jueves, 05 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Biología, estrellas, unidades naturales…, !Universo¡

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia estelar    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen relacionada

¿Es viejo el universo? Todos los cálculos nos llevan a una edad de 13.750 millones de años que, comparado con el tiempo en el que nosotros hicimos acto de presencia en él, es menos que un simple parpadeo de ojos. Sin embargo, a veces nos sentimos los amos del mundo y del Universo mismo, lo que en realidad, es un simple espejismo, una ilusión que se forja en nuestras mentes que, jóvenes e inmaduras… Aún no comprenden, como son las cosas.

 

Las medidas de la expansión del universo no cuadran

 

Cuando tenemos que operar con la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de tiempo y espacio. Son tan inmensas las distancias y tan descomunal el tiempo que está presente en el ámbito del Universo que, hemos inventado unidades especiales para poder hablar de ellas sin tener que escribir cantidades tan grandes con los números y, el año-luz, la Unidad Astronómica, el Parsec, Kilo-parsec o Giga-parsec son palabras que expresan medidas antropomórficas y extraordinarias que se pierden en el espacio-tiempo.

 

Sistema solar GIF - Encontrar en GIFER

¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor del astro rey, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque queremos saber en qué lugar estamos, porque es conveniente y porque desde siempre hemos tratado de saber, lo que el universo es. Por otra parte, también en el ámbito de lo muy pequeño hemos tenido que inventar unidades que, esta vez, han querido significar lo que dice la Naturaleza y no el hombre.

 

GAE UNAM: Gravitación y Altas Energías - Cuando uno empieza a estudiar  física, seguirle la pista a las unidades parece primero algo molesto; pero  pronto se vuelve una herramienta crucial. No tendría

 

¿Cuánto es un tiempo de Planck?
Por si alguien tiene curiosidad y la cifra le dice algo, el tiempo de Planck equivale a 5.39124 x 1044 segundos, es decir, a:
0,000000000000000000000000000000000000000000539124 segundos. Este número es el mínimo tiempo en el que puede ocurrir algo, digamos, con sentido.

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales”; la masa, longitud y tiempo de Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada en el ser humano.

 

Resultado de imagen de El joven Planck

                        El joven Planck

Mientras que Stoney había visto en la elección de unidades prácticas una manera de cortar el nudo gordiano de la subjetividad, Planck utilizaba sus unidades especiales para sustentar una base no antropomórfica para la física y que, por consiguiente, podría describirse como “unidades naturales”.

 

Resultado de imagen de Stoney y sus unidades

“George Johnstone Stoney (15 de febrero de 1826 – 5 de julio de 1911) fue un físico anglo-irlandés. Es famoso principalmente por haber introducido el término electrón como la “unidad fundamental de la cantidad de electricidad”. Introdujo el concepto de electrón antes de que se descubriera la propia partícula.23​. Se dedico a realizar una primera evaluación del número de Avogadro. En 1874 estableció la hipótesis según la cual la electricidad era creada por unos corpúsculos elementales que llamó electrones. En 1897 su intuición sobre la naturaleza de la electricidad fue confirmada por el físico inglés Joseph John Thomson”

 

No hay ninguna descripción de la foto disponible.

De acuerdo con su perspectiva universal, en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que ahora lleva el nombre de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Sus valores no difieren mucho de los de Stoney que figuran en el trabajo siguiente de hoy:

 

Mp = (hc/G)½ = 5’56 × 10-5 gramos
L= (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

 

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G(constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin. La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.

En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

Resultado de imagen de Tiempo de Planck

Resultado de imagen de Masa de Planck

Resultado de imagen de Masa de Planck

Resultado de imagen de Ecuación del límite de Planck

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

 

El metaverso transforma los mundos físico y digital

    ¿Quién sabe cómo serán?

En sus palabras finales Planck alude a la idea de observadores en otro lugar del universo que definen y entienden estas cantidades de la misma manera que nosotros. Lo cierto es que estas unidades, al tener su origen en la Naturaleza y no ser invenciones de los seres humanos, de la misma manera que nosotros y, posiblemente por distintos caminos, seres de otros mundos también las hallarán y serán idénticas a las nuestras. De entrada había algo muy sorprendente en las unidades de Planck, como lo había también en las de Stoney. Entrelazaban la gravedad con las constantes que gobiernan la electricidad y el magnetismo. Planck nos decía:

 

Podría ser el valor de G decreciente? : Blog de Emilio Silvera V.2013 agosto 09 : Blog de Emilio Silvera V.

 

“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.”

Sí, Planck tenía razón, el mundo de los sentidos cada vez están más cerca de ese mundo real que perseguimos. Sabemos que nuestra realidad no es la realidad del mundo y, poco a poco, con descubrimientos como estos de las Unidades de Stoney-Planck, nos vamos acercando a la comprensión de esa Naturaleza creadora que permitió aquí nuestra presencia y que ahora, nosotros tratamos de saber.

Podemos ver que Max Planck apelaba a la existencia de constantes universales de la naturaleza como prueba de una realidad física al margen y completamente diferentes de las mentes humanas. Al respecto decía:

“Estos…números, las denominadas “constantes universales” son en cierto sentido los ladrillos inmutables del edificio de la física teórica. Deberíamos preguntar:

¿Cuál es el significado real de estas constantes?”

 

Constantes universales : Blog de Emilio Silvera V.

