrar fuera de la URSS. Necesitaba un nuevo supervisor y ese fue Guínzburg. En 1979 no tenía ni idea de qué hacer. Se me acercó Chibisov y empezamos a trabajar. Pensamos en cómo usar la mecánica cuántica en el universo temprano. Nos dimos cuenta de que, si tomas el modelo de expansión acelerada [del universo], que fue llamado inflación dos años después, puedes emplear las fluctuaciones cuánticas, amplificarlas y tener, más o menos, una explicación válida para el origen de la estructura del universo. El origen de las semillas de las que surgen las galaxias, los planetas, las estrellas y, finalmente, nuestra vida.

P. ¿Cómo pueden unas fluctuaciones a escala cuántica generar todas las galaxias?

Resultado de imagen de Las fluctuaciones cuanticas formaron las galaxias

R. La mecánica cuántica impide conocer simultáneamente la posición y la velocidad de un fragmento determinado de materia. Esto hace que sea imposible que haya un reparto perfectamente homogéneo de la materia, hay pequeñas anomalías inevitables. Las fluctuaciones cuánticas permiten explicar cómo una pequeña burbuja de milésimas de gramo puede expandirse aceleradamente hasta generar materia suficiente para crear 100.000 millones de galaxias.

P. Si es tan fácil que aparezcan universos, ¿es posible que existan muchos más?

R. Puede que haya muchos. Pero no hay forma de confirmar la teoría cosmológica del multiverso. Al menos en los próximos 10.000 millones de años. El campo de los multiversos no es física, la física supone predecir y después medir. Este campo está en los límites de la metafísica, es imposible falsar sus predicciones.

Resultado de imagen de Trapitt 1 y sus siete planetas

La NASA anunció el descubrimiento de 7 nuevos planetas del tamaño de la Tierra y tres de ellos podrían ser habitables

 

 

Encontrar un sistema solar con siete tierras es un descubrimiento menor

 

P. Solo sabemos de qué está hecho el 4% del universo, el resto es materia y energía desconocidas. ¿Cuándo cree que romperemos esta barrera?

R. No se puede decir eso. Es una afirmación un poco exagerada. Hay que diferenciar entre lo cuantitativo y lo cualitativo. Si digo que casi el 100% del universo es hidrógeno y helio, podrías pensar: ¿en qué lugar quedamos todos nosotros? Somos una fracción de un uno por ciento. Pero esa fracción, en la que están los elementos pesados de los que estamos hechos, es mucho más importante que el resto. Por eso no se puede decir que no entendemos solo el 4% del universo. El 96% restante, compuesto por materia oscura y energía oscura, son una trivialidad.

P. ¿En qué trabaja ahora mismo?

Resultado de imagen de La <a href=singularidad de un agujero negro" width="299" height="393" />

R. En las singularidades. Por ejemplo, los agujeros negros. Ya unificamos la mecánica cuántica con la relatividad general con las perturbaciones cuánticas a nivel cosmológico. Pero ahora, si caes en un agujero negro, debes unificarlo usando métodos diferentes y nadie sabe cómo. Es la teoría del todo. Intentamos entender la estructura que hay dentro de un agujero negro. De acuerdo con la relatividad general, el interior de un agujero negro es enorme. Si cayeras en un agujero negro no sentirías nada, más allá de perder la comunicación con el amigo que dejaste en el exterior. O, mejor dicho, seguirías recibiendo información suya pero él no podría escucharte. Una vez cruzas el horizonte del agujero negro, si es lo suficientemente grande, te encontrarás en otro universo que evoluciona de forma separada al nuestro.

P. ¿Seguirías vivo?

R. Por algún tiempo, sí. Si se trata de un agujero negro muy grande podrías seguir vivo mucho tiempo, incluso 100 años, si el agujero tiene un diámetro de 100 años luz. Pero si caes en un agujero negro del tipo que formaría nuestro Sol, con apenas tres kilómetros de diámetro, morirías en una fracción de segundo. La mayoría de la gente piensa que los agujeros negros son como una caja negra donde hay un centro. Pero un agujero negro no tiene centro. Más allá del horizonte es como un universo en contracción. En el centro, el tiempo termina. Gracias a la energía oscura, podrías entrar en otro universo. Por ejemplo, si hay energía oscura, puedes hacer que la contracción se detenga y podrías ser expulsado en otro universo. Pero perderías toda comunicación. Por el momento, esto es especulación, no hechos.

P. ¿Podremos explorar algún día este tipo de cuerpos para conocer su estructura?

Resultado de imagen de La <a href=singularidad de un agujero negro" width="478" height="338" />

R. No. Solo si tienes el coraje suficiente para dejarte caer en uno. Un agujero negro es una puerta en una única dirección. No puedo imaginarme cómo comunicarse desde dentro de un agujero negro hacia afuera. De alguna forma estos objetos son la frontera de nuestra fantasía.

P. ¿Qué le parece el descubrimiento reciente de un sistema solar con siete tierras?

R. Es un descubrimiento menor. ¿Qué hay de especial en la vida? No debemos pensar que somos excepcionales. Nuestro planeta es como una pequeña partícula de suciedad que llamamos Tierra, y hay una pequeña cubierta sobre ella que llamamos gente. No hay nada inusual. El descubrimiento de los exoplanetas es fantástico, pero no es sorprendente. Lo chocante sería que no existiesen.

 

 

Lo que está sucediendo con los inmigrantes en Europa y EE UU es peor que volver a la Edad Media

P. ¿Cree que encontraremos vida inteligente en el universo?

R. Cuando era pequeño me interesaban muchos estos temas. En 1974 mandaron unas señales de radio a un cúmulo globular. Si nos enviasen un mensaje de vuelta, el retardo sería de 48.000 años. Es imposible comunicarse. En este sentido, deberíamos ser más modestos.

P. Usted trabaja en Alemania desde hace décadas, ¿qué le parecen los movimientos contrarios a la inmigración en este país y en otros?

