jueves, 14 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Rodeados de secretos que tratamos de desvelar

Autor por Emilio Silvera    ~    Archivo Clasificado en Descubrir y aprender    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

 

Los protones se acercan al límite impuesto por la Naturaleza de la velocidad de la luz, se ven frenados, y, la energía de la inercia (por la predicción de E= mc2) se convierte en masa.

En el universo todo es cambiante. Hasta “la nada” es cambiante. La energía que lo integra, que es parte de la misma materia, también es cambiante. Se transforma de una a otra. No se destruye. Cambia y evoluciona. El cuerpo humano es una gran máquina transformadora de energía porque es energía pura. El universo, en más del setenta por ciento, es energía. Vivimos y formamos parte de un universo repleto de energía. Y en ese universo variable y lleno de energía existen multitudes de formas de comunicación, entre otras, la del intercambio de energía entre los objetos que pueblan el espacio “infinito”.

Nos comunicamos con el Sol que nos manda su energía para hacer posible nuestra presencia aquí, en el planeta Tierra. La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros). Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

 

El objeto que se mueve más rápido tendrá más masa que el que se mueve despacio

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 

Crean fotones de colores capaces de generar hasta 9.000 dimensionesPor qué la velocidad de la luz es constante? La relatividad de Einstein y  la naturaleza increíble de los fotones

               El misterio sobre la velocidad de la luz

Las leyes de la naturaleza se rigen por la luz, que viaja a una velocidad fija de 299 792,458 km/s, confirmada por la ciencia en miles de experimentos y es la constante fundamental que rige las leyes de la física y del cosmos.

Los fotones son partículas sin masa, que se encargan de transportar energía en forma de ondas electromagnéticas. La luz visible (como la del sol) está formada por fotones. La energía de un fotón depende de su longitud de onda.

La luz, formada por cuantos llamados fotones, es tan rápida que nada en el Universo, la puede alcanzar. Sin embargo sí hay algo que la puede retener mediante la fuerza de Gravedad: Los agujeros negros tienen y emiten tal fuera de gravedad que hasta la luz, se ve confinada en ellos y no puede salir una vez atrapada por la singularidad.

Resultado de imagen de Si aumentamos la velocidad del objeto su masa se incrementa

Si aumentamos aún más la velocidad y el objeto se acerca  a los 299.792’458 Km/s., que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en el objeto en movimiento en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. Hipotéticamente, en el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa.

 

Esto es lo que le sucedería a tu cuerpo si te movieras a la velocidad de la  luz

 

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

 

 

Si pudiéramos coger con los dedos, un muón que es lanzado por el Acelerador de partículas a velocidad cercana a la de la luz, veríamos como su masa a podido aumentar más de diez veces, toda vez que, la energía que se le ha inyectado no puede seguir convirtiéndose en velocidad más allá de la de la luz, y, el excedente, se convierte en masa. Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.

 

La velocidad de la Luz, ¿Será siempre un muro infranqueable? : Blog de  Emilio Silvera V.

En el CERN se guardan las pruebas de que una partícula lanzada a velocidades cercanas a c, aumenta su masa. La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intentara sobrepasarla adquiriría una masa infinita.

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

 

Resultado de imagen de Ninguna nave espacial podrá alcanzar nunca la velocidad de la luz

Si no se encuentra otras maneras… La velocidad de la luz es el límite

Ninguna nave espacial, por los métodos convencionales, podrá alcanzar nunca la velocidad de la luz. Seguramente, los hombres inventarán otros procedimientos para que esas naves puedan burlar ese muro ahora infranqueable y, discurrirán otros caminos que nos posibiliten llegar hasta las estrellas.

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian  los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales.  Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

 

Resultado de imagen de La velocidad a la que viajan los haces de partículas en los grandes aceleradores

 

Los muones, descubiertos en 1936 en observaciones de radiación cósmica, son partículas elementales muy similares a los electrones, pero con una masa 207 veces mayor y un tiempo de vida que apenas alcanza un mero lapso de 2,2 millonésimas de segundo. Pese a que se los conoce desde hace 85 años, en los últimos meses se han vuelto el centro de las atenciones para los físicos de partículas debido a que aparentemente se han detectado anomalías en dos grandes experimentos internacionales de distinta naturaleza. En uno de los estudios, que se llevó a cabo en el Gran Colisionador de Hadrones (LHC), el mayor acelerador de partículas del planeta, situado en la Organización Europea para la Investigación Nuclear (Cern), los muones se formaron a una tasa diferente a la de los electrones como resultado de la desintegración de partículas más pesadas. Según una teoría que tiene amplia aceptación entre los físicos, ambas partículas deberían producirse en proporciones iguales. En el otro estudio, realizado en el acelerador del Fermilab, en Chicago, Estados Unidos, los muones presentaban un alto nivel de magnetismo, mayor que el previsto.

 

Un indicio de desacuerdo con el modelo estándar en un tipo de  desintegración del bosón de

 

Ambos registros parecen contrariar los supuestos de lo que se denomina modelo estándar, la teoría dominante en la física de partículas que, desde hace medio siglo, explica las interacciones entre las fuerzas conocidas, con excepción de la gravedad, y las partículas que constituyen la materia. Cuando existe una posibilidad sólida de que este tipo de discrepancia sea un fenómeno real y no un error de medición o una fluctuación estadística, los físicos se plantean si están ante un hallazgo que hace necesaria una revisión del modelo para incluir algo que no estaba previsto, como una nueva fuerza o una partícula que hasta ahora era desconocida, quizá surgida de algún fenómeno cuántico ignorado. No es la primera vez que el modelo es puesto a prueba. Los neutrinos, unas partículas sin carga eléctrica y extremadamente abundantes en el Universo, no deberían tener masa, según lo que postula el modelo. Pero ahora se sabe que tienen cierta masa, aunque la misma sea ínfima. Otras cuestiones que la teoría no explica son la existencia de la materia oscura y de la energía oscura, los dos componentes más abundantes del Cosmos, y la aparente predominancia de la materia sobre la antimateria.

 

 

Los muones pasaron a ser objeto de debates recientes entre los físicos cuando en el mes de marzo, el experimento LHCb –uno de los cuatro grandes proyectos en marcha en el Cern, que está ubicado en los alrededores de Ginebra, en la frontera entre Suiza y Francia– dio a conocer nuevos resultados. En un artículo disponible como preprint, aún no revisados por pares ni aceptado para su publicación en una revista científica, los miembros de la colaboración científica informan que el decaimiento de las partículas emergentes de las colisiones de protones en el interior del acelerador condujo a la formación de un 15 % menos de muones que de electrones.

 

Qué nos pasaría si viajáramos a la velocidad de la luz?

 

Hemos tenido que construir máquinas inmensas para poder comprobar los efectos que se producen en un cuerpo cuando éste quiere ir más rápido que la luz. Lo predijo la teoría de la relatividad especial de Einstein y se ha comprobado después en los aceleradores de partículas: Nada va más rápido que la luz en nuestro Universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

La única respuesta que podemos dar hoy es que así es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

Resultado de imagen de Grandes velocidades producen aumento de masa y la contracción de Lorentz

Antes se dejo la ecuación del aumento de masa y, en esta se escenifica la de la contracción de Lorentz

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio. A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.

Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

 

Resultado de imagen de Fotones viajeros

            Fotones viajeros ¿Quién o qué los podría seguir?

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada de 299.792.458 metros por segundo. Esa es también, el límite de la velcoidad en que podemos transmitir información en nuestro Universo. Y, si eso es así (que lo es), tenemos un problema de comunicación con nuestros hipotéticos vecinos galácticos situados a miles de millones de años-luz de nosotros que, si les enviamos un mensaje, nunca sabremos si lo recibirán, o, si para cuando el mensaje llegue, su mundo existe todavía.

Einstein en su teoría de la relatividad especial de 1.905, nos decía que en nuestro universo nada puede ir más rápido que la luz. También nos dejó dicho que masa y energía son dos aspectos de una misma cosa. Que la materia se puede convertir en energía  (muchos son los ejemplos que tenemos de ello, y, no todos son buenos)  pero,  ¿es posible hacer lo contrario y convertir energía en materia?

 

Resultado de imagen de Convertir energía en materiaResultado de imagen de Convertir energía en materia

En la serie Star Trek vemos como los viajeros hablan a una máquina y de allí sale la comida calentita. No sólo convierten la energía en materia sino que eligen a la carta en qué manjar convertir la materia. Lo que no nos explican es de dónde obtienen esa fuente inagotable de materia.

 

 

Sí sería posible convertir energía en materia, pero hacerlo en grandes cantidades resulta poco práctico. Veamos por qué: Según la teoría de Einstein, tenemos que E = mc2, donde e representa la energía, medida en ergios, m representa la masa, medida en gramos, y c es la velocidad de la luz en centímetros por segundo.

Así que, en un gramo de materia podemos encontrar una gran cantidad de energía y para convertir la energía en materia, se necesitarían inmensas cantidades de energía, una fuente ilimitada que hoy no podemos tener y que, en el futuro, seguramente encontraremos para utilizarla en cuantas cosas podamos necesitar y, seguramente, una de ellas será esa: Convertir energía en materia.

 

Refracción de la luz: conoce y experimenta - Fundación Aquae760.700+ Reflejada En El Espejo Vídeos de stock y películas libres de  derechos - iStock | Mirarse al espejo, Reflejo en espejo, Exito

La luz se propaga en cualquier medio

El agua es un medio transparente que conduce la luz (o las ondas de energía). Al igual que cuando enfocamos la luz contra un espejo observamos que el rayo de luz se desvía cambiando de dirección, de la misma manera sucede en el agua.

La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir:

3×1010 × 3×1010, ó 9×1020.

Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.

El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s. (Sistema Cegesimal de Unidades ) y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías.  Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco para la vida de un hombre.

 

 

La masa y la energía son dos aspectos de la misma cosa

En el contexto del universo, hay energías que se convierten en masa. Esa difícil transformación, no resulta nada fácil de conseguir en un laboratorio manipulado por el hombre, Hay cosas que aún, se escapan a nuestras posibilides y a las de nuestros ingenios tecnológicos.

O digámoslo de otro modo: si fuese posible convertir en energía eléctrica la energía representada por un solo gramo de materia, bastaría para tener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años. O bien: la energía que representa un solo gramo de materia equivale a la que se obtendría de quemar unos 32 millones de litros de gasolina.