 

Claro que, nosotros, simplemente somos un misterio más de los muchos que en el Universo son. Sin embargo y a diferencias de los otros, tenemos la ventaja de ser conscientes con la facultad de pensar y, además, tenemos una insaciable curiosidad. Un fallo que a menudio tenemos ha sido caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

 

Si existe la perfección, estará en la Naturaleza : Blog de Emilio Silvera V.Las estructuras fundamentales de la Naturaleza : Blog de Emilio Silvera V.Qué es un átomo y cómo se comporta? - Fundación Aquae

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Y, creemos saber que…

 

Imperdible: El Universo visible registrado por el telescopio Planck –  FayerWayer

La edad actual del universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la Planck

 

Resultado de imagen de el universo está estructurado en una escala sobrehumanaResultado de imagen de el universo está estructurado en una escala sobrehumanaResultado de imagen de el universo está estructurado en una escala sobrehumanaResultado de imagen de el universo está estructurado en una escala sobrehumana

 

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser. Pero, pese a la enorme edad del universo en “tics” de Tiempos de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

 

El telescopio espacial James Webb captura el cúmulo de galaxias SMACS 0723  - Fórmula de físicaUn retrato de galaxias en interacción marca el segundo aniversario de Webb  - NASA Ciencia

 

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena.

 

Astrofísica Estelar 8Nebulosas y cúmulos
estelares

Nebulosa del cangrejo

Gran Nebulosa de Orión

Las nebulosas son concentraciones de gas
(principalmente hidrógeno y helio) y polvo
interestelar.

Nebulosa M16

 

Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo.

La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos y el vulcanismo parará su actividad al ser frenado el planeta geológicamente y carecerán de muchos de los movimientos internos que impulsan la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

 

 

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

 

 

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

 

 

La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución. Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

Que acabó con los dinosaurios? Nuevas hipótesis sobre su extinción |  National Geographic

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros en comparación, llevamos aquí tres días y, desde luego, ¡la que hemos formado!

Y no podemos tener la menor duda, mientras que estemos aquí, seguiremos pretendiendo y queriendo saber sobre los secretos de la Naturaleza que, al fin y al cabo, puede ser nuestra salvación. Ya saben ustedes: ¡Saber es poder!

Emilio Silvera Vázquez

Abundancia Cósmica de Elementos

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia estelar    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Se encuentran elementos esenciales para la vida alrededor de una estrella joven. Usando el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array), un grupo de astrónomos detectó moléculas de azúcar presentes en el gas que rodea a una estrella joven, similar al sol. Esta es la primera vez que se ha descubierto azúcar en el espacio alrededor de una estrella de estas características. Tal hallazgo demuestra que los elementos esenciales para la vida se encuentran en el momento y lugar adecuados para poder existir en los planetas que se forman alrededor de la estrella.

La abundancia, distribución y comportamiento de los elementos químicos en el Cosmos es uno de los tópicos clásicos de la astrofísica y la cosmoquímica. En geoquímica es también importante realizar este estudio ya que:

 

– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.

– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.

– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.

– Las distintas capas de la Tierra presentan abundancias diferentes de elementos. El conocer la abundancia cósmica nos permite tener un punto de referencia común. Así, sabiendo cuales son las concentraciones normales de los elementos en el cosmos las diferencias con las abundancia en la Tierra nos pueden proporcionar hipótesis de los procesos geoquímicos que actuaron sobre la Tierra originando migraciones y acumulaciones de los distintos elementos, que modificaron sus proporciones y abundancias respecto al Cosmos.

Tabla Periódica - Concepto, historia y organización

 

La tabla periódica de los elementos es un arreglo sumamente ingenioso que permite presentar de manera lógica y estructurada las más simples sustancias de las que se compone todo: absolutamente todo lo que conocemos. Todos los elementos que conocemos, e incluso con lo que todavía no nos hemos encontrado, tienen un lugar preciso en ella, cuya posición nos permite conocer muchas de sus características. Ese grupo de casi cien ingredientes permite crear cualquier cosa. Pero no siempre fue así.

Nebulosa de Orión - Concepto, descubrimiento y características

                         Me gusta la Gran Nebulosa de Orión. Hay ahí tantas cosas, nos cuenta tantas historias…

  FUENTES DE DATOS DE ABUNDANCIAS COSMICAS DE LOS ELEMENTOS. Estos datos deben obtenerse a partir del estudio de la materia cósmica. La materia cósmica comprende: Gas interestelar, de muy baja densidad (10-24 g/cm3) y Nébulas gaseosas o nubes de gas interestelar y polvo.

Las nébulas gaseosas se producen cuando una porción del medio interestelar está sujeta a radiación por una estrella brillante y muy caliente, hasta tal punto se ioniza que se vuelve fluorescente y emite un espectro de línea brillante (que se estudian por métodos espectroscopios). Por ejemplo las nébulas de “Orión” y “Trífidos”. Las ventajas de estas nébulas difusas para el estudio de las abundancias son:

 

[Espada+de+Orion.jpg]

‑ Su uniformidad de composición.

‑ El que todas sus partes sean accesibles a la observación, al contrario de lo que ocurre en las estrellas.

También tiene desventajas:

‑ Solo se observan las líneas de los elementos más abundantes.

‑ Cada elemento se observa solo en uno o pocos estadios de ionización aunque puede existir en muchos.

‑ La mayoría de las nébulas exhiben una estructura filamentosa o estratiforme  es decir que ni la D ni la T son uniformes de un punto a otro. A partir del medio interestelar (gas interestelar y nébulas gaseosas) se están formando continuamente nuevas estrellas.

 

Los Pilares de la Creación desaparecerán dentro de tres millones de años.

                                                     Los pilares de la Creación

En las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: Hidrógeno, Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos  simples en el big bang y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.