R. Es como una vuelta a la mentalidad de la Edad Media. [Ángela] Merkel hizo un buen movimiento al acoger inmigrantes, pero lo que falta es una política. Deben ser incorporados en la sociedad. No puedes tenerlos en campos. Cuando este tipo de cosas ocurrieron en Oriente Medio desataron una guerra civil. Recordemos el final del Imperio Romano. Los godos cruzaron el Danubio y empezaron a reclamar lo que les prometieron los romanos, pero no se lo dieron debido a la corrupción. No puedes cerrar el país a los inmigrantes. No puedes hacer este tipo de estupideces. Sobre todo señalar a seis o siete países, como en el caso de EE UU. Ni siquiera es una mentalidad de la Edad Media, es anterior. Es horrible.

Entrevista en El Español

Autor por Emilio Silvera    ~    Archivo Clasificado en Entrevista científica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Física Teórica

Viatcheslav Mukhanov: “Solo hay un dios para un físico y es el experimento”

Es uno de los físicos teóricos más fundamentales del último siglo, ha recibido los galardones más prestigiosos y ha hecho tanto por la comprensión del universo como Stephen Hawking. Por eso, probablemente, usted nunca antes haya leído su nombre.

El físico ruso, tras la entrevista con EL ESPAÑOL.

El físico ruso, tras la entrevista con EL ESPAÑOL. Fundación BBVA

¿Qué ha hecho Viatcheslav Mukhanov por todos nosotros? Principalmente, predecir cómo se formó toda la materia del universo tras el Big Bang. Su teoría de la fluctuación cuántica como origen de todas las galaxias es ahora parte de los libros de física y sin embargo, su notoriedad está a millones de años luz de la de Stephen Hawking, con quien compartió hace unos meses el premio Fronteras del Conocimiento en Física.

Por otro lado, la historia de Mukhanov es la de uno de tantos científicos rusos que huyeron del país tras la perestroika para poder seguir haciendo avanzar a sus disciplinas. Empleado desde hace unos años en la universidad Ludwig Maximilian de Munich, este físico ha obtenido todos los reconocimientos posibles salvo el Nobel de Física. Es decir, ha ganado todos los premios que un físico teórico puede llegar a ganar.


Mukhanov recibe a EL ESPAÑOL en una visita a Madrid para impartir una conferencia en la Fundación BBVA. Departir con él es como plantarse en mitad de un río de montaña con un escurridor de espaguetis. Hay que enfrentarse a una personalidad huracanada, que verbaliza en un inglés torrencial con arranques de mal genio, borbotones en ruso, carcajadas a destiempo y pinceladas de alemán, con la esperanza de que al final acabaremos hallando en el cedazo varias pepitas de oro.

Cuando usted hizo su gran contribución a la comprensión del universo, ¿fue bien recibida en aquella época?

A nadie le importó mucho.[Risas] No éramos una comunidad muy grande, podías contar a los cosmólogos: uno, dos, tres, cinco. En la URSS había varios porque es donde Zel’dovich creó escuela y allí comenzaron a darse varias hipótesis interesantes. Por supuesto, una cosa son hipótesis y otra son hechos probados. La cosmología era un campo interesante en aquella época, pero al principio no había prácticamente hechos. Para mí fueron suficientes para defender mi tesis doctoral. Por supuesto, en las fluctuaciones siempre hay contradicciones pero los astrofísicos no saben mucho de las series cuánticas así que a nadie le importó.

Todo eran hipótesis plausibles pero que pueden ser solamente blablabla. Cuando François Englert y Robert Brout escribieron su famoso paper cuatro años antes de que lo hicieran los americanos nadie prestó atención. La cosmología sólo empezó a tener un poco de éxito en los años noventa, no sólo por la radiación de fondo de microondas sino porque en aquellos años se empezaron a construir telescopios grandes, uno detrás de otro, algo que diez años antes era inimaginable. Recuerdo que en los ochenta pasé un único mes en el llamado “mayor telescopio ruso”.

Resultado de imagen de El mayor telescopio ruso en el Caucaso (Chechenia)

¿Dónde estaba ese telescopio?

Antes era territorio de la Federación Rusa pero hoy sería Kirguistán o algo así, Chechenia, el Cáucaso. Pregunté entonces por qué lo habían puesto en un lugar tan malo para la observación, ¿por qué no en Armenia? Me dijeron que era una decisión condicionada políticamente e hice una broma diciendo que preveía que en diez años la URSS caería y que lo siguiente sería elegir Kazajistán para lanzar los cohetes.[Risas]

Los años 90 fueron fantásticos para la cosmología y la astrofísica porque comenzaron a construirse instrumentos. No era aún física tal y como yo la entiendo. Cuando era joven no solía pensar así porque cuando eres joven básicamente piensas lo que tu jefe te dice que pienses, porque respetas a tu jefe y lo que hace. Pero cuando vas creciendo aprendes que básicamente solo hay un dios en física, y es el experimento. Aparte de eso no hay autoridad que deba ser aceptada. Por ejemplo, Lemaître hablaba de la creación del universo a partir de fluctuaciones cuánticas o lo que sea, pero era sobre todo blablabla porque una de las cosas importantes de la física es que debe haber fórmulas nuevas, que nadie ha visto antes, y que te permiten medir un par de números. Pero Einstein" target="_blank">Lemaître hablaba con Einstein de la creación del universo criticando las técnicas humanas, eso es una basura completa, algo que solo puede salir de la boca de un sacerdote, porque Lemaître era un sacerdote. ¿Cómo mides la autoridad? Por supuesto Einstein tenía más autoridad pero quizá estaba equivocado, hubo muchos casos en los que Einstein lo estuvo, no nos preocupemos, la gente es gente, no son dioses. La gente no puede vivir sin autoridad, por eso buscan la autoridad máxima, pero la autoridad más alta es la naturaleza, el experimento.

Usted no había cumplido los 30 cuando hizo su gran descubrimiento. ¿Qué atributos debe tener un científico joven? Ha mencionado antes el respeto a los jefes.

No, no debes seguir a tus jefes, es lo que intentaba decir. Resulta útil de alguna forma, pero un científico no debe seguir a nadie más allá de su propia curiosidad. Por ejemplo, Ginzburg fue un guía muy bueno en este sentido, porque cuando fui a buscarle para empezar mi doctorado con él, porque mi anterior director emigró por motivos políticos, me dio libertad total, porque… ¿cuál es la mejor manera de enseñar a nadar a un niño? Tirarlo en mitad de un lago, si sale adelante es bueno, si no… lo siento.

[Más risas]

Quizá con un niño no sea muy justo, pero en física, y especialmente en física teórica, sí lo es.

