miércoles, 23 de mayo del 2018 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Es bueno saber como funciona la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Entropía    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Escultura dedicada a la Entropía en los jardines centrales de la Universidad de Monterrey, México

 

Todos hemos visto el sistema mecánico en el cual se conserva la energía, para chique perfectamente elástico y ausencia de eozamiento.  Está claro que si queremos hablar de energía y su conservación, de termodinámica y de entropía, tendeíamos que mencionar aquí muchos nombres que, como el del conde Runford nacido en lo que entonces era colonia británica de Massachusetts en 1753 y vivio hasta 1814, se llamaba en principio Benjamin Thompson.  Fue mientras trabajaba en Baviera, supervisando la construcciòn de un nuevo cañón cuando planteó la idea de que el calor es una forma de trabajo.

La gestación de esta idea duró mucho tiempo, un paso decisivo fue el que dio James Joule de Gran Bretaña durante la década de 1840. Lo hizo todavía mejor que Runford, ya que realizó experimentos precisos para medir la cantidad de trabajo necesario para producir un determina ascenso de la temperatura en una cantidad de agua. Estos trabajos y otros llevados a cabo por contemporáneos de Joule, tales como Hermann Helmholtz en Alemania, desembocaron el en el Principio de la conservación de la energía. Éste dice que la energía no puede crearse ni destruirse, sólo puede transformarse.

          Conservación de la materia

 

Energía – Conservación

             http://3.bp.blogspot.com/_DvHSK-p7zDo/SxTzLbg3IcI/AAAAAAAABKs/gm0EMnI7tCE/s1600/Esquem%C3%83%C2%A1tico_interf_spin_dispositivo.jpg

A diferencia de lo que ocurre con el momento angular de los objetos macroscópicos, a los que estamos acostumbrados, que puede tomar valores muy variados dependiendo de las acciones a las que se vean sujetos, la magnitud del espín de una partícula subatómica es siempre la misma para este tipo concreto de partícula.

Leyes de Conservación

 

Si un sistema no interacciona con su entorno de ninguna manera, entonces determinadas propiedades mecánicas del sistema no pueden cambiar. Algunas veces nos referimos a ellas como “constantes del movimiento”. Estas cantidades se dice que son “conservadas” y las leyes de conservación resultante se pueden considerar como los principios mas fundamentales de la mecánica. En mecánica, ejemplos de cantidades conservativas son la energía, el momento y el momento angular. Las leyes de conservación son exactas para un Sistema aislado.

Establecidas aquí como principios de la mecánia, estas leyes de conservación tiene profundas implicaciones en la simetría de la naturaleza, que no hemos visto violadas. Ellas sirven como una fuerte restricción en cualquier teoría sobre cualquier rama de la ciencia.

Gran Nebulosa de Orión

El principio de conservación de energía llegó a conocerse también como primer principio de termodinámica y nos dice que en un sistema cerrado (pongamos por ejemplo esta Nebulosa e imaginemos que no interacción con el mundo exterior, para llevarlo hasta un Sistema cerrado ideal como, el plano sin rozamiento). Aquí la energía total permanece constante pero, ninguna transformación de trabajo en energía es perfecta, ya que el calor siempre se disipa como un subproducto, de tal forma que hay algo de energía que desaparece de la circulación. Dado que el calor siempre fluye de un lugar caliente a otro más frío (segundo principio de la termodinámica), finalmente, en cualquier sistema cerrado toda la energía acaba convirtiéndose en calor, y todas las diferencias de temperatura se irán nivelando hasta dejar un sistema templado y sin características especiales donde no sucede nada interesante.

Lo que actualmente conocemos como segundo principio de la Termodinámica se puede expresar de muchas formas diferentes, pero su primer enunciado se debe al Físico británico William Thomson (quien fuera posteriormente lord Kelvin) en 1852. La cuestión esencial sobre la que Thomson llamó la atención es esta idea de disipación -que, aunque el modo en que funciona el mundo natural se puede describir como un gran motor que convierte el calor en trabajo (o en movimiento, que viene a ser lo mismo), debe haber siempre algo de calor que se disipa durante el proceso, aunque realmente no se pierde, sino que se propaga por todo el universo, haciendo que su temperatura global suba una pizca, una cantidad casi impeceptible-.