Fred Hoyle - Wikipedia

                           Sir Fred Hoyle

No me parece justo hablar de los elementos sin mencionar a Fred Hoyle y su inmensa aportación al conocimiento de cómo se producían en las estrellas. Él era temible y sus críticas de la teoría del Big Bang hizo época por su mordacidad. Hoyle condenó la teoría por considerarla epistemológicamente estéril, ya que parecía poner una limitación temporal inviolable a la indagación científica: el Big Bang era una muralla de fuego, más allá de la cual la ciencia de la ´época no sabía como investigar. Él no concebía y juzgó “sumamente objetable que las leyes de la física nos condujeran a una situación en la que se nos prohíbe calcular que ocurrió en cierto momento del tiempo”. En aquel momento, no estaba falto de razón.

 

NeoFronteras » Sorteando el ajuste fino del proceso triple alfa - Portada -

El efecto triple alfa descubierto por Hoyle y su equipo que  demostró como las estrellas gigantes rojas podían convertir Carbono en Oxígeno 16.

Pero no es ese el motivo de mencionarlo aquí, Hoyle tenía un dominio de la física nuclear nunca superado entre los astrónomos de su generación, había empezado a trabajar en la cuestión de las reacciones de la fusión estelar a mediado de los cuarenta. Pero había publicado poco, debido a una batalla continua con los “árbitros”, colegas anónimos que leían los artículos y los examinaban para establecer su exactitud, cuya hostilidad a las ideas más innovadoras de Hoyle hizo que éste dejara de presentar sus trabajos a los periódicos. Hoyle tuvo que pagar un precio por su rebeldía, cuando, en 1951, mientras él, permanecía obstinadamente entre bastidores, Ernest Opik y Edwin Sepeter hallaron la síntesis en las estrellas de átomos desde el Berilio hasta el Carbono. Lamentando la oportunidad perdida, Hoyle rompió entonces su silencio y en un artículo de 1954 demostró como las estrellas gigantes rojas podían convertir Carbono en Oxígeno 16.

 

El Sol como gigante roja

          El Sol, dentro de 5.000 millones de años, será una Gigante roja primero y una enana blanca después. En la imagen el diámetro del Sol ahora y el que tendrá como Gigante roja

Pero, sigamos con la historia de Hoyle. Quedaba aún el obstáculo insuperable del hierro. El hierro es el más estable de todos los elementos; fusionar núcleos de hierro para formar núcleos de un elemento más pesado consume energía en vez de liberarla; ¿cómo,  pues, podían las estrellas efectuar la fusión del hierro y seguir brillando? Hoyle pensó que las supernovas podían realizar la tarea, que el extraordinario calor de una estrella en explosión podía servir para forjar los elementos más pesados que el hierro, si el de una estrella ordinaria no podía. Pero no lo pudo probar.

 

Abundancia Cósmica de los Elementos : Blog de Emilio Silvera V.

 

Luego, en 1956, el tema de la producción estelar de elementos recibió nuevo ímpetu cuando el astrónomo norteamericano Paul Merril identificó las reveladoras líneas del Tecnecio 99 en los espectros de las estrellas S. El Tecnecio 99 es más pesado que el hierro. También es un elemento inestable, con una vida media de sólo 200.000 años. Si los átomos de Tecnecio que Merril detectó se hubiesen originado hace miles de millones de años en el Big Bang, se habrían desintegrado desde entonces y quedarían hoy muy pocos de ellos en las estrellas S o en otras cualesquiera. Sin embargo, allí estaban. Evidentemente, las estrellas sabían como construir elementos más allá del hierro, aunque los astrofísicos no lo supiesen.

 

La Implosión de una estrella : Blog de Emilio Silvera V.

                                         Estrella muy evolucionada que se transforma en otra cosa

Las estrellas de tecnecio son estrellas cuyo espectro revela la presencia del elemento tecnecio. Las primeras estrellas de este tipo fueron descubiertas en 1952, proporcionando la primera prueba directa de la nucleosíntesis estelar, es decir, la fabricación de elementos más pesados a partir de otros más ligeros en el interior de las estrellas. Como los isótopos más estables de tecnecio tienen una vida media de sólo un millón de años, la única explicación para la presencia de este elemento en el interior de las estrellas es que haya sido creado en un pasado relativamente reciente. Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.

 

NUPEXnucleosíntesis estelar archivos – CAB

                                                                   La nucleosíntesis estelar

Estimulado por el descubrimiento de Merril, Hoyle reanudó sus investigaciones sobre la nucleosíntesis estelar. Era una tarea que se tomó muy en serio. De niño, mientras se ocultaba en lo alto de una muralla de piedra jugando al escondite, miró hacia lo alto, a las estrellas, y resolvió descubrior qué eran, y el astrofísico adulto nunca olvidó su compromiso juvenil. Cuando visitó el California Institute Of Technology, Hoyle estuvo en compañía de Willy Fowler, un miembro residente de la facultad con un conocimiento enciclopédico de la física nuclear, y Geoffrey y Margaret Burbidge, un talentoso equipo de marido y mujer que, como Hoyle, eran escépticos ingleses en la relativo al Big Bang.

Hubo un cambio cuando Geoffrey Burbidge, examinando datos a los que recientemente se había eximido de las normas de seguridad de una prueba atómica en el atolón Bikini, observó que la vida media de uno de los elementos radiactivos producidos por la explosión, el californio 254, era de 55 días. Esto sonó familiar: 55 días era justamente el período que tardó en consumirse una supernova que estaba estudiando Walter Baade. El californio es uno de los elementos más pesados; si fuese creado en el intenso calor de estrellas en explosión, entonces, suguramente los elementos situados entr el hierro y el californio -que comprenden, a fin de cuentas, la mayoría de la Tabla Periódica- también podrían formarse allí. Pero ¿cómo?.