¿Cuál es el equivalente en física a tirar a un niño en mitad de un lago?

Significa poner a un estudiante en un campo, le das unas instrucciones particulares, le dices el problema y lo que esperas de él y el resto debe hacerlo todo él solito. He conocido a varios físicos que hicieron el doctorado con Julian Schwinger, por ejemplo Walter Kohn, Sheldon Glashow o Bryce DeWitt, y los tres me dijeron lo mismo sobre su director: que habían visto a Schwinger dos veces durante todo el doctorado. La primera vez durante 20 minutos en los que Schwinger formuló el problema y la segunda tres años más tarde. Guiar a los estudiantes de una forma muy detallada destruye su originalidad y destruye su personalidad, se vuelven como unos técnicos en física, y los físicos teóricos no son técnicos, deben tener originalidad. Y de hecho, enseñar a ser original no es nada trivial: puedes enseñar a jugar al ajedrez o cómo ensamblar cosas, pero esto es diferente. En física fundamental tienes que venir con ideas nuevas, y si hay un campo donde miles de personas están buscando ideas nuevas, la única forma es salir de esta masa de gente, no trabajar en el mainstream.

Resultado de imagen de El Físico Mukhanov

¿Cree que lo del genio solitario sigue vigente en una época donde prima la colaboración?

No puedes decir eso de que alguien es un genio. Ser un genio ahora equivale a tener unos atributos técnicos excepcionales, como esos niños que multiplican números más rápido que un ordenador, pero normalmente esto es un producto del entrenamiento. Imagínese un sitio lleno de oro, todo el mundo llega, se lleva el oro, el resto llega al sitio pero ya no hay oro. Esto es lo que pasa en física, un campo se vuelve popular cuando no hay prácticamente nada que hacer. Uno tiene que encontrar su propio campo, y esto, claro, tiene sus dificultades.

¿Cómo están las cosas ahora para los científicos en Rusia? Porque buena parte de su generación emigró, ¿hay una nueva generación ahora tirando del carro?

No, por desgracia no puedo decir que en Rusia la situación de la ciencia sea brillante. Por supuesto, no estoy allí por lo que no puedo hablar desde dentro, pero desde fuera, no veo tanta gente buena en física teórica que aparezca, que viaje… desde mi punto de vista lo que el gobierno ruso está haciendo con la ciencia es completamente erróneo, por no decir nada peor. Creo que la gente no comprende que destruir este tipo de cosas es muy fácil, la ciencia es extremadamente delicada, y construirla de nuevo lleva mucho tiempo. La física en Rusia fue construida gracias a las investigaciones militares y las grandes escuelas matemáticas de los años veinte, tras la Revolución, pero ya no queda nada de aquello.

Leí algunas quejas de los académicos rusos el año pasado, cuando el ministro de ciencia fue sustituido por una historiadora experta en Stalin, pero no he seguido mucho el tema. ¿Ha empeorado la situación?

Mucho peor. En general, poner a distribuir el dinero para investigación a algún Putin de la vida, que quizá ni siquiera sabe bien las tablas de multiplicar, es una estupidez. Acabará financiando sólo ciencias aplicadas y no básicas porque busque resultados inmediatos, con lo que acabará siendo como tener un cuerpo pero sin sangre dentro.

Ahora la gente está tratando de formalizar la ciencia de una forma ridícula. ¡Número de citaciones! ¡Índice de impacto! Todo estos criterios formales me parecen basura, porque la gente se concentra en satisfacer estos criterios en lugar de hacer ciencia. Y todo el dinero que recibes depende de este sinsentido formal. La única evaluación de un trabajo científico debe ser la que hagan los colegas, no hay otra manera que la opinión de los expertos.

¿Y cómo motiva a sus jóvenes investigadores? Porque al final les van a exigir publicaciones.

No quiero obligar a nadie a la fuerza a venir a mi campo. Normalmente les digo que no hace falta que se dediquen a esto, salvo en el caso de que, si no lo hacen, el resto de su vida serán más infelices. Si pueden sobrevivir sin hacer física teórica les animo a dedicarse a otra cosa, su vida será más sencilla y ganarán más dinero y más fácilmente.

Insisto. Hay físicos jóvenes que quieren serlo pese a todo, pero aún así, lo que les piden es publicar y publicar.

Absolutamente. Todo el mundo comprende esto, hasta los niños. Nadie, de hecho, quiere decir no a esta dinámica, ¿entiende? Es un movimiento político. Por ejemplo, algo que odio, y obviamente no porque esté en contra de las mujeres, es cuando dicen que debe haber igualdad en el número de hombres y mujeres en física teórica. ¿Por qué no aplican la misma situación a la lingüística, donde el número de mujeres es superior? En astronomía ya estamos más o menos en un 50-50, ¿pero por qué los políticos no empiezan con ellos mismos? Creo que eso mejoraría muchísimo la calidad de la política si el Gobierno fuera en un 50% mujeres, pero cuando nos obligan a tener paridad en nuestros laboratorios están llevando la democracia al absurdo, ¿entiende? Porque hay esta tendencia a compensar a aquellas personas que fueron discriminadas en el pasado, pero la memoria de la gente nunca llega tan lejos. ¡Cien años! Lo que habría que hacer es olvidarse de ello y empezar con una base justa, sin redistribuir artificialmente los derechos como compensación, de esa forma la gente sería más razonable. También, fíjese que la mejor política actual es una mujer, Frau Merkel, ¡quien además fue física y de la Alemania Democrática! La mejor canciller que ha habido en Alemania, el único país donde los científicos no se quejan de no tener suficiente dinero para investigar. En Italia o en España la situación es catastrófica, porque sus políticos no entienden que la inversión en ciencia es ridícula, unos cuantos cientos de millones, ¡eso no es nada!

Resultado de imagen de El físico ruso Mukhanov

                                            Mukhanov

 

Se está hablando mucho del futuro de la astronomía a raíz de la detección de las ondas gravitacionales. Ahora, el éxito de la misión de prueba LISA Pathfinder de la ESA parece indicar que el boom de esta nueva disciplina puede llegar antes de lo que pensábamos.