Una máquina térmica es un dispositivo que, operando de forma cíclica, toma de calor de un foco caliente, realiza un cierto trabajo (parte del cual se emplea en hacer funcionar la propia máquina) y entrega calor de desecho a un foco frío, normalmente el ambiente.

El ejemplo característico de máquina térmica es la máquina de vapor, que se emplea en la mayoría de las centrales eléctricas (sean estas térmicas, termo-solares o nucleares). En una máquina de vapor una cierta cantidad de líquido se hace hervir en un horno (foco caliente); el vapor resultante mueve una turbina, enfriándose parcialmente. El vapor enfriado pasa a un condensador, donde es enfriado a la temperatura ambiente, liberando calor y volviendo a ser líquido. Una bomba (movida por la turbina) toma ese líquido y vuelve a llevarlo al horno, manteniendo en marcha el sistema.

  • El calor | Qc | proporcionado por el foco caliente.
  • El calor | Qf | cedido al foco frío
  • El trabajo | Wext | realizado por la turbina
  • El trabajo Wint necesario para hacer funcionar la máquina térmica

 

 

 

Esto va más allá del principio, o ley, de conservación de la energía (el primer principio de la termodinámica), porque en este caso, aunque la cantidad total de energía del mundo (expresión con la que los victorianos se referían al total del universo), se mantiene siempre igual, la cantidad de energía útil siempre está disminuyendo. Esto implica que los fisicos necesitan un métido para cuantificar la cantidad de energía útil existente en un sistema cerrado, o en el mundo (el universo en toda su amplitud), de tal modo que pudieran tenerla en cuenta y manejarla en sus ecuaciones. esto indujo a Rudolf Clausius a proponer el concepto de Entropía, lo cual hizo en Alemania a mediados de la década de 1860.

El Modo más sencillo de medir lo que mide la Entropía es pensar en términos de la cantidad de orden que hay en un sistema, y el ejemplo clásico consiste en imaginar una caja que está dividida en dos mitades mediante una pared separadora móvil. Una mitad de la caja está llena de gas y la otra se encuentra inicialmente vacía -es el vacío-. Tenemos así un sistema que posee una cierta cantidad de orden, o de estructura, porque hay una diferencia entre las dos mitades del recipiente. Si se introduce al azar un robot consistente en una sonda microscópica, nos podrá decir en qué lado de la pared separadora se encuentra, , comprobando si está rodeado por gas o por vacío. Imaginemos que abrimos esa pared separadora. Todos sabemos lo que va a suceder. El gas se propaga hasta llenar la caja de manera iniforme. Entonces habrá en el sistema menos orden (o, si se quiere, más desorden).

La entropía mide la cantidad de orden que hay en un sistema y, si el desorden aumenta, también lo haced la entropía. Sabiendo que en el mundo real el desorden crece en todo sistema cerrado (las cosas se desgastan, se rompen, son inundadas por el polvo y la corrosión, a medida que pasa el tiempo, el inevitable aumento de la entropía define una dirección del tiempo, una flecha que parte del pasado ordenado y apunta hacia el futuro desordenado. Dado que ese proceso parecía inevitable y universal, los especialistas en termodinámica de la era victoriana preveían un destino último del Universo en el que toda la energía útil se habría convertido en calor y todo sería una mezcla templada de materia a temperatura uniforme, una situación desoladora que llamaban la “muerte térmica” del universo.

http://1.bp.blogspot.com/_Nlt4zw12dQA/SI36eCq10yI/AAAAAAAABiM/Y3uZfEf0QvY/s400/universo.jpg

Pero, ese tenebroso pronóstico ha quedado ya descartado. El hecho de que el Universo se expande (que no se descubrió hasta finales de la década de 1920), alteró todo el contenido de tal predicción, y la constatación de que la Gravedad tiene de hecho energía negativa, que data de la década de 1940, descartó en esencia el tipo de muerte térmica que imaginaron los victorianos

Las estrellas que birllan en el cielo, todas las nuevas que en la Nebulosas nacen, los mundos que se crean, la vida que surge, la Gravedad…Todo ello, contribuye a generar Entropía negativa que, de alguna manera, autogenera el Universo u consigue que aquella muerte térmica no llegue.

