jueves, 02 de abril del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo y la química de la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

Resultado de imagen de Nebulosa molecular gigante"

 

Resultado de imagen de Nebulosa molecular giganteResultado de imagen de Nebulosa molecular gigante

 

A medida que se expandía a partir de su estado primordial uniforme, el universo se enfriaba. Y con las temperaturas más bajas vinieron nuevas posibilidades. La materia fue capaz de agregarse en enormes estructuras amorfas: las semillas de las galaxias actuales. Empezaron a formarse los átomos allanando el camino para la química y la formación de objetos físicos sólidos.

Recreación gráfica del Big Bang / LLacertae/Flickr/Creative Commons

Comparado con los patrones actuales, el universo en dicha época era sorprendentemente homogéneo. El material cósmico estaba presente por todo el espacio con una uniformidad casi perfecta. La Temperatura era la misma en todas partes. La materia, descompuestas en sus constituyentes básicos por el tremendo calor, estaba en un estado de extraordinaria simplicidad. Ningún hipotético observador hubiera podido conjeturar a partir de este estado poco prometedor que el universo estaba dotado de enormes potencialidades. Ninguna clave podía desvelar que, algunos miles de millones de años más tarde, billones de estrellas refulgentes se organizarían en miles de millones de galaxias espirales; que aparecerían planetas y cristales, nubes y océanos, montañas y glaciares; que uno de esos planetas (al menos que sepamos) sería habitado por árboles y bacterias, por elefantes y peces. Ninguna de estas cosas podía predecirse.

La Tierra se formó hace aproximadamente 4550 millones de años y la vida surgió unos mil millones de años después. Es el hogar de millones de especies, incluyendo los seres humanos y actualmente el único cuerpo astronómico donde se conoce la existencia de vida.18 La atmósfera y otras condiciones abióticas han sido alteradas significativamente por la biosfera del planeta, favoreciendo la proliferación de organismos aerobios, así como la formación de una capa de ozono que junto con el campo magnético terrestre bloquean la radiación solar dañina, permitiendo así la vida en la Tierra.

Resultado de imagen de La Tierra primitivaResultado de imagen de La Tierra primitivaResultado de imagen de La Tierra primitivaResultado de imagen de La Tierra primitiva

Aquella Tierra joven y primitiva se fue enfriando y posibilitó que los elementos que contenía “fabricados” en la estrella que explosionó regando el Espacio interestelar con una Nebulosa molecular gigante de la que surgió el Sol y todo el Sistema solar hace unos 5.000 millones de años (también las estrellas vecinas), contenía los ingredientes necesarios (en presencia de agua líquida, radiación, la luz y el calor del Sol), para que puediera surgir aquella primera célula replicante que dio lugar a la fascinante historia de la vida hace ya unos 3.850 millones de años.

Resultado de imagen de Aquella primera célula repliocante que dió lugar a la vida"

Otros apuestan por la Panspermia, esas esporas viajeras que llegaron al planeta y sembraron la vida

La historia de la vida en la Tierra pretende narrar los procesos por los cuales los organismos vivos han evolucionado,  desde el origen de la vida en la Tierra, hace entre  3800 millones de años y 3500 millones de años, hasta la gran diversidad y complejidad biológica presente en las diferentes formas de los organismos, su fisiología y comportamiento que conocemos en la actualidad; así como la naturaleza que, en forma de catástrofes globales, cambios climáticos o uniones y separaciones de continentes y océanos, han condicionado su desarrollo. Las similitudes entre todos los organismos actuales indican la existencia de un ancestro común universal del cual todas las especies conocidas se han diferenciado a través de los procesos de la evolución

Resultado de imagen de El Origen de la vida en la Tierra"

La evolución ha estado presente siempre acompañada del paso del Tiempo para posibilitar que las especies avancen y se definan. Algunas no pudieron adaptarse y se extinguieron, otros lo hicieron por cambios o fenómenos imprevistos que no pudieron soportar. Lo cierto es que, de todas las especies que han existido en nuestro mundo, sólo el 1% sigue viva.

Resultado de imagen de SupernovasResultado de imagen de Supernovas

Resultado de imagen de Agujeros negros masivos que engullen estrelñlasResultado de imagen de Agujeros negros masivos que engullen estrelñlas

Resultado de imagen de Estrellas de neutrones y púlsaresResultado de imagen de Estrellas de neutrones y púlsares

De la misma manera que en nuestro pequeño planeta las especies han evolucionado, también en el Universo han acontecido muchos fenómenos maravillosos han emergido desde aquella época primera:Explosiones de estrellas masivas en  supernovas, agujeros negros monstruosos tan masivos como miles de millones de soles, que engullen estrellas y escupen chorros de gas; estrellas de neutrones y púlsares que giran miles de veces por segundo y cuyo material está comprimido hasta una densidad de mil millones de toneladas por centímetro cúbico; partículas subatómicas tan esquivas que podrían atravesar una capa de plomo sólido de años-luz de espesor y que, sin embargo, no dejan ninguna traza discernible; ondas gravitatorias fantasmales producidas por la colisión de dos agujeros negros que finalizan su danza de gravedad fusionando sus terribles fuerzas de densidades “infinitas”. Pese a todo, y por sorprendentes que estas cosas nos puedan parecer, el fenómeno de la vida es más notable que todas ellas en conjunto.

Resultado de imagen de El sentido de orientación de las avess"

          ¿De dónde surgieron con su gracia y colorido, su agilidad de movimiento y su sentido de orientación?