Verá, esta es la situación de las ondas gravitacionales. En primer lugar, uno no debería decir que el experimento LIGO detectó ondas gravitacionales, porque fueron detectadas mucho antes, en un sistema binario y con mucha más evidencia disponible. En este momento, sólo hay un evento que haya, digamos, superado el nivel de ruido. Cuando el evento es uno, no podemos hablar aún ni de estadística, ¿entiende? Por ejemplo, un acto de reencarnación es algo que no puede probarse ni desmentir que haya ocurrido. Cuando hablamos de física, algo debería convertirse en estadísticamente relevante.

Totalmente. Y volviendo a la pregunta…

La detección de ondas gravitacionales es una de las cosas más importantes actualmente en física fundamental. El experimento LIGO empezará pronto a trabajar con el detector italiano Virgo, lo que permitirá identificar con más exactitud de dónde proceden los eventos. Por otro lado, el proyecto LISA, previsto para 2034, está funcionando a la perfección por lo que espero que la ESA reconsidere sus planes y los adelante un poco. No hay muchas cosas por hacer en física fundamental, pero las ondas gravitacionales y la astronomía son los dos campos con un futuro más brillante.

¿Y a qué se van a dedicar estos investigadores de aquí a 2034?

Principalmente, a observar el llamado “universo local”, el que hay a nuestro alrededor. No es como las observaciones con radiación de fondo de microondas, en las que observas la radiación de cuando el universo sólo tenía 300.000 años, esto tiene más que ver con aprender cosas sobre detalles y procesos que están ocurriendo ahora en las galaxias. Ya sabemos mucho sobre lo que ocurre por aquí cerca, así que en 20 años sabremos mucho más.

¿Y cree que seremos capaces de detectar eventos más pequeños? Porque ahora necesitamos que dos agujeros negros enormes se fusionen para enterarnos.

Déjeme ser correcto, porque la mayoría de los periodistas toman estas cosas como un hecho probado, pero todavía debería estar más probado. ¿Por qué? Lo que vemos ahora mismo es una fusión de dos agujeros negros de 30 masas solares… eso no parece muy natural, ¿comprende? Porque desde el punto de vista de la astrofísica supone un gran dolor de cabeza explicar la existencia de este tipo de cosas, y sólo es un evento, ¿vale? Un poco por encima del nivel de ruido. Por tanto, ahora, que fueran dos agujeros negros parece, para la mayoría, la explicación más plausible. Pero antes de llegar a esta conclusión única deberíamos, en mi opinión, ver más eventos como este, para estar seguros que no la estamos jodiendo.

Es decir, seguir el método científico.

Sí, seguir el método científico, porque ahora, en el llamado “periodismo científico” parece haber una tendencia que yo llamo Tendencia Americana del McDonald’s en la que se trata de vender mierda a un precio muy alto, como usted ya sabe. En este sentido, el New York Times es espectacular. Escribí una vez a este Overbye

¿Dennis Overbye, el corresponsal de astronomía y cosmología del Times?

Creo que ya no publica. Le escribí diciéndole: ‘Pensaba que el New York Times era más serio que periódicos soviéticos como Pravda, pero ahora no lo parece’. Fue porque armaron un escándalo con lo del BICEP, que ellos llamaban “el colapso del BICEP”, que fue dañino no sólo para los miembros del experimento sino para toda la comunidad de experimentalistas que llevaban 15 años trabajando muy duro.

[En 2014, el experimento BICEP2 del Centro de Astrofísica de Harvard lanzó un comunicado diciendo que habían detectado ondas gravitacionales primordiales, procedentes del Big Bang. Un análisis posterior del Instituto Max Planck de Alemania demostró que era una señal errónea causada por una nube de polvo galáctico].

Cuando salieron los resultados del Planck, todo lo que la gente quería saber es si el BICEP llevaba razón o no, omitiendo la detección más espectacular de una polarización, hecha por el Planck con un nivel de precisión increíble, pero a nadie le importó.

Entiendo.

Usted entiende lo que digo. Por tanto, uno tiene que ser cuidadoso al formular ese tipo de cosas. Por supuesto, un científico tiene que trabajar para el público pero no todo lo que interesa al público es interesante para la ciencia. Me gusta hablar con escolares, ese es mi culmen. Es bueno inspirar a las nuevas generaciones para que se dediquen a la ciencia, pero el resto de la sociedad no debe olvidar que cualquier cosa que tienen, todos esos dispositivos, es gracias a la ciencia.

El sueño de ese primer contacto… ¿Será para bien?

Autor por Emilio Silvera    ~    Archivo Clasificado en Entrevista científica, General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“En 20 años sabremos si hay una civilización extraterrestre” Dice el entrevistado.

Este astrobiólogo participa en la misión Clipper para buscar vida en la luna de Júpiter

Kevin Hand, antes de la entrevista
Kevin Hand, antes de la entrevista Luis Sevillano

Kevin Hand es investigador de la NASA y uno de los responsables de la próxima misión a Europa, la sexta luna de Júpiter. Es el lugar más probable donde puede encontrarse vida más allá de la Tierra, asegura. De visita en España para ofrecer una conferencia en la Fundación Ramón Areces, Hand explica en esta cómo pretende llegar al satélite y comenzar a estudiar el profundo océano que se esconde bajo el hielo. Cuando se le pregunta sobre cómo puede impactar la reciente victoria de Donald Trump en la ciencia y en los planes de exploración espacial de la NASA (una agencia gubernamental), guarda un largo silencio. “No puedo decir mucho sobre política”, acaba reconociendo.

Resultado de imagen de La luna de Júpiter Europa

            Imagen de Europa, satélite de Jupiter

Pregunta. Usted dice que tardaremos solo 20 años en encontrar vida en el Sistema Solar

Respuesta. Sí. Si hay vida, por ejemplo en el océano de Europa, en el de Encélado o en el de algún otro mundo del exterior del Sistema Solar, nuestra exploración robótica puede descubrirla en los próximos 20 años.

P. Actualmente hay muchas misiones proyectadas a Marte en busca de vida. También se acaba de proponer que Plutón tiene un océano. ¿Por qué cree que Europa es el lugar más adecuado para encontrar vida?