La ciencia encontró un mecanismo convincente para explicar cómo fue canalizada la energía positiva de la materia, y una cantidad igual de energía  negativa fue el campo gravitatorio. Así, en efecto, ¡toda la materia cósmica fue creada realmente gratis! Una vez que los cosmólogos advirtieron esto, se hizo plausible la hipótesis de que en el comienzo del universo el esapcio estaba vacío; toda la materia apareció después (aunque con gran rapidez), como resultado de un proceso físico natural. La nueva teoría se consideraba superior y más científica porque eliminaba la necesidad de postular “el tufillo” sobrenatural que llevaba la materia en el comienzo del tiempo.
Biogenesis, William Latham
Pero giremos la cabeza para poder mirar al problema de la Biogénesis para encontrarnos con una singular inversión de los sentimientos. Ahora no tenemos que explicar el origen de la materia, sino el origen de la información. Mientras que es buena ciencia buscar un proceso físico para generar materia, se considera acientífico en extremo considerar un proceso que genere información. La información no es algo que se supone que viene gratis (como la materia cósmica), sino algo por lo que uno tiene que trabajar (si queremos saber, hay que estudiar, observar, investigar y experimentar). En realidad, esto simplemente la segunda ley de la termodinámica revisada, porque la aparición espontánea de infomación en el universo sería equivalente a una reducción de la entropìa del universo: una violación de la segunda ley, “un milagro”. Ahora bien, el hecho de que el universo contiene información es innegable (porque no está en equilibrio termodinámico). Si la información no puede crearse, debe haber estado allí en el comienzo, como parte del impulso inicial. La conclusión a la qque nos vemos guiados es que el universo venía lleno de información, o entropía negativa, desde su nacimiento mismo.
Todos sabemos que el universo está lleno de susceos misteriosos
¿Qué nos dicen las observaciones astronómicas sobre el contenido de información del universo primitivo? Aquí descubrimos algo muy curioso. Uno de los elementos de prueba más decisivos a favor de la teoría del big bang es la existencia de un fondo universal de radiación térmica, que parece ser una especie de brillo residual del gogoso nacimiento del universo. Esta radiación ha viajado a través del espacio y del tiempo sin sufrir prácticamente ninguna perturbación desde el tiempo inmediatamente posterior al “supuesto” big bang, y, nos proporciona así, una instantánea imagen de cómo era el universo en su comienzo. Las medidas hechas desde los satélites han determinado que el espectro de la radiación térmica cósmica coresponde exactamente a un estado de equilibrio termodinámico.. Pero el equilibrio termodinámico es un estado de máxima entropía que, a través de métodos y modelos existentes, implica mínima información.
Así que, nos vemos enfrentadoa a  una contradicción muy molesta. La segunda leu prohibe que el contenido de información del universo aumente a medida que este evoluciona, pero, por lo que podemos decir del universo primitivo, éste contenía muy poca información. De modo que ¿de donde ha venido la información presente hoy en el universo? Otra manera de exponer el problema sería en términos de entropía. Si el universo empezó próximo al equilibrio térmodinámico, o máxima entropía, ¿cómo ha alcanzado su estado actual de desequilibrio, dado que la segunda ley prohíbe que la entroìa total disminuya?
La respuesta a esta paradoja cósmica es ahora bien conocida (al menos eso creemos): procede de un cuidadoso estudio de la gravitación. Para ver que diferencia supone la gravitación para la termodinámica, uno de los índices que podemos escoger como guía es ver cómo se comporta la gravedad en las nubes interestelares que contienen las masas de miles de millones de soles. El gas, como consecuencia de la gravedad, comienza a contraerse al ser perturbado (digamos que por vientos estelares) y, la gravitación se hace muy importante en ese medio. Así que, el gas se contrae y en algunos lugares se acumulan grumos de material más denso. En los centros de esos grumos la contracción producida por la gravedad, calentará el gas, aparecerán gradientes de temperatura y fluirá calor y, en la nube interestelar, se formarán estrellas nuevas y cúmulos de ellas.