 

Estos son los efectos que produciría una bomba nuclear: del calor y la  presión máxima hasta la radiación letal

 

Nada tiene de extraño, por tanto, que las bombas nucleares, donde se convierten en energías cantidades apreciables de materia, desaten tanta destrucción. La conversión opera en ambos sentidos. La materia se puede convertir en energía y la energía en materia. Esto último puede hacerse en cualquier momento en el laboratorio, donde continuamente convierten partículas energéticas (como fotones de rayos gamma) en 1 electrón y 1 positrón sin ninguna dificultad. Con ello se invierte el proceso, convirtiéndose la energía en materia. Claro que, sólo lo hacemos en esas infinitesimales proporciones. Bueno, para empezar no está mal.

 

 

Estos personajes del futuro, tenían la posibilidad de obtener alimentos de una máquina que transformaba la energía en viandas. ¿Cuando será realidad tal logro? Sería una buena solución para muchas regiones de la Tierra. Sin embargo, lejos queda esa posibilidad futura.

Pero, lo que nosotros podemos lograr en ese plano,  sería hablar de una transformación de ínfimas cantidades de masa casi despreciable. ¿Pero podremos utilizar el mismo principio para conseguir cantidades mayores de materia a partir de energía?

 

Convertir energía en materia? : Blog de Emilio Silvera V.

Bueno, si un gramo de materia puede convertirse en una cantidad de energía igual a la que produce la combustión de 32 millones de litros de gasolina, entonces hará falta toda esa energía para fabricar un solo gramo de materia, lo que nos lleva al convencimiento de que no sería muy rentable invertir el proceso.

 

STAR TREK:HISTORIA DE LAS NAVES ENTERPRISE | LAS CRÓNICAS DE STAR TREK (THE  CHRONICLES OF STAR TREK)

 

Ya arriba dejo la imagen de aquellos viajeros espaciales de la Nave Enterprise, cuando tenían hambre, le piden a una dispensadora de alimentos lo que desean comer o beber, y la máquina, a partir de la energía, le facilita todo aquello que necesiten. La serie Star Trek, unas de las mejores que han sido realizadas, reflejan algunas licencias que como esta de la máquina dispensadora, no explican de dónde precede la fuente de energía que utilizan y, que según lo que se ve, tendría que ser inagotable.

 

 

Antes de que llegara Einstein, los físicos del siglo XIX creían que la materia y la energía eran dos cosas completamente diferentes. Materia es todo aquello que ocupaba un espacio y que poseía masa. Y al tener masa también tenía inercia y respondía al campo gravitatorio. La energía en cambio, no ocupaba espacio ni tenía masa, pero podía efectuar trabajo. Además, se pensaba que la materia consistía en partículas (átomos), mientras que la energía, se componía de ondas.

Por otra parte, esos mismos físicos del XIX creían que ni la materia ni la energía, cada una por su parte, podía ser creada ni destruida. La cantidad de materia del universo era constante, igual que la cantidad total de energía.  Había pues una ley de conservación de la energía y de conservación de la materia.

 

La ecuación E=mc² de Albert Einstein le dio forma a todo el siglo XX":  Christophe Galfard, discípulo de Stephen Hawking - BBC News Mundo

Albert Einstein, en 1.905, les demostró que la masa es una forma muy concentrada de energía. La masa podía convertirse en energía y viceversa.  Lo único que había que tener en cuenta era la ley de conservación de la energía. En ella iba incluida la materia.

Hacia los años veinte se vio además que no se podía hablar de partículas y ondas como si fuesen dos cosas diferentes. Lo que se consideraban partículas actuaban en ciertos aspectos como si de ondas se tratara, y lo que normalmente se consideraban ondas actuaban en ciertos aspectos como partículas.

 

El viaje de la luz: ¿se comporta igual tanto en el tiempo como en el  espacio? - InfobaeTres experimentos «imposibles» de física cuántica que han demostrado  funcionar, y que resultan muyThomas Young hizo el experimento más bello de la historia de la física -  Libertad DigitalExperimentos de doble rendija y camara oscura

Son muchos los experimentos que han demostrado la doble naturaleza de la luz. Sin embargo… ¿Sabemos realmente lo que es la luz? Nos dicen: “Un fotón no tiene energía de reposo, es decir, ninguna masa propia. Sin embargo, un fotón puede aportar energía e impulso a un sistema de objetos. De ahí que la presencia de uno o más fotones en un sistema pueda aumentar la masa de ese sistema”. Luego el fotón que vive en forma de energía, en realidad también es masa cuando interacciona con otros objetos.

 

La función de onda, su ecuación y su interpretación. Postulados. – Física  cuántica en la redLa Materia ¿Está viva? : Blog de Emilio Silvera V.

symmetryinchaos blender3d #dispersion #wave #op #art #organic GIFDIPOLE.gif

La primera imagen nos muestra la función del onda del hidrógeno, la segunda la imagen ondulatoria del electrón, la tercera nos dice que en lo más profundo de la materia, el movimiento es inevitable, y, la cuarta es la imagen de propagación de una onda electromagnética por medio de una antena dipolo.

Así podemos hablar de ondas del electrón, por ejemplo; y también de partículas de luz, o fotones. Pero existe una diferencia entre la una y el otro, mientras que la partícula que denominamos electrón, posee una “masa en reposo” mayor a cero, los fotones por el contrario, no tienen masa alguna, por ese motivo, estas partículas se mueven siempre a una velocidad de 299.792’458 metros por segundo a través del vacío, no debemos olvidar que un fotón es una partícula de luz.

 

Resultado de imagen de El Universo dinamíco lleno de energíaPor qué las estrellas titilan de diferentes colores?

Las estrella parpadean en la noche como si quisieran decirnos alguna cosa,. El cielo nocturno es un espectáculo vibrante y dinámico que ha fascinado a la humanidad durante milenios. Uno de los fenómenos más intrigantes es el titilar de las estrellas. ¿Alguna vez te has preguntado por qué las estrellas titilan y cambian de color? Bueno, las estrella no tililan ni parpadean, en realidad es la atmósfera de la Tierra la que se interpone entre ellas y nosotros y se produce ese fenómeno.

Estamos inmersos en un Universo palpitante, en el que todo es movimiento y energía, nada está estático y, hasta las más ínfimas partículas de materia, se mueven a velocidades alucinantes. Es una dinámica que está marcada, o, regida, por las leyes fundamentales, las fuerzas rigen el Cosmos infinito. Nosotros, siempre curiosos y deseosos de saber, buscamos en lo más profundo del SER del UNIVERSO, para desentrañar lo que es y lo que somos. ¿Lo conseguiremos algún día?

Eso, me lo podéis preguntar dentro de unos pocos millones de años, y, seguramente, aún no os sabría contestar.

Emilio Silvera Vázquez

Fuentes: diversas obras de ciencia con una brizna de mi propio archivo mental.

Son más las preguntas que las respuestas

Autor por Emilio Silvera    ~    Archivo Clasificado en Descubrir y aprender    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

cómo viviremos en el futuro michio kaku cientifico que va a pasar en el  mundo tecnologia - El Sol de México | Noticias, Deportes, Gossip, ColumnasLe planteo a una IA un futuro posible dominado por Inteligencia Artificial,  esto es lo que me responde

                     Lo que pasará mañana… ¿Quién lo puede saber?

 

Resultado de imagen de plasma en las nebulosa Andrómeda se nos acerca

File:Messier-42-10.12.2004-filtered.jpeg

 

   

 

http://4.bp.blogspot.com/-_-GM3dYLW1c/UUnJUPRQPuI/AAAAAAAAMII/-egqkBd1Do8/s1600/m42_wittich_960.jpg

                       En lugares como este se forman moléculas precursoras de la Vida

 

Relatividad especial

 

 

 

Hace mucho tiempo ya que la Humanidad sueña con la conquista del espacio y, para ello, lo primero que tenía que hacer era conocer lo que el Espacio es. Desde la lejanía se miraban las estrellas lejanas y eran muchas las preguntas que no se podían contestar. Más tarde, llegaron Galileo y otros antes y después de él, que con su ingenio pudieron desvelar muchos de aquellos misterios. Los grandes telescopios nos llevaron hacia el cielo profundo en las lejanas regiones del Universo y, entre otras muchas cosas, pudimos que más de cien moléculas diferentes “vivian” en las densas nubes de gas y polvo del medio interestelar. Muchas de ellas, para nuestro asombro, eran vitales para la formación y el surgir de la vida tal como la conocemos.
https://www.youtube.com/shorts/L7AbwGZOc4Q?feature=share
La nebulosa Cabeza de Caballo |

                                                        Arriba la Nebulosa Cabeza de Caballo en Orión

De estas moléculas, ochenta y tres contienen carbono, entre las que se encuentran el ácido cianhídrico HCN, el amoníaco NH3 y el formaldehído H2CO. Moléculas precursoras que generalmente conducen a los aminoácidos. Para verificar que la síntesis de aminoácidos en las del medio interestelar es posible, una mezcla de hielo de agua, amoníaco, metanol, monóxido y dióxido de carbono ha sido irradiada en el Laboratorio de Astrofísica de Leyde en Holanda, en condiciones que imitan a las del medio interestelar (vacío impulsado de 10-7 mbar, y temperatura de -261°C).

 

La Tierra vista desde el espacio El planeta se representa con vibrantes  colores azul y verde que representan la tierra y el mar y una atmósfera  arremolinada de nubes IA generativa |

 

A todo esto, ahora podemos contemplar nuestro propio planeta visto el espacio y, la belleza de la imagen nos lleva a pensar que, en realidad, es la auténtica joya del Sistema . Ninguno de los planetas o lunas, conforman un conjunto similar de belleza física en la que se juntan una serie de parámetros espaciales que la hacen singular. De hecho, tan singular es que, la vida consciente está ahí presente. A veces, como nuestra imaginación es inquieta, y pensamos -es inevitable- en la existencia de otros mundos habitados, nos podemos preguntar:

 

El primo de la Tierra, descubierto por la NASA - Cultura Inquieta

Pero, ¿es fácil localizar planetas como la Tierra?

Por sorprendente que pueda parecer, especialmente después de ver las imágenes de la Tierra tomadas el espacio, en las cuales ésta aparece como una brillante bola azul y blanca sobre un fondo oscuro, la luz visible no ofrece las mejores perspectivas para detectar directamente otros planetas similares a la Tierra. Esto es así por dos razones:

En primer lugar, la luz visible que se recibe desde un planeta como la Tierra es en esencia el reflejo de la luz procedente de su estrella progenitora, por lo que no sólo es relativamente débil, sino que resulta muy difícil de captar a distancias astronómicas  sobre el fondo iluminado por el resplandor de dicha estrella.