 

                                                   Nucleosíntesis estelar

Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio. Los elementos más complejos surgen a partir de las explosiones Supernovas.

 

Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.

Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caido en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.

 

Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe.

¿Apreciáis la maravilla?

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas. Esa era la meta de Hoyle, llegar a comprender el proceso y, a poder demostrarlo.

“El problema de la síntesis de elementos -escribieron- está estrechamente ligado al problema de la evolcuión estelar.” La curva de abundancia cósmica de elementos que mostraba las cantidades relativas de las diversas clases de átomos en el universo a gran escala. Pone ciertos límites a la teoría de cómo se formaron los elementos, y, en ella aparecen por orden creciente:

 

 

Como reseñamos antes la lista sería Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que aparecen en los gráficos de los estudios realizados son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Via Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el big bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plamo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia escribió Hoyle, Fwler y los Burbidge_…está oculta en la distribución de la abundancia de elementos”

 

El surgimiento de la materia

 

                  En el Big Bang: Hidrógeno, Helio, Litio.

En las estrellas de la serie principal: Carbono, Nitrógeno, Oxígeno.

En las estrellas moribundas: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.

Como habéis podido comprobar, nada sucede por que sí, todo tiene una explicación satisfactoria de lo que, algunas veces, decimos que son misterios escondidos de la Naturaleza y, sin embargo, simplemente se trata de que, nuestra ignorancia, no nos deja llegar a esos niveles del saber que son necesarios para poder explicar algunos fenómenos naturales que, exigen años de estudios, observaciones, experimentos y, también, mucha imaginación.

 

         En la imagen de arriba se refleja el proceso Triple Alpha descubierto por Hoyle:

 

Amigos míos, son las 5,53 h., me siento algo cansado de teclear y me parece que con los datos aquí expuestos podéis tener una idea bastante buena de la formación de elementos en el cosmos y de cómo las estrellas son las máquinas creadoras de la materia cada vez más compleja y, el Universo, nos muestra de qué mecanismos se vale para poder traer elementos que más tarde formarán parte de los planetas, de los objetos en ellos presentes y, de la Vida.

Emilio Silvera V.

Alquimia estelar y, ¿Protoplasma vivo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia estelar    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Estructuración del protoplasma de la Vida con unas notables facultades para hacer cosas nuevas a partir de otras viejas.

 

La impresionante nebulosa protoplanetaria que podemos ver en la Nebulosa  Saco de Carbón – UNIVERSO Blog

La impresionante nebulosa protoplanetaria

El protoplasma para mantener su forma debe renovar sus moléculas de materia. El recambio de sustancias es lo que se conoce globalmente como metabolismo. Corresponde a reacciones sencillas de oxidación, reducción, hidrólisis, condensación, etc. Estas reacciones se van modificando y perfeccionando, en los casos más optimistas, hasta llegar a diferenciarse procesos idénticos en alguna o algunas reacciones, A. Baj. Palladin estudiaron la respiración, con todas sus reacciones y catalizadas por su fermento específico. S. Kostichev, A. Liebedev estudiaron la química de la fermentación.

Leer más

Abundancia Cósmica de Elementos

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia estelar    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

 

 

 

¿Será cierto que todo surgió de una Singularidad? ¿Produjo una fluctuación de “vacío” la dinámica que nos trajo el Universo? ¿Cómo se pudieron formar las galaxias a pesar de la expansión de Hubble? ¿Existía allí, desde aquel primer momento una sustancia cósmica que generaba Gravedad para retener a la materia recién creada?

El cúmulo de preguntas es tal que, deja al descubierto nuestra enorme ignorancia y tenemos que seguir rigiendo nuestros pensamientos por conjeturas y teorías no verificadas, o, en el mejor de los casos, verificadas a medias.

 

Resultado de imagen de la inerciaResultado de imagen de la inercia

“En física, la inercia es la propiedad que tienen los cuerpos de permanecer en su estado de reposo relativo o movimiento relativo. Dicho de forma general, es la resistencia que opone la materia al modificar su estado de movimiento, incluyendo cambios en la velocidad o en la dirección del movimiento. Como consecuencia, un cuerpo conserva su estado de reposo relativo o movimiento rectilíneo uniforme relativo si no hay una fuerza que, actuando sobre él, logre cambiar su estado de movimiento.

En la naturaleza no existe el reposo, siempre toda la materia está en movimiento, por eso cuando se habla de reposo o Movimiento Rectilíneo Uniforme (MRU) se debe añadir la palabra “relativo” (relativo a un sistema de referencia). El cuerpo está en reposo o en MRU solo con respecto de ese sistema de referencia. Cuando un cuerpo está en reposo relativo sobre la superficie de la Tierra, en realidad está participando de los distintos movimientos que realiza el planeta y está sometido a diferentes fuerzas como las gravitatorias de la Tierra, el Sol, La Luna y otros cuerpos, así como la resistencia mecánica que impide que se hunda en la tierra, o se deslice. Se puede decir que el cuerpo se encuentra en equilibrio sobre la superficie de la Tierra y por lo tanto en reposo relativo.

Podríamos decir que es la resistencia que opone un sistema de partículas a modificar su estado dinámico.

En física se dice que un sistema tiene más inercia cuando resulta más difícil lograr un cambio en el estado físico del mismo. Los dos usos más frecuentes en física son la inercia mecánica y la inercia térmica.”