El flujo de radiación térmica procedente de esas estrellas (como el Sol, pongamos por caso), es la fuente de energía libre, o entropía negativa, que como sabemos, impulsa toda la vida en el planeta Tierra mediante la fotosíntesis y otros procesos biogenéticos que llevan a la materia “inerte” a evolucionar por medio de procesos complejos bioquímicos hasta convertirse en una especie de “sopa primordial” a partir de la cual, surge eso que llamamos vida y que es, el mejor exponente de la entropía negativa presernte en el universo.
Por eso, bajo la acción de la gravitación, un gas supuestamente en equilibrio termodinámico y a una temperatura uniforme y máxima entropía sufre de todas formas cambios y transiciones de fases adicionales que lleva a esa Nebulosa a un estado de desequilibrio o inestabilidad inducida por la fuerza de gravedad y que se convierte en una fuente de información. Así, podríamos decir que, la Gravedad, ha cambiado las reglas del juego toda vez que, su presencia, rompe el equilibrio termodinámico y, el estado de máxima entropía se rompe al aparecer la entropía negativa que, de alguna manera, será motivo de un futuro de vida.
Claro que, para algunos, todos estos procesos son auténticos enigmas sin resolver. ¿Cómo, siendo la gravitación una fuerza tan débil, pudo desempeñar un papel tan directo en los procesos bioquímicos? Penrose nos dice (como experto mundial en la gravitación) que él ha especulado con que la gravedad podría afectar a las biomoléculas a través de procesos cuánticos. También Lee Smolin ha comparado los temas de la vida y la gravitación en su libro La vida del cosmos, donde elabora una analogía entre el comportamiento de los ecosistemas y las galaxias espirales. Muchas de las ideas que aquí os dejo, son debidas a Paul Davies que, en su libro El quinto milagro, nos habla de todo esto y mucho más.
Lo cierto es que, poco a poco, vamos pudiendo entender como a partir de ciertos comportamientos de la materia en presencia de las fuerzas fundamentales del universo, nos llevan a estados supuestamente caóticos a partir de los cuáles, finalmente, la materia “inerte” se convierte en vida.
Todo eso ocurre por el simple hecho de que las galaxias espirales se comportan y tienen una dinámica cosmológica que las lleva a la creación de entropía negativa que, en definitiva nos lleva de manera directa e irremediable hasta el surgir de la vida en mundos que, el azar ha colocado, de manera aleatoria, en esos lugares de privilegio que llamamos “zonas habitables” en los que son posibles la presencia del agua líquida, ese bien que, los humanos, nunca hemos sabido valorar en su justo valor.
http://www.santiagokoval.com/wp-content/uploads/2009/06/el-poshumano.jpg
De uno u otro modo, siguiendo a Wiener, si la propagación de la especie puede interpretarse como una función según la cual un ser vivo crea otro a su propia imagen, análogamente, la producción de artificios debiera interpretarse, en particular a partir del siglo XVIII, como una función por medio de la cual un ser humano crea a su imagen y semejanza un ser artificial.
Pero hablamos de Entropía y, la Vida, por supuesto, parece querer desafiar este proceso creando orden y estructuras a partir de materiales desordenados (o, en todo caso, menos ordenados).
Aescala macroscópica, según unas leyes deducidas a partir de experimentos y observación  siguiendo procedimientos científicos aprobados, ensayados y comprobados, el universo actúa de un modo irreversible. Nunca se pueden conseguir que las cosas vuelvan a ser como solían.
http://eltamiz.com/wp-content/uploads/2007/11/el-sol-como-gigante-roja.png
Cuyando nuestro Sol agote su combustible nuclear de fusión y se convierta en una gigante roja como la que arriba vemos, nada podrá hacerla volver a su estructura original como estrella amarilla del Tipo G2V que ahora nos mentrega su luz y su calor para que la vida, en la Tierra, sea posible. Ese Sol, ya nunca volvera.
Pero precisamente en este sencillo y clásico ejemplo de irreversibilidad termodinámica, la Entropía y la Flecha del Tiempo hacen su trabajo y lo que era dejó de ser para convertirse en algo nuevo, es decir, lo que antes era el Sol, ahora, una vez pasados todos los procesos hasta la Nebulosa Planetaria, el Sol se convertirá enn una estrella enana blanca de intensa radiación ultravioleta que estará en el centro de la Nebulosa durante cien millones de años, mientras el gas se disipa y la estrella se enfría quedando, para siempre, como un cadaver estelar, un objeto de una gran densidad.