Resultado de imagen de El agua líquida y los seres vivos

Es muy difícil encontrar un sitio donde haya agua líquida y no tenga seres vivos

 

 

R. Hay seis mundos con océanos, tal vez más. Acaba de publicarse un estudio sobre la composición y la dinámica gravitatoria de Plutón que indican que tal vez tenga un océano de agua y amoniaco. Plutón es fascinante en el sentido de que tal vez tenga agua, y tal vez también nitrógeno y carbono. Lo que le falta, pero no a Europa, es interacción entre el agua y las rocas. La vida necesita para existir agua líquida, los ladrillos básicos para la vida y alguna forma de energía. En Europa pensamos que el océano de 100 kilómetros de profundidad está en contacto con un fondo rocoso. Esto supone que puede tener características comparables a las que vemos en la Tierra, con chimeneas hidrotermales y los elementos y la energía necesarios para que se sustente vida. En Plutón no tienes mucha roca. En Ganímedes o en Calisto tienes océanos, pero probablemente están atrapados entre dos capas de hielo diferentes. Solo en Europa y Encélado pensamos que hay contacto entre agua líquida y fondo rocoso, por eso priorizo estas dos lunas para buscar un segundo origen de la vida.

http://messenger.jhuapl.edu/Explore/Science-Images-Database/pics/MDIS_global_enhancedcolor_map_rot_140.globe.bright.png

P. ¿Cuáles son los planes actuales para explorara Europa?

R. Hay una misión llamada Europa Clipper que actualmente se está construyendo y que se lanzará a principios de la década de 2020. Va a orbitar Júpiter y sobrevolar Europa unas 45 veces. En cada pasada hará fotografías, analizará la composición y tendrá un radar capaz de traspasar el hielo. Nos va a dar un mapa muy completo del aspecto y la composición de la superficie. Después de esta misión, estamos estudiando otra que llegará a la superficie y analizará el hielo y otros materiales.

P. En lugares como la Antártida o el Ártico es complicado perforar el hielo hasta llegar hasta los lagos de agua líquida en busca de microbios ¿Cómo lo conseguirían hacer en una luna que está a unos 600 millones de kilómetros?

Resultado de imagen de El agua líquida y los seres vivos

Si encontramos vida en Europa, no la traeremos a la Tierra

 

 

R. Estamos pensando en una progresión, paso a paso, para algún día alcanzar ese océano. Para llegar vamos a necesitar varias misiones. El primer paso es Clipper. La siguiente misión ya será capaz de perforar unos 10 centímetros en el hielo con un pequeño brazo robótico. Como dices, cuando vamos a sitios como la Antártida o el Ártico podemos ensayar qué tipo de mediciones necesitaríamos hacer para encontrar rastros de vida. Lo que hace difíciles algunos de esos estudios es que tenemos que llevar muchísima equipación. Si nuestra intención es probar si hay vida o no, tal vez tengamos que llevar mucho menos. De hecho, en la Tierra, la vida está por todas partes. Es muy difícil encontrar un sitio donde haya agua líquida y no tenga seres vivos.

P. ¿Qué tipo de vida extraterrestre podría existir en Europa o en otros mundos helados?

R. Las misiones que estamos estudiando están diseñadas para encontrar vida microscópica y compuestos de carbono asociados con ella. Otra de las cosas que hacen a Europa y Encélado tan interesantes es que podemos probar las hipótesis sobre el origen de la vida.

P. ¿Cuál sería el impacto de encontrar vida?

europa satelite de jupiterResultado de imagen de Vida microbiana en Europa satélite de jupiter

R. Probablemente no va a cambiar la forma en la que te preparas el café por la mañana o hacer tu camino al trabajo más rápido, pero potencialmente revolucionaria la biología. La física que conocemos funciona más allá de la Tierra, la geología, la física, la química, también, pero la biología… no lo sabemos.

P. Otros expertos están preparando misiones para buscar vida, incluso civilizaciones, en otras estrellas ¿Lo ve factible?

R. Creo que se puede hacer y es muy estimulante. Estaríamos limitados por los fotones que podamos obtener. Intentar buscar rastros en las atmósferas de exoplanetas, puede que veamos oxígeno, metano, ozono, cuya explicación más plausible sería la presencia de vida, pero no podríamos confirmarlo. Lo que me interesa de Europa y Encélado es que sí lo podemos hacer en tan solo unos años. Enviar una nave a Próxima Centauri, la estrella más cercana, puede hacerse, pero llevará mucho tiempo para llegar.

P. En el caso de que hubiera vida en Europa, ¿la traerían a la Tierra?

Resultado de imagen de Vida microbiana en Europa satélite de jupiter

R. No. Al menos no pronto. Es muy difícil escapar a la gravedad de Júpiter y regresar a la Tierra. Así que haríamos toda la ciencia in situ.

P. ¿Cree que también hay posibilidades de encontrar vida inteligente en otras estrellas?

R. Creo que es posible que detectemos una señal extraterrestre en los próximos 20 años. Cuando miras a nuestra capacidad de detectar señales de radio y ópticas de estrellas distantes, para el año 2035 habremos examinado suficientes estrellas. Incluso en un escenario muy pesimista, en el que solo haya una civilización capaz de comunicarse por cada 10 millones de astros, podremos encontrarla en esos 20 años. Eso cambiaría por completo nuestra manera de entendernos y nuestro lugar en el Universo.

Hablando con Sheldon Glashow

Autor por Emilio Silvera    ~    Archivo Clasificado en Entrevista científica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Standard Model Particles and their interactions
Sheldon Glashov, Nobel de Física en 1979: “Me asusta lo cerca que están algunos físicos de convertirse en filósofos”.

El premio Nobel de Física de 1979 defiende el valor de la curiosidad y el mérito para la ciencia y la sociedad, y se muestra preocupado por el auge de teorías científicas que nunca podrán ser demostradas

Sheldon Glashow es uno de los artífices del modelo estándar de la física, el conjunto de teorías que explican el comportamiento básico de la materia

Sheldon Glashow es uno de los artífices del modelo estándar de la física, el conjunto de teorías que explican el comportamiento básico de la materia – De San Bernardo

Reportaje de ABC Ciencia

El mundo se ha movido mucho desde que Sheldon Lee Glashow (Nueva York, 1932) ganara el premio Nobel de Física en 1979. Pero al margen de los cambios vertiginosos de la tecnología y la medicina, la Física sigue levantándose básicamente sobre los mismos pilares de entonces.

