sábado, 23 de septiembre del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Siempre estaremos planteando preguntas

Autor por Emilio Silvera    ~    Archivo Clasificado en Evolución    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

the beginning is near

 

Desde cualquier lugar en el que nos podamos encontrar, nos podemos preguntar: ¿quiénes somos? ¿De dónde venimos? ¿Hacia dónde vamos?

 

Lo cierto es que hemos llegado a un nivel de conocimiento bastante aceptable para tratar de contestar la esas preguntas que, como tantas otras, recibirán respuestas hipotéticas, y supuestas conjeturas que, de ninguna manera, podrán titularse como verdades. Es todo muy complejo, el surgir del Universo se mantiene inmerso en un oscuro torbellino que nos impide “ver” lo que allí pudo pasar, cuando el Universo surgió al espacio en expansión y las energías dieron lugar al nacimiento de los pequeños objetos que llamamos partículas elementales como material primario de todo lo que después se auto-construyó con la ayuda de las fuerzas fundamentales.

Resultado de imagen de Despues de miles de millones de años surgieron las primeras formas de vidaResultado de imagen de Despues de miles de millones de años surgieron las primeras formas de vidaImagen relacionada

Después del surgimiento de las primeras formas de vida, todo pareció estancarse durante un tiempo inimaginablemente largo hasta que la conocida como «explosión del Cámbrico» trajo a todos los géneros de seres vivientes que conocemos en la actualidad. La historia, según los investigadores, pudo empezar con una “explosión” inicial de oxígeno, después de la cual sus niveles fueron decreciendo lentamente durante miles de millones de años, para volver a subir bruscamente entre hace 750 y 550 millones de años. “Creemos que esta recuperación de los niveles de oxígeno llevó a un aumento significativo de metales en los océanos, que a su vez alimentaron la explosión de la vida en el Cámbrico”.

Resultado de imagen de La Vida en el CámbricoImagen relacionada

Rl Cámbrico fue la Época en la que la Vida surgió de manera explosiva. El período Cámbrico, que se incluye dentro de la era paleozoica, produjo el estallido de vida más intenso jamás conocido. La explosión cámbrica dio lugar a la aparición de una increíble diversidad de vida sobre la tierra que incluye muchos de los principales grupos de animales presentes en la actualidad. Entre ellos encontramos a los cordados, al que pertenece el género de los vertebrados (animales con espina dorsal), en el que se incluyen los humanos.

El Silúrico es una división de la escala temporal geológica que pertenece a la Era Paleozoica; esta se divide en seis periodos de los que el Silúrico ocupa el tercer lugar siguiendo al Ordovícico y precediendo al Devónico.  Comenzó hace 444 millones de años y terminó hace 416 millones de años.23​ Debe su nombre a la tribu celta de los Siluros, que vivieron en el sur de Gales.

  •  Formas cónicas con doble pared que yacían adheridas al sustrato. Se incluyen en Porifera  y formaban parte de los primeros arrecifes orgánicos importantes en los que generalmente, el constituyente principal del armazón eran los estromatolitos y algas calcáreas. Se extinguen en el límite Cámbrico inferior-medio.
  • Braguiópodos (suspensívoros): Primero inarticulados y ya en el Cámbrico medio primeros articulados.
  • Conodontos: Dientes cónicos de naturaleza fosfática pertenecientes a cordados.
  • Equinodermos:  También están representados por una gran variedad de clases pero ninguna de ellas se parece a los actuales.
  • Moluscos:  (detritívoros, pacedores y predadores): Muy comunes aunque todavía pequeños y distintos de los actuales, de forma que los moluscos avanzados son poco aparentes o están ausentes. Son los precursores de las clases actuales.
  • Ostrácodos:  Grupo de artrópodos bivalvos que viven en la actualidad.
  • TRilobites: (detritívoros y predadores): Gran radiación adaptativa. La mayoría de las familias paleozoicas aparecieron en el Cámbrico.

 

 

Las faunas de cuerpo blando encontradas en el importante yacimiento del Cámbrico medio en Burgess Shale ,  en la Colu,bia Británica (Montañas rocosas)  incluyen:

Arthropoda.jpgPikaia BW.jpgSpons.jpg

  • Artrópodos
  • Primeros cordados
  • E$sponjas
  • Distintos tipos de gusanos
  • Grupos problemáticos incluidos elementos de la Fauna ediacara.

Otros fósiles de la época son Hallucia, Wiucacia, Pikaiaenia (representante de los primeros cordados), Odontoagriphus y restos de Priapulida. En febrero de 2011 la revista Nature, publicó la descripción de Diania Cactiformis, un fósil del Cámbrico Inferior de gran interés porque presenta apéndices con exoesqueleto articulado, lo que podría indicar que se trata de una especie precursora de los artrópodos.

Hallucinogenia.jpgWiwaxia corrugata.jpg

Todo aquello continuó su imparable evolución y se produjeron muchas mutaciones a lo largo de millones de años, el tiempo cambiante nos trajo nueva atmósfera, más oxígeno y la radiación que llegaba del exterior, más los elementos que las estrellas dejaron en el planeta… Hicieron el resto. Así, llegó la Vida tal como hoy la conocemos.

Resultado de imagen de El surgir de la Vida en el Cámbrico y la evolución posterior

Pasaron muchos millones de años y los cambios que se produjeron en GAIA, trageron a nuevos seres que evolucionaron hacia nosotros.