Las formas de vida que podemos contemplar en nuestro planeta nos muestran una diversidad maravillosa en sus formas y maneras, sus colores, sus metabolismos, los sentidos de los que cada una de ellas está dotada para hacer frente al medio…

Resultado de imagen de Las mutaciones de las especies fueron lenta y adaptativas"Resultado de imagen de Las mutaciones de las especies fueron lenta y adaptativasResultado de imagen de Las mutaciones de las especies fueron lenta y adaptativasResultado de imagen de Las mutaciones de las especies fueron lenta y adaptativas

En realidad, la Vida, no produjo ninguna alteración súbita o espectacular en la esfera cósmica. De hecho, y a juzgar por la vida en la Tierra, los cambios que han provocado han sido extraordinariamente graduales. De todas formas, una vez que la vida se inició, el universo nunca sería el mismo. De manera lenta pero segura, ha transformado el planeta Tierra. Y al ofrecer un camino a la consciencia, la inteligencia y  la tecnología, ella tiene la capacidad de cambiar el universo.

Si miramos esa Nebulosa que abre este trabajo, podemos pensar en qué materiales están ahí presentes sometidos a fuerzas de marea de estrellas jóvenes y de inusitadas energías de radiación ultravioleta que, junto con la fuerza de gravedad, conformar el lugar y hacen que se distorsionen los materiales en los que inciden parámetros que los hacen cambiar de fase y transmutarse en otros distintos de los que, en principio eran. Ahí, en esa nubes inmensas productos de explosiones supernovas, están los materiales de los que se forman nuevas estrellas y mundos que, si se sitúan en el lugar adecuado…pueden traer consigo la vida.

Resultado de imagen de Especies vivas en la Tierra actualmenteResultado de imagen de Especies vivas en la Tierra actualmenteResultado de imagen de Especies vivas en la Tierra actualmenteResultado de imagen de Especies vivas en la Tierra actualmente

¡Han sido y son tantas formas de vida las que han pasado y están en la Tierra! Dicen los expertos que sólo el uno por ciento de las especies que han existido viven actualmente en nuestro planeta y, teniendo en cuenta que son millones, ¿cuántas especies han pasado por aquí?

Claro que no podemos hacer caso de todo lo que los científicos puedan decir alguna que otra vez que, en realidad, va encaminado a producir el asombro de la gente corriente, alimentar el consumo público y, sobre todo, conseguir subvenciones para nuevos proyectos. Es curioso que, la ignorancia, proporcione mejor situación para seguir investigando que la certeza, toda vez que, con la incertidumbre del qué será, se despierta la curiosidad y nos proporciona una motivación, en cambio, la certeza nos relaja.

Está claro que debemos apoyar con fuerza el programa de Astrobiología de la NASA y de las otras naciones. Si queremos que, finalmente, se lleve a cabo un Proyecto de cierta entidad, tendremos que aunar las fuerzas y, las distintas Agencias Espaciales del Mundo Occidental tendrán que poner sobre la mesa lo que tienen para que, de una vez por todas podamos, por ejemplo, hacer realidad una colonia terrestre en el Planeta Marte.

Todos sabemos que resolver el problema de biogénesis está en la mente de muchos. Los astrónomos consideran que planetas como Júpiter y Saturno y, también sus lunas, son inmensos laboratorios pre-bióticos, en donde los pasos que trajeron la vida a la Tierra podrían estar ahora misma allí presentes y, de ahí, la enorme importancia que tendría poder investigarlos en la forma adecuada.

¿Qué sorpresas nos aguarda en Titán con su atmósfera y acéanos de metano?

Resolver el misterio de la biogénesis no es sólo un problema más de una larga lista de proyectos científicos indispensables. Como el origen del Universo y el origen de la Consciencia, representa algo en conjunto  mucho más profundo, puesto que pone a prueba las bases mismas de nuestra ciencia y de nuestra visión del mundo. Un descubrimiento que promete cambiar los principios mismos en los que se basa nuestra comprensión del mundo físico merece que se le de una prioridad urgente.

El misterio del origen de la vida ha intrigado a filósofos, teólogos y científicos durante dos mil quinientos años. Durante los próximos siglos tendremos la oportunidad de ahondar más en ese misterio grandioso que es la Vida, una oportunidad dorada que no debemos, de ninguna manera desechar, ahí tendremos la oportunidad, con los nuevos medios tecnológicos y de todo tipo que vendrán, los avances en el saber del mundo, la nueva manera de mirar las cosas, la nueva física…Todo ello, nos dará la llave para abrir esa puerta durante tanto tiempo cerrada. Ahora parece un poco entreabierta pero, no podemos conseguir que se abra de par en par para poder mirar dentro del misterio central.

Árbol filogenético mostrando la divergencia de las especies modernas de su ancestro común en el centro. Los tres dominios están coloreados de la siguiente forma; las Bacterias en azul, las Archeas en verde, y las Eucariotas en color rojo. Puede parecer mentira que a partir de estos minúsculos seres puediera comenzar la fascinante aventura de la Vida en la Tierra.

Aquellos primeros tiempos fueron duros y de una larga transición para nuestro planeta, las visitas de meteoritos, el inmenso calor de sus entrañas, la química de los materiales fabricados en las estrellas que allí estaban presentes…Todo ello, contribuyó, junto a otros muchos y complejos sucesos, fuerzas e interacciones, a que, hacde ahora unos cuatro mil millones de años, surgiera aquella primera célula replicante que, con el tiempo, nos trajo a nosotros aquí.

Los protobiontes fueron los precursores evolutivos de las primeras células procariotas. Los protobiontes se originaron por la convergencia y conjugación de microesferas de proteínas, carbohidratos, lípidos y otras substancias orgánicas encerradas por membranas lipídicas. El agua fue el factor más significativo para la configuración del endo plama de los protobiontes.

Resultado de imagen de Las moléculas de la vidaResultado de imagen de Las moléculas de la vidaResultado de imagen de Las moléculas de la vidaResultado de imagen de Las moléculas de la vida

Cuando hablamos de CHON, nos referimos al conjunto de elementos formados por Carbono, Hidrógeno, Oxígeno y Nitrógeno, los proncipales componentes de la vida que se fabrican en elas estrellas

Como físico teórico hecho así mismo, algo ingenuo y con un enorme grado de fantasía en mis pensamientos, cuando pienso acerca de la vida a nivel molecular, la pregunta que se me viene a la mente es: ¿Cómo saben lo que tienen que hacer todos estos átomos estúpidos? La complejidad de la célula viva es inmensa, similar a la de una ciudad en cuanto al grado de su elaborada actividad. Cada molécula tiene una función específica y un lugar asignado en el esquema global, y así se manufacturan los objetos correctos. Hay mucho ir y venir en marcha. Las moléculas tienen que viajar a través de la célula para encontrarse con otras en el lugar correcto para llevar a cabo sus tareas de forma adecuada.

Todo esto sucede sin un jefe que dé órdenes a las moléculas y las dirija a sus posiciones adecuadas. Ningún supervisor controla sus actividades. Las moléculas hacen simplemente lo que las moléculas tienen que hacer: moverse ciegamente, chocar con las demás, rebotar, unirse. En el nivel de los átomos individuales, la vida es una anarquía: un caos confuso y sin propósito. Pero, de algún modo, colectivamente, estos átomos inconscientes se unen y ejecutan, a la perfección, el cometido que la Naturaleza les tiene encomendados en la danza de la vida y con una exquisita precisión.

File:A-B-Z-DNA Side View.png

Ya más recientemente, evolucionistas tales como el inglés Richard Dawkins, han destacado el paradigma del “gen egoista”, una imagen poderosa que pretende ilustrar la idea de que los genes son el objetivo último de la selección natural. Los teóricos como Stuart Kauffman, asociado desde hace tiempo al famoso Instituto de Santa Fe, donde los ordenadores crean la llamada vida artificial, insisten en la “autoorganización” como una propiedad fundamental de la vida.

¿Puede la ciencia llegar a explicar un proceso tan magníficamente autoorquestado? Muchos son los científicos que lo niegan al estimar que, la Naturaleza, nunca podrá ser suplantada ni tampoco descubierta en todos sus secretos que, celosamente nos esconde. Sin embargo…Tengo mis dudas. Ellos piensan que la célula viva es demasiado elaborada, demasiado complicada, para ser el producto de fuerzas ciegas solamente y, que debajo de esa aleatoriedad y de un falso azar, deben estar escondidas otras razones que no llegamos a alcanzar. La Ciencia podrá llegar a dar una buena explicación de esta o aquella característica individual, siguen diciendo ellos, pero nunca explicará la organización global, o cómo fue ensamblada la célula original por primera vez.

Resultado de imagen de un liposoma.
Sección transversal a través de un liposoma.

    = Sección captor de agua de moléculas lípidas

    = Colas repelentes de agua

 

Resultado de imagen de AstromatolitosResultado de imagen de Astromatolitos

Resultado de imagen de AstromatolitosResultado de imagen de Astromatolitos

Las «alfombras» microbianas son múltiples capas, multi-especies de colonias de bacterias y otros organismos que generalmente sólo tienen unos pocos milímetros de grosor, pero todavía contienen una amplia gama de entornos químicos, cada uno de ellos a favor de un conjunto diferente de microorganismos. Hasta cierto punto, cada alfombra forma su propia cadena alimenticia, pues los subproductos de cada grupo de microorganismos generalmente sirven de “alimento” para los grupos adyacentes.

Los estromatolitos (arriba) son pilares rechonchos construidos como alfombras microbianas que migran lentamente hacia arriba para evitar ser sofocados por los sedimentos depositados en ellos por el agua. Ha habido un intenso debate acerca de la validez de fósiles que supuestamente tienen más de 3000 millones de años, con los críticos argumentando que los llamados estromatolitos podrían haberse formado por procesos no biológicos.En 2006, otro descubrimiento de estromatolitos fue reportado en el mismo lugar de Australia, como los anteriores, en las rocas de hace 3500 millones de años.

En las modernas alfombras bajo el agua, la capa superior consiste a menudo de cianobacterias fotosintéticas  que crean un ambiente rico en oxígeno, mientras que la capa inferior es libre de oxígeno y, a menudo dominado por el sulfuro de hidrógeno emitido por los organismos que viven allí.  Se estima que la aparición de la fotosíntesis oxigénica por las bacterias en las alfombras, aumentó la productividad biológica por un factor de entre 100 y 1.000. El agente reductor utilizada por la fotosíntesis oxigénica es el agua, pues es mucho más abundante que los agentes geológicos producidos por la reducción requerida de la anterior fotosíntesis no oxigénica. A partir de este punto en adelante, la «vida» misma produce mucho más los recursos que necesita que los procesos geoquímicos.67 El oxígeno, en ciertos organismos, puede ser tóxico, pues éstos no están adaptados a él, así mismo, en otros organismos que sí lo están, aumenta considerablemente su eficiencia metabólica.  El oxígeno se convirtió en un componente importante de la atmósfera de la Tierra alrededor de hace 2400 millones de años

Al igual que muchas esponjas, hay cianobacterias fotosintéticas que viven dentro de sus células.

¿Cuál es el secreto de esta sorprendente organización? ¿Cómo puede ser obra de átomos estúpidos? Tomados de uno en uno, los átomos solo pueden dar empujones a sus vecinos y unirse a ellos si las circunstancias son apropiadas. Pero colectivamente consiguen ingeniosas maravillas de construcción y control, con un ajuste fino y una complejidad todavía no igualada por ninguna ingeniería humana. De algún modo la Naturaleza descubrió cómo construir intrincadas máquinas que llamamos célula viva, utilizando sólo todas las materias primas disponibles, todas en un revoltijo. Repite esta hazaña cada día en nuestros propios cuerpos, cada vez que se forma una nueva célula. Esto ya es un logro fantástico. Más notable incluso es que la Naturaleza construyó la primera célula a partir de cero. ¿Cómo lo hizo?

Una célula es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo. De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano.. Las células suelen poseer un tamaño de 10 μm y una masa de 1 ng, si bien existen células mucho mayores.

Algunas veces he pensado que el secreto de la vida puede proceder de sus propiedades de información; un organismo es un completo sistema de procesos de información. La complejidad y la información pueden ser iluminadas por la disciplina de la termodinámica. La vida es tan siroprendente que, de algún modo, debe haber piodido sortear las leyes de la termodinámica. En particular, la segunda ley que puede considerar como la más fundamental de todas las leyes de la naturaleza, describe una tendencia hacia la desintegración y la degeneración que la vida, ¡claramente evita!

¿Cómo es posible tal cosa?

Si alguno de ustedes sabe contestar esa pregunta…que nos lo exponga, así sabremos un poco más.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre los atmósferas de los planetas en órbitas a su alrededor y a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad.  En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Resultado de imagen de Descubren nuevos mundos como la Tierra

Hasta el momento sólo sabemos de la vida en la Tierra, es lógico pensar que, siendo las leyes de la Naturaleza y las constantes universales del Universo las mismas en todas partes, tanto en nuestra propia Galaxia como en otras, existirán mundos y estrellas que como la Tierra y el Sol, sostengan las vida de criaturas de diversas especies hasta el momento desconocidas para nosotros, las inmensas distancias y la insuficiente tecnología, nos han impedido, hasta el momento, contactar con esas otras cristuras.

Resultado de imagen de Descubren nuevos mundos como la Tierra

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar.  Poco a poco hemos llegado a apreciar cuán precaria es.  Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagan infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas.  Los impactos no han sido infrecuentes en el pasado lejano de la Tierra habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el Planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.

Cuando comento éste tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron.  Sin embargo, a aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo.  Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos.  Se desarrollo la diversidad una vez desaparecidos los grandes depredadores.  Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que, hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros.  Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Resultado de imagen de El surgir de la vida en la Tierra

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

Creo que la clave está en  los compuestos del carbono, toda la vida terrestre actualmente conocida exige también el Agua como disolvente. Y como para el carbono, se supone a veces que el agua es el único producto químico conveniente para cumplir este papel. El amoníaco (el nitruro de hidrógeno) es la alternativa ciertamente al agua, la más generalmente posible propuesta como disolvente bioquímico. Numerosas reacciones químicas son posibles en disolución en el amoníaco, y el amoníaco líquido tiene algunas semejanzas químicas con el agua. El amoníaco puede disolver la mayoría de las moléculas orgánicas al menos así como el agua, y por otro lado es capaz de disolver muchos metales elementales. A partir de este conjunto de propiedades químicas, se teorizó que las formas de vida basada en el amoníaco podrían ser posibles. También se dijo del Silicio. Sin embargo, ninguno de esos elementos son tan propicios para la vida como el Carbono y tienen, como ya sabemos, parámetros negativos que no permiten la vida tal como la conocemos.

Hasta rel momento, todas las formas de vida descubiertas en la Tierra, están basadas en el Carbono.

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.  La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc.  En este punto, parece lógico recordar que antes de 1957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía.  Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.

Todas las células están formadas por elementos químicos que al combinarse forman una amplia variedad de moléculas que a su vez forman agregados moleculares y éstos los diversos organelos celulares. Los elementos constitutivos de las biomoléculas más importantes son:
  • C: Carbono
  • H: Hidrógeno
  • O: Oxígeno
  • N: Nitrógeno
También son importantes los siguientes:
  • P: Fósforo
  • Fe: Hierro
  • S: Azufre
  • Ca: Calcio
  • I: Yodo
  • Na: Sodio
  • K: Potasio
  • Cl: Cloro
  • Mg: Magnesio
  • F: Flúor
  • Cu: Cobre
  • Zn: Zinc
Las biomoléculas pertenecen a cuatro grupos principales denominados:
  1. Glúcidos o Hidratos de Carbono
  2. Lípidos
  3. Proteínas
  4. Ácidos Nucleicos

El el gráfico de arriba  están resumidas sus funciones.

A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero,  en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos aquí y que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.

 

Sí, imaginamos demasiado pero… ¿Qué hay más poderoso que la imaginación? Claro que a veces, la realidad supera a lo imaginado.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

Resultado de imagen de Quien nos observa desde otros mundos

Las cosas no son tan sencillas como a primera vista nos pueden parecer. Si nos oservan desde un planeta lejano con potentes telecopios, no verían la Tierra de hoy, sino otra mucho más nueva, la de sus comienzos, o, cuando surgió la vida en el planeta, depende de la distancia que nos separe.

¿Cuántos secretos están en esos números escondidos? La me´canica cuántica (h), la relatividad (c), el electromagnetismo (e-). Todo eso está ahí escondido. El número 137 es un número puro y adimensional, nos habla de la constante de estructura fina alfa (α), y, el día que sepamos desentrañar todos sus mensajes… ¡Ese día sabremos!

                                                   Extraños mundos que pudieran ser

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos.  Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina.  Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes.  Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades.  Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, pero los experimentadores dicen que no es un entero, de modo que bien podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad también estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión ella y los neutrinos, pero esto ha fracasado.”

 

Resultado de imagen de Las constantes de la Naturaleza

 

Las constantes de la naturaleza ¡son intocables! Hacen de nuestro UNiverso el que podemos observar

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.

Ahora, cuando miramos el Universo, comprendemos, en parte, lo que ahí está presente.

Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz.  Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso.  Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por M3 de espacio.  Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres.  Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos.  Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más.

Resultado de imagen de La estructura de los átomos en imagen GIFs

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón b, que es aproximadamente igual a 1/1.836, y la constante de estructura fina a, que es aproximadamente 1/137.  Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar.  Incrementemos b demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de Beta (aF) el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Resultado de imagen de La fuerza nuclear fuerteResultado de imagen de La fuerza nuclear fuerte

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que  aF > 0,3 a½, los elementos como el carbono no existirían.

No podrían existir químicos orgánicos, no podrían mantenerse unidos.Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros.  Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida

Hasta donde sabemos, en nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas que llegaran a poder cristalizar los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono… Si miramos por ahí, encontraremos múltiples noticias como estas:

Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.

Resultado de imagen de Formas de vida extraterrestreResultado de imagen de Formas de vida extraterrestreResultado de imagen de Formas de vida extraterrestreResultado de imagen de Formas de vida extraterrestre

Co,mo podemos ver, amigos míos, la vida, como tantas veces vengo diciendo aquí, pulula por todo el Universo en la inmensa familia galáctica compuesta por más de ciento veinticinco mil millones y, de ese número descomunal, nos podríamos preguntar: ¿Cuántos mundos situados en las zonas habitables de sus estrellas habrá y, de entre todos esos innumerables mundos, cuántos albergaran la vida?

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida es, de lo más nartural en el universo y estará presente en miles de millone de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Sin embargo, no niego que puedan existir otras formas de vida diferentes a las terrestres.

emilio silvera

¿Sabremos alguna vez, quiénes somos?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Expliso´pm  Supernova

En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:

            H, He, (Li, Be, B) C, N, O… Fe

No pocas veces hemos referido aquí el maravilloso suceso que está presente en las estrellas que mediante la fusión nuclear, transforma los elementos sencillos en otros más complejos y, cuando agotado el ciclo y no pueden continuar fusionando los materiales pesados que les quedan, dependiendo de sus masas se transforman en gigantes rojas y finalmente en enanas blancas (como le pasará a nuestro Sol), dejando una bonita Nebulosa Planetaria, y, si la estrella es masiva, su final será mediante la explosión como Supernova que regará el espacio interestelar con el remanente de materiales pesados y la estrella, en su mayor parte, se convertirá en una estrella de Neutrones, o, si es una supermasiva, en Agujero Negro.

Lo curioso y asombroso del caso es que, a partir de esos materiales, se forman nuevas estrellas y nuevos mundos y, en algunos de esos mundos que se sitúan en la zona adecuada para la habitabilidad, donde el agua corre líquida y se ha formado una atmósfera adecuada y océanos, con el paso del tiempo, esa materia primordial se acomoda en estructuras complejas y surge la Vida.

 

La imagen de arriba, SN 1987A, es la descomunal explosión de supernova, cuando ocurrió, la potencia de miles de soles cambió, momentáneamente, la región del espacio conocida como Nube Mayor de Magallanes, a muchos años luz de la Tierra.

¡Qué maravilla!  Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente que esas mismas estrellan han posibilitado, creo que, en muchos mundos que son en las galaxias del universo.

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico.

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas.

¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

http://3.bp.blogspot.com/-IO7zpTA9Gqw/TvNABf1MU8I/AAAAAAAAAOg/jG_CA-apnAo/s1600/carbono.jpg

                  En Titán existen moléculas de Carbono necesarias para la vida

Según decía en algún trabajo anterior, los quarks up y down se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones. Sin embargo, debemos tener claro que toda la materia del Universo (al menos la conocida), está conformada por Quarks y Leptones.

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

Volcán de hielo Sotra Facula en Titan. Crédito: NASA.

Científicos descubrieron posibles cráteres que expulsan hielos, llamados criovolcanes. (15 Diciembre, 2010 NASA – CA) Con el sistema de radar e imágenes infrarrojas de la sonda Cassini, que orbita Saturno, científicos han encontrado evidencias de lo que podría ser un volcán de hielo en Titán. Este pequeño mundo haría las delicias de cualquier químico de la Tierra y, no digamos de los geólogos. (4 Enero 2007 – NASA/Agencias – CA) Fue comprobada la predicción sobre la existencia de lagos de metano líquido en Titán.

Pero, si hablamos de los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

Hablemos un poco de moléculas.

Molécula de fullereno, dinitrógeno, agua y la representación poliédrica del anión de Keggin, un polianión  molecular

El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.

Esta nebulosa llena de color, denominada NGC 604, es uno de los mayores y mejores ejemplos de nacimiento estelar en una galaxia cercana. La nebulosa NGC 604 es semejante a otras regiones de formación de estrellas en la Vía Láctea que nos resultan familiares, como la nebulosa de Orión, pero en este caso nos hallamos ante una enorme extensión que contiene más de 200 brillantes estrellas azules inmersas en una resplandeciente nube gaseosa que ocupa 1.300 años-luz de espacio, unas cien veces el tamaño de la Nebulosa de Orión, la cual aloja exactamente cuatro estrellas brillantes centrales. Las luminosas estrellas de NGC 604 son extremadamente jóvenes, ya que se han formado hace tres millones de años.

Las moléculas diatómicas de hidrógeno abundan en el espacio interestelar. NGC 604, una enorme región de hidrógeno ionizado en la Galaxia del Triángulo. Son muchas las moléculas descubiertas en estas nebulosas y se cree que son el material que más tarde forman los mundos y, si tienen la suerte de caer en la zona habitable de la estrella que les dará luz y calor, esas moléculas se unirán para construir estructuras más complejas que las lleven hasta la vida.

Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones. Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.

¿La molécula sintética más grande del mundo? Bueno, en la naturaleza existen muchas moléculas de gran tamaño, un claro ejemplo son las proteínas o el ADN, y son grandes debido a que están formados por la unión de muchas moléculas más pequeñas. Las proteínas están formadas por la unión de aminoácidos, y el ADN por la unión de nucleótidos.

Resultado de imagen de Los orbitales atómicos

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales sp,dfgh. Este pequeño número nos proporciona una gran diversidad.

 http://upload.wikimedia.org/wikipedia/commons/5/58/Es-Orbital_s.png

                                          De los orbitales hablamos aquí extensamente muy a menudo

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas isoelectrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. De todas las maneras y, sin descartar nada, creo que las formas de vida que podamos encontrar en el Universo, al menos la mayoría, estarán basadas, como nosotros, en el Carbono que, por sus características especiales, es el más idóneo para la vida.

emilio silvera

¡Los materiales para la vida! Y, de los mundos

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

plasma vivo?

¿Será así la espuma cuántica?

                 Los elementos se crean en las estrellas y en las explosiones supernovas

¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (big bang, teoría del estado estacionario, etc.

Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferentes de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida.

Una de las cosas que siempre me han llamado poderosamente la atención, han sido las estrellas y las transformaciones que, dentro de ellas y los procesos que en su interior se procesan, dan lugar a las transiciones de materiales sencillos hacia materiales más complejos y, finalmente, cuando al final de sus vidas expulsan las capas exteriores al espacio interestelar dejando una extensa región del espacio interestelar sembrada de diversas sustancias que, siguiendo los procesos naturales e interacciones con todo lo que en el lugar está presente, da lugar a procesos químicos que transforman esas sustancias primeras en otras más complejas, sustancias orgánicas simples como, hidrocarburos y derivados que, finalmente, llegan a ser los materiales necesarios para que, mediante la química-biológica del espacio, den lugar a moléculas y sustancias que son las propicias para hacer posible el surgir de la vida.

La Química de los Carbohidratos es una parte de la Química Orgánica que ha tenido cierta entidad propia desde los comienzos del siglo XX, probablemente debido a la importancia química, biológica (inicialmente como sustancias de reserva energética) e industrial (industrias alimentaria y del papel) de estas sustancias. Ya muy avanzada la segunda mitad del siglo XX han ocurrido dos hechos que han potenciado a la Química de Carbohidratos como una de las áreas con más desarrollo dentro de la Química Orgánica actual.

Todos los animales, plantas y microbios están compuestos fundamentalmente, por las denominadas sustancias orgánicas. Sin ellas, la vida no tiene explicación (al menos que sepamos). De esta manera, en el primer período del origen de la vida tuvieron que formarse dichas sustancias, o sea, surgimiento de la materia prima que más tarde serviría para la formación de los seres vivos.

La característica principal que diferencia a las sustancias orgánicas de las inorgánicas, es que en el contenido de las primeras se encuentra como elemento fundamental el Carbono.

En las sustancias orgánicas, el carbono se combina con otros elementos: hidrógeno y oxígeno (ambos elementos juntos forman agua), nitrógeno (este se encuentra en grandes cantidades en el aire, azufre, fósforo, etc. Las distintas sustancias orgánicas no son más que las diferentes combinaciones de los elementos mencionados, pero en todas ellas, como elemento básico, siempre está el Carbono.

Educación Ambiental para el Trópico de CochabambaResultado de imagen de EDUCACIÓN AMBIENTAL PARA EL TRÓPICO DE COCHABAMBA

En el primer nivel (abajo) están los productores, o sea las plantas como maíz, frijol, papaya, cupesí, mora, yuca, árboles, hierbas, lianas, etc., que producen hojas, frutas, raíces, semillas, que comen varios animales y la gente.

En el segundo nivel están los primeros consumidores, que comen hierbas, hojas (herbívoros) y frutas (frugívoros). Estos primeros consumidores incluyen a insectos como hormigas, aves como loros y mamíferos como ratones, urina, chanchos, chivas, vacas.

En el tercer nivel están los segundos consumidores (carnívoros), es decir los que se comen a los animales del segundo nivel: por ejemplo el oso bandera come hormigas, el jausi come insectos y la culebra come ratones.

Nosotros, los humanos, somos omnívoros, es decir comemos de todo: plantas y animales. Algunos de los carnívoros comen, a veces, plantas también, como los perros. Otros, como el chancho, comen muchas plantas y a veces también carne.

Las sustancias orgánicas más sencillas y elementales son los llamados hidrocarburos o composiciones donde se combinan el Oxígeno y el Hidrógeno. El petróleo natural y otros derivados suyos, como la gasolina, el keroseno, etc., son mezcolanzas de varios hidrocarburos. Con todas estas sustancias como base, los químicos obtienen sin problemas, por síntesis, gran cantidad de combinados orgánicos, en ocasiones muy complejos y otras veces iguales a los que tomamos directamente los seres vivos, como azúcares, grasas, aceites esenciales y otros. Debemos preguntarnos como llegaron a formarse en nuestro planeta las sustancias orgánicas.

Está claro que, para los iniciados en estos temas, la cosa puede parecer de una complejidad inalcanzable, nada menos que llegar a comprender ¡el origen primario de las sustancias orgánicas!

Es nuestro planeta y el único habitado (hasta donde podemos saber). Está en la ecosfera, un espacio que rodea al Sol y que tiene las condiciones necesarias para que exista vida. Claro que, ¡son tantos los mundos! Cómo vamos a ser nosotros nos únicos que poblemos el Universo? ¡Que despercidicio de espacio!

 

 

La observación directa de la Naturaleza que nos rodea nos puede facilitar las respuestas que necesitamos. En realidad, si ahora comprobamos todas las sustancias orgánicas propias de nuestro mundo en relación a los seres vivos podemos ver que, todas, son producidas hoy día en la Tierra por efecto de la función activa y vital de los organismos.

Las plantas verdes absorben el carbono inorgánico del aire, en calidad de anhídrido carbónico, y con la energía de la luz crean, a partir de éste, sustancias orgánicas necesarias para ellas. Los animales, los hongos, también las bacterias y el resto de organismos, menos los de color verde, se alimentan de animales o vegetales vivos o descomponiendo estos mismos, una vez muertos, pueden proveerse de las sustancias orgánicas que necesitan. Con esto, podemos ver como todo el mundo actual de los seres vivos depende de los dos hechos análogos de fotosíntesis y quimiosíntesis, aplicados en las líneas anteriores.

Incluso las sustancias orgánicas que se encuentran bajo tierra como la turba, la hulla o el petróleo, han surgido, básicamente, por efecto de la acción de diferentes organismos que en un tiempo remoto se encontraban en el planeta Tierra y que con el transcurrir de los siglos quedaron ocultos bajo la maciza corteza terrestre.

Todo esto fue causa de que muchos científicos de finales del siglo XIX y principios del XX, afirmaran que era imposible que las sustancias orgánicas produjeran en la Tierra, de forma natural, solamente mediante un proceso biogenético, o sea, con la única intervención de los organismos. Esta opinión predominante entre los científicos de hace algunas décadas, constituyó un obstáculo considerable para hallar una respuesta a la cuestión del origen de la vida.

Para tratar esta cuestión era indispensable saber cómo llegaron a constituirse las sustancias orgánicas; pero ocurría que éstas sólo podían ser sintetizadas por organismos vivos. Sin embargo, únicamente podemos llegar a esta síntesis si nuestras observaciones no van más allá de los límites del planeta Tierra. Si traspasamos esa frontera nos encontraremos con que en diferentes cuerpos celestes de nuestra Galaxia se están creando sustancias orgánicas de manera abiogenética, es decir, en un ambiente que excluye cualquier posibilidad de que existan seres orgánicos en aquel lugar.

3tipe

 Enana de carbono = Este tipo de enanas son muy raras. Una estrella de carbono es parecida a una enana roja, aunque ocasionalmente puede serlo, ya que su clasificación en el diagrama de Hertzsprung-Russell es muy variable.

Resultado de imagen de Estrellas de carbono, estrellas gigantes rojas

         Existen estrellas de carbono y más raras aún

Con un espectroscopio podemos estudiar la fórmula química de las atmósferas estelares, y en ocasiones casi con la misma exactitud que si tuviéramos alguna muestra de éstas en el Laboratorio. El Carbono, por ejemplo, se manifiesta ya en las atmósferas de las estrellas tipo O, que son las que están a mayor temperatura, y su increíble brillo es lo que las diferencia de los demás astros (Ya os hablé aquí de R. Lepori, la estrella carmesí, o, también conocida como la Gota de Sangre, una estrella de Carbono de increíble belleza).

En la superficie de las estrellas de Carbono existe una temperatura que oscila los 20.000 y los 28.000 grados. Es comprensible, entonces, que en esa situación no pueda prevalecer aún alguna combinación química. La materia está aquí en forma relativamente simple, como átomos libres disgregados, sueltos como partículas minúsculas que conforman la atmósfera incandescente de estos cuerpos estelares.

Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha), Esta enana blanca tiene una temperatura en superficie de 35.000 K.

Resultado de imagen de La atmósfera de las estrellas tipo B

La atmósfera de las estrellas tipo B, característica por su luz brillante blanco-azulada y cuya corteza tiene una temperatura que va de 15.000 a 20.000 grados, también tienen vapores incandescentes de carbono. Pero aquí este elemento tampoco puede formar cuerpos químicos compuestos, únicamente existe en forma atómica, o sea, en forma de pequeñísimas partículas sueltas de materia que se mueven a una velocidad de vértigo.

Sólo la visión espectral de las estrellas Blancas tipo A, en cuya superficie hay una temperatura de unos 12.000º, muestras unas franjas tenues, que indican, por primera vez, la presencia de hidrocarburos –las más primitiva combinaciones químicas de la atmósfera de estas estrellas. Aquí, sin que existan antecedentes, los átomos de dos elementos (el carbono y el hidrógeno) se combinan resultando un cuerpo más perfecto y complejo, una molécula química.

Observando las estrellas más frías, las franjas características de los hidrocarburos son más limpias cuando más baja es la temperatura y adquieren su máxima claridad en las estrellas rojas, en cuya superficie la temperatura nunca es superior a los 4.000º.

Es curioso el resultado obtenido de la medición de Carbono en algunos cuerpos estelares por su temperatura:

  • Proción: 8.000º
  • Betelgeuse: 2.600º
  • Sirio: 11.000º
  • Rigel: 20.000º

Como es lógico pensar, las distintas estrellas se encuentran en diferentes períodos de desarrollo. El Carbono se encuentra presente en todas ellas, pero en distintos estados del mismo.

Las estrellas más jóvenes, de un color blanco-azulado son a la vez las más calientes. Éstas poseen una temperatura muy elevada, pues sólo en la superficie se alcanzan los 20.000 grados.

Los científicos descubrieron una enorme cantidad de silicatos cristalinos e hidrocarburos policíclicos aromáticos, dos sustancias que indican la presencia de oxígeno y de carbono, respectivamente. Así todos los elementos que las componen, incluido el Carbono, están en forma de átomos, de diminutas partículas sueltas. Existen estrellas de color amarillo y la temperatura en su superficie oscila entre los 6.000 y los 8.000º. En estas también encontramos Carbono en diferentes combinaciones.

El Sol, pertenece al grupo de las estrellas amarillas y en la superficie la temperatura es de 6.000º. El Carbono en la atmósfera incandescente del Sol, lo encontramos en forma de átomo, y además desarrollando diferentes combinaciones: Átomos de Carbono, Hidrógeno y Nitrógeno, Metino, Cianógeno, Dicaerbono, es decir:

  1. Átomos sueltos de Carbono, Hidrógeno y Nitrógeno.
  2. Miscibilidad combinada de carbono e hidrógeno (metano)
  3. Miscibilidad combinada de carbono y nitrógeno (cianógeno); y
  4. Dos átomos de Carbono en combinación (dicarbono).

En las atmósferas de las estrellas más calientes, el carbono únicamente se manifiesta mediante átomos libres y sueltos. Sin embargo, en el Sol, como sabemos, en parte, se presenta ya, formando combinaciones químicas en forma de moléculas de hidrocarburo de cianógeno y de dicarbono.

Para hallar las respuestas que estamos buscando en el conocimiento de las sustancias y materiales presentes en los astros y planetas, ya se está realizando un estudio en profundidad de la atmósfera de los grandes planetas del Sistema solar. Y, de momento, dichos estudios han descubierto, por ejemplo, que la atmósfera de Júpiter está formada mayoritariamente por amoníaco y metano. Lo cual hace pensar en la existencia de otros hidrocarburos. Sin embargo, la masa que forma la base de esos hidrocarburos, en Júpiter permanece en estado líquido o sólido a causa de la abaja temperatura que hay en la superficie del planeta (135 grados bajo cero). En la atmósfera del resto de grandes planetas se manifiestan estas mismas combinaciones.

Ha sido especialmente importante el estudio de los meteoritos, esas “piedras celestes” que caen sobre la Tierra de vez en cuando, y que provienen del espacio interplanetario. Estos han representado para los estudiosos los únicos cuerpos extraterrestres que han podido someter a profundos análisis químico y mineralúrgico, de forma directa. Sin olvidar, en algunos casos, los posibles fósiles.

Estos meteoritos están compuestos del mismo material que encontramos en la parte más profunda de la corteza del planeta Tierra y en su núcleo central, tanto por el carácter de los elementos que los componen como por la base de su estructura. Es fácil entender la importancia capital que tiene el estudio de los materiales de estas piedras celestes para resolver la cuestión del origen de las primitivas composiciones durante el período de formación de nuestro planeta que, al fin y al cabo, es la misma que estará presente en la conformación de otros planetas rocosos similares al nuestro, ya que, no lo olvidemos, en todo el universo rigen las mismas leyes y, la mecánica de los mundos y de las estrellas se repiten una y otra vez aquí y allí, a miles de millones de años-luz de nosotros.

Así que, se forman hidrocarburos al contactar los carburos con el agua. Las moléculas de agua contienen oxígeno que, combinado con el metal, forman los hidróxidos metálicos, mientras que el hidrógeno del agua mezclado con el carbono forman los hidrocarburos.

Los hidrocarburos originados en la atmósfera terrestre se mezclaron con las partículas de agua y amoníaco que en ella existían, creando sustancias más complejas. Así, llegaron a hacerse presentes la formación de cuerpos químicos. Moléculas compuestas por partículas de oxígeno, hidrógeno y carbono.

Todo esto desembocó en el saber sobre los Elementos que hoy podemos conocer y, a partir de Mendeléiev (un eminente químico ruso) y otros muchos…se hizo posible que el estudio llegara muy lejos y, al día de hoy, podríamos decir que se conocen todos los elementos naturales y algunos artificiales que, nos llevan a tener unos valiosos datos de la materia que en el universo está presente y, en parte, de cómo funciona cuando, esas sustancias o átomos, llegan a ligarse los unos con los otros para formar, materiales más complejos que, aparte de los naturales, están los artificiales o transuránicos.

Aquí en la Tierra, las reacciones de hidrocarburos y sus derivados oxigenados más simples con el amoníaco generaron otros cuerpos con distintas combinaciones de átomos de carbono, hidrógeno, oxígeno y nitrógeno (CHON) en su moléculas llamadas paras la vida una vez que, más tarde, por distintos fenómenos de diversos tipos, llegaron las primeras sustancias proteínicas y grasas que, dieron lugar a los aminoácidos, las Proteínas y el ADN y RDN que, finalmente desembocó en eso que llamamos vida y que, evolucionado, ha resultado ser tan complejo y, a veces, en ciertas circunstancias, peligroso: ¡Nosotros!

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de El Sistema SolarResultado de imagen de ¿Nuestro mundo= El Tercero a partir del Sol
Nuestro mundo es el tercero a partir del Sol, situado a 150 millones de kilómetros (1 UA) para que el agua corra líquida y libre y la vida, sea posible.

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. Según toos los datos que tenemos la edad de la Tierra data de hace unos 4.500 millones de años, y, los primeros signos de vida que han podido ser localizados fosilizados en rocas antiguas, tienen unos 3.800 millones de años, es decir, cuando la Tierra era muy joven ya apareció en ella la vida.

El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el Hidrógeno, Nitrógeno, Oxígeno, CARBONO, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Resultado de imagen de Lugares privilegiados del planeta como Haeai y otros

          La imagen del cielo nos puede servir para mostrar una atmósfera acogedora para la vida

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

File:Ammonia World.jpg

Es cierto que la realidad puede ser mucho más imaginativa de lo que nosotros podamos imaginar. ¿Habrá mundos con formas de vida basadas en el Silicio? Aunque me cuesta creerlo, también me cuesta negarlo toda bvez que, la Naturaleza nos ha demostrado, muchas veces ya, que puede realizar cosas que nosotros, nos parecen imposibles y, sin embargo, ahí está el salto cuántico… Por ejemplo.

Imagen relacionadaResultado de imagen de increibles formas de vida

Los biólogos, por ejemplo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.  La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc.  En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía.  Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

        Para nosotros ha pasado mucho tiempo, y, sin embargo, para el Universo ha sido solo un instante

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.

Imagen relacionadaResultado de imagen de La humanidad del futuro

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos.  Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina.  Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes.  Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN PUEDEN VERSE AFECTADOS DE MANERA ADVERSA. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades.  Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz.  Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso.  Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por Mde espacio.  Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres.  Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

Resultado de imagen de Formamos parte del Universo

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad del Cosmos. soy muy consciente de que, aunque una parte infinitesimal, ¡soy una parte de él!  Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más. De todas las maneras, nosotros somos una parte esencial del universo: La que siente y observa, la que genera ideas y llega a ser consciente de que es, ¡la parte del universo que trata de comprender!

emilio silvera