Resultado de imagen de Interacciones fundamentales

Si Glashow ganó el Nobel, junto a Abdus Salam y a Steven Weinberg, fue precisamente por convertirse en el padre de uno de esos pilares. Sus trabajos permitieron apuntalar el modelo estándar, (una gran teoría que describe el funcionamiento de las interacciones fundamentales de la naturaleza y las partículas elementales) y se hicieron claves en la física de partículas desde los setenta hasta ahora. Además, sus investigaciones le llevaron a crear una teoría para describir la relación entre la interacción electromagnética (mantiene unidos los átomos) y la nuclear débil (que explica la radioactividad), y fundirlas en una sola, la electrodébil, y luego a predecir la existencia de partículas luego descubiertas.

 

 

 

 

 

 

De San Bernardo

 

 

 

 

 

 

 

A pesar de que se ayuda de una garrota, esta no le resta ni un centímetro a su imponente altura. Ya sentado en un sillón, descansa sus 84 años con un aire afable y tranquilo. Hoy en día sigue siendo profesor en la Universidad de Boston, pero en su currículo hay una lista interminable de instituciones y universidades prestigiosas (Cornell, Harvard, Caltech, Stanford, Berkeley, CERN, MIT). Ha venido a Madrid, invitado por la Fundación Ramón Areces, para impartir una conferencia sobre la inutilidad y al mismo tiempo la importancia de la Cosmología y la Física de partículas. Pero aparte de eso, se muestra muy preocupado por resaltar la importancia de la curiosidad en la ciencia y la sociedad y por criticar a los físicos teóricos que pasan demasiado tiempo sumergidos en fórmulas matemáticas que no se pueden comprobar con experimentos.

Resultado de imagen de Las Ondas gravitacionales

«Las ondas gravitacionales son inútiles y seguramente siempre lo sean»

 

-¿Por qué son la Física y la Cosmología inútiles pero esenciales?

Los descubrimientos en lo que parece ser ciencia sin utilidad tienden a ser con frecuencia importantes y tienen consecuencias completamente inesperadas. Déjame darte un ejemplo. Hace unos años, a principios del siglo XX, había un montón de científicos que trataban de entender la estructura del átomo. Por entonces eso era un auténtico misterio y prácticamente solo se sabía que existían y que tenían un núcleo, pero no se sabía cómo funcionaban.

Científicos como Heissenberg, Fermi, Dirac, Schrödinger, vinieron de muchos países y se unieron para tratar de resolver problemas. Trabajaron muy duro, pero no se preocuparon de fundar sus compañías, de conseguir patentes o de fabricar sus productos. Aún así, inventaron la Mecánica Cuántica, una disciplina que hoy en día es responsable del 30 por ciento de la economía del mundo.

Imagen relacionada

A veces la clave del éxito es mirar alrededor y satisfacer tu curiosidad. Las consecuencias pueden ser enormes, esas son el tipo de cosas de las que voy a hablar hoy.

-¿Se sigue mirando alrededor hoy en día tanto como antes?

Siempre está ocurriendo, pasa continuamente. Gracias a esto, hace unos años unos físicos y químicos japoneses, descubrieron una proteína fluorescente en algunos tipos de medusas, lo que llevó al descubrimiento de la GFP («Green fluorescent protein», proteína verde fluorescente, usada muy ampliamente en investigación para marcar con luz, y de forma específica, secuencias genéticas o estructuras biológicas). Otra gente miró a su alrededor hace unos diez años para entender el fenómeno del magnetismo bajo circunstancias inusuales y descubrieron el llamado efecto de la magnetorresistencia gigante. Gracias a eso hoy en día hay discos duros de gigabytes. Ambos descubrimientos, por cierto, fueron premiados con el Nobel.

Resultado de imagen de Física de partículas

-¿Estamos en la era dorada de la Cosmología y la Física de Partículas?

Eso creo. Piensa en las ondas gravitacionales, un descubrimiento espectacular y que seguramente llevará a un premio Nobel o a otros grandes premios. Las ondas gravitacionales son inútiles, y seguramente siempre lo sean, estoy seguro, pero la tecnología que ha sido desarrollada para detectarlas ha permitido producir espejos de una precisión sin precedentes. Midieron longitudes mil veces menores al tamaño de un protón. Esto ya ha llevado a nuevas compañías, nuevas ideas, y quizás a nuevas patentes. Han desarrolllado el láser más potente y estable del mundo, un nuevo método para procesar datos y muchos desarrollos en materiales. Espejos que son absolutamente perfectos. Sí, por supuesto, es sorprendente que la ciencia pura tenga estas «spin-offs».

 

 

 

 

 

 

De San Bernardo

 

 

 

 

 

 

 

Pero tomemos otro ejemplo. Los españoles se quejan de que en España no hay premios Nobel en Física. Pero mira, en mi barrio, el Bronx, tenemos 4 premios Nobel, y en todo el alto Manhattan son 18. La clave está en que, mientras que en mi instituto se seleccionaban estudiantes en función del mérito, en España sería impensable hacer eso actualmente. ¡Hacen falta estudiantes con interés! A veces la selección de niños interesados en ciencia básica puede llevar a premios Nobel.

«En España sería impensable que un instituto escogiera estudiantes por sus méritos»

 

 

Resultado de imagen de Un sistema educativo de escoger a los más inteligentes

 

 

En mi instituto había una cosa llamada «Westinghouse science talent search», donde los niños eran animados a presentarse a un examen y a enviar proyectos a la NASA y otras instituciones muy prestigiosas, y se seleccionaba a 40 de ellos. Yo fui uno de esos 40 en 1950. No pagaban mucho dinero, imagínate, yo ganaba 100 dólares en los cincuenta. Luego, Intel se hizo cargo de ese certamen, y empezó a dar más dinero. Esta empresa lo soltó el año pasado, sin saber la razón, y fue tomado por una compañía farmacéutica. ¿Y por qué lo hicieron? Porque los fundadores de esta compañía farmacéutica, que vale en la bolsa 40.000 millones de dólares, son ambos ganadores del «Westinghouse science talent» y quieren asegurarse de que esta búsqueda de talentos continúa hoy.

-¿Recuerda por qué decidió convertirse en científico?