 

 

Se encuentran elementos esenciales para la vida alrededor de una estrella joven. Usando el radiotelescopio ALMA (Atacama Large Millimeter/submillimeter Array), un grupo de astrónomos detectó moléculas de azúcar presentes en el gas que rodea a una estrella joven, similar al sol. Esta es la primera vez que se ha descubierto azúcar en el espacio alrededor de una estrella de estas características. Tal hallazgo demuestra que los elementos esenciales para la vida se encuentran en el momento y lugar adecuados para poder existir en los planetas que se forman alrededor de la estrella.

La abundancia, distribución y comportamiento de los elementos químicos en el Cosmos es uno de los tópicos clásicos de la astrofísica y la cosmoquímica. En geoquímica es también importante realizar este estudio ya que:

– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.

– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.

– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.

– Las distintas capas de la Tierra presentan abundancias diferentes de elementos. El conocer la abundancia cósmica nos permite tener un punto de referencia común. Así, sabiendo cuales son las concentraciones normales de los elementos en el cosmos las diferencias con las abundancia en la Tierra nos pueden proporcionar hipótesis de los procesos geoquímicos que actuaron sobre la Tierra originando migraciones y acumulaciones de los distintos elementos, que modificaron sus proporciones y abundancias respecto al Cosmos.

Resultado de imágenes de Imagenes de la Tabla Periódica

La tabla periódica de los elementos es un arreglo sumamente ingenioso que permite presentar de manera lógica y estructurada las más simples sustancias de las que se compone todo: absolutamente todo lo que conocemos. Todos los elementos que conocemos, e incluso con lo que todavía no nos hemos encontrado, tienen un lugar preciso en ella, cuya posición nos permite conocer muchas de sus características. Ese grupo de casi cien ingredientes permite crear cualquier cosa. Pero no siempre fue así

M42: La Gran Nebulosa de Orión

                         Me gusta la Gran Nebulosa de Orión. Hay ahí tántas cosas, nos cuenta tantas historias…

 

  FUENTES DE DATOS DE ABUNDANCIAS COSMICAS DE LOS ELEMENTOS. Estos datos deben obtenerse a partir del estudio de la materia cósmica. La materia cósmica comprende: Gas interestelar, de muy baja densidad (10-24 g/cm3) y Nébulas gaseosas o nubes de gas interestelar y polvo.

Las nébulas gaseosas se producen cuando una porción del medio interestelar está sujeta a radiación por una estrella brillante y muy caliente, hasta tal punto se ioniza que se vuelve fluorescente y emite un espectro de línea brillante (que se estudian por métodos espectroscopios). Por ejemplo las nébulas de “Orión” y “Trifidos”. Las ventajas de estas nébulas difusas para el estudio de las abundancias son:

[Espada+de+Orion.jpg]

‑ Su uniformidad de composición.

‑ El que todas sus partes sean accesibles a la observación, al contrario de lo que ocurre en las estrellas.

También tiene desventajas:

‑ Solo se observan las líneas de los elementos más abundantes.

‑ Cada elemento se observa solo en uno o pocos estadios de ionización aunque puede existir en muchos.

‑ La mayoría de las nébulas exhiben una estructura filamentosa o estratiforme  es decir que ni la D ni la T son uniformes de un punto a otro. A partir del medio interestelar (gas interestelar y nébulas gaseosas) se están formando continuamente nuevas estrellas.

M16: los pilares de la creación

                                                                               Los pilares de la Creación

En las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: Hidrógeno, Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos  simples en el Big Bang y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas.

Resultado de imagen de Fred Hoyle y su equipo

                                                          Sir Fred Hoyle en una de sus clases

No me parece justo hablar de los elementos sin mencionar a Fred Hoyle y su inmensa aportación al conocimiento de cómo se producían en las estrellas. Él era temible y sus críticas de la teoría del Big Bang hizo época por su mordacidad. Hoyle condenó la teoría por considerarla epistemológicamente estéril, ya que parecía poner una limitación temporal inviolable a la indagación científica: el big bang era una muralla de fuego, más allá de la cual la ciencia de la época no sabía como investigar. Él no concebía y juzgó “sumamente objetable que las leyes de la física nos condujeran a una situación en la que se nos prohíbe calcular que ocurrió en cierto momento del tiempo”. En aquel momento, no estaba falto de razón.

Pero no es ese el motivo de mencionarlo aquí, Hoyle tenía un dominio de la física nuclear nunca superado entre los astrónomos de su generación, había empezado a trabajar en la cuestión de las reacciones de la fusión estelar a mediado de los cuarenta. Pero había publicado poco, debido a una batalla continua con los “arbitros”, colegas anónimos que leían los artículos y los examinaban para establecer su exactitud, cuya hostilidad a las ideas más innovadoras de Hoyle hizo que éste dejara de presentar sus trabajos a los periódicos. Hoyle tuvo que pagar un precio por su rebeldía, cuando, en 1951, mientras él, permanecía obstinadamente entre bastidores, Ernest Opik y Edwin Sepeter hallaron la síntesis en las estrellas de átomos desde el Berilio hasta el Carbono. Lamentando la oportunidad perdida, Hoyle rompió entonces su silencio y en un artículo de 1954 demostró como las estrellas gigantes rojas podían corvertir Carbono en Oxígeno 16.