 

 

A pesar de todo, hemos conseguido encontrar…¿otras Tierras? que como Gliese 581 g, nos podrían dar alguna sorpresa. Pero sigamos…

En segundo lugar, del de la Tierra alcanzan en realidad su brillo máximo en la parte de rayos infrarrojos del espectro electromagnético, por el modo en que la energía absorbida procedente del Sol vuelve a irradiarse en la zona de infrarrojos de dicho espectro, con longitudes de onda más largas que las de la luz visible.

En una longitud de onda de unas pocas micras, la Tierra es el planeta más brillante del Sistema solar y destacaría como un objeto impactante si se utilaza cualquier telescopio de infrarrojos suficientemente sensible situado en nuestra proximidad estelar. El problema es que, dado que la radiación de infrarrojos es absorbida por los propios gases de la atmósfera terrestre, como el dióxido de carbono y el vapor de agua, que son lo que nos interesa , el telescopio que se utilice para buscar otros planetas como la Tierra tendrá que ser colocado en las profundidades del espacio, lejos de cualquier fuente potencial de contaminación. También tendrá que ser muy sensible, lo que significa muy grande. De ahí que estemos hablando de un proyecto internacional muy caro que tardará décadas en llevarse a buen puerto haciéndolo una realidad, y, mientras tanto, en la exploración espacial nos encontramos con extraños objetos y figuras como los de la imagen siguiente:

Arp 147, el anillo de agujeros negros captado por el observatorio Chandra

 

Anillos gigantes espaciales:  Los anillos parecen de joyas pero son de agujeros negros. Esta imagen conjunta de Arp 147, una pareja de galaxias interactuando localizada a unos 430 millones de años luz de la Tierra mostrada en rayos X desde el observatorio Chandra de la NASA (en rosa), y los ópticos del Telescopio Espacial Hubble (rojo, verde, azul). Lo ha producido el Instituto de Ciencias del Telescopio Espacial en Baltimore. Arp 147 contiene remanente de una galaxia espiral (derecha) que chocó con la galaxia elíptica (izquierda).

La explosión produjo una enorme onda expansiva de formación estelar que se muestra como un gran anillo azul que contiene abundancia de estrellas masivas jóvenes que, en pocos millones de años, explotarán en supernovas dejando atrás estrellas de neutrones y agujeros negros que, con su enormes masas, tirarán del material de las estrellas compañeras ahí presentes.

La sola presencia de gases como el dióxido de carbono y el vapor de agua no es suficiente como un signo de vida, pero sí de la existencia de planetas del de la Tierra en el sentido de que tendrían una atmósfera como Venus y Marte, mientras que, en particular, la presencia de agua indicaría la probabilidad de que existiera un lugar adecuado para la vida.

 

 

Hasta hoy, se han identificado más de 5000 planetas extrasolares gigantes. A principios de abril del 2007 se detectó por primera vez vapor de agua en la atmósfera de un exoplaneta (HD209458b). También en abril del 2007, el VLT (Telescopio Muy Grande) en Chile detectó un planeta con un tamaño 5 veces el de la Tierra próximo a la estrella enana Gliese 581 -el que antes os mostraba-, donde se garantiza una temperatura de 0 y 40º Centígrados, ¡lo que permite la presencia de agua!. ¡Sólo está a 20,5 años luz!.

Un pequeño grupo  de exoplanetas han sido descubiertos con la ayuda del método de los tránsitos, que consiste en detectar la sombra de un planeta cuando en su órbita pasa por delante de su estrella y provoca un minieclipse. Medimos entonces la débil y pasajera ocultación de la estrella provocada por el paso del planeta.

 

Archivo:The Earth seen from Apollo 17.jpg

                                                                La Tierra vista el Apolo 17

La búsqueda de vida en los planetas extrasolares hacerse sólo por el análisis espectral de sus manifestaciones, singularidades en la atmósfera y/o un mensaje electromagnético “inteligente” de una civilización avanzada extraterrena. La atmósfera terrestre alberga un 21 % de oxígeno mientras que las atmósferas de otros planetas del sistema presentan sólo rastros. El oxígeno en la atmósfera terrestre es una singularidad por dos motivos: Es superabundante con relación a la corteza terrestre y debería normalmente desaparecer por recombinación con los minerales. Su presencia permanente está ligada a la existencia de vida intensa en la superficie de la tierra y no dejaría de llamar la atención a cualquier extraterrestre que observara la Tierra en busca de vida.

La presencia de grandes cantidades de oxígeno atmosférico se revelaría por la raya característica del oxígeno a 760 nm con la ayuda de un espectrofotometro en espectro visible del planeta. Por razones prácticas, es más fácil buscar la firma del ozono O3, en el espectro infrarrojo a 9,6 μm. En la hipótesis, extremadamente seductora, de que el oxígeno atmosférico extraterreno sería puesto en evidencia, los escépticos no dejarían de hacer ver que el oxígeno puede ser producido por mecanismos químicos no biológicos. Sea lo que sea, la presencia simultánea de ozono (oxígeno, al fin y al cabo), de vapor de agua y de dióxido de carbono aparece hoy como una firma convincente de una vida planetaria que explota ampliamente la fotosíntesis. Dos proyectos actuales de estudio, se refieren a la búsqueda de exoplanetas de terrestre. El proyecto americano TPF (Terrestrial Planet Finder, -buscador de planetas terrestres) y el proyecto europeo Darwin / IRSI (Infrared Space Inter-ferometer,-Interferómetro espacial infrarrojo).

Telescopios: de la observación a través de la atmósfera al espacio. Parte  II – Aemetblog

Este último consiste en colocar una flota de seis telescopios espaciales que serán acoplados en el espacio para analizar las atmósferas planetarias por interferometría y buscar allí las singularidades debidas una actividad biológica.

En realidad, cuando se estudian de detenida y pormenorizada los mecanismos del Universo, podemos ver la profunda sencillez sobre la que este se asienta. Los objetos más complejos del Universo conocido son los seres vivos, como, por ejemplo, nosotros mismos. Sin embargo, el origen de todo que comenzó en las estrellas, sigue su curso en las Nebulosas donde ya están presentes los materiales de la vida.

 

File:Rosette nebula Lanoue.png

         Se muestran  las emisiones del azufre (rojo oscuro), el hidrógeno el (verde), y el oxígeno (azul).

La Nebulosa Rosetta es difusa con un 1º de longitud situada en Monoceros, en torno a un cúmulo de estrellas de magnitud 5, NGC 2244. La Nebulosa se llama así porque se asemeja a un rosetón. Las partes más brillantes de la Nebulosa tienen sus propios números NGC: 2237, 2238, 2239 y 2246. El cúmulo de estrellas asociado, consistente en estrellas de magnitud 6 y más débiles, se extiende sobre aproximadamente un 1/2º. La Nebulosa y el cúmulo se encuentran a 5 500 a.l. Todas las Nebulosas pertenecen a una Galaxia en la que se hayan todos los sistemas complejos.

 

 

Rosa hecha de galaxias Telescopio Espacial Hubble bellas artes Giclee  lienzo imprimir foto. Estilo de envoltura de galería profesional y listo  para colgar. H043 - Etsy España

 

 Estos sistemas complejos están hechos de las materias primas más comunes que existen en Galaxias como la Vía Láctea o cualquier otra. En de aminoácidos estas materias primas se ensamblan de manera natural, dando lugar a sistemas autoorganizadores donde unas causas subyacentes muy sencillas pueden producir complejidad en la superficie, como en el caso del tigre y sus manchas. Finalmente, con el fin de detectar la presencia de esta complejidad máxima de unos sistemas universales no necesitamos ninguna prueba sofisticada para distinguir la materia viva de la materia “inerte”, si no únicamente las técnicas más sencillas (aunque asistidas por tecnologías altamente avanzadas) para identificar la presencia de uno de los compuestos más simples del universo: El oxígeno.

 

 

                                Caos y Complejidad que nos llevan directamente a la vida

El caos y la complejidad se combinan para hacer del universo un lugar muy ordenado que es justo el entorno adecuado para formas vivas como nosotros mismos. Como dijo Stuart Kauffman, “en el universo estamos en nuestra propia casa”. Sin embargo, no es que el universo se haya diseñado así para beneficiarnos a nosotros, simplemente es que (según creo), la vida en el Universo es inevitable y la materia evolucionada en su más alto grado nos lleva a ella.

Planteémonos una simple pregunta: Dadas las que imperaban en la Tierra hace cuatro mil millones de años, ¿qué probabilidades había de que surgiera la vida?

No basta con responder que “la vida era inevitable, puesto que nosotros estamos aquí “. Obviamente, la vida sí se inició: nuestra existencia lo demuestra. ¿tenía que iniciarse? En otras palabras, ¿era inevitable que emergiera la vida a partir de un combinado químico y radiado por la energía interestelar y después de millones de años?

El Origen de la Vida.

 

 

En los trabajos que venimos dejando aquí, nos va quedando claro que las dudas, son más grandes que las certezas. Siempre el futuro mira al pasado pero… ¡No acaba de entender lo de nuestra presencia aquí!

Nadie conoce una respuesta exacta a esta pregunta del origen de la vida, según todos los indicios y con los que hoy contamos, parece ser un accidente químico con una alta probabilidad de reproducirse en otros lugares del Universo que sean poseedores de las condiciones especiales o parecidas a las que están presentes en nuestro planeta.

Pero la vida, no consiste solo en ADN, genes y replicación. Es cierto que, en un sentido biológico estricto, la vida está simplemente ocupada en replicar genes. Pero el ADN es inútil por sí sólo. Debe construir una célula, con todas sus sustancias químicas especializadas, para llevar a cabo realmente el proceso de replicación. En las denominadas formas de vida superior debe construir un organismo completo para que tenga todos los requisitos exigidos para que pueda replicarse. la perspectiva de un genoma, un organismo es una manera indirecta de copiar ADN.

 

 

Es probable que, como ocurre aquí en la Tierra, las formas de vida más abundantes en el espacio exterior, sean las Bacterias y demás dominios del mundo microscópico de la vida, y, más difícil será encontrar seres inteligentes como nosotros…sin descartar su existencia. Simplemente se trata de hacer unas sencillas cuentas. La vida en la Tierra está presente hace unos 4.000 millones de años pero, nosotros, sólo tenemos una antigüedad de unos escasos tres millones de años. La Evolución es lenta y se ha necesitado mucho tiempo para que podamos estar aquí, de la misma manera, ocurrirá en esos mundos perdidos por el espacio y, si están en sus fases primeras, la posible vida existente en ellos…será bacteriana.