La búsqueda de los orígenes de los seres humanos y su lugar en el universo ha sido una constante desde la Antigüedad, pero solamente desde hace un siglo y medio nos hemos podido acercar a una comprensión del fenómeno humano, a lo que no es ajeno el avance de la ciencia, (anatomía, biología, genética,…),y que ha llevado a replantearnos no sólo los vínculos con el resto de los seres vivos sino también entre los seres humanos mismos. No obstante, la interpretación de nuestra historia evolutiva ha estado polarizada por un notable androcentrismo, esto es, ha identificado lo masculino con lo humano en general, ignorando el papel clave que ha jugado la hembra humana en la evolución.

Resultado de imagen de La importancia de la Hembra en la Evolución humana

Desde que se podían contemplar estas escenas perdidas en la noche de los tiempos, hemos caminado por este mundo sorteando peligros, pasando calamidades y sobreponiéndonos a los muchos estragos que en el planeta causaron las catástrofes naturales. A pesar de todo eso, aquí estamos y, hemos conseguido llegar a nuestros días.

Resultado de imagen de Descubrimos los átomos y las galaxiasç

Resultado de imagen de Descubrimos los átomos y las galaxiasç

Sí, mucho es lo que nuestra especie ha tenido que pasar para poder llegar a saber de qué están hechas las estrellas, como se formaron los átomos y todos los objetos del Universo,  conseguir el inmenso triunfo de saber lo que hacen las estrellas al fusionar elementos sencillos en otros más complejos, por qué las cosas cambian con el paso del Tiempo, descubrir la Entropía y muchos otros secretos que la Naturaleza escondía muy profundamente… Los logros alcanzados por la Humanidad son tan grandes que, mirando hacia atrás en el tiempo y estudiando todos y cada uno de los hechos que nos trajeron hasta el presente, nos hace pensar que, si el futuro depende de lo que hagamos hoy, deberíamos andar con mucho cuidado, no andar a la ligera para estropear lo que tantos esfuerzos costó.

emilio silvera

Somos fruto de la evolución del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Evolución    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Imagenes para el amor de tu vida (Recientes)2

 

Una Galaxia es simplemente una parte pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, toda forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras.

Imagen relacionada

                    Sí, el Universo es dinámico y evoluciona con el paso del Tiempo.

Pocas dudas pueden caber a estas alturas del hecho de que poder estar hablando de estas cuestiones, es un milagro en sí mismo. Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

La conciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.

Resultado de imagen de Los procesos neuronales y la evolución

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que, de momento, los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.

Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas. Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que ahora presentimos.

El carácter especial de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que, desde este punto de vista, puede considerarse un ente digno del estudio científico perfectamente legítimo.

Resultado de imagen de La conciencia

La conciencia plantea un problema especial que no se encuentra en otros dominios de la ciencia. En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes. Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica. Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo. Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.)

Resultado de imagen de La conciencia

En el caso de la conciencia, sin embargo, nos encontramos con una simetría. Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca. No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada. Lo que realmente queremos hacer es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro interior: una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes. Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Tomas Negel, saber qué se siente al ser un murciélago. Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que nos hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales. En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía.

Ninguna descripción, por prolija que sea, logrará nunca explicar cabalmente la experiencia subjetiva. Muchos filósofos han utilizado el ejemplo del color para explicar este punto. Ninguna explicación científica de los mecanismos neuronales de la discriminación del color, aunque sea enteramente satisfactorio, bastaría para comprender cómo se siente el proceso de percepción de un color. Ninguna descripción, ninguna teoría, científica o de otro tipo, bastará nunca para que una persona daltónica consiga experimentar un color.

Resultado de imagen de La visión daltónica

El daltónico puede ver un paisaje de manera muy distinta al que tiene la visión normal

En un experimento mental filosófico, Mary, una neurocientífica del futuro que es daltónica, lo sabe todo acerca del sistema visual y el cerebro, y en particular, la fisiología de la discriminación del color. Sin embargo, cuando por fin logra recuperar la visión del color, todo aquel conocimiento se revela totalmente insuficiente comparado con la auténtica experiencia del color, comparado con la sensación de percibir el color. John Locke vio claramente este problema hace mucho tiempo.

Pensemos por un momento que tenemos un amigo ciego al que contamos lo que estamos viendo un día soleado del mes de abril: El cielo despejado, limpio y celeste, el Sol allí arriba esplendoroso y cegador que nos envía su luz y su calor, los árboles y los arbustos llenos de flores de mil colores que son asediados por las abejas, el aroma y el rumor del río, cuyas aguas cantarinas no cesan de correr transparentes, los pajarillos de distintos plumajes que lanzan alegres trinos en sus vuelos por el ramaje que se mece movido por una brisa suave, todo esto lo contamos a nuestro amigo ciego que, si de pronto pudiera ver, comprobaría que la experiencia directa de sus sentidos ante tales maravillas, nada tiene que ver con la pobreza de aquello que le contamos, por muy hermosas palabras que para hacer la descripción empleáramos.

La mente humana es tan compleja que, no todos ante la misma cosa, vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De entre diez personas solo coinciden tres, los otro siete divergen en la apreciación de lo que el dibujo o la figura les sugiere.

Resultado de imagen de Libertad de pensamiento y libre albedrío

Esto nos viene a demostrar la individualidad de pensamiento, el libre albedrío para decidir. Sin embargo, la misma prueba, realizada en grupos de conocimientos científicos similares y específicos: Físicos, matemáticos, químicos, etc., hace que el número de coincidencias sea más elevada, más personas ven la misma respuesta al problema planteado. Esto nos sugiere que, la mente está en un estado virgen que cuenta con todos los elementos necesarios para dar respuestas pero que necesita experiencias y aprendizaje para desarrollarse.

¿Debemos concluir entonces que una explicación científica satisfactoria de la conciencia queda para siempre fuera de nuestro alcance?

Imagen relacionada

Libre, lo que se dice libre… ¡Nunca lo seremos! Sólo pequeñas parcelas de libertad tenemos

¿O es de alguna manera posible, romper esa barrera, tanto teórica como experimental, para resolver las paradojas de la conciencia?

La respuesta a estas y otras preguntas, en mi opinión, radica en reconocer nuestras limitaciones actuales en este campo del conocimiento complejo de la mente, y, como en la Física cuántica, existe un principio de incertidumbre que, al menos de momento (y creo que en muchos cientos de años), nos impide saberlo todo sobre los mecanismos de la conciencia y, aunque podremos ir contestando a preguntas parciales, alcanzar la plenitud del conocimiento total de la mente no será nada sencillo, entre otras razones está el serio inconveniente que suponemos nosotros mismos, ya que, con nuestro que hacer podemos, en cualquier momento, provocar la propia destrucción.

Imagen relacionada

Las respuestas tienen que ser conquistadas, y, el saber llega con el trabajo y el estudio que hace evolucionar el sistema neuronal que recicla los nuevos conocimientos y los archiva para cuando nos sea necesario utilizarlos.

Dentro de nuestros cerebros están todos los objetos del Universo y, también, todas las respuestas a las preguntas que planteamos y npo han tenido respuestas. Sin embargo, es sólo cosa de tiempo, a medida que la evolución avance, las respuestas llegaran con el conocimiento de cómo funciona la Naturaza, la madre de todo lo que pasa a nuestro alrededor y también, de lo que, de momento, no podemos ver.

Una cosa si está clara: ninguna explicación científica de la mente podrá nunca sustituir al fenómeno real de lo que la propia mente pueda sentir. ¿Cómo se podría comparar la descripción de un gran amor con sentirlo, vivirlo física y sensorialmente hablando?

Hay cosas que no pueden ser sustituidas, por mucho que los analistas y especialistas de publicidad y marketing se empeñen, lo auténtico siempre será único. Si acaso, el que más se puede aproximar, a esa verdad,  es el poeta.

emilio silvera

Mutaciones con el transcurrir del tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Evolución    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

La transferencia de genes entre especies creó el mundo moderno

La “revolución del oxígeno” que ocurrió hacia la mitad de la historia de la Tierra, mucho después de que hubiera vida, se debió a un acontecimiento genético

Patrones de formaciones de cianobacterias y travertino, en una zona del Parque de Yellowstone, (EE UU).

 

 

Patrones de formaciones de cianobacterias y travertino, en una zona del Parque de Yellowstone, (EE UU). Peter Unger Getty Images / Lonely Planet Images

Así como los historiadores piensan que conocer los siglos pasados es esencial para entender el presente, asimismo creen los evolucionistas que conocer la historia de la Tierra es la clave para comprender los procesos que nos han creado. Los biólogos saben que todos venimos de microbios humildes como las bacterias y las arqueas; y que, hacia la mitad de la historia del planeta, bacterias y arqueas se asociaron para crear la célula de la que estamos hechos por entero, la célula eucariota, el origen de la modernidad biológica. Los geólogos, entretanto, están intentando averiguar por qué. La gran pregunta.

Para los geólogos, el acontecimiento más importante de la historia de la Tierra es la “revolución del oxígeno” (great oxidation event), que transformó el planeta hacia la mitad de su historia (hace unos 2.300 millones de años). Este incremento del oxígeno atmosférico alcanzó unas cifras muy modestas (solo una pequeña fracción de los niveles actuales, que son del 21% de la atmósfera), pero dejó una huella profunda en el planeta, cuyas evidencias geológicas son aplastantes en los estratos de todo el mundo. ¿De dónde salió ese oxígeno?

F1 (34)

Hay un acuerdo general en que ese oxígeno es producto de las cianobacterias, o bacterias fotosintéticas. Pero el nuevo estudio revela que no es así

Hay un acuerdo general en que ese oxígeno es producto de las cianobacterias, o bacterias fotosintéticas. La fotosíntesis es la energía fotovoltaica de la biología, el proceso que genera energía útil para la célula a partir de la luz solar. La luz se utiliza para romper el agua (H2O), y la célula utiliza el hidrógeno (H) para generar energía y libera el oxígeno (O) a la atmósfera. A las cianobacterias se las supone muy antiguas –tal vez entre las más antiguas de la Tierra— y algunos científicos piensan que su actividad lenta y tenaz acabó generando la revolución del oxígeno.

Un nuevo trabajo del geólogo Woodward Fisher y sus colegas del CalTech (Instituto Tecnológico de California en Pasadena) y la Universidad de Queensland, Australia, revela que no es así: las cianobacterias, o sus precursores, carecían por completo de la compleja habilidad de la fotosíntesis durante la primera mitad de la historia de la Tierra. Solo la adquirieron muy tarde, ya casi en tiempos de la revolución del oxígeno, y solo la adquirieron comprando los genes de otros microbios (técnicamente, transferencia genética horizontal, o HGT en sus siglas inglesas).

La constitución celular, tal como conocemos, no siempre se da en todas las masas vivientes, sino que a veces se encuentran organismos constituidos por una masa plasmática con varios núcleos sumergidos en ella, no apreciándose límites celulares: esto constituye un plasmodio. Una masa celular con varios núcleos.

Fisher y sus colegas, que presentan su investigación en Science, están asombrados por la cercanía de esas dos fechas: la del origen relativamente tardío y rápido de las cianobacterias fotosintéticas, y la del “gran evento de oxidación”, o revolución del oxígeno que cambió el mundo. Muestran que la explicación más parsimoniosa de esa coincidencia es que la revolución del oxígeno se deba a la evolución de las bacterias fotosintéticas. Una causa biológica para un fenómeno geológico. Más aún: para el ‘gran’ fenómeno geológico de la historia del planeta.

Desde Darwin, los biólogos se suelen sentir más cómodos con los fenómenos lentos y graduales que con las (relativas) brusquedades que revela a menudo el registro geológico. El evolucionismo clásico se basa en la pequeña acumulación de variaciones mínimas, cada una con una pequeña ventaja en el entorno del momento, hasta consolidar un sistema complejo prodigioso como el ojo del águila, el cerebro humano o la fotosíntesis. Pero también hay otros mecanismos evolutivos más rápidos, y la transferencia de genes entre unas especies de bacterias y otras es el mejor demostrado de ellos.

Resultado de imagen de Las cianobacterias carecían por completo de la compleja habilidad de la fotosíntesis durante la primera mitad de la historia de la TierraResultado de imagen de Las cianobacterias carecían por completo de la compleja habilidad de la fotosíntesis durante la primera mitad de la historia de la Tierra

 

 

Las cianobacterias carecían por completo de la compleja habilidad de la fotosíntesis durante la primera mitad de la historia de la Tierra. Y solo la adquirieron ‘comprando los genes’ de otros microbios

Sin embargo, que el origen de la revolución del oxígeno sea un suceso relativamente rápido de transferencia genética, o compra de genes por las cianobacterias, plantea una nueva cuestión clave: ¿quién se los vendió? ¿Qué otro microorganismo tuvo la gentileza de donar sus genes fotosintéticos al precursor de las cianobacterias y cambiar así el mundo?

“Esa es una gran pregunta”, responde en un correo electrónico el jefe de la investigación, Woodward Fisher, “pero no tiene respuesta por el momento; es bien notable que ahora podamos afirmar con certeza que aquel suceso de transferencia de genes fue importante [para la revolución del oxígeno], pero el taxón de bacterias que donó los genes fotosintéticos no está claro todavía”.

“Es tentador”, prosigue el científico del CalTech, “pensar que alguno de los otros filos [grandes grupos bacterianos] capaces de un tipo de fotosíntesis que no produce oxígeno [fotosíntesis anoxigénica], y hay seis para elegir, donaron los genes, y luego las cianobacterias receptoras embellecieron ese metabolismo al añadirle la habilidad de romper el agua y producir oxígeno; pero si miras en detalle las relaciones evolutivas entre esos grupos, no obtienes una historia clara de la evolución de la fotosíntesis”.

La investigación muestra más bien que la fotosíntesis es lo que los evolucionistas llaman un “carácter derivado”, una propiedad que no es ancestral en las cianobacterias, y que por tanto no parece que puedan haber ido perfeccionando gradualmente con el paso del tiempo, sino una que han adquirido tarde y de forma secundaria. Y eso en los seis grandes grupos bacterianos que muestran algún tipo de fotosíntesis, aunque no produzca oxígeno. Todos ellos parecen haber comprado sus genes fotovoltaicos. ¿Quién se los vendió?

 

 

A pesar del mito persistente, el oxígeno no es una precondición de la vida. La vida prosperó durante la primera mitad de su historia en la completa ausencia de oxígeno. Los culpables de que haya oxígeno en nuestro planeta son seres vivos

“Puede que descubramos más grupos de microbios fotosintéticos”, responde Fisher, “y los enfoques metagenómicos [como sacar un cubo de agua del mar y secuenciar el ADN de todo lo que haya allí] dejan claro que solo hemos empezado a arañar la superficie de la diversidad microbiana; pero igual de posible es que el grupo de microbios que donó los genes fotosintéticos se extinguiera hace mucho”. Un triste final para el hacedor de nuestro mundo, ¿no es cierto?

Pese a lo fragoroso de su nombre, la gran revolución del oxígeno no alcanzó unos valores ni parecidos a los actuales (21% de la atmósfera). Eso solo ocurrió hace unos 600 millones de años, en los prolegómenos de la explosión cámbrica, el corto periodo de innovación evolutiva que nos vio nacer a todos los animales.

A pesar del mito persistente, el oxígeno no es una precondición de la vida. La vida prosperó durante la primera mitad de su historia en la completa ausencia de ese gas. Los culpables de que haya oxígeno en nuestro planeta son seres vivos. Y tal vez estén ya extintos.

«La cara humana ya está cambiando»

Autor por Emilio Silvera    ~    Archivo Clasificado en Evolución    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ABC Ciencia

Timothy Bromage, paleoantropólogo

El paleoantropólogo Timothy Bromage describe cómo ha evolucionado nuestro rostro al tiempo que lo ha hecho el cerebro

 

Timothy Bromage, paleoantropólogo de la Universidad de Nueva York

 

Timothy Bromage, paleoantropólogo de la Universidad de Nueva York – Ernesto Agudo

Resultado de imagen de Una cara humana perfecta
Todo evoluciona en función del medio y las necesidades

 

 

«La cara humana es única», dice Timothy Bromage, paleoantropólogo de la Universidad de Nueva York. El científico ha participado en un simposio internacional organizado por la Fundación Ramón Areces hace unos días en Madrid para explicar cómo esta parte del cuerpo, capaz de expresar un sin fin de emociones, se ha transformado a medida que lo hacía el cerebro.

-¿Cuándo podemos hablar de la aparición de un rostro que parece humano?

Resultado de imagen de homo antecessor caracteristicas

-Si miramos en el registro fósil, encontramos al Homo antecessor (900.00 años), descubierto en la Gran Dolina, en el yacimiento de Atapuerca (Burgos), que tiene aspectos de desarrollo facial que, curiosamente, son muy parecidos a los de los humanos modernos. La forma en la que está organizada la cara en relación con el cerebro se parece más a la nuestra que a la de otros homínidos hallados en la cercana Sima de los Huesos, más similares a los neandertales, como el heidelbergensis.

Resultado de imagen de heidelbergensis

                                      Heidelbergensis

-¿Y la cara moderna, la nuestra?

-Las raíces de la cara que tenemos ahora comenzaron hace unos 100.000 años, probablemente un poco más. Si miras esa cara no es exactamente como la nuestra actual, pero las raíces se retraen a entonces. La cara humana moderna tiene entre 35.000 y 25.000 años. Su primer dueño fue, con toda seguridad, un africano. Es curioso, porque puedes ver algunos de esos rasgos humanos en homínidos tempranos y no en otros más tardíos, como los neandertales.

Resultado de imagen de La cara de un africano de hace 100.000 años

Neandertales y sapiens se hibridaron hace más de 100.000 años

-¿Cuál es la característica más distintiva de la cara humana?

-La estructura de nuestra cara ha crecido debajo del cerebro (en vertical) en vez de por delante. De hecho, y en realidad no es sorprendente, la cara humana moderna crece de esta forma (señala su cara de delante hacia atrás). Podemos estudiar esa evidencia en los fósiles.

-Y, aparte del antecessor, ¿es completamente diferente de la del resto de homos?

Resultado de imagen de Las primeras especies de homo, en sus orígenes

-Las primeras especies de homo, en sus orígenes, tenían caras muy pronunciadas, mandíbulas salientes, dientes más grandes… Pero luego hubo una reducción de la cara y, al mismo tiempo, un agrandamiento del cerebro, así que esas dos cosas están conectadas.

-¿El desarrollo del cerebro es lo que da forma a la cara?

Resultado de imagen de El tamaño del cerebro evolucionó

-El tamaño del cerebro está inversamente relacionado con el tamaño de la cara. Cerebro más grande, cara más pequeña. Ambas cosas están unidas y nadie sabe la razón. Algunos creen que es por una cuestión mecánica, para organizar la masa de la cabeza de una forma más eficiente. Si miras a todos los primates, se cumple la misma relación, da igual que no sean homos.

-¿Y ocurre lo mismo con otros animales?

-Nadie lo ha investigado. Hay mucho que averiguar aquí.

-Los neandertales también eran inteligentes, pero tenían una cara muy diferente de la nuestra.

Resultado de imagen de Los neandertales

Recreación de grupo de Neandertales en la península Ibérica

-Sí. La diferencia fundamental se encuentra en el medio de la cara. La cavidad para la nariz era más grande y la respiración mucho más expandida. Una explicación para ello es el intento de humidificar y hacer más cálido el aire, para adaptarse a condiciones ambientales frías y secas. Esto incrementaba al capacidad respiratoria de los neandertales. Es una adaptación interesante.

-¿Por qué tenemos la cara que tenemos?

Resultado de imagen de La cara actual del Homo SapiensResultado de imagen de La cara actual del Homo Sapiens

                                        La Evolución es imparable, nada permanece y todo cambia

-La cara incorpora la mayoría de los sentidos del cuerpo, la vista, el sabor, el olor… necesarios para vivir, y eso es importante. Pero también es importante para comer y muchos científicos hablan del sistema masticatorio. Tenemos la cara que tenemos por el tamaño de los dientes, por los músculos que usamos para masticar… todo eso tiene un gran impacto.

-Y sonreímos, guiñamos el ojo, fruncimos la nariz…

-En efecto. Otro factor muy importante es que los humanos tenemos una cara terriblemente expresiva para dar información a otra gente, de forma que puedan leer nuestra mente. Está claro que la cara también tiene un alto significado social, no solo biológico

-¿Somos la única especie que tiene esa habilidad?

Resultado de imagen de La cara expresiva de los simios

Ellos también reflejan en sus caras el estado de ánimo

-No. Incluso Charles Darwin escribió sobre este fenómeno. Es una habilidad que los humanos tenemos particularmente, pero también los simios pueden obtener información de otros miembros del grupo por la expresión facial. Incluso los monos son expresivos, hacen gestos y tienen su comunicación no verbal. Pero el rango de sentimientos que los humanos podemos expresar con nuestra cara es incomparable. Los humanos somos particularmente sensibles a las expresiones de la cara de otras personas.

-¿Y los únicos que nos reconocemos unos a otros por la cara?

-No, no. Estoy seguro de que los grandes simios pueden hacerlo. Hay buenos estudios sobre ello.

-¿Puede la cara humana cambiar en el futuro?

Resultado de imagen de La cara humana cambia en el futuro

-Lo está haciendo ya. Todos los sistemas evolutivos, como lo es la cara, tienen un propósito y funciones. Si cambias las condiciones de esos propósitos y de esas funciones, entonces la cara cambiará.

-¿Cómo lo está haciendo?

-El mejor ejemplo son los problemas de salud que la gente tiene en la actualidad. Nuestra mandíbula y dientes estaban adaptados a comer comida dura, pero en las sociedades industrializadas hemos dejado de hacerlo. Comemos comida blanda y los huesos no se desarrollan como deben, así que lo que está pasando es que a mucha gente tienen que quitarle los dientes porque no tienen espacio. La función y el propósito cambian por comer un tipo diferente de comida pero no tienes tiempo para evolucionar una nueva cara porque es demasiado rápido.

-¿Hay más consecuencias?

-Otro problema es la apnea del sueño. El espacio para respirar es más pequeño y tienes más riesgo de que no llegue suficiente oxígeno. La apnea del sueño es la consecuencia directa de una reducción innatural de la cara de una persona.

-¿Cómo imagina la cara humana en el futuro?

Resultado de imagen de La cara humana cambia en el futuro

El aspecto que ofrecerán los humanos dentro de 100 mil años será una frente ancha, ojos grandes y piel pigmentada.

-Ya hay un número cada vez más alto de personas en el mundo que nacen sin el tercer molar (las muelas del juicio), lo que contribuye a una continua reducción en el tamaño de la cara. Es adaptativo, si comes comida blanda, con dos molares basta. Por otro lado, no hay evidencias de que el cerebro esté creciendo. Probablemente haya una reducción en el tamaño de la cara, pero eso será todo lo que veremos en el futuro. Y solo ocurrirá en el mundo industrializado, en el resto, donde todavía comen alimentos duros, no hay estos problemas y sus caras no tienen que cambiar. Todo dependerá de cuánta gente empiece a comportarse como nosotros.

Sabemos cómo evoluciona el Universo, observando las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Evolución    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 Click para ampliar imagen

Hace algún tiempo que salió la noticia en los medios: “Un equipo de científicos europeos, entre ellos investigadores del Instituto de Astrofísica de Canarias (IAC), ha hecho públicos los resultados de 30 años de investigación sobre la estrella hipergigante HR 8752, que han revelado el eslabón perdido en la evolución de este tipo de astros.Concretamente, han descubierto que, la región inestable conocida como Vacío Evolutivo Amarillo, puede cambiar profundamente la evolución de una estrella ya que, en estas tres décadas, HR 8752 ha aumentado de forma espectacular su temperatura superficial en 3.000 Kelvin (K) a su paso por esta región.”

Los resultados obtenidos venían a desvelar algunos misterios que antes, no tenían explicación.

Resultado de imagen de Un equipo de científicos europeos, entre ellos investigadores del Instituto de Astrofísica de Canarias (IAC), ha hecho públicos los resultados de 30 años de investigación sobre la estrella hipergigante HR 8752,

La estrella hipergigante HR 8752 atravesando el Vacío Evolutivo Amarillo (YEV, por sus siglas en inglés) en una recreación artística. La gráfica muestra el aumento de temperatura que ha sufrido la superficie de la estrella en las últimas décadas. /© A.Lobel-ROB. SRON.
Informaron sobre el hallazgo y dieron los detalles: “Las hipergigantes –de las que solo se conocen 12 en la Vía Láctea–son las estrellas más luminosas que se conocen en la actualidad en el universo. Pueden llegar a ser hasta millones de veces más brillantes que el Sol y tener un tamaño de varios cientos de radios solares, con temperaturas superficiales de entre los 3.500 K y los 35.000 K. En concreto, HR 8752 es unas 250.000 veces más luminosa que el Sol y puede ser observada con prismáticos en la constelación del hemisferio norte de Casiopea.”
File:Sun and VY Canis Majoris.svg
Comparación entre los tamaños del Sol y VY Canis Majoris, una hipergigante. Se trata de la estrella roja más grande conocida. Cuando miramos la reseña de este tipo de estrellas, en casi cualquier sitio que podamos mirar nos dicen algo parecido a esto:
“Una hipergigante (hypergiant en inglés) es una estrella excepcionalmente grande y masiva, incluso mayor que una supergigante. Su masa puede ser de hasta 1000 veces la masa de nuestro Sol, próxima al límite máximo teórico, el cual establece que la cantidad de masa en una estrella no puede exceder las 120 M (masas solares). Este límite en masa está asociado a la luminosidad de Eddington, por el que estrellas más masivas simplemente no pueden estar en equilibrio al vencer la presión de radiación interna a la fuerza gravitacional: producirían tanta energía que se desprenderían de la masa en exceso de las 120 M. Aun así, algunas hipergigantes aparentan tener más de 100 M e, inclusive, haber tenido, inicialmente, entre 200 y 250 M, al contrario de lo que predicen las teorías actuales sobre la formación y evolución estelar.”
Lo que más arriba se explica, es decir, que cuando una estrella tiene más de 120 masas solares, su propia radiación la podría destruir y, para evitarlo, eyecta material estelar al espacio evitando su propia destrucción.
Eta Carinae podría estar a punto de explotar. Pero nadie sabe cuándo -lo mismo podría ser mañana que tardar cientos de miles o millones de años- Eta Carinae es una de edsas estrellas masiva  – aproximadamente 100 veces mayor que nuestro Sol – hace que sea un excelente candidato para una supernova que sembrará el espacio interestelar de gas y polvo y materiales complejos del que, de nuevo, volverán a surgir estrellas y mundos. Los registros históricos muestran que hace unos 150 años Eta Carinae sufrió una explosión inusual que la convirtió en una de las estrellas más brillantes del cielo austral.
Eta Carinae, en la Nebulosa Keyhole, es la única estrella en la que actualmente se han detectado emisiones de luz LASER de manera natural. La imagen de arriba fue tomada en 1996, fue resultado de sofisticadas combinaciones de procesamiento de imágenes y los procedimientos diseñados para llevar a cabo nuevos detalles de la nebulosa que rodea a esta inusual estrella perdida entre las brumas del material que eyecta para evitar su muerte. Ahora son claramente visibles dos lóbulos, una región central caliente, y extrañas rayas radiales. Los lóbulos están llenos de carriles de gas y polvo que absorben la luz azul y ultravioleta emitida cerca del centro. Las rayas siguen sin explicación. ¿Estos indicios nos dicen cómo se formó la nebulosa? ¿ Sabremos algún día cuando Eta Carinae explotará?
Debajo de estas imágenes, en la prensa se pudio leer: “Descubierta una estrella monstruosa con 300 veces la masa del Sol, el astro rompe todos los récords y previsiones teóricas. Una estrella de 300 veces la masa de nuestro Sol es algo no sólo nunca visto hasta ahora sino también completamente inesperado para los astrónomos, que estimaban el límite máximo de masa en unas 150 veces la solar. Pero la han encontrado. Todavía se la conoce sólo por su anodino nombre oficial, R136a, y la han localizado unos científicos en la nebulosa Tarántula, de la galaxia vecina Gran Nube de Magallanes, a unos 165.000 años luz de distancia de la Tierra. “La existencia de un monstruo así, millones de veces más luminoso que el Sol, y perdiendo peso por los intensos vientos estelares, puede ayudarnos a responder una pregunta clave. ¿Cómo de masivas pueden ser las estrellas?”.
Una estrella enana roja que son las más abundantes del Universo y las que tienen mayor edad. Otra estrella como nuestro Sol, una estrella celeste claro supermasiva y otra última de dimensiones inconmensurables. Las estrellas que han sido profundamente estudiadas en todas sus variantes, formas y colores, tienen aún algunos secretos que tenenos que desvelar.
Alguna vez me he referido aquí a R. Leporis, que es un capricho estelar. En el espacio existen muchas estrellas que, de poder saber de ellas nos dejarían sumidos en el mayor de los asombros. Las hay de Carbobo como R. Lepori, de Circonio, de Litio, de Manganeso, de estroncio, de Helio, de bario, de manganeso-mercurio, de metales pesados, de silicio, de tecnecio, de neutrones, y… ¿por qué no podría incluso existir algunas de Quarks?

 

Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el nombre de la “Estrella Carmesí”, o, la “Gota de Sangre”.

R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelación de Lepus, cerca del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitud aparente +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind.

A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbono-oxígeno estimada es 1,2, más del doble que la existente en el Sol. Tiene un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja para una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces superior a la del Sol, siendo la mayor parte de la energía radiada como radiación infrarroja.
En la imagen podemos contemplar como algo que nos parece tan enorme como el Sol, puede quedar empequeñecido al lado de otros astros de cuya inmensidad ni podíamos imaginar que pudieran existir. Arriba Betelgeuse se exhibe presumida al lado de las otras estrellas que, siendo grandes y muy grandes, no piueden compararse a grandiosidad. Sin embargo, aún las hay mucho mása grandes que ella.
          Ahora es Antares la que se puede pavonear ante las demás

Del grupo destaca Antares, una supergigante M 1,5, 10 000 veces más luminosa que el Sol y con un diámetro que es probablemente más de 500 veces el del Sol. Nos contempla desde 520 a.l. de distancia y tiene una compañera enana. Su color es el rojo intenso.

Aldebaran, la estrella Alfa Tauri, es una Gigante K5. Aparentemente forma parte del grupo de estrella de las Hyades, aunque en realidad sólo está a 60 a.l., aprpoximadamente la mitad de la distancia del cúmulo.

Betelgeuse, la estrella Alfa Orionis, la décima más brillante del cielo, es una gigante tipo M2 que es una variable semirregular. Se dice que está a unos 400 a.l. de la Tierra y su luminosidad es 5000 veces superior a la del Sol pero, si se encuentra a la misma distancia de la Asociación de Orión (como algunos postulan), la luminosidad verdadera sería de 50 000 veces la del Sol. Su diámetro es cientos de veces el del Sol. Su brillo varía a medida que se expande y contrae en tamaño.

Arthurus es la estrella Alfa Boötis, magnitu -o,o4, la estrella más brillante al norte del ecuador celeste y la cuarta más brillante de todo el cielo. Es una gigante K 1 situada a 35 a.l.

Rigel, la estrella Beta Orionis de magnitud o,12 es una gigante B 8 siatuada a 1 400 a.l., su luminosidad es de unas 150 000 veces la del Sol, tiene una compañera de magnitud 6,8, que es a su vez una binaria espectroscópica.

Al lado de estas gigantes, el Sol y otras estrellas resultan minúsculos como podemos ver en la imagen y, sin embargo, ya sabemos todos la importancia que nuestro Sol tiene para hacer posible la vida en la Tierra.

¡No por pequeño se es insignificante! Ya sabéis: ¡Todo lo grande está hecho de cosas pequeñas!

      El grupo de tres estrellas gigantes Pismis 24-1 (CSIC).

Mucho antes de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la importante decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido entre Ptolomeo y Copérnico, que duró un milenio y medio.

Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones para que los astrónomos se fijaran en ellos. Por ejemplo, de Eta Carinae (antes mencionada y cuya imagen tenéis arriba), es una variable irregular hipergigante, que llegó a ser la segunda estrella más brillante del cielo. Es una variable azul luminosa con magnitud absoluta de -10, y es clasificada oficialmente como una estrella S Doradus. Se encuentra dentro de un cúmulo de estrellas masivas y una masa estimada en 100 masas solares, en tiempos se llegó a creer que era la estrella más masiva de la Galaxia. El único espectro visible es el de la Nebulosa del Homúnculo que la rodea. Eta Carinae es una intensa fuente infrarroja y su importante pérdida de masa (alrededor de 0,1 masas solares por año) tiene asociadas energías próximas a las de algunas supernovas y, teniéndola a unos 8000 años-luz, lo mejor será estar vigilante, ya que, aunque son distancias inmensas…Nunca se sabe lo que un monstruo de ese calibre nos podría enviar.

Estrellas masivas como Eta Carionae, Betegeuse, Arthurus, Antares y tantas otras que ahora sabemos que existen nos llevan a saber que, cuando mueren, se pueden convertir en otros objetos distintos como, por ejemplo:

Estrellas de Neutrones

Estrellas que se forman a partir de estrellas amasivas (2-3 masas solares) cuando al final de sus vidas, agotado el combustible nuclear de fusión, quedan a merced de la Gravedad que no se ve frenada por la fusión nuclear, y, en ese momento, la estrella comienza a contraerse bajo su propio peso, de forma tal que, los protones y electrones  se funden y se convierten en neutrones que, al verse comprimidos tan violentamente, y, no pudiendo permitirlo por el principio de esclusión de Pauli, se degeneran y y hacen frente a la fuerza gravitatoria, consiguiendo así el equilibrio de lo que conocemos como estrella de nweutrones de intensom campo electromagnético y rápida rotación. Estos objetos, después de los Agujeros Negros, son los más densos que se conocen en el Universo, y, su masa podría pesar 1017 Kg/m3.

¿Estrella de Quarks?

Resultado de imagen de Estrella de Quarks

Es hipotética, aún no se ha observado ninguna pero se cree que pueden estar por ahí, y, si es así, serían mucho más densas que las de neutrones, ya que, ni la degeneración de los neutrones podría parar la Fuerza de la Gravedad que sería frenada por los Quarks que también, son fermiones.

Si la estrella no es masiva, y tiene una masa como la del Sol, su final será la de convertirse en una ¡Estrella Enana Blanca!

 Resultado de imagen de Estrella <a href=enana blanca" width="304" height="234" />

       Nebulosa planetaria y la enana blanca central

Nuestro Sol es de esta clase de estrellas y, tampoco su densidad se queda corta, ya que, alcanzan 5 x 108 Kg/m3. Aquí, cuando la estrella implosiona y comienza a comprimirse bajo su propio peso por la fuerza de Gravedad, como ocurrió con la estrella de Neutrones, aparece el Principio de Exclusión de Pauli, el cual postula que los fermiones (los electrones son fermiones) no pueden ocupar el mismo lugar estando en posesión del mismo número cuántico, y, siendo así, se degeneran y hace que, la compresión de la estrella por la Gravedad se frene y vuelve el equilibrio que la convierte en estrellas enana blanca.

El fenómeno de convertirse en enana blanca ocurre cuando la estrella original tiene una mása máxima posible de 1,44 masas solares, el límite de Shandrashekar, si fuera mayor se convertiría en estrella de neutrones. Y, siendo mayor la masa de 3-4 masas solares, su destino sería un agujero negro.

               Las Nebulosas planetarias nos ofrecen una amplia gama de figuras con sus enanas blanca centrales

Nos despediremos con estas bellas imágenes de sendas Nebulosas Planetarias como, un día lejano aun en el futuro, nos mostrará nuestro Sol al llegar al término de su vida. Ese será su final: Una bonita Nebulosa Planetaria con una estrella enana blanca en en el centro.

Claro que, tampoco ese será el final para el Universo en el que, nuevas estrellas seguirán naciendo para hacer posible que, mundos como la Tierra puedan, con su luz y su calor, hacer surgir formas de vida que, como la nuestra, pueda alcanzar la consciencia de Ser y, a partir de ahí… comenzará otra nueva aventura que será digna de contar.

emilio silvera