Resultado de imagen de La Ciencia Ficción

    Sí, la Ciencia Fiscción llevó a muchos a la Física

Lo decidí cuando tenía 12 años o algo así, antes de ir al instituto. Por entonces leía mucha ciencia ficción, como Isaac Asimov y muchos otros, cuyos nombres no recuerdo. Muchos de mis amigos leían ciencia ficción. Hacíamos experimentos de química en casa, había juguetes científicos, algunos niños construían sus propios telescopios, otros estaban fascinados con la electrónica. Yo tenia un microscopio y podía ver los parásitos del río Hudson. Y creo que esto sigue pasando hoy en día. Hay muchas formas a través de las cuales los niños pueden acercarse a la ciencia.

-¿Cree que la tecnología está ayudando a la gente joven a leer más y a tener más curiosidad?

Imagen relacionada

Es una pregunta difícil. No sé si los dispositivos tienen un efecto positivo, y si contribuyen a aprender o no. La gente joven que veo como profesor de Universidad, como padre y como abuelo pasa mucho tiempo haciendo «texting» (escribiendo mensajes de texto a través del teléfono), no escribiendo. Ahí no hace falta tener habilidades para escribir, vale con usar los emoticonos. Y si leen, si es que leen alguna vez, van a la Wikipedia. No digo que esté mal, pero no puede reemplazar a una biblioteca. Yo pasaba muchas horas en la biblioteca de Nueva York tratando de entender cosas para las que no estaba preparado todavía. No sé si eso seguirá pasando.

-Me gustaría preguntarle de nuevo acerca de las ondas gravitacionales, ¿cuál es el avance que suponen, aparte de los desarrollos tecnológicos asociados a ellas?

Resultado de imagen de LIGO

La tecnología no fue el principal objetivo ni consecuencia, ciertamente. Conozco al director de diseño de LIGO (el gran laboratorio que detectó las ondas) y ya hace varios años estaba seguro de que iban a detectar las ondas gravitacionales. Y, a la semana de poner a funcionar el detector, encontraron la señal. Pero no fue lo que ellos esperaban. Creían que iban a ver la unión de estrellas condensadas, y encontraron evidencias de la unión de dos agujeros negros, de 30 masas solares. Nadie esperaba que hubiera tales agujeros negros en pares.

Resultado de imagen de Colisión de Agujeros negros

La detección de ondas gravitacionales fue una observación espectacular, pero todo el mundo sabía que existían. Cuando el antiprotón fue descubierto, en los cincuenta, todo el mundo sabia existía. Cuando los electrones se descubrieron en 1932, también se sabía que existían. A pesar de todo, sí, fue un gran descubrimiento y llevará a una nueva astronomía.

Creo que va haber mucho por venir y mucho en Física fundamental, gracias a este descubrimiento. Especialmente cuando los italianos terminen Virgo, su versión de Ligo, y los japoneses y los indios construyan sus propias versiones. Esta década vamos a tener dos o cuatro detectores muy potentes, y va haber un importante cambio.

-¿Y qué podremos ver gracias a las ondas gravitacionales?

Aún no lo sabemos, ese es el asunto. Europa está pensando en construir un detector aún más grande en el espacio (LISA), porque ahí puedes tener sensores más sensibles y rastrear frecuencias más bajas que ahora no podemos ver. Esto es otra frontera donde quizás podamos ver las ondas gravitacionales primordiales que se crearon en el nacimiento del Universo. Pero, si hace unos años le hubieras preguntado a un astrónomo de rayos X qué esperaba encontrar gracias a esa nueva técnica, él te habría dicho que no tenía ni idea.

-Si el 99 por ciento del Universo está hecho de materia oscura y de energía oscura, ¿qué sabemos en realidad del Universo?

Resultado de imagen de La <a href=materia oscura" width="304" height="362" />

    Se supone que la “materia oscura” está presente

(Ríe). Sabemos mucho sobre la materia que vemos y sentimos. Lo suficiente, creo. Pero sí, es vergonzoso que lo que conocemos describa, como has dicho, el uno por ciento de la materia o la energía que existen en el Universo.

El problema de la materia oscura es muy interesante. Sabemos que está ahí, gracias a sus efectos gravitacionales, pero todos los intentos de descubrirla han fracasado. Una posibilidad es qué esté ahí gracias a partículas que no podemos ver. Los físicos reconocerán que esto es una posibilidad realista, aunque no sea su favorita, porque de momento no podrán verlas y podría ser que nunca las viéramos. O también podría ser que estuviera hecha de partículas detectables, alcanzables con sensores más sensibles.

 

 

 

 

 

 

De San Bernardo

 

 

 

 

 

 

 

La energía oscura podría ser simplemente resultado de una constante que Einstein no pudo añadir a sus ecuaciones. Einstein trató de concebir un Universo independiente del tiempo, pero no fue el caso, porque el Universo se está expandiendo. Esa constante está ahí, el misterio es por qué es tan pequeña y por qué tiene el valor que tiene. Quizás algún día sepamos por qué, pero hoy en día no lo sabemos. Es tanto un problema experimental como teórico.

Resultado de imagen de La constante cosmológica

-¿Qué grandes avances en Física espera en los próximos 20 años?

En tecnología no sabría predecir, ni siquiera en ciencia básica puedo. He vivido en tiempos muy interesantes en los que un número bastante pequeño de personas pensábamos que la teoría electrodébil era cierta, y viajábamos por ahí convertidos en apóstoles para convencer a la gente. Teníamos la opinión de que era demasiado bonito para que no fuera verdad… y resulto ser verdad, pero llevó casi una década confirmarlo. Esto llevó al descubrimiento de los bosones X y Z en los ochenta.

 

 

 

 

 

 

De San Bernardo

 

 

 

 

 

 

 

Es un sentimiento agradable el que solíamos tener entonces, pero esto aún no contesta a tu pregunta, ¿qué pasa ahora? Ahora no tengo para nada esa bonita sensación. Sencillamente no sé lo que va a ocurrir en el futuro. Ahora no está claro cómo proceder: una de las soluciones más populares para el problema de la supersimetría claramente no funciona, tal como estaba pensado que funcionara. Esa teoría no puede vivir en el dominio de la energía, donde tendría que vivir si quisiera cumplir con el propósito para el que está diseñada. Así que no tenemos una supersimetría que pueda ser una solución plausible para los problemas que quedan aún. La teoría de cuerdas es maravillosa por supuesto, porque puede adaptarse a los resultados de cualquier experimento.

-Entonces, ¿cuál es el propósito de la teoría de cuerdas?

¡Eso se lo tienes que preguntar a los teóricos de la teoría de cuerdas!

-Entonces, diría que hay peligro de que algunas partes de la física se conviertan en un nuevo tipo de filosofía o quizás de religión?

Resultado de imagen de La teoría de cuerdas

Los teóricos de la teoría de cuerdas no dirán que no hagas experimentos, ellos solo están de acuerdo con la idea de que no hay experimentos que puedan demostrar que la teoría de cuerdas es errónea. Pero, da miedo lo cerca que está de la filosofía, sí. Estoy muy preocupado por el hecho de que tantas personas, estén interesadas por la teoría de cuerdas: es un asunto muy interesante, con unas matemáticas increíbles, ha llevado a importantes descubrimientos en matemáticas y permitió llegar a la teoría cuántica de la gravedad, lo que es esencial: no puedes tener la gravedad clásica y la teoría cuántica juntas.

Pero, ¿cómo se acercarán a la Cosmologia del Universo temprano¿ ¿Como serán capaces de decir algo realmente nuevo? No lo sé. Hasta el momento, han gastado la mayor parte de su tiempo lidiando con la física extraordinariamente interesante de los agujeros negros. Pero por desgracia esto es algo que no podemos hacer a través de experimentos. Sí, podemos ver la fusión de agujeros negros, pero eso no influye tanto como para entender la estructura del álgebra cuántico o la relatividad general. O para visualizar sus efectos cuánticos.

-¿Qué ocurre cuando ese tipo de física llega a la calle y comienza a interesarle a la gente?

La gente está muy interesada en la teoría de cuerdas. Las personas que dan conferencias sobre la teoría de cuerdas son muy bien recibidas y lo hacen todo el rato. Están muy excitados por lo que hacen y están convencidos de que lo que hacen es ciencia. Es ciencia, en algún sentido, porque todos quieren saber cómo nació el Universo, o si hay otros universos o no. Eso está muy cerca de ser una cuestión muy filosófica, porque saber si hay un multiverso siempre será una cuestión totalmente inaccesible. Por eso, su ciencia es muy similar a la filosofia.

-Stephen Hawking es una de esas personas muy bien recibidas y un famoso comunicador. ¿Es un gran científico, un gran comunicador o un gran profeta?

Es muy famoso porque consiguió un gran logro al explicar la naturaleza termodinámica de los agujeros negros. Ese trabajo tiene una importante significación. Y continuó, aunque sufre una enfermedad que en la mayoría de los casos causa la muerte en tres años, pero ha logrado sobrevivir durante mucho tiempo.

Pero él no es un profeta. El tipo de cosas que está diciendo ahora son un paso adelante de la ciencia que él solía profesar, habla de que estamos destruyendo la Tierra y de que quizás debamos buscar otros planetas. Yo también creo que estamos en el proceso de hacerlo. Debemos parar, o no habrá más esperanza para nosotros, salvo moverse a otros planetas y construir un nuevo hogar.

-¿Cuáles cree que son los problemas más graves de la ciencia?

El problema del CO2, y del cambio climático. No solo es un problema de la ciencia sino también de la sociedad. Nuestros hijos y nietos lo sufrirán muy directamente, como bien sabes, los americanos y los europeos tenemos partidos políticos que no creen que vaya a haber un cambio climático. Pero no hay ningún otro país en el que un partido crea eso, y eso. Es realmente un problema y está empeorando, lo podemos ver ahora cuando vemos eventos climáticos extremos. Quizás aún no son una amenaza para la humanidad, pero lo serán, va a ser más serio. El mundo tiene que unirse y conseguir la solución a este problema. Este es el mayor problema. No habrá más ciencia si la temperatura se incrementa en cinco grados.

-¿Sería posible lograr la tan ansiada unificación entre Cosmología y Física de partículas?

Lo hemos hecho en gran medida. La gente no se da cuenta de hasta qué punto se han unido ambas. La Cosmología nos dijo que como máximo podía haber cuatro tipos de neutrinos. Años después, en el CERN se encontraron tres.

La escala del universo

A lo largo de toda la historia de la ciencia ha habido conexiones entre lo pequeño y lo grande. Newton es famoso por unir el comportamiento de los cuerpos grandes con lo más pequeño. Gracias al descubrimiento en el siglo XX de la espectroscopía, pudimos desafiar a que los que decían que era imposible, y aprendimos a determinar la composicion química de las estrellas.

Ahora entendemos cómo al principo del Universo se formaron algunos elementos químicos, o cómo se forman en estrellas y en supernovas. Conocer el origen de los elementos ciertamente representa una auténtica unificación de la fisica de lo pequeño y lo grande.

-¿Y se podría lograr llegar a la teoría del todo?

No sé qué es eso. Creo que es un concepto muy desafortunado que apareció hace veinte años. Tenemos una teoría de casi todo, al menos de casi todo lo relacionado con la materia que nos rodea. Aunque aún hay muchas cosas que no entendemos, algunas anomalías, que tienen que ver con nuestra capacidad de computacion o con nuestra ciencia básica: estoy hablando de las anomalias del momento magnetico, cosas así. Para algunas cosas necesitamos mejores experimentos y mejores teorías.

-¿Un científico puede creer en Dios?

Resultado de imagen de El científico es propenso a no creer en Dios

Conozco a buenos científicos que son bastante religiosos. Conozco a uno que trabaja en Harvard, que es cristiano y que ha conseguido importantes observaciones. Hay científicos religiosos, pero el 99 por ciento no cree en Dios ni en nada.

-¿Y usted, cree en Dios?

Absolutamente no. Creer en Dios ha llevado a horribles crímenes en el pasado e incluso en el presente. Hoy en día tenemos a chiíes y suníes, gente que se mata por las cosas que pasó en la historia de su religión. Y cada religión ha tenido sus malos días.

-Entonces, ¿qué había antes del Big Bang? ¿Cómo se originó?

No sé si había algo antes, o si existe un antes. El tiempo es también un problema filosófico y fisico. ¿Por qué hay algo como un tiempo, cómo funciona, por qué tienen una sola dimensión? El tiempo es un misterio. Podría ser que el tiempo empezara en el Big Bang, ¿pero no había algo antes? Esto solía ser una pregunta idiota, pero no creo que lo sea para nada.