 

 

El mar Precámbrico. El mar en el que posiblemente vivieron hace 3.500 millones de años las primeras bacterias era un lugar desértico en el que durante muchos millones de años sólo proliferaron arqueas y bacterias. Algunas de ellas dejaron rastros fósiles en de estromatolitos, unas formaciones en las que las bacterias provocaban la concreción de carbonatos y a la vez quedaban englobadas en ellos. Para comparar esta recreación de un mar de la época.

 

                                    El código genético de una célula viva.

Sería muy laborioso y complejo explicar aquí de manera completa todos y cada uno de los pasos necesarios y códigos que deben estar presentes formar cualquier clase de vida. Sin embargo, es necesario dejar constancia aquí de que los elementos necesarios para el surgir de la vida sólo se pueden fabricar en el núcleo de las estrellas (ya se mencionó antes) y en las explosiones de supernovas que pueblan el universo para formar nebulosas que son los semilleros de nuevas estrellas y planetas y también de la vida.

El surgir de la vida en nuestro Universo puede ser menos especial de lo que nosotros pensamos, y, en cualquier lugar o región del Cosmos pueden estar presentes formas de vida en que para nosotros podría ser como las del infierno.

 

 

     ¿Qué seres podrían vivir en un planeta que estuviera tan cerca de una Gigante Roja?

Hace varias décadas, los biólogos quedaron sorprendidos al bacterias que vivían confortablemente a temperaturas de setenta grados Celsius. Estos microbios peculiares se encontraban en pilas de abonos orgánicos, silos e inclusos en sistemas domésticos de agua caliente y fueron bautizados como termófilos.

Resultados de la búsqueda

 

Termófilo - EcuRedLos termófilos | Imagen Premium generada con IA

 

 El término termófilo se aplica a organismos vivos que pueden soportar temperaturas imposibles y vivir en lugares de aguas calientes y sulfurosas, en terrenos de alto índice de salinidad o de Ph no apto seres vivos, así como en lugares y situaciones que, se podrían, sin lugar a ninguna duda, comparar con otros existentes en el espacio exterior, planetas y lunas sin atmósfera o de atmósfera reducida o demasiado densas.

Resultó que esto era sólo el principio. A finales de los años setenta la nave sumergible Alvin, perteneciente al Woods Hole Océano Graphic Institute, fue utilizada para explorar el fondo del mar a lo largo de la Grieta de las Galápagos en el océano Pacífico. Este accidente geológico, a unos dos kilómetros y medio bajo la superficie, tiene interés para los geólogos como un ejemplo primordial de las chimeneas volcánicas submarinas conocidas como “húmeros negros “. Cerca de un humero negro, el agua del mar alcanzar temperaturas tan altas como trescientos cincuenta grados Celsius, muy por encima del punto de ebullición normal. Esto es posible debido a la inmensa presión que hay en dicha profundidad.

 

Qué es una fumarola submarina y cómo se forman? | Ingeoexpert

                                              Fumarola negra descubierta en el Caribe

Lugares este permitieron la proliferación de pequeños seres vivos que, al calor de sus emisiones de gases tóxicos (de los que se alimentaban) salieron adelante y se expandieron de una manera bastante prolífica. Se cree que en lugares como este pudieron surgir algunos especímes que evolucionaron otros niveles.

Una expedición dirigida por científicos del Centro Nacional de Oceanografía en Southampton (Reino Unido) ha descubierto las chimeneas volcánicas submarinas más profundas del mundo, conocidas como ‘fumarolas negras’, de unos 5,000 metros de profundidad en la depresión de Cayman, en el Caribe, revela un artículo publicado en Sciencie.com

Los investigadores utilizaron un vehículo controlado por control remoto de inmersión profunda y descubrieron delgadas espirales de minerales de cobre y hierro en el manto marino, erupciones de agua lo suficientemente calientes derretir el plomo y unos 800 metros más profundas que las observadas con anterioridad.

 

 

Para asombro de los científicos implicados en el proyecto Alvin la región en torno a los húmeros negros de las Galápagos y otros lugares de las profundidades marinas resultó estar rebosante de vida. Entre los moradores más exóticos de las profundidades había cangrejos y gusanos tubulares gigantes. También había bacterias termófilas ya familiares en la periferia de los húmeros negros. Lo más notable de todo, sin embargo, eran algunos microbios hasta entonces desconocidos que vivían muy cerca de las aguas abrasadoras a temperaturas de hasta ciento diez grados Celsius. Ningún científico había imaginado nunca seriamente que una de vida pudiera soportar calor tan extremo.

Las lombrices tubulares gigantes, o como les llama la wikipedia gusanos de tubo gigantes son unas bonitas lombrices que viven en los fondos del Océano Pacífico y cuyo científico es Riftia Pachyptila, suena bien.

Estos interesantes invertebrados suelen vivir a una profundidad de 5000 pies (1500 metros), lo cual es una barbaridad. Su tamaño puede llegar hasta cerca de 3 metros, por eso las llaman gigantes. Imaginen ir a pescar con una lombriz de este tamaño…

¿Qué comen estos bichos?

 

Riftia pachyptila - Wikipedia, la enciclopedia libre

 

Esta es la más interesante. Las lombrices tubulares gigantes viven en auténticos hornos submarinos. Se sitúan justo en chimeneas submarinas por las que salen a temperaturas altísimas, gases y minerales de muy alta toxicidad para la mayoría de las especies. Digamos que viven encima de pequeños volcanes.

La comida favorita de estas lombrices es el azufre, no necesita oxígeno para nada. Se basta, en concreto, con el sulfuro de hidrógeno que sale de las chimeneas termales. Sale hirviendo así que las lombrices tienen que sorber con cuidado. Usan esas plumas rojas para captar el sulfuro. Las plumas, tienen ese color debido a la hemoglobina, esa sustancia que tambien nosotros tenemos en la sangre y nos ayuda a transportar el oxígeno. A ellas les ayuda a transportar azufre, lo cual nos mataría a nosotros enseguida.

 

El río Tinto, el caudal marciano de España - Fundación Aquae

 

El río Tinto es tan peculiar que sus aguas no son azules sino rojas y su ecosistema está tan muerto que la NASA lo ha estudiado para encontrar vida (en otros planetas). El río Tinto es tan singular que su contaminación no tiene parangón porque esas aguas tan rojas de ácidas que son fueron contaminadas por la propia naturaleza, con alguna ligera ayuda humana, eso sí, y se trata de una contaminación tan característica que está protegida como bien de interés cultural con categoría de sitio histórico. Contaminación protegida por ley. Con todo eso tenemos una paradoja explosiva: un río de aguas rojas contaminado por la Naturaleza y protegido legalmente precisamente por esa contaminación. Un paseo por sus riberas es similar a un paseo por el planeta Marte, un viaje a la desolación más desconcertante y el tren turístico que rememora los viajes mineros de finales del siglo XIX recorre algunos de los rincones menos accesibles para el paseante aprovechando locomotoras y vagones de la antigua compañía minera.

Expediente Río Tinto: la verdad sobre el río "extraterrestre"

 

Se han encontrado bacterias y más de mil hongos, pero no hay peces. Los animales que viven en el río Tinto son unicelulares o pluricelulares. A pocos centímetros de profundidad no hay oxígeno y las bacterias que se desarrollan tienen la capacidad de respirar férrico.

Igualmente se han encontrado formas de vida  en lugares de gélidas temperaturas y en las profundidades de la tierra. Así mismo, la NASA ha en un pueblo de Huelva (España) para estudiar aguas con un PH imposible para la vida y cargada de metales pesados que, sin embargo, estaba rebosante de vida. El proyecto de estos estudios se denomina P-TINTO, ya que, las aguas a las que nos referimos son precisamente las del Río Tinto, invadidas por los denominados extremófilos. Arrina podemos ver una imagen del rojo líquido donde viven, tan ricamente, algunas especies.

 

 tierra-primordial

Una recreación imaginaria de las de la Tierra primigenia al surgir la vida (Fuente: The Seven Sense)

 

 

Algunas de estas bacterias (Sulfolobus) obtienen la energía oxidando azufre, por lo que son bacterias quimiosintéticas. Extremófilos del termófilo producen algunos de los vistosos colores de la fuente termal Grand Prismatic Spring, en el Yellowstone National Park. ¿Por qué, viendo todo lo que vemos aquí mismo en nuestro planeta, nos podemos sorprender de que existan formas de vida en otros planetas?

Los extremófilos suelen ser procariotas como las bacterias, que son los seres con vida independiente más simples, pero también pueden ser eucariotas. De estos pequeños seres podríamos aprender muchísimas cosas que nos serían de gran valor para conocer, qué podríamos hacer en especiales circunstancias. La Naturaleza que tiene todas las respuestas nos la ofrece y, por nuestra , sólo podemos prestar atención.

Variedad increíble

 

Halófilos: la vida en la sal | Ciencia Hoy

 

Hay extremófilos para casi cualquier situación adversa del entorno: los acidófilos son aquellos que viven en entornos altamente ácidos, mientras que los alcalófilos son los que viven en lugares con un alto pH.

La anterior reseña viene a confirmarla enorme posibilidad de la existencia de vida en cualquier del universo que está regido por mecanismos iguales en cualquiera de sus regiones, por muchos años luz que nos separen de ellas. En comentarios anteriores dejamos claro que las Galaxias son lugares de autorregulación, y, podríamos considerarlos como organismos vivos que se regeneran así mismos de manera automática luchando contra la entropía del caos de donde vuelve a resurgir los materiales básicos para el nacimiento de nuevas estrellas y planetas donde surgirá alguna clase de vida.

 

http://www.ciberdroide.com/wordpress/wp-content/uploads/Rose_of_Jericho.gif

 

En el desierto de Chihuahua (el más extenso de América del Norte), La Selaginella lepidophylla es una planta que pertenece a la familia de las Selaginellaceae resiste a la sequía desecándose en un 95% para volverse a hidratar cuando las son propicias.

La idea de que la vida puede tener una historia se remonta a poco más de dos siglos. Anteriormente, se consideraba que las especies habían sido creadas de una vez para siempre. La vida no tenía más historia que el Universo. Sólo nosotros, los seres humanos, teníamos una historia. Todo lo demás, el Sol y las estrellas, continentes y océanos, plantas y animales, formaban la infraestructura inmutable creada para servir fondo y soporte de la aventura humana. Los fósiles fueron los primeros en sugerir que idea podía estar equivocada.