 

Sí, en nuestro universo algo cambia y,  muchas otras cosas serán distintas

 

Claro que no hay una flecha del tiempo en las leyes de Newton y, según Laplace y muchos otros, estas leyes parecen describir un mundo completamente determinista en el cual el pasado y el futuro están fijados de una manera rígida y no hay lugar para el libre albedrío.

Lo que ninguno de estos científicos parece haber observado es que el argumento fundamental se desploma si, en cualquier momento y lugar del universo, se produce una colisión simultánea entre tres partículas –aunque la valoración de si esto sería suficiente para restablecer el libre albedrío es una cuestión cuya discusión prefiero dejar a la filosofía.

En la física del movimiento y sus causas -Dinámica- las leyes de la naturaleza funcionan tanto si el tiempo transcurre “hacia adelante” como también si lo hiciera “hacia atrás”, es decir que son simétricas y reversibles en el tiempo. Si filmamos un choque entre dos partículas, o la órbita de un planeta entorno a su sol, y pasamos la película al revés, notaremos que las trayectorias están invertidas, lo cual es totalmente coherente para la física: no hay nada que nos indique que el tiempo está trascurriendo en sentido contrario. Si las leyes de la naturaleza no distinguen entre el pasado y el futuro, entonces ¿por qué notamos que el tiempo fluye en un sentido y no en otro? ¿De dónde sale esa asimetría del tiempo? ¿Por qué recordamos el pasado pero no el futuro?

 

http://farm4.staticflickr.com/3020/2837529280_6c09aab100_z.jpg

Nos podemos sentar mirando hacia el futuro, pero, ¿veremos algo….

 

Este mismo problema relativo al tiempo se planteó a partir de uno de los mayores triunfos de la física del siglo XIX: la investigación de la naturaleza de la luz y de otras formas de radiación electromagnética, que tuvo su momento culminante en la obra del escocés James Clerk Maxwell (1831-1879). La explicación dada por Maxwell sobre la radiación electromagnética se basa en la obra de Michael Faraday, que vivió entre 1791 y 1867, y propuso la definición de los “campos” eléctrico y magnético que surgen en torno a los objetos que poseen una carga eléctrica.

Fue Faraday el primero en sugerir que la luz podría estar producida por algún tipo de vibración de las líneas de fuerza asociadas con imágenes y partículas “cargadas”, que vibrarían como lo hacen las cuerdas de un violín al ser pulsadas. El problema estaba en que, Faraday, carecía de los conocimientos matemáticos necesarios para desarrollar la idea de maneta tal que se desarrollara un modelo perfectamente configurado. Así, en la década de 1860, llegó Maxwell para rematar el trabajo de Faraday con sus maravillosas ecuaciones vectoriales para demostrar que todos los fenómenos eléctricos y magnéticos conocidos en aquella época, incluido el comportamiento de la luz, podía ser descrito mediante un conjunto de sólo cuatro ecuaciones, que actualmente se denominan ecuaciones de Maxwell.

Claro que, como todo, también las ecuaciones de Maxwell tenían sus limitaciones, especialmente en la descripción de fenómenos que se producen a escalas muy pequeñas, tales como el comportamiento de los átomos y de las partículas que los componen. En este caso, es preciso modificar tanto la descripción clásica de las descripciones electromagnéticas (Maxwell), como la descripción clásica de las interacciones entre partículas (Newton), fenómenos en los cuales se cumplen las reglas de la física cuántica. Así, las ecuaciones de Maxwell, como las de Newton, tampoco contienen la flecha del tiempo.

 

 

 

Lo que fue durante mucho tiempo la explicación habitual la razón por la que vemos una dirección predominante del tiempo surgió a partir de otro gran triunfo de la física del siglo XIX: la descripción de la relación entre calor y movimiento (termodinámica). Esto tuvo una importancia práctica fundamental en el mundo industrial cuando se utilizaba la fuerza de las máquinas de vapor.