El Sol como gigante roja

       El Sol, dentro de 5.000 millones de años, será una Gigante roja primero y una enana blanca después

Pero, sigamos con la historia de Hoyle. Quedaba aún el obstáculo insuperable del hierro. El hierro es el más estable de todos los elementos; fusionar núcleos de hierro para formar nucleos de un elemento más pesado consume energía en vez de liberarla; ¿cómo,  pues, podían las estrellas efectuar la fusión del hierro y seguir brillando? Hoyle pensó que las supernovas podían realizar la tarea, que el extraordinario calor de una estrella en explosión podía servir para forjar los elementos más pesados que el hierro, si el de una estrella ordinaria no podía. Pero no lo pudo probar.

Resultado de imagen de El átomo de tecnecio

Luego, en 1956, el tema de la producción estelar de elementos recibió nuevo ímpetu cuando el astrónomo norteamerciano Paul Merril identificó las reveladoras líneas del Tecnecio 99 en los espectros de las estrellas S. El Tecnecio 99 es más pesado que el hierro. También es un elemento inestable, con una vida media de sólo 200.000 años. Si los átomos de Tecnecio que Merril detectó se hubiesen originado hace miles de millones de años en el big bang, se habrían desintegrado desde entonces y quedarían hoy muy pocos de ellos en las estrellas S o en otras cualesquiera. Sin embargo, allí estaban. Evidentemente, las estrellas sabían como construir elementos más allá del hierro, aunque los astrofísicos no lo supiesen.

                                        Estrella muy evolucionada que se transforma en otra cosa

Las estrellas de tecnecio son estrellas cuyo espectro revela la presencia del elemento tecnecio. Las primeras estrellas de este tipo fueron descubiertas en 1952, proporcionando la primera prueba directa de la nucleosíntesis estelar, es decir, la fabricación de elementos más pesados a partir de otros más ligeros en el interior de las estrellas. Como los isótopos más estables de tecnecio tienen una vida media de sólo un millón de años, la única explicación para la presencia de este elemento en el interior de las estrellas es que haya sido creado en un pasado relativamente reciente. Se ha observado tecnecio en algunas estrellas M, estrellas MS, estrellas MC, estrellas S, y estrellas C.

Estimulado por el descubrimiento de Merril, Hoyle reanudó sus investigaciones sobre la nucleosíntesisestelar. Era una tarea que se tomó muy en serio. De niño, mientras se ocultaba en lo alto de una muralla de piedra jugando al escondite, miró hacia lo alto, a las estrellas, y resolvió descubrior qué eran, y el astrofísico adulto nunca olvidó su compromiso juvenil. Cuando visitó el California Institute Of Technology, Hoyle estuvo en compañía de Willy Fowler, un miembro residetente de la facultad con un conocimiento enciclopédico de la física nuclear, y Geoffrey y Margaret Burbidge, un talentoso equipo de marido y mujer que, como Hoyle, eran excépticos ingleses en la relativo al big bang.

Hubo un cambio cuando Geoffrey Burbidge, examinando datos a los que recientemente se había eximido de las normas de seguridad de una prueba atómica en el atolón Bikini, observó que la vida media de uno de los elementos radiactivos producidos por la explosión, el californio 254, era de 55 días. Esto sonó familiar: 55 días era justamente el período que tardó en consumirse una supernova que estaba estudiando Walter Baade. El californio es uno de los elementos más pesados; si fuese creado en el intenso calor de estrellas en explosión, entonces, suguramente los elementos situados entre el hierro y el californio -que comprenden, a fin de cuentas, la mayoría de la Tabla Periódica- también podrían formarse allí. Pero ¿cómo?.

                                                   Nucleosíntesis estelar

Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio. Los elementos más complejos surgen a partir de las explosiones Supernovas.

Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al 26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.

Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caido en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.

Supernova que calcina a un planeta cercano. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es: H, He, (Li, Be, B) C, N, O… Fe.

¿Apreciáis la maravilla?

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente. Esos materiales para la vida sólo se pudieron fabricar el las estrellas, en sus hornos nucleares y en las explosiones supernovas al final de sus vidas. Esa era la meta de Hoyle, llegar a comprender el proceso y, a poder demostrarlo.

“El problema de la síntesis de elementos -escribieron- está estrechamente ligado al problema de la evolución estelar.” La curva de abundancia cósmica de elementos que mostraba las cantidades relativas de las diversas clases de átomos en el universo a gran escala. Pone ciertos límites a la teoría de cómo se formaron los elementos, y, en ella aparecen por orden creciente:

Imagen relacionadaImagen relacionadaImagen relacionada

Como reseñamos antes la lista sería Hidrógeno, Helio, Carbono, Litio, Berilio, Boro, Oxígeno, Neón, Silicio, Azufre, Hierro (damos un salto), Plomo, Torio y Uranio. Las diferencias de abundancias que aparecen en los gráficos de los estudios realizados son grandes -hay, por ejemplo, dos millones de átomos de níquel por cada cuatro átomos de plata y cincuenta de tunsgteno en la Via Láctea- y por consiguiente la curva e abundancia presenta una serie de picos dentados más accidentados que que la Cordillera de los Andes. Los picos altos corresponden al Hidrógeno y al Helio, los átomos creados en el big bang -más del p6 por ciento de la materia visible del universo- y había picos menores pero aún claros para el Carbono, el Oxígeno, el Hierro y el Plamo. La acentuada claridad de la curva ponía límites definidos a toda teoría de la síntesis de elementos en las estrellas. Todo lo que era necesario hacer -aunque dificultoso) era identificar los procesos por los cuales las estrellas habían llegado preferentemente a formar algunos de los elementos en cantidades mucho mayores que otros. Aquí estaba escrita la genealogía de los átomos, como en algún jeroglífico aún no traducido: “La historia de la materia éscribió Hoyle, Fwler y los Burbidge_…está oculta en la distribuciíon de la anundancia de elementos”

Resultado de imagen de          En el Big Bang: Hidrógeno, Helio, Litio.Resultado de imagen de          En el Big Bang: Hidrógeno, Helio, Litio.

                  En el Big Bang: Hidrógeno, Helio, Litio.

Imagen relacionada

En las estrellas de la serie principal: Carbono, Nitrógeno, Oxígeno.

Imagen relacionada

En las estrellas moribundas: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc, Plomo, Torio y Uranio.

Como habeis podido comprobar, nada sucede por que sí, todo tiene una explicación satisfactoria de lo que, algunas veces, decimos que son misterios escondidos de la Naturaleza y, sin embargo, simplemente se trata de que, nuestra ignorancia, no nos deja llegar a esos niveles del saber que son necesarios para poder explicar algunos fenómenos naturales que, exigen años de estudios, observaciones, experimentos y, también, mucha imaginación.

         En la imagen de arriba se refleja el proceso Triple Alpha descubierto por Hoyle:


Amigos míos, son las 5,53 h., me siento algo cansado de teclear y me parece que con los datos aquí expuestos podéis tener una idea bastante buena de la formación de elementos en el cosmos y de cómo las estrellas son las máquinas creadoras de la materia cada vez más compleja y, el Universo, nos muestra de qué mecanismos se vale para poder traer elementos que más tarde formarán parte de los planetas, de los objetos en ellos presentes y, de la Vida.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Comienza la IX Conferencia Iberoamericana sobre la Familia
                       Fotografía de la Conferencia Iberoamericana sobre la familia
Esta es una de las situaciones en las que cualquiera lo daría todo a cambio de nada, Dentro de nosotros, se producen sentimientos que van más allá de lo racional, que pueden hasta con el instinto de conservación y, sin dudarlo, daríamos nuestra propia vida por salvar la del Ser querido.
Venimos a éste mundo con esa tarea, la de enamorarnos y formar una familia. Esa fuerza que no siempre hemos sabido explicar que llamamos Amor, es la que mueve el mundo.

Si existe la perfección, estará en la Naturaleza : Blog de Emilio ...Conocer la Naturaleza, sus secretos : Blog de Emilio Silvera V.Las constantes de la Naturaleza! : Blog de Emilio Silvera V.

 

Una Galaxia es simplemente una pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, toda forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está inter-conectado y el funcionamiento de una cosa incide directamente en las otras.

Así evolucionó el Universo durante 13.000 millones de años ...El Universo y… ¿nosotros? : Blog de Emilio Silvera V.Así están buscando los científicos vida extraterrestreCambio climático: la cuenta atrás ya ha comenzado

                      Sí, en nuestro universo si algo cambia, muchas otras cosas serán distintas

Pocas dudas pueden caber a estas alturas del hecho de que poder estar hablando de estas cuestiones, es un milagro en sí mismo. Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental, con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

El hombre primitivo y sus actividades | La prehistoria para niños ...El hombre primitivo podría proceder de Europa y no de África - La Hora

hombre primitivo - Buscar con Google | Prehistoria, Prehistorico ...Hombre primitivo y su relacion con la criminologia - Docsity

La conciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. Como mínimo, requiere una capacidad semántica y, en su más desarrollada, una capacidad lingüística.

Sinaptogénesis: desarrollo, maduración y enfermedades - LifederAsí descubrimos qué pasa en las neuronas de las personas con ...

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que, de , los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.

Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas. Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que presentimos.

Lo único que existe en el universo es la conciencia?La Mente Universal - Ley de la Atracción Positiva

¿Será la Conciencia la parte más relevante del Universo? ?Es posible que todo los sucesos desde el Big Bang, estuvieran premeditados para hacer que ahora nosotros estuviéramos aquí? Bueno, nosotros y otras muchas criaturas que tendrán la consciencia de Ser.

El carácter especial de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que, este punto de vista, puede considerarse un ente digno del estudio científico perfectamente legítimo.

El impacto del movimiento de astros celestes en nuestra vida ...2.La anatomía de la conciencia - Fluir (Flow)

La conciencia plantea un problema especial que no se encuentra en otros de la ciencia. En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes. Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica. Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo. Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.)

Es la conciencia una realidad no material?EL UNIVERSO ES INMATERIAL, MENTAL Y ESPIRITUAL, CONCLUYE FÍSICO

¿Es la Mente y la Conciencia una realidad no material? ¿Puede existir algo así, algo que está más allá de la materia? ¿Serán esos ingredientes los que nos hacen Ser como somos? ¿Por qué no hemos podido llegar a conocernos a nosotros mismos? En cualquier situación extrema podríamos actuar de una manera imprevista que nos asombraría.

En el caso de la conciencia, sin embargo, nos encontramos con una simetría. Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca. No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada. Lo que realmente queremos hacer es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro interior: una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes.

El Universo de la Conciencia : Blog de Emilio Silvera V.

De las experiencias aprendemos y con la observación y el estudio nos vamos formando una idea del mundo que nos rodea y de la Naturaleza, del Universo en fin. De todo eso, nuestra imaginación puede formarse un “cuadro” y, en función de los conocimientos que cada cual pueda tener, se formará su propio “mundo”. Sin embargo, no hemos podido llegar a conocer lo que la Conciencia es, ni tampoco, como surge la Mente inmaterial a partir de la inmensa complejidad material que reside en el Cerebro.

Qué se siente al ser un murciélago? | neurociencia neurocultura

Será por imaginar. Las veces que he podido visitar el planeta Marte

Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Tomas Negel, saber qué se siente al ser un murciélago. Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que nos hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales. En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía.

Los paisajes más coloridos | Curiosidades VariasUna primavera paisaje lleno de color púrpura oscuro y la luz de ...Una primavera paisaje lleno de color púrpura oscuro y la luz de ...Banco de Imágenes: Paisaje fantástico lleno de colores - Colorful ...

        Nunca podrá ser lo mismo explicar estos lugares que el poder verlos directamente

Ninguna descripción, por prolija que sea, logrará nunca explicar cabalmente la experiencia subjetiva. Muchos filósofos han utilizado el ejemplo del color para explicar este punto. Ninguna explicación científica de los mecanismos neuronales de la discriminación del color, aunque sea enteramente satisfactorio, bastaría para comprender cómo se siente el proceso de percepción de un color. Ninguna descripción, ninguna teoría, científica o de otro , bastará nunca para que una persona daltónica consiga experimentar un color.

Qué es el daltonismo?¿tiene cura? | González Costea

En un experimento mental filosófico, Mary, una neurocientífica del futuro daltónica, lo sabe todo acerca del sistema visual y el cerebro, y en particular, la fisiología de la discriminación del color. Sin embargo, cuando por fin logra recuperar la visión del color, todo aquel conocimiento se revela totalmente insuficiente comparado con la auténtica experiencia del color, comparado con la sensación de percibir el color. John Locke vio claramente este problema hace mucho tiempo.

Tu visita a Keukenhof 2019: horarios, precios y cómo llegar (info ...Evolución : Blog de Emilio Silvera V.Banco de Imágenes: Miradas de otoño - Riachuelo en el bosque con ...Bosque

       Explicar cualquiera de estos paisajes, nunca será como estar ahí recibiendo sus sensaciones

Pensemos por un momento que tenemos un amigo ciego al que contamos lo que estamos viendo un día soleado del mes de abril: El cielo despejado, limpio y celeste, el Sol allí arriba esplendoroso y cegador que nos envía su luz y su calor, los árboles y los arbustos llenos de flores de mil colores que son asediados por las abejas, el aroma y el rumor del río, cuyas aguas cantarinas no cesan de correr transparentes, los pajarillos de distintos plumajes que lanzan alegres trinos en sus vuelos por el ramaje que se mece movido por una brisa suave, todo esto lo contamos a nuestro amigo ciego que, si de pronto pudiera ver, comprobaría que la experiencia directa de sus sentidos ante tales maravillas, nada tiene que ver con la pobreza de aquello que le contamos, por muy hermosas palabras que hacer la descripción empleáramos.

La mente humana es tan compleja que, no todos ante la misma cosa, vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De diez personas solo coinciden tres, los otro siete divergen en la apreciación de lo que el dibujo o la figura les sugiere.

5 motivos por los que alguien puede enamorarse de ti

El la percibe de manera diferente a como la ven otros

Esto nos viene a demostrar la individualidad de pensamiento, el libre albedrío para decidir. Sin embargo, la misma prueba, realizada en grupos de conocimientos científicos similares y específicos: Físicos, matemáticos, químicos, etc., hace que el de coincidencias sea más elevada, más personas ven la misma respuesta al problema planteado. Esto nos sugiere que, la mente está en un estado virgen que cuenta con todos los elementos necesarios para dar respuestas pero que necesita experiencias y aprendizaje para desarrollarse.

Una explicación extraordinaria de lo que es la concienciaObstinados navegantes en océanos de incertidumbre: SOBRE EL ...

¿Debemos concluir entonces que una explicación científica satisfactoria de la conciencia queda siempre fuera de nuestro alcance?

¿O es de alguna manera posible, romper esa barrera, tanto teórica como experimental, para resolver las paradojas de la conciencia?

La consciencia es el mayor enigma de la ciencia y la filosofíaHa llegado el ser humano al límite del conocimiento?

Tratamos de encontrar esa explicación de lo que la Conciencia es. Son embargo, cuando parece que la tocamos con la punta de los dedos, aparece una luz cegadora que nos impide seguir viendo para comprender.

LIMITACIONES DEL SER HUMANO by Wendy Triana on Prezi Next

Sentir miedo, no tener fuerza para realizar una misión, estar supeditado a vivir en la Tierra. llevar sobre sí el peso de la ignorancia, el no poder ver todo lo que hay a nuestro alrededor, pretender ir más allá de lo que realmente podemos, imaginar lo imposible…

La respuesta a estas y otras preguntas, en mi opinión, radica en reconocer nuestras limitaciones actuales en campo del conocimiento complejo de la mente, y, como en la Física cuántica, existe un principio de incertidumbre que, al menos de (y creo que en muchos cientos de años), nos impide saberlo todo sobre los mecanismos de la conciencia y, aunque podremos ir contestando a preguntas parciales, alcanzar la plenitud del conocimiento total de la mente no será nada sencillo, entre otras razones está el serio inconveniente que suponemos nosotros mismos, ya que, con nuestro que hacer podemos, en cualquier momento, provocar la propia destrucción.

Vivir un gran amor - película: Ver online en español

Una cosa si está clara: ninguna explicación científica de la mente podrá nunca sustituir al fenómeno real de lo que la propia mente pueda sentir. ¿Cómo se podría comparar la descripción de un gran amor con sentirlo física y sensorialmente?

Hay cosas que no pueden ser sustituidas, por mucho que los analistas y especialistas de publicidad y marketing se empeñen, lo auténtico siempre será único. Si acaso, el que más se aproximar, a esa verdad,  es el poeta.

emilio silvera