Durante cerca de tres mil millones de años, la vida habría sido visible sólo a través de sus efectos en el ambiente y, a veces , por la presencia de colonias, tales como los extremófilos que asociaban billones de individuos microscópicos en formaciones que podrían haber pasado por rocas si no fuera por su superficie pegajosa y por sus colores cambiantes.

 

 

El arbol de la vida formada por tres dominios:

Bacteria : pertenecen las cianobacterias, bacterias aerobias,

Archae:  carecen de núcleo celular son PROCARIOTAS, y  Eukarya: tiene núcleo definido (EUCARIOTAS) a el pertenecen los hongos, plantas y animales.

 

 

Prokaryota - Wikipedia, la enciclopedia libre

 

Toda la panoplia de plantas, hongos y animales que en la actualidad cubre el globo terrestre con su esplendor no existía. Sólo había organismos unicelulares, que empezaron con casi toda seguridad con bacterias. Esa palabra, “bacteria”, para la mayoría de nosotros evoca espectros de peste, enfermedades, difteria y tuberculosis, además de todos los azotes del pasado hasta que llegó Pasteur. Sin embargo, las bacterias patógenas son sólo una pequeña minoría, el resto, colabora con nosotros en llevar la vida delante, y, de hecho, sin ellas, no podríamos vivir. Ellas, reciclan el mundo de las plantas y animales muertos y aseguran que se renueve el carbono, el nitrógeno y otros elementos bioquímicos.

Por todas estas razones, podemos esperar que, en mundos que creemos muertos y carentes de vida, ellas (las bacterias) estén allí. Están relacionadas con las primeras formas de vida, las bacterias han estado ahí hace cerca de 4.000 millones de años, y, durante gran parte de ese tiempo, no fueron acompañadas por ninguna otra forma de vida.

 

Así serían las distintas formas de vida alienígena según las leyes de la  físicaCómo reaccionaría la humanidad si descubriese vida extraterrestre?

 

   ¡La Vida! Tendrá tantas maneras de expresarse…, que ni podemos imaginar

Pero, ¿No estamos hablando del Universo?  ¡Claro que sí! Hablamos del Universo y, ahora, de la más evolucionada que en él existe: Los seres pensantes y conscientes de SER, nosotros los humanos que, de momento, somos los únicos seres inteligentes conocidos del Inmenso Universo. Sin embargo, pensar que estamos solos, sería un terrible y lamentable error que, seguramente, nos traería consecuencias de difícil solución.

Tenemos que pensar seriamente en la posibilidad de la vida extraterrestre que, incluso en nuestra propia Galaxia, podría ser muy abundante. Es cierto que no será fácil -por el momento- encontrarla y mucho menos poder contactar con aquella que sea inteligente, no tenemos los medios para ello. Sin embargo, ese tantas veces imaginado , pòdría producirse por parte de “ellos” y, tal posibilidad, nos produce temor.

 

Los extraños mundos en los que los huesos se nos partirían en mil pedazosDescubren una supertierra que servirá para probar los modelos atmosféricos  planetarios | Instituto de Astrofísica de Canarias • IACSe vieron dos soles desde Canadá? Te explicamos si es un fenómeno  astronómico o una mentira - El Sol de Hermosillo | Noticias Locales,  Policiacas, sobre México, Sonora y el Mundo

¿Cómo sería vivir en un mundo con dos soles?

Necesitamos tiempo para poder avanzar en el conocimiento que nos lleve, a conseguir otras formas de “” hacia los mundos lejanos en los que, de seguro, encontraremos muchas de las cosas que imaginamos y que allí, serán realidad. Se necesitan nuevas formas de energías, nuevas maneras de entender la física, nuevas tecnologías más avanzadas que trasciendan hacia niveles más profundos y nos puedan llevar, realmente, al Espacio, visitar físicamente esos lugares tántas veces soñados y que, por lo que sabemos, están ahí, esperando nuestra visita.

Nuestra imaginación que es, casi tan grande como el Universo mismo,podrá lograr muchos de esos sueños que a través de los tiempos nuestras mentes crearon y que, a medida que nuestros conocimientos evolucionan, se acercan más y más a la posibilidad de hacerlos una realidad. En todo el Universo siempre es lo mismo, rigen las mismas leyes, las mismas fuerzas que tantas veces hemos explicado aquí, e, igualmente, en todas partes está presente la misma materia que lo conforma todo…¡ el más sencillo átomo de hidrógeno, hasta la Vida misma!

 

Diseño gráfico y visualización científica en física de partículas | Francis  (th)E mule Science's News

 

      ¡Quarks y Leptones! que forman los átomos y la materia que, junto a las fuerzas fundamentales conforman todo el universo. Todo es mucho más de lo que nuestras mentes puedan imaginar. Son muchas las preguntas que están pendientes de contestar y, aunque no dejamos de avanzar, lo cierto es que nos queda mucho que aprender y muchos secretos por desvelar. Lo que se dice saber, saber… ¡No sabemos! Son muchos los secretos de la Naturaleza que perduran y, mientras tanto nosotros no sepamos sobre algunos de ellos… Por ejemplo, ¿Qué es la luz? tendremos que seguir ese camino hace miles de emprendido en busca de las respuestas.

Al final todo consiste en…

 

Nucleones
Núcleos
Átomos
Moléculas
Sustancias
Cuerpos
Planetas (Vida)
Estrellas
Galaxias
Cúmulos de galaxias

Claro que,  más asombroso que eso, es que también están los Pensamientos y los Sentimientos.

Emilio Silvera V.

Nunca podremos saberlo todo

Autor por Emilio Silvera    ~    Archivo Clasificado en Descubrir y aprender    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cantar de los nibelungos - Wikipedia, la enciclopedia libreCuestión de Clase: El Druida | Tras La Última FronteraImágenes de Dragones - Descarga gratuita en Freepik
Historias y Leyendas ligadas a la Mitología. Minotauros, Druidas, Dragones y Nibelungos que buscan anillos… Unicornios y Gárgolas…Hadas y otros personajes misteriosos que viven en las profundidades de los bosques y tienen el poder de la magia para nuestro regocijo y asombro.
Resultado de imagen de Hadas y Nibelungos
   Cada cual escenificó a las Hadas como su imaginación les dictaba

Hemos demostrado tener mucha imaginación y las historias y leyendas que nos llegan desde el pasado está mezclada con la Mitología de los pueblos que, en todos los rincones del mundo crearon sus propios mitos que nos dibujan escenarios que hablan de la inmensa diversidad. Siempre hemos buscado algo pero nunca logramos encontrarlo todo. ¡La búsqueda continúa!

 

El Universo y la Mente! : Blog de Emilio Silvera V.

Conectados con el Universo, nuestra única misión: ¡Desvelar sus secretos!

Al menos de momento, tenemos que admitir que es así. No creo que nunca podamos adquirir un conocimiento pleno de todas las cosas. Siempre nos quedarán secretos que desvelar y misterios por descubrir, y, la inmensa variedad y la vastedad compleja de la Naturaleza, tendrá siempre para nosotros, algunos rincones oscuros en los que moran respuestas que deseamos , y que sin embargo, es posible, que nunca las podamos atisbar.

La Atlántida – SENDEROS DE LA HISTORIA

              ¿Oiremos alguna vez que han encontrado los restos de la Atlántida?

“De todos los misterios que andan por el mundo, ninguno puede competir con las historias de tierras pérdidas y civilizaciones que ya no existen, y entre todas ellas, destaca sobremanera una: la desaparición de la Atlántida, un continente entero, que existió más allá de las Columnas de Hércules (Gibraltar) o quién sabe dónde. A la Atlántida, se la tragó la tierra, en día y una noche, sin dejar rastro ni de ella ni de la floreciente civilización que poseía. 

 

Resultado de imagen de Hadas y Nibelungos

Mime con Sigfrido niño

Al hombre por naturaleza le ha intrigado aquellos sucesos a los cuales no encuentra una explicación lógica, y cuando sus respuestas no son las adecuadas, las ha convertido en misterios, leyendas o mitos pero, con el del tiempo, poco a poco, fue dejando de lado la mitología y a las divinidades para emplear la lógica y la observación del mundo, y, más tarde, llegó el experimento: la Ciencia había nacido.

Uno de los misterios más grandes se refieren a nosotros mismos, de manera fidedigna no sabemos lo que pasó para que ahora podamos estar aquí. El cráneo de Lucy y unos huesos diminutos , cuidadosamente dispuestos en una vitrina del museo para su exhibición al público, nos pueden transportar hasta la cálida sabana africana en la que, según todos los indicios, se gestó la Humanidad hace unos tres millones de años.

 

La vida y muerte de las estrellas 4 on Make a GIF

El Universo se expande, las estrellas mueren

 

 

Las estrellas, como todo en el Universo, no son inmutables y, con el del Tiempo, cambian para convertirse en objetos diferentes de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida. Nebulosas hacedoras de mundos en las que, nacen estrellas nuevas y se transmutan los elementos sencillos en complejos, en ellas y en las estrellas surge el CHON (Carbono, Hidrógeno, Oxígeno y Nitrógeno) que son materiales esenciales para la vida.

Que es C.H.O.N? by Ana Berenice Valdez Mallida on Prezi

Si viajamos hacia atrás en el tiempo, por ejemplo,  unos tres millones de años, podríamos contemplar, con asombro, a nuestros primeros antepasados. Los dinosaurios nos llevan a un tiempo de setenta veces más antiguo, a unos bosques mezosoicos por los que discurren bestias prodigiosas. El mundo, nuestro mundo, ha ido cambiando a medida que el tiempo transcurría y, por ejemplo, el oxígeno que hoy respiramos no estaba presente hace algunos millones de años. De hecho, hay quien defiende la hipótesis de que los dinosaurios no cayeron por el meteorito sino que, el cambio de nuestra atmósfera los eliminó.

 

Cuántos años podían vivir los dinosaurios?

Y, 65 millones de años más tarde…Los primeros homininos. Paleontología humana | Museo Nacional de Ciencias  Naturales

 

¿Qué habría pasado en la historia de la evolución si no hubiera caído aquel meteorito? ¿Habríamos podido nosotros llegar hasta aquí?

Claro que es mucho lo que aún desconocemos de la historia de la vida y, de la misma manera, se podrán expresar nuestros nietos, no es una asignatura de fácil comprensión, ya que, no teníamos aquí a un historiador recopilando todo lo que pasó, ni el tiempo que ha transcurrido nos permite obtener las huellas necesarias (eliminadas por los movimientos tectónicos, la erosión, y demás catástrofes naturales del planeta) que nos impiden encontrar una respuesta completa.