Lo cierto es que, la importancia de la termodinámica reside en que permite a los físicos explicar el comportamiento de gran número de objetos –en especial, partículas de gas- que, en cierto sentido, funcionan juntos en un sistema complejo. Esto incluye el uso de promedios y estadísticas, pero se basa en gran medida en la idea de que un gas está constituido por una cantidad innumerable de partículas diminutas (átomos y moléculas) que no cesan de rebotar y chocar entre sí y con las paredes del recipiente que las contiene, cumpliendo las leyes del movimiento de Newton. Esta teoría cinética de los gases fue un ejemplo importante del modo en que las leyes universales de la física ponían orden en el caos.

 

Ludwing Boltzmann (1844-1906)
       Ludwig Boltzmann (1844-1906)

La palabra “gas” fue acuñada por el físico flamenco Joannes van Helmont a partir de la palabra griega que significa “caos”; este término apareció impreso por primera vez en el libro de van Helmont titulado Ortus medicinae, publicado cuatro años después del fallecimiento de Joannes, en 1648. La idea de que los gases eran como un caos se consideró acertada durante trescientos años, hasta que Maxwell desde Gran Bretaña, y su contemporáneo Ludwig Boltzmann, desde Viena, consolidaron la teoría cinética (que hasta entonces había sido sólo una especulación), dándole una firme base científica fundamentada en las leyes de Newton.

Me proponía al comenzar este trabajo a exponer muchas más cosas pero, como siempre pasa, el espacio y el tiempo no dan para tanto en este lugar y, dejo pendiente explicar cómo surge el Caos a partir del Orden y el Orden a partir del Caos, cómo podemos llegar al borde del Caos y qué transiciones de fase tienen que producirse para que, la normalidad y la simetría vuelva a reinar a partir de ese desorden que, en un principio, podría parecer irreversible.

 

http://4.bp.blogspot.com/-Dx_aXmprn1Q/TieVh6TcL2I/AAAAAAAAAAg/CmRfAnKezeI/s1600/galaxia-espiral.jpg

 

De todo lo que aquí hemos hablado, se puede tomar razón y llegar a tener una razonada conciencia en el estudio de una galaxia espiral que, con sus millones de estrellas brillantes en los brazos espirales y sus estrellas rojas y más viejas en el centro galáctico, nos hablan claramente de la flecha del tiempo y de la entropía al considerar, la galaxia, como el sistema cerrado que, poco a poco, va tornándose más y más compleja en la composición de la materia que la conforma que, de manera irreversible va sufriendo transformaciones de todo tipo que, finalmente, la llevará a un estado crítico que hasta se podría transformar en un inmenso agujero negro como resultado final del proceso.

Mucho es lo que nos queda por saber, lo que sabemos, reconociendo que no es poco para el exiguo tiempo que llevamos aquí (en la medida del reloj del universo), es aún insuficiente para lo que la Humanidad necesita saber. Nuestra ignorancia es grande, muy grande…, casi infinita, si la contraponemos con todo aquellos que nos queda por descubrir de los secretos de la Naturaleza. Nunca podremos acabar ese aprendizaje que se pierde en la lejanía de la flecha del tiempo en ese infinito que llamamos futuro.

 

emilio silvera

 

  1. 1
    José Luis
    el 29 de junio del 2012 a las 14:24

    Emilio: Exelente trabajo de divulgación sobre la entropía, como siempre bastante explicito, limpio e impecable

    Felicidades y saludos desde México 

    Responder
    • 1.1
      emilio silvera
      el 30 de junio del 2012 a las 4:24

      Hola, José Luis:
      La divulgación del saber del mundo (de la Naturaleza del Universo), es algo que nos lleva a compartir con los demás y, desde luego, nos hace mejores si, como es el caso, a cambio solo pedimos que sea aprovechada por cuantos más, mejor.
      Un abrazo amigo.

      Responder
  2. 2
    Emilio Silvera
    el 28 de febrero del 2013 a las 10:08

    ¿Qué podríamos hacer sin energía? ¿En qué clase de seres noc onveretiríamos? ¿Cómo podríamos avanzar sin ella? ¿En que se convertiriía nuestro mundo y nuestra Sociedad? La Energía amigos míos, el motor de nuestros avances al mismo nivel que, nuestros pensamientos lo son de las nuevas ideas. Los dos unidos -Mente y Energía-, nos llevarán hacia ese futuro que presentimos.

    Saludos.

    Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting