miércoles, 18 de octubre del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los Quarks invisibles

Autor por Emilio Silvera    ~    Archivo Clasificado en Mecánica cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una vez que se ha puesto orden entre las numerosas especies de partículas, se puede reconocer una pauta. Igual que Dimitri Ivanovich Mendeleev descubrió el sistema periódico de los elementos químicos en 1869, así también se hizo visible un sistema similar para las partículas. Esta pauta la encontraron independientemente el americano Murray Gell-Mann y el israelí Yuval Ne’eman. Ocho especies de mesones, todos con el mismo espín, u ocho especies de bariones, con el mismo espín, se podían reagrupar perfectamente en grupos que llamaremos multipletes. El esquema matemático correspondiente se llama SU(3). Grupletes de ocho elementos forman un octete “fundamental”. Por esta razón Gell-Mann llamó a esta teoría el “óctuplo camino”. Lo tomó prestado del budismo de acuerdo con el cual el camino hacia el nirvana es el camino óctuplo.

Pero las matemáticas SU(3) también admiten multipletes de diez miembros. Cuando se propuso este esquema se conocían nueve bariones con espín 3/2. Los esquemas SU(3) se obtienen al representar dos propiedades fundamentales de las partículas, la extrañeza S frente al isoespín I₃ , en una gráfica.

Imagen de trazas en la cámara de burbujas del primer evento observado incluyendo bariones Ω, en el Laboratorio Nacional Brookhaven.

De esta manera, Gell-Mann predijo un décimo barión, el omega-menos (Ω¯), y pudo estimar con bastante precisión su masa porque las masas de los otros nueve bariones variaban de una forma sistemática en el gráfico (también consiguió entender que las variaciones de la masa eran una consecuencia de una interacción simple). Sin embargo, estaba claro que la Ω¯, con una extrañeza S = -3, no tenía ninguna partícula en la que desintegrarse que no estuviera prohibida por las leyes de conservación de la interacción fuerte. De modo que, la Ω¯ sólo podía ser de tan sólo 10¯²³ segundos como los demás miembros del multiplete, sino que tenía que ser del orden de 10¯¹⁰ segundos. Consecuentemente, esta partícula debería viajar varios centímetros antes de desintegrarse y esto la haría fácilmente detectable. La Ω¯ fue encontrada en 1964 con exactamente las mismas propiedades que había predicho Gell-Mann.

Resultado de imagen de Se identificaron estructuras multiples para la mayoría de los demás <a href=bariones y mesones y Gell-Mann también consiguió explicarlas." width="267" height="393" />

Se identificaron estructuras multipletes para la mayoría de los demás bariones y mesones y Gell-Mann también consiguió explicarlas. Sugirió que los mesones, igual que los bariones, debían estar formados por elementos constitutivos “más fundamentales aún”. Gell-Mann trabajaba en el Instituto de Tecnología de California en Pasadena (CalTech), donde conversaba a menudo con Richard Feynman. Eran ambos físicos famosos pero con personalidades muy diferentes. Gell-Mann, por ejemplo, es conocido como un entusiasta observador de Pájaros, familiarizado con las artes y la literatura y orgulloso de su conocimiento de lenguas extranjeras. Feynman fue un hombre hecho a sí mismo, un analista riguroso que se reía de cualquier cosa que le recordara la autoridad establecida. Hay una anécdota que parece no ser cierta de hecho, pero que me parece tan buena que no puedo evitar el contarla; podía haber sucedido de esta forma. Gell-Mann le dijo a Feynman que tenía un problema, que estaba sugiriendo un nuevo tipo de ladrillos constitutivos de la materia y que no sabía qué nombre darles. Indudablemente debía haber de haber pensado en utilizar terminología latina o griega, como ha sido costumbre siempre en la nomenclatura científica. “Absurdo”, le dijo Feynman; “tú estás hablando de cosas en las que nunc ase había pensado antes. Todas esas preciosas pero anticuadas palabras están fuera de lugar. ¿Por qué no los llamas simplemente “shrumpfs”, “quacks” o algo así?”.

Cuando algún tiempo después le pregunté a Gell-Mann, éste negó que tal conversación hubiera tenido lugar. Pero la palabra elegida fue quark, y la explicación de Gell-Mann fue que la palabra venía de una frase de Fynnegan’s Wake de James Joyce; “¡Tres quarks para Muster Mark!”. Y, efectivamente así es. A esas partículas les gusta estar las tres juntas. Todos los bariones están formados por tres quarks, mientras que los mesones están formados por un quark y un antiquark.

Los propios quarks forman un grupo SU(3) aún más sencillo. Los llamaremos “arriba (u)”, “abajo” (d), y “extraño” (s). Las partículas “ordinarias” contienen solamente quarks u y d. Los hadrones “extraños” contienen uno o más quarks s (o antiquarks ŝ).

La composición de quarks de espín 3/2 se puede ver en la tabla 5. La razón por la que los bariones de espín ½ sólo forman un octete es más difícil de explicar. Está relacionada con el hecho de que en estos estados, al menos dos de los quarks tienen que ser diferentes unos de otros.

George Zweig.jpg

                                                                               El Físico George Zweig

Realmente, la idea de que los hadrones estuvieran formados por ladrillos fundamentales sencillos había sido también sugerida por otros. George Zweig, también en el CalTech, en Pasadena, había tenido la misma idea. Él había llamado a los bloques constitutivos “ases!, pero es la palabra “quark” la que ha prevalecido. La razón por la que algunos nombres científicos tienen más éxito que otros es a veces difícil de comprender.

Pero en esta teoría había algunos aspectos raros. Aparentemente, los quarks (o ases) siempre existen en parejas o tríos y nunca se han visto solos. Los experimentadores habían intentado numerosas veces detectar un quark aislado en aparatos especialmente diseñados para ello, pero ninguno había tenido éxito.

Loa quarks –si se pudieran aislar- tendrían propiedades incluso más extrañas. Por ejemplo, ¿cuáles serían sus cargas eléctricas? Es razonable suponer que tanto los quarks u como los quarks s y d deban tener siempre la misma carga. La comparación de la tabla 5 con la tabla 2 sugiere claramente que los quarks d y s tienen carga eléctrica -1/3 y el quark u tiene carga +2/3. Pero nunca se han observado partículas que no tengan carga múltiplo de la del electrón o de la del protón. Si tales partículas existieran, sería posible detectarlas experimentalmente. Que esto haya sido imposible debe significar que las fuerzas que las mantienen unidas dentro del hadrón son necesariamente increíblemente eficientes.

Resultado de imagen de Los Quarks invisibles

Aunque con la llegada de los quarks se ha clarificado algo más la flora y la fauna de las partículas subatómicas, todavía forman un conjunto muy raro, aún cuando solamente unas pocas aparezcan en grandes cantidades en el universo (protones, neutrones, electrones y fotones). Como dijo una vez Sybren S. de Groot cuando estudiaba neutrinos, uno realmente se enamora de ellos. Mis estudiantes y yo amábamos esas partículas cuyo comportamiento era un gran misterio. Los leptones, por ser casi puntuales, son los más sencillos, y por tener espín se ven afectados por la interacción que actúa sobre ellos de forma muy complicada, pero la interacción débil estaba bastante bien documentada por entonces.

Los hadrones son mucho más misteriosos. Los procesos de choque entre ellos eran demasiado complicados para una teoría respetable. Si uno se los imagina como pequeñas esferas hachas de alguna clase de material, aún quedaba el problema de entender los quarks y encontrar la razón por la que se siguen resistiendo a los intentos de los experimentadores para aislarlos.

emilio silvera

Si queréis saber más sobre el tema, os recomiendo leer el libro Partículas de Gerard ´t Hooft

Los Quarks invisibles

Autor por Emilio Silvera    ~    Archivo Clasificado en Mecánica cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Una vez que se ha puesto orden entre las numerosas especies de partículas, se puede reconocer una pauta. Igual que Dimitri Ivanovich Mendeleev descubrió el sistema periódico de los elementos químicos en 1869, así también se hizo visible un sistema similar para las partículas. Esta pauta la encontraron independientemente el americano Murray Gell-Mann y el israelí Yuval Ne’eman. Ocho especies de mesones, todos con el mismo espín, u ocho especies de bariones, con el mismo espín, se podían reagrupar perfectamente en grupos que llamaremos multipletes. El esquema matemático correspondiente se llama SU(3). Grupletes de ocho elementos forman un octete “fundamental”. Por esta razón Gell-Mann llamó a esta teoría el “óctuplo camino”. Lo tomó prestado del budismo de acuerdo con el cual el camino hacia el nirvana es el camino óctuplo.

Pero las matemáticas SU(3) también admiten multipletes de diez miembros. Cuando se propuso este esquema se conocían nueve bariones con espín 3/2. Los esquemas SU(3) se obtienen al representar dos propiedades fundamentales de las partículas, la extrañeza S frente al isoespín I₃ , en una gráfica.

Imagen de trazas en la cámara de burbujas del primer evento observado incluyendo bariones Ω, en el Laboratorio Nacional Brookhaven.

De esta manera, Gell-Mann predijo un décimo barión, el omega-menos (Ω¯), y pudo estimar con bastante precisión su masa porque las masas de los otros nueve bariones variaban de una forma sistemática en el gráfico (también consiguió entender que las variaciones de la masa eran una consecuencia de una interacción simple). Sin embargo, estaba claro que la Ω¯, con una extrañeza S = -3, no tenía ninguna partícula en la que desintegrarse que no estuviera prohibida por las leyes de conservación de la interacción fuerte. De modo que, la Ω¯ sólo podía ser de tan sólo 10¯²³ segundos como los demás miembros del multiplete, sino que tenía que ser del orden de 10¯¹⁰ segundos. Consecuentemente, esta partícula debería viajar varios centímetros antes de desintegrarse y esto la haría fácilmente detectable. La Ω¯ fue encontrada en 1964 con exactamente las mismas propiedades que había predicho Gell-Mann.

Se identificaron estructuras multipletes para la mayoría de los demás bariones y mesones y Gell-Mann también consiguió explicarlas. Sugirió que los mesones, igual que los bariones, debían estar formados por elementos constitutivos “más fundamentales aún”. Gell-Mann trabajaba en el Instituto de Tecnología de California en Pasadena (CalTech), donde conversaba a menudo con Richard Feynman. Eran ambos físicos famosos pero con personalidades muy diferentes. Gell-Mann, por ejemplo, es conocido como un entusiasta observador de Pájaros, familiarizado con las artes y la literatura y orgulloso de su conocimiento de lenguas extranjeras. Feynman fue un hombre hecho a sí mismo, un analista riguroso que se reía de cualquier cosa que le recordara la autoridad establecida. Hay una anécdota que parece no ser cierta de hecho, pero que me parece tan buena que no puedo evitar el contarla; podía haber sucedido de esta forma. Gell-Mann le dijo a Feynman que tenía un problema, que estaba sugiriendo un nuevo tipo de ladrillos constitutivos de la materia y que no sabía qué nombre darles. Indudablemente debía haber de haber pensado en utilizar terminología latina o griega, como ha sido costumbre siempre en la nomenclatura científica. “Absurdo”, le dijo Feynman; “tú estás hablando de cosas en las que nunc ase había pensado antes. Todas esas preciosas pero anticuadas palabras están fuera de lugar. ¿Por qué no los llamas simplemente “shrumpfs”, “quacks” o algo así?”.

Cuando algún tiempo después le pregunté a Gell-Mann, éste negó que tal conversación hubiera tenido lugar. Pero la palabra elegida fue quark, y la explicación de Gell-Mann fue que la palabra venía de una frase de Fynnegan’s Wake de James Joyce; “¡Tres quarks para Muster Mark!”. Y, efectivamente así es. A esas partículas les gusta estar las tres juntas. Todos los bariones están formados por tres quarks, mientras que los mesones están formados por un quark y un antiquark.

Los propios quarks forman un grupo SU(3) aún más sencillo. Los llamaremos “arriba (u)”, “abajo” (d), y “extraño” (s). Las partículas “ordinarias” contienen solamente quarks u y d. Los hadrones “extraños” contienen uno o más quarks s (o antiquarks ŝ).

La composición de quarks de espín 3/2 se puede ver en la tabla 5. La razón por la que los bariones de espín ½ sólo forman un octete es más difícil de explicar. Está relacionada con el hecho de que en estos estados, al menos dos de los quarks tienen que ser diferentes unos de otros.

Realmente, la idea de que los hadrones estuvieran formados por ladrillos fundamentales sencillos había sido también sugerida por otros. George Zweig, también en el CalTech, en Pasadena, había tenido la misma idea. Él había llamado a los bloques constitutivos “ases!, pero es la palabra “quark” la que ha prevalecido. La razón por la que algunos nombres científicos tienen más éxito que otros es a veces difícil de comprender.

Pero en esta teoría había algunos aspectos raros. Aparentemente, los quarks (o ases) siempre existen en parejas o tríos y nunca se han visto solos. Los experimentadores habían intentado numerosas veces detectar un quark aislado en aparatos especialmente diseñados para ello, pero ninguno había tenido éxito.

Loa quarks –si se pudieran aislar- tendrían propiedades incluso más extrañas. Por ejemplo, ¿cuáles serían sus cargas eléctricas? Es razonable suponer que tanto los quarks u como los quarks s y d deban tener siempre la misma carga. La comparación de la tabla 5 con la tabla 2 sugiere claramente que los quarks d y s tienen carga eléctrica -1/3 y el quark u tiene carga +2/3. Pero nunca se han observado partículas que no tengan carga múltiplo de la del electrón o de la del protón. Si tales partículas existieran, sería posible detectarlas experimentalmente. Que esto haya sido imposible debe significar que las fuerzas que las mantienen unidas dentro del hadrón son necesariamente increíblemente eficientes.

Aunque con la llegada de los quarks se ha clarificado algo más la flora y la fauna de las partículas subatómicas, todavía forman un conjunto muy raro, aún cuando solamente unas pocas aparezcan en grandes cantidades en el universo (protones, neutrones, electrones y fotones). Como dijo una vez Sybren S. de Groot cuando estudiaba neutrinos, uno realmente se enamora de ellos. Mis estudiantes y yo amábamos esas partículas cuyo comportamiento era un gran misterio. Los leptones, por ser casi puntuales, son los más sencillos, y por tener espín se ven afectados por la interacción que actúa sobre ellos de forma muy complicada, pero la interacción débil estaba bastante bien documentada por entonces.

Los hadrones son mucho más misteriosos. Los procesos de choque entre ellos eran demasiado complicados para una teoría respetable. Si uno se los imagina como pequeñas esferas hachas de alguna clase de material, aún quedaba el problema de entender los quarks y encontrar la razón por la que se siguen resistiendo a los intentos de los experimentadores para aislarlos.

emilio silvera

Si queréis saber más sobre el tema, os recomiendo leer el libro Partículas de Gerard ´t Hooft

¿La teoría cuántica y la Gravedad, dentro de las cuerdas

Autor por Emilio Silvera    ~    Archivo Clasificado en Mecánica cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

                 Sí, a veces la Física, parece un Carnaval. Imaginamos universos que… ¿serán posibles?

Las teorías de cuerdas [TC's] no son una invención nueva, ni mucho menos. La primera TC se inventó a finales de los años sesenta del siglo XX en un intento para encontrar una teoría para describir la interacción fuerte. La idea medular consistía en que partículas como el protón y el neutrón podían ser consideradas como ondas de «notas de una cuerda de violín». La interacción fuerte entre las partículas correspondería a fragmentos de cuerda que se extenderían entre pequeños pedacitos de cuerda, como las telas que forman algunos simpáticos insectos. Para que esta teoría proporcionase el valor observado para la interacción fuerte entre partículas, las cuerdas tendrían que ser semejantes a las de un violín, pero con una tensión de alrededor de unas diez toneladas.

La primera expresión de las TC’s fue desarrollada por Jöel Scherk, de París, y John Schwuarz, del Instituto de Tecnología de California, quienes en el año 1974 publicaron un artículo en el que demostraban que la TC podía describir la fuerza gravitatoria, pero sólo si la tensión en la cuerda se tensiometrara alrededor de un trillón de toneladas métricas. Las predicciones de la teoría de cuerdas serían las mismas que las de la relatividad general a escala de longitudes normales, pero diferirían a distancias muy pequeñas, menores que una trillonésima de un cm. Claro está, que en esos años, no recibieron mucha atención por su trabajo.

Ahora se buscan indicios de la teoría de cuerdas en los grandes aceleradores de partículas donde parece que algunos indicios nos dicen que se va por el buen camino, sin embargo, nuestros aceleradores más potentes necesitarían multiplicar por un número muy elevado su potencia para poder, comprobar la existencia de las cuerda situadas a una distancia de 10-35 m, lugar al que nos será imposible llegar en muchas generaciones. Sin embargo, en las pruebas que podemos llevar a cabo en la actualidad, aparecen indicios de una partlicula de espín 2 que todos asocian con el esquivo Gravitón, y, tal indicio, nos lleva a pensar que, en la teoría de supercuerdad, está implícita una Teoría Cuántica de la Gravedad.

Los motivos que tuvo la comunidad científica, entonces, para no brindarle la suficiente atención al trabajo de Scherk y Schwuarz, es que, en esos años, se consideraba más viable para describir a la interacción fuerte a la teoría basada en los quarks y los gluones, que parecía ajustarse mucho mejor a las observaciones. Desafortunadamente, Scherk murió en circunstancias trágicas (padecía diabetes y sufrió un coma mientras se encontraba solo en su estudio). Así, Schwuarz se quedó solo, en la defensa de la teoría de cuerdas, pero ahora con un valor tensiométrico de las cuerdas mucho más elevado.

Pero con los quarks, gluones y también los leptones, en la consecución que se buscaba, los físicos entraron en un cuello de botella. Los quarks resultaron muy numerosos y los leptones mantuvieron su número e independencia existencial, con lo cual seguimos con un número sustancialmente alto de partículas elementales (60), lo que hace que la pregunta ¿son estos los objetos más básicos?

Si esos sesenta objetos fuesen los más básicos, entonces también aflora otra pregunta ¿por qué son como son y por qué son tantos? Los físicos quisieran poder decir «salen de esto», o «salen de esto y aquello», mencionar dos principios bien fundamentales y ojalá tan simples que puedan ser explicados a un niño. La respuesta «porque Dios lo quiso así» posiblemente a muchos les cause «lipotimia»,  ya que esa respuesta nos lleva a reconocer nuestra ignorancia y, además, la respuesta que esperamos no pertenece al ámbito de la religión. Por ahora, ¿cuál es la última que puede dar la ciencia?

El cuello de botella incentivó a que se encendiera una luz de esperanza. En 1984 el interés por las cuerdas resucitó de repente. Se desempolvaron las ideas de Kaluza y Klein, como las que estaban inconclusas de Scherk y Schwuarz. Hasta entonces, no se habían hecho progresos sustanciales para explicar los tipos de partículas elementales que observamos, ni tampoco se había logrado establecer que la supergravedad era finita.

El ser humano –en función de su naturaleza– cuando se imagina algo muy pequeño, piensa en un puntito de forma esférica. Los físicos también son seres de este planeta y, para ellos, las partículas elementales son como puntitos en el espacio, puntos matemáticos, sin extensión. Son sesenta misteriosos puntos y la teoría que los describe es una teoría de puntos matemáticos. La idea que sugieren las TC’s es remplazar esos puntos por objetos extensos, pero no como esferitas sino más bien como cuerdas. Mientras los puntos no tienen forma ni estructura, las cuerdas tienen longitud y forma, extremos libres como una coma “,” (cuerda abierta), o cerradas sobre sí misma como un circulito. Si el punto es como una esferita inerte de la punta de un elastiquito, la cuerda es el elástico estirado y con él se pueden hacer círculos y toda clase de figuras. Está lleno de posibilidades.

Muchas son las imágenes que se han elaborado para representar las cuerdas y, como nadie ha visto nunca ninguna, cualquiera de ellas vale para el objetivo de una simple explicación y, las cuerdas que se han imaginado han tomado las más pintorescas conformaciones para que, en cada caso, se adapten al modelo que se expone.

diferencia entre un punto y una coma. Según la teoría de cuerdas importa, y mucho. Por su extensión, a diferencia del punto, la cuerda puede vibrar. Y hacerlo de muchas maneras, cada modo de vibración representando una partícula diferente. Así, una misma cuerda puede dar origen al electrón, al fotón, al gravitón, al neutrino y a todas las demás partículas, según cómo vibre. Por ello, la hemos comparado con la cuerda de un violín, o de una guitarra, si se quiere.

Al dividir la cuerda en dos, tres, cuatro, cinco, o más partes iguales, se generan las notas de la escala musical que conocemos, o técnicamente, los armónicos de la cuerda. En general, el sonido de una cuerda de guitarra o de piano es una mezcla de armónicos. Según la mezcla, la calidad (timbre) del sonido. Si distinguimos el tono de estos instrumentos, es por la «receta» de la mezcla en cada caso, por las diferentes proporciones con que cada armónico entra en el sonido producido. Pero, también es posible hacer que una buena cuerda vibre en uno de esos armónicos en particular, para lo cual hay que tocarla con mucho cuidado. Los concertistas lo saben, y en algunas obras como los conciertos para violín y orquesta, usan este recurso de «armónicos». Así, la naturaleza, con su gran sabiduría y cuidado para hacer las cosas, produciría electrones, fotones, gravitones, haciendo vibrar su materia más elemental, esa única y versátil cuerda, en las diversas (infinitas) formas que la cuerda permite.

Una partícula ocupa un punto del espacio en todo momento. Así, su historia puede representarse mediante una línea en el espaciotiempo que se le conoce como «línea del mundo». Por su parte, una cuerda ocupa una línea en el espacio, en cada instante de tiempo. Por tanto, su historia en el espaciotiempo es una superficie bidimensional llamada la «hoja del mundo». Cualquier punto en una hoja del mundo puede ser descrito mediante dos números: uno especificando el tiempo y el otro la posición del punto sobre la cuerda. Por otra parte, la hoja del mundo es una cuerda abierta como una cinta; sus bordes representan los caminos a través del espaciotiempo (flecha roja) de los extremos o comas de la cuerda (figura 12.05.03.02). La hoja del mundo de una cuerda cerrada es un cilindro o tubo (figura 12.05.03.03); una rebanada transversal del tubo es un círculo, que representa la posición de la cuerda en un momento del tiempo.

No cabe duda que, de ser ciertas las TC’s, el cuello de botella queda bastante simplificado. Pasar de sesenta objetos elementales a una sola coma o circulito es un progreso notable. Entonces, ¿por qué seguir hablando de electrones, fotones, quarks, y las demás?

Que aparentemente las cosas se simplifican con las TC’s, no hay duda, pero desafortunadamente en física las cosas no siempre son como parecen. Para que una teoría sea adoptada como la mejor, debe pasar varias pruebas. No basta con que simplifique los esquemas y sea bella. La teoría de las cuerdas está –se puede decir– en pañales y ha venido mostrado distintas facetas permeables. Surgen problemas, y se la deja de lado; se solucionan los problemas y una avalancha de trabajos resucitan la esperanza. En sus menos de treinta años de vida, este vaivén ha ocurrido más de una vez.

Uno de los problemas que más afecta a la cuerda está ligado con su diminuto tamaño. Mientras más pequeño algo, más difícil de ver. Es una situación que se agudiza en la medida que se han ido corrigiendo sus permeabilidades. En sus versiones más recientes, que se llaman supercuerdas, son tan superpequeñas que las esperanzas de ubicarlas a través de un experimento son muy remotas. Sin experimentos no podemos comprobar sus predicciones ni saber si son correctas o no. Exagerando, es como una teoría que afirmara que los angelitos del cielo tienen alitas. ¿Quién la consideraría seriamente?

La propia base conceptual de la teoría comporta problemas. Uno de ellos, es el gran número de dimensiones que se usan para formularla. En algunos casos se habla de 26 o, en el mejor, de 10 dimensiones para una cuerdita: espacio (son 3), tiempo (1) y otras seis (o 22) más, que parecen estar enroscadas e invisibles para nosotros. Por qué aparecieron estas dimensiones adicionales a las cuatro que nos son familiares y por qué se atrofiaron en algún momento, no lo sabemos. También, la teoría tiene decenas de miles de alternativas aparentemente posibles que no sabemos si son reales, si corresponden a miles de posibles universos distintos, o si sólo hay una realmente posible. Algunas de estas versiones predicen la existencia de 496 fuerzones, partículas como el fotón, que transmiten la fuerza entre 16 diferentes tipos de carga como la carga eléctrica. Afirmaciones como éstas, no comprobables por la imposibilidad de hacer experimentos, plagan la teoría de cuerdas. Quienes alguna vez intentaron trabajar matemáticamente en las cuerdas, muchas veces deben haber pensado de que lo que estaban calculando más se asemejaba a juegos de ejercicios que la consecución de una base matemática teórica tras objetivo de dar un paso trascendental en el conocimiento de la naturaleza. Ahora, los que tienen puesta su fe en ella suelen afirmar que se trata de una teoría que se desfasó de la natural evolución de la física, que su hallazgo fue un accidente, y no existe aún el desarrollo matemático para formularla adecuadamente.

En las teorías de cuerdas, lo que anteriormente se consideraba partículas, se describe ahora como ondas viajando por las cuerdas, como las notas musicales que emiten las cuerdas vibrantes de un violín. La emisión o absorción de una partícula por otra corresponde a la división o reunión de cuerdas.

 

 

La Teoría de cuerdas trata de incorparar la Gravedad a las otras tres fuerzas y completar asíel panorama actual de la Física de Partículas en el Modelo Estándar en el que sólo están incluídas estas tres interacciones de arriba, la Gravedad queda fuera por surgir infinitos no renormalizables que, desaparecen en la Teoría de supercuerdas de 26 dimensdiones de espacio tiempo para los Bosones y de 10 y 11 dimensiones de espacio tiempo para los Ferniones.

El trabajo que aquí hemos leido lo he obtenido de fuentes diversas y, como tantos otros, nos dice más o menos lo que todos. La realidad de la Teoría de supercuerdas está en que no podemos llegar a ese límite necesario de los 10-35 m, donde supuestamente, está instalada la cuerda, y, como llegar a esa distancia nos exige una energía de 1019 GeV con la que no podemos ni soñar. Seguirán, por mucho tiempo, las especulaciones y cada cual, tendrá su idea, su propia teoría, toda vez que, ninguna de ellas podrá ser verificadas y mientras eso sea así (que lo es), todas las teorías tendrán la posibilidad de ser refrendadas…algún día.

 

 

 

  • ¿Dónde estarán las respuestas?

 

Sin embargo, una cosa es cierta, es la única teoría, la de supercuerdas, que nos da cierta garantía de que vamos por el buen camino, en su desarrollo aparecen indicios confirmados por los experimentos, como por ejemplo, la aparici´çon de una partícula de espín 2, el Gravitón que nos lleva a pensar que, en la teoría de supercuerdas está integrada una teoría Cuántica de la Gravedad que nos, podrá llevar, hasta esos primeros momentos del Big Bang que ahora quedan tan oscuros a la vista de los observadores y, de la misma manera, nos dejará entrar en la Singularidad de un Agujero Negro para poder ver (al fin) lo que allí pueda haber, qué clase de partículas o de materia se ha podido formar en un material tan extremadamente denso como el de la singularidad.

Habrá que tener paciencia con la Teoría de cuerdas y con el hallazgo tan esperado del Gravitón que nos confirmará, al fín, que la Gravedad como las demás interacciones, también está cuantizada y tiene su Bosón transmisor. De lo que no acabo de estar seguro es…del hecho en sí, de que podamos univer la Gravedad con la cuántica…¡son tan dispares! y habitan en reinos tan diferentes.

emilio silvera