Claro que, a pesar de todo, incluso con esos enormes inconvenientes de la falta de pruebas, la historia de la Vida, es una narración tan apasionante que, seguimos y seguiremos buscando indicios del pasado que nos hablen de lo que pasó, de nosotros y de otros seres que, como nosotros mismos, surgieron a la vida tras un complejo proceso evolutivo del que, al parecer, sólo nosotros alcanzamos un nivel de conscienciatras un larguisimo proceso evolutivo que comenzó en las estrellas y siguió con la transmutación de los diversos materiales cada vez más complejos para crear sustancias que formaron aquelñ caldo primordial o protoplasma vivo que se organizó para que de él, surgieran aquellas primeras células replicantes. Algunos miles de millones de años más tarde, llegaron nuestros más antiguos antepasados que desembocaron en lo que hoy llamamos Humanidad.

 

 

La historia de la vida solemos relatarla al estilo de la genealogía de Abraham: las bacterias engendraron a los protozoos, los protozoos engendraron a los invertebrados, los invertebrados engendraron a los peces…y, así, sucesivamente, Claro que tales listas de conocimientos adquirido pueden ser memorizadas pero, no dejan mucho espacio para pensar que, en lugar de recitar como un papagayo o esas cuestiones, es mejor, salir a espacios abiertos y a lugares remotos del planeta en los que, los vestigios e indicios nos digan que allí pasó algo, donde podamos rocas viejas y fósiles que sí, de manera fehaciente, nos hablaran de ese pasado que queremos conocer.

 

El hallazgo de un fósil del Triásico aclara el origen de los anfibios  actuales - Infobae

 

Los actuales descubrimientos de la Paleontología, la más tradicional de las científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica. Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutiles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy.

 

 

         En Australia fueron descubiertos los fósiles de bacterias más antiguas de la Tierra. Las rocas australianas se han convertido en el lugar más idóneo del planeta para buscar indicios del origen de la vida en la Tierra. Ha sido en la formación Strelley Poll, al oeste del país, en Pilbara, donde un equipo de científicos, australianos en su mayoría, ha descubierto los fósiles microscópicos de unas bacterias que vivieron hace 3.400 millones de años y que aparecen asociados a diminutos cristales de pirita.

 

u5t2a100aLa aparición de los seres vivos en la Tierra timeline | Timetoast

 

Pero, ¿cómo podemos llegar a comprender acontecimientos que ocurrieron hace unos miles de millones de años? Una cosa es que en las llanuras mareales de hace mil quinientos millones de años vivían bacterias fotosintéticas, y otra muy distinta entender cómo se infiere que unos fósiles microscópicos pertenecen a bacterias fotosintéticas, cómo se averigua que las rocas que los rodean se formaron en antiguas llanuras mareales y cómo se estima su edad en mil quinientos millones de años.

En tanto que empresa humana, esta es también la historia de la exploración que se extiende desde el interior de las moléculas al espacio literalmente exterior del espacio interestelar y de los planetas como Marte y lunas como Europa, Encelado, Titán, Io y Ganímedes. En todos esos pequeños mundos pueden exitir sorpresas biológicas que ni podemos sospechar.

 

El cañón natural más grande del sistema solar está en Marte

Muchas de las imágenes del planeta Marte, nos hablan de secretos que… ¿De dónde sale el metano allí detectado? ¿Lo producen metanógenos? Esos inmensos escenarios que las naves allí enviadas nos han podido mostrar. El Olimpus Mont con el cañón fluvial más grande del Sistema solar de miles de kilómetros de largo oradado por las aguas turbulentas que en el pasaso, vertiginosas discurrían por allí dejando esa descomunal huella. Y, ¿que habrá en las entrañas del planeta, en el subsuelo rico en galerias dejadas por los ríos de lava que la actividad volcánica del pasado fueron creando a lo largo de los años. ¿A qué lugar fue a parar todo el agua de los acéanos de Marte?

Muestras recogidas en Marte nos podrán hablar de qué aspectos de nuestra biología terrestre se pueden encontrar allí donde existe la vida, existió la vida o, ¿quién sabe? existirá. Seguramente en Marte podremos encontrar, para nuestro asombro, productos específicos de nuestra particular historia que yacen allí para darnos una respuesta pero, el camino que hemos de seguir para la vida en el Universo dependerá, en gran medida, de lo que podamos encontrar en nuestro “barrio”: Marte, Encelado, Europa, Titán, Ganímedes y otros pequeños mundos que, cuando les dedicamos una profunda mirada, nos envían promesas que, no podemos desatender.

 

El humano y el chimpancé tienen un ancestro común que no era ni Mono ni Pan, y, no sabemos la razón pero, mientras uno sigue en la rama de los árboles, el otro… ¡Trata de llegar a las estrellas!

Uno de los temas más claros en la evolutiva es el carácter acumulativo de la diversidad biológica. Las especies individuales (al menos la de los organismos nucleados) aparecen y desaparecen en una sucesión geológica de extinciones que ponen de manifiesto la fragilidad de las poblaciones en un mundo de competencia y cambio ambiental. Pero la historia de las asociaciones -de formas de vida con una morfología y fisiología características- es una historia de acumulación. La visión de la evolución a gran escala es indiscutiblemente la de una acumulación  en el tiempo gobernada por las reglas del funcionamiento de los ecosistemas. La serie de sustituciones que sugieren los enfoques al estilo de la genealogía de Abraham no consigue captar este atribuito básico de la historia biológica.

 

Primitivo y moderno stock de ilustración. Ilustración de empresario -  180655984

 

Otro de los grandes temas es el de la coevolución de la Tierra y la Vida. Tanto los organismos como en Ambiente han cambiado drásticamente con el tiempo, a menudo de forma concertada. Los cambios del clima, la geología e incluso la composición de la atmósfera y de los océanos han influido en el de la evolución, del mismo modo que las innovaciones biológicas han influido, a su vez, en la historia del medio ambiente.

 

Tres teorías sobre cómo comenzó la vida en la Tierra | National Geographic

 

Los científicos saben que, la Vida, nació por mediación de procesos físicos -tectónicos, oceanográficos y atmosféricos- estos mismos procesos antes mencionados, sustentaron la vida era tras era al tiempo que modificaban  continuamente la superficie de la Tierra. Por fin la vida se expandió y diversificó hasta convertirse en una fuerza planetaria por derecho propio, uniéndose a los procesos tectónicos y físico-químicos en la transformación de la atmósfera y los océanos. Creo que, el surgimiento de la vida como una característica definitoria de nuestro planeta es algo que, no podemos calificar con una plabra a la de un hecho extraordinario. Sin embargo, creo, que para que surja la vida sólo se necesita “un sol” y “un planeta” que estén a la adecuada distancias, ya que todos los materiales necesarios estarán allí dispuestos para que se conformen… ¡de tántas maneras!

¿Cuántas veces habrá ocurrido en la vastedad del Universo, que la vida surgió y se extingiuió para volver a surgir en otros lugares ?

 

 

El próximo vehículo robótico para explorar Marte en 2025 deberá investigar mas intensamente que nunca la superficie del planeta rojo en busca de señales de vida pasadas, anunció un equipo de na NASA hace poco tiempo. Sin embargo, vuelven a equivocarse en una cosa, la vida en el planeta hermano, no la encontraran en la superficie del planeta. Ellos saben que si hay alguna posibilidad de encontrar la vida allí, ésta estará en el subsuelo pero, como no dispone de medios para enviar una misión tripulada por humanos… ¡Sigue jugando con el Azar! Si suena la campana… de la suerte.

Emilio Silvera V.

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Plasma, según sabemos, resulta ser el estado de la materia más abundante del Universo. Todos desde pequeños aprendimos aquellos tres estados de la materia que cantábamos en primaria, todos a una, gritándo como posesos: “Los tres estados de la materia son, sólido, líquido y gaseoso”.” Nada nos decían del Plasma, a pesar de que todas las estrellas del universo están conformadas de la materia en  ese estado. El 99% de toda la de la materia del Universo ¡es plasma! Claro que, eso es así si estamos hablando de la materia conocida, esa que llamamos Bariónica y está formada por átomos de Quarks y Leptones.

 

El plasma del remanente de los explosiones supernovas

 

Los plasmas constituyen el cuarto estado de agregación de la materia, tras los sólidos, líquidos y gases. Para cambiar de uno al otro, es necesario que se le aporte energía que aumente la temperatura. Si aumentamos de manera considerable la temperatura de un gas, sus átomos o moléculas adquieren energía suficiente para ionizarse al chocar entre sí. de modo que a ~ 20.000 K muchos gases presentan una ionización elevada. Sin embargo, átomos y moléculas pueden ionizarse también por impacto electrónico, absorción de fotones, reacciones químicas o nucleares y otros procesos.

 

Frente de ionización en la Nebulosa del Pelícano

 

Aquí podemos contemplar una enorme región ionizada en la Nebulosa del Pelícano. Estrellas nuevas emiten potente radiación ultravioleta que ataca el espesor de la Nebulosa molecular y hace que, el gas se ionice fuertemente creando una luminosidad que “viste” de azul claro todo el contorno que circunda el radio de acción de las estrellas.

 

Resultado de imagen de El plasma en las estrellas

Un plasma es un gas muy ionizado, con igual número de cargas negativas y potivas. Las cargas otorgan al Plasma un comportamiento colectivo, por las fuerzas de largo alcance existente entre ellas. En un gas, cada partícula, independientemente de las demás, sigue una trayectoria rectilínea, hasta chocar con otra o con las grandes paredes que la confinan. En un plasma, las cargas se desvían atraídas o repelidas por otras cargas o campos electromagnéticos externos, ejecutando trayectorias curvilíneas entre choque y choque. Los gases son buenos aislantes eléctricos, y los plasmas, buenos conductores.

 

Resultado de imagen de El plasma está presente en los filamentos de los remanentes de Supernovas

El plasma está presente en los filamentos de los remanentes de  supernovas

 

En la Tierra, los plasmas no suelen existir en la naturaleza, salvo en los relámpagos, que son trayectorias estrechas a lo largo de las cuales las moléculas de aire están ionizadas aproximadamente en un 20%, y en algunas zonas de las llamas. Los electrones libres de un metal también pueden ser considerados como un plasma. La mayor parte del Universo está formado por materia en estado de plasma. La ionización está causada por las elevadas temperaturas, como ocurre en el Sol y las demás estrellas, o por la radiación, como sucede en los gases interestelares o en las capas superiores de la atmósfera, donde produce el fenómeno denominado aurora.

 

 

Así que, aunque escasos en la Tierra, el Plasma constituye el estado de la materia más conocido y más abundante en el Universo. Como antes decía más del 99% de la materia del Universo está en forma de plasma. Abarcan desde altísimos valores de presión y temperatura, como en los núcleos estelares, hasta otros asombrosamente bajos en ciertas regiones del espacio. Uno de sus mayores atractivos es que emiten luz visible, con espectros bien definidos, particulares en cada especie. Algunos objetos radiantes, como un filamento incandescente, con espectro continuo similar al cuerpo negro, o ciertas reacciones químicas productoras de especies excitadas, no son plasmas, sin embargo, lo son la mayoría de los cuerpos luminosos.

 

Resultado de imagen de Bombilla de plasma

   Bola de plasma en incandescencia

 

Los Plasmas se clasifican según la energía media (o temperatura) de sus partículas pesadas (iones y especies neutras). Un primer tipo son los Plasmas calientes, prácticamente ionizados en su totalidad, y con sus electrones en equilibrio térmico con las partículas más pesadas. Su caso extremo son los Plasmas de Fusión, que alcanzan hasta 108 K, lo que permite a los núcleos chocar entre sí, superando las enormes fuerzas repulsivas inter-nucleares, y lograr su fusión. Puede producirse a presiones desde 1017 Pa, como en los núcleos estelares, hasta un Pa, como en los reactores experimentales de fusión.

 

 

 

Algunos han hablado del extraño y misterioso cráter Aristarco de la Luna, en el dicen haber detectado alguna fuente de energía. Sin embargo, particularmente me parece que tales noticias simplemente vienen a desinformar, son licencias que se toman algunos astrónomos para llamar la atenciòn, o, simplemente, dicen ver lo que creen haber visto.

Foto: Plasma Science and Fusion Center

Los reactores de fusión nuclear prácticos están ahora un poco más cerca de la realidad gracias a nuevos experimentos con el reactor experimental Alcator C-Mod del MIT. Este reactor es, de entre todos los de fusión nuclear ubicados en universidades, el de mayor rendimiento en el mundo.

Los nuevos experimentos han revelado un conjunto de parámetros de funcionamiento del reactor, lo que se denomina “modo” de operación, que podría proporcionar una solución a un viejo problema de funcionamiento: cómo mantener el calor firmemente confinado en el gas caliente cargado (llamado plasma) dentro del reactor, y a la vez permitir que las partículas contaminantes, las cuales pueden interferir en la reacción de fusión, escapen y puedan ser retiradas de la cámara.

Otros Plasmas son los llamados térmicos, con e ~lectrones y especies pesadas en equilibrio, pero a menor temperatura ~ 103 – 104 K, y grados de ionización intermedios, son por ejemplo los rayos de las tormentas o las descargas en arcos usadas en iluminación o para soldadura, que ocurren entre 105 y ~ 102 Pa. Otro tipo de Plasma muy diferente es el de los Plasmas fríos, que suelen darse a bajas presiones ( < 102 Pa), y presentan grados de ionización mucho menores ~ 10-4 – 10-6. En ellos, los electrones pueden alcanzar temperaturas ~ 105 K, mientras iones y neutros se hallan a temperatura ambiente. Algunos ejemplos son las lámparas de bajo consumo y los Plasmas generados en multitud de reactores industriales para producción de películas delgadas y tratamientos superficiales.

Claro que la materia adopta múltiples formas que llamamos elementos y están esparcidos por todo el Universo y presente en los planetas y demás objetos que pueblan el inmenso espacio. La materia que sabemos conformada por esos pequeños objetos infinitesimales que llamamos partículas elementales y otras que, menos elementales, una vez se han configurado, se juntan para crear los núcleos de los átomos que unidos hacen las moléculas y llevan hasta los elementos que están, de una u otra manera, presentes por el Cosmos.

 

     http://farm5.static.flickr.com/4024/4415870627_9df3269b9f.jpg

 

El Observatorio Espacial Herschel de la ESA ha puesto de manifiesto la presencia de las moléculas orgánicas que son la llave para la vida y que han sido detectadas en la Nebulosa de Orión, una de las regiones más espectaculares de formación estelar en nuestra Vía Láctea. Este detallado espectro, obtenido con el Instrumento Heterodino para el Infrarrojo Lejano (Heterodyne Instrument for the Far Infrared, HIFI) es una primera ilustración del enorme potencial de Herschel-HIFI para desvelar los mecanismos de formación de moléculas orgánicas en el espacio. Y, para que todo eso sea posible, los Plasmas tienen que andar muy cerca.

En los Plasmas calientes de precursores moleculares, cuanto mayor es la ionización del gas, más elevado es el grado de disociación molecular, hasta poder constar solo de electrones y especies atómicas neutras o cargadas; en cambio, los Plasmas fríos procedentes de especies moleculares contienen gran proporción de moléculas y una pequeña parte de iones y radicales, que son justamente quienes proporcionan al Plasma su característica más importante: su altísima reactividad química, pese a la baja temperatura.

 

          Rho Ophiuchi

 

En la Naturaleza existen Plasmas fríos moleculares, por ejemplo, en ciertas regiones de las nubes interestelares y en las ionosfera de la Tierra y otros planetas o satélites. Pero también son producidos actualmente por el ser humano en gran variedad para investigación y multitud de aplicaciones.

En un ejemplar de la Revista Española de Física dedicado al vacío, el tema resulta muy apropiado y nos explican que no pudieron generarse Plasmas estables en descargas eléctricas hasta no disponer de la tecnología necesaria para mantener presiones suficientemente bajas; y en el Universo, aparecen Plasmas fríos hasta presiones de 10 ⁻ ¹⁰ Pascales, inalcanzable por el hombre. ¡Lo que hace la Naturaleza!

 

   foto

 

Lo que ocurre en las Nubes moleculares es tan fantástico que llegan a conseguir los elementos necesarios para la vida prebiótica y, allí, en esas inmensas masas de materiales donde nacen las estrellas y los mundos,  que, con los parámetros adecuados se producen todas las complejas transiciones de fase que dan lugar al surgir de la vida.

El papel de las moléculas en Astronomía se ha convertido en un área importante desde el descubrimiento de las primeras especies poliatómicas en el medio interestelar. Durante más de 30 años, han sido descubiertas más de 150 especies moleculares en el medio interestelar y gracias al análisis espectral de la radiación. Muchas resultan muy exóticas para estándares terrestres (iones, radicales) pero buena parte de estas pueden reproducirse en Plasma de Laboratorio. Aparte del interés intrínseco y riqueza de procesos químicos que implican, estas especies influyen en la aparición de nuevas estrellas por su capacidad de absorber y radiar la energía resultante del colapso gravitatorio, y de facilitar la neutralización global de cargas, mucho más eficientemente que los átomos.

 

   foto

 

Su formación en el espacio comienza con la eyección de materia al medio interestelar por estrellas en sus últimas fases de evolución y la transformación de éstas por radiación ultravioleta, rayos cósmicos y colisiones; acabando con su incorporación a nuevas estrellas y sistemas planetarios, en un proceso cíclico de miles de millones de años que, en el inmenso universo, se repite una y otra vez en los cientos de miles de millones de galaxias que son.

 

Resultado de imagen de plasma en las nebulosas

 

En las nebulosas de nueva cuenta observamos manifestaciones plasmáticas: filamentación producida por los campos eléctricos y magnéticos, aceleración de partículas a una marcada energía y radiación luminosa (en distintas longitudes de onda) resultado de distintos mecanismos. En la cercanía del centro de nuestra galaxia se han observado extensos filamentos de plasma, con longitudes de alrededor de 250 años luz, perpendiculares al plano de nuestra galaxia. En el resto de las galaxias se encuentran formaciones similares, sean estas las que se siguen hasta los núcleos de las galaxias activas.

 

   

 

En las explosiones supernovas se producen importantes transformaciones en la materia que, de simple se transforma en compleja y dan lugar a todas esas nuevas especies de moléculas que nutren los nuevos mundos. El H₂ y otras moléculas diatómicas homonucleares carecen de espectro rotacional. Detectando las débiles emisiones cuadrupolares del H₂ en infrarrojo, se ha estimado una proporción de H₂ frente a H abrumadoramente alto ( ~ 104) en Nubes Interestelares con densidades típicas de ~ 104 partículas /cm3; pero dada la insuficiente asociación radiactiva del H para formar H2, ya mencionada, el H2 debe producirse en las superficies de granos de polvo interestelar de Carbono y Silicio, con diámetros ~ 1 nm — μm, relativamente abundantes en estas nubes.

 

   

 

Experimentos muy recientes de disorción programada sobre silicatos ultra-fríos, demuestran que tal recombinación ocurren realmente vía el mecanismo de Langmuir-Hinshelwood, si bien los modelos que expliquen las concentraciones de H2 aún deben ser mejorados.

 

  Resultado de imagen de plasma en las nebulosas

 

Por otro lado, ciertas regiones de las nubes en etapas libres de condensación estelar presentan grados de ionización ~ 10-8 – 10-7 a temperaturas de ~ 10 K. La ionización inicial corresponde principalmente al H2 para formar H2 +, que reacciona eficientemente con H2, dando H3 + + H (k = 2• 10-9 cm3 • s-1.

El H3, de estructura triangular, no reacciona con H2 y resulta por ello muy “estable” y abundante en esas regiones de Nebulosas intelestelares, donde ha sido detectado mediante sus absorciones infrarrojas caracterizadas por primera vez en 1980 en descargas de H2 en Laboratorio.

 

Orión en gas, polvo y estrellas

 

La constelación de Orión contiene mucho más de lo que se puede ver, ahí están presentes los elementos que como el H2 que venimos mencionando, tras procesos complejos y naturales llegan a conseguir otras formaciones y dan lugar a la parición de moléculas significativas como el H2O o HCN y una gran variedad de Hidrocarburos, que podrían contribuir a explicar en un futuro próximo, hasta el origen de la vida.

La detección por espectroscopia infrarroja de COH+ y N2H+, formados en reacciones con H3 + a partir de CO y N2, permite estimar la proporción de N2/CO existente en esas regiones, ya que el N2 no emite infrarrojos. Descargas de H2 a baja presión con trazas de las otras especies en Laboratorio conducen casi instantáneamente a la opresión de tales iones y moléculas, y su caracterización puede contribuir a la comprensión de este tipo de procesos.

 

Pequeña Nube de Magallanes

Pequeña Nube de Magallanes.

 

Galaxias cercanas están unidas por puentes de plasma conductores de corriente eléctrica (por ejemplo nuestra Via Láctea con las Nubes Magallánicas). Las expulsiones de materia y energía características de los cuasares y los núcleos activos de galaxias son de nuevo formaciones de plasma y la estructura de radio de fondo, que con frecuencia se observa en estos objetos, tiene su origen en las propiedades del plasma. Las simulaciones numéricas de los últimos años muestran que probablemente los fenómenos del plasma deberían tener un rol dominante en la formación de estrellas a partir de la creación de la nube protoestelar, posibilitando la creación de los glóbulos primarios sin tener que cumplimentar el criterio de Jeans en cuanto al tamaño mínimo de la nebulosa e incluso sin una onda “iniciadora” de choque de alguna supernova cercana.

 

 

Aparte de los tres familiares estados de la materia que más conocemos: sólido, líquido y gaseoso, también están el Plasma y el Condensado de Bose-Einstein. El plasma (como decía al principio),  es un estado de gas ionizado donde los átomos y moléculas que lo componen han perdido gran parte de sus electrones. Está compuesto por electrones, cationes (iones con carga positiva) y neutrones. No sabemos si es posible que puedan existir otros estados de la materia aún no hallados, como por ejemplo, la materia extraña hecha de Quarks-Gluones.

Así amigos míos, hemos llegado a conocer (al menos en parte), algunos de los procesos asombrosos que se producen continuamente en el Espacio Interestelar, en esa Nebulosas que captadas por el Hubble y otros telescopios, miramos asombrados maravillándonos de sus colores que, en realidad, llevan mensajes que nos están diciendo el por qué se producen y que elementos son los causantes de que brillen deslumbrantes cuando la radiación estelar choca de lleno en esas nubes en la que nacen las estrellas y los nuevos mundos…y, si me apuráis un poco…, también la vida.

 

   

 

Y mientras que vamos descubriendo los secretos de la Naturaleza y se van realizando múltiples avances en las disciplinas científicas que nuestra especie ha logrado encausar para conocer cómo funciona el universo, al mismo tiempo y de forma paralela, nuestras ciudades crecen y se modernizan, las sociedades cambian y las costumbres de los pueblos también. El mundo, nuestro pequeño mundo situado en una sistema planetario presidido por una estrella ordinaria, de las que existen cientos de miles en nuestra propia Galaxia, aunque lo es todo para nosotros, no por ello deja de ser una mínima fracción de la Galaxia y una ínfima mota de polvo enel contexto del Universo. Sin embargo nosotros, creemos ser tan importantes que, no pocas veces, confundimos la realidad y mirándonos el ombligo, creemos ser el centro de todo, cuando en realidad… ¡somos tan frágiles! ¡somos tan poca cosa en ese inmenso océano que llamamos universo!

El día que la Humanidad desaparezca… ¡Ninguna estrella llorará por ella! Todo seguirá su ritmo y otras especies surgirán. Claro que, aunque sepamos eso, nada podrá frenar nuestra curiosidad y seguiremos esa aventura que la incansable Humanidad está viviendo mientras persigue el saber del “mundo”.

 

Emilio Silvera

Es sorprendente, como funciona la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Descubrir y aprender    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

          El Webb capta una imagen infrarroja muy detallada de estrellas en formación  activa

                    En cualquier galaxia pueden existir más de cien mil millones de estrellas

El Universo (al menos el nuestro), nos ofrece algo más, mucho más que grandes espacios vacíos, oscuros y fríos. En él podemos ver muchos lugares luminosos llenos de estrellas, de mundos y… muy probablemente de vida. Sin embargo, tenemos la sospecha de que, aparte del nuestro, otros universos podrían rondar por ahí y conformar un todo de múltiples Universos de características diversas y no en todos, serían posible la formación de estrellas y como consecuencia de la Vida.

 

Vista desde un planeta sin vida al espacio y los planetas ia generativa |  Foto Premium

                                           Las condiciones para la Vida, no siempre están presentes

Cuando me sumerjo en los misterios y maravillas que encierra el Universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, la sorprendente presencia de formas de vida y su variedad, y, sobre todo, que esa materia animada pudiera llegar hasta la consciencia, emitir ideas y pensamientos.

 

                     

                               ¿Qué “escalera” habrá que subir para llegar a ese otro universo?

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, hacemos conjeturas y comparaciones con otros que podrían ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimensiones espacio-temporales, no contamos con las condiciones físico-tecnológicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado mucho más allá de nuestro alcance.

 

Científicos de la NASA hallan evidencias de que pueda existir un universo  paralelo dónde el tiempo va hacia atrás

Sin embargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para construir esa tecnología futurista que nos llevaría a esos otros horizontes.

 

Mi otro yo en otro Universo - Astronomía Didáctica

 

Una idea que me ronda por la cabeza es que, teniendo la noticia de un grupo de astrónomos han realizado un estudio en el que dicen haber detectado algo muy grande más allá del “borde” de nuestro Universo. Entonces caí en la cuenta de que la fuerza de Gravedad tiene un alcance infinito, y, entonces me pregunté ¿No será ese otro universo vecino el que está tirando del nuestro? Bueno, entre otras podría ser la respuesta al por qué las galaxias se alejan las unas de las otras a gran velocidad, y, también del comportamiento del movimiento de las estrellas que, haría innecesaria la existencia de la “materia oscura”.

 

                         

                                                ¿Quién sabe lo que en otros mundos podremos encontrar?

¡Oh mundo de muchos mundos!

¡Oh vida de vidas!

¿Cuál es tu centro?

¿Dónde estamos nosotros?

¿Habrá algo más de lo que vemos?

¿Debemos prestar atención a las voces que oímos en nuestras mentes?

¿Cómo pudimos llegar a saber de lo muy pequeño y de lo muy grande?

 

                     

 

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

De los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3.

Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

 

                                                         

 

Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1.909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

 

                                                                             El experimento de Ruthertord,

En ese “universo” cuántico de lo infinitesimal existe una infinidad de objetos y se produce una gran cantidad de cosas asombrosas que, a veces, aún habiéndolas comprobado en los experimentos, son difíciles de aceptar.

 

                                                           

 

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original.

De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

 

                                 

 

Si la estrella tiene la masa del Sol “muere” para convertirse en una nebulosa planetaria y en una enana blanca. Si la estrella que agota su combustible nuclear de fusión es más masiva en varias masas solares, el resultado es el de una Estrella de Neutrones, y, si es súpermasiva, será un agujero negro su destino final.

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

 

Átomo - Enciclopedia de Energia

Si dividimos el núcleo del átomo en cien mil partes, sólo una de ellas será el núcleo. Sin embargo, en esa ínfima parte se encuentra el 99,99% de toda la masa del átomo, ya que, el resto son espacios vacíos con electrones que rodean al núcleo. Allí, en ese pequeñísimo espacio, se encuentran los nucleones (protones y neutrones), que son hadrones de la rama de los bariones. Estos hadrones están conformados por tripletes de Quarks que “viven” dentro de sus “entrañas” donde están confinados por la fuerza nuclear fuerte que está transmitida por otra familia de partículas, los Bosones que destinan a los Gluones a esa tarea.

 

El Color de la Fuerza Quarks y Gluones (Margarita García Pérez) -  Astronomia en podcast - Podcast en iVoox

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

 

                      https://josemauronunes.files.wordpress.com/2009/11/201203.jpg

 

Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en carbono, el carbono en oxígeno, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

 

                           

                                            Nuestro Sol es la estrella más estudiada en nuestro mundo

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad! Sin embargo, en el contexto del Universo eso no supone nada si pensamos en su inmensidad. Si eso es así (que lo es), ¿Qué somos nosotros comparados con toda esa grandeza? Bueno, si dejamos aparte el tamaño, creo que somos la parte del universo que piensa, o, al menos, una de las partes que puede hacerlo.

 

                             

            Ahí se producen las transiciones de fase que transmutan la materia sencilla en la compleja

Objetos como estos pueblan el universo, e incluso más sorprendentes todavía, como es el caso de los agujeros negros explicado en páginas anteriores de este mismo trabajo. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envíe luz y calor que la haga posible tal como la conocemos.

 

                                   

 

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 4.654.600.000 toneladas de hidrógeno en 4.650.000.000 toneladas de helio  (las 4.600 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de esta energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

 

                 

 

Para completar datos diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado -, el Sol es hidrógeno en un 80 por ciento.

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654.000  toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más.

Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

 

 

Página del Saber: Protuberancias solaresMagnestismo Solar y Estelar | Instituto de Astrofísica de Canarias • IAC

 

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que ahora. El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo.

A medida que el Sol siga radiando, irá adquiriendo una masa cada vez mayor ese núcleo de helio y la temperatura en el centro aumentará. En última instancia, la temperatura sube lo suficiente como para transformar los átomos de helio en átomos más complicados. Hasta entonces el Sol radiará más o menos como ahora, pero una vez que comience la fusión del helio, empezará a expandirse y a convertirse poco a poco en una gigante roja. El calor se hará insoportable en la Tierra, los océanos se evaporarán y el planeta dejará de albergar vida en la forma que la conocemos.

La esfera del Sol, antes de explotar para convertirse en una enana blanca, aumentará engullendo a Mercurio y a Venus y quedará cerca del planeta Tierra, que para entonces será un planeta yermo.

Los astrónomos estiman que el Sol entrará en esta nueva fase en unos 5 ó 6 mil millones de años. Así que el tiempo que nos queda por delante es como para no alarmarse todavía. Sin embargo, el no pensar en ello… no parece conveniente.

 

 

Espero que al lector de este trabajo, encargado por la Asociación Cultural “Amigos de la Física 137, e/hc”, les esté entreteniendo y sobre todo interesando los temas que aquí hemos tratado, siempre con las miras puestas en difundir el conocimiento científico de temas de la naturaleza como la astronomía y la física. Tratamos de elegir temas de interés y aquellos que han llamado la atención del público en general, explicándolos y respondiendo a preguntas que seguramente les gustaría conocer, tales como: ¿por qué la Luna muestra siempre la misma cara hacia la Tierra?

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira hacia la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra.

 

                   

 

Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.

 

                           

                                               Luna roja sobre el Templo de Poseidón

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.

 

 

Por qué siempre vemos la misma cara de la luna? | No odies la Física,  entiéndela

                Siempre nos muestra la misma cara

Esto, a su vez, congela los abultamientos en una aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento. La Luna es un caso relativamente simple. En ciertas condiciones, el rozamiento debido a las mareas puede dar lugar a condiciones de estabilidad más complicadas.

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercan al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? ¿Hay algo más excitante que el descubrir y saber?

Fuente de datos: Isaac Asimov

emilio silvera