viernes, 09 de diciembre del 2022 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Las Galaxias:pequeños universos creadores de mundos y de…vida.

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (21)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

NUESTRA GALAXIA: Sólo parcialmente la podemos contemplar y, cuando la veamos desde fuera será señal de que, nuestros avances han sido considerables y hemos podido salir (ahora sí) al Espacio Exterior, ya que, lo que ahora podemos hacer es andar por las afuera de nuestro barrio. Visitar los mundos vecinos (que ya es una proeza) no será suficiente para las necesidades que en el futuro, tendrá planteada la Humanidad que, en unas pocas decenas de años verá cuadruplicada su población y, para cuando eso llegue…¿Qué podremos hacer? La Tierra, tiene sus límites.

La Vía Láctea está llena de ondas (y es más grande de lo que creíamos)

La Galaxia espiral que acoge a nuestro Sol y a las estrellas visibles durante la noche, además de otros muchos objetos que, por su inmensa lejanía, requieren sofisticados telescopios para poner sus imágenes ante nosotros. Es escrita con G mayúscula para distinguirla de las inmensas pléyades de  galaxias que reunidas en cúmulos y supercúmulos adornan el Universo en su conjunto. Su disco, el de nuestra Vía Láctea,  es visible a simple vista como una débil banda alrededor del cielo.

La vía láctea nasa convierte los datos en música y lo muestra en video

Nuestra galaxia tiene tres componentes principales. Uno es el disco de rotación de unas 6×1010 masas solares consistentes en estrellas relativamente jóvenes (población II), cúmulos cubiertos de gas y polvo, estando estrellas jóvenes y material interestelar concentrados en brazos espirales. El disco es muy delgado, de unos 1.000 a. l., comparado con su diámetro de más de 100.000 años luz. Aún continúa una activa formación de estrellas en el disco, particularmente en las nubes moleculares gigantes.

El segundo componente principal es un halo débil y aproximadamente esférico con quizás el 15 – 30% de la masa del disco. El halo está constituido por estrellas viejas (población II), estando concentradas parte de ellas en cúmulos globulares, además de pequeñas cantidades de gas caliente, y se une a un notable bulbo central de estrellas, también de la población II.

El cúmulo globular M55 desde CFHT

                                                                          Cúmulo Globular M55

El tercer componente principal es un halo no detectado (que algunos dicen ser de materia oscura) con una masa total de al menos 4×1011 masas solares. En total, hay probablemente alrededor de 2×1011 estrellas en la Galaxia (unos 200 mil millones), la mayoría con masas menores que el Sol.

Leer más

El Efecto Casimir y algunos misterios por desvelar

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                         NAE Website - HENDRIK B.G. CASIMIR 1909–2000

Hendrik Casimir. 1909 Director of Philips’ research laboratories, Eindhoven, Netherlands Assistant to Wolfgang Pauli: Winter semester 1932-1933 – Summer semester 1933 © Pauli Archive, CERN, Geneva.

         Noésis(Νόησις) — El antiparmenídeo efecto Casimir en el vacío cuántico: Del  no-ser se engendra el ser

El que arriba vemos era el físico teórico holandés Hendrik Casimir que fue el primero en observar que cuando dos espejos se enfrentaban en el vacío, las fluctuaciones en el vacío ejercen “presión de radiación” sobre ellos. En media, la presión externa es mayor que la presión interna. Ambos espejos se atraen mutuamente hacia el otro por la llamada Fuerza de Casimir. La fuerza F ~ A / d4 , donde A es el área de los espejos y d es la distancia entre los mismos.

                                                              Noésis(Νόησις) — El antiparmenídeo efecto Casimir en el vacío cuántico: Del  no-ser se engendra el ser

La Fuerza de Casimir es el efecto mecánico más famoso de las fluctuaciones del vacío. Considera la separación entre dos espejos planos como una cavidad . Todos los campos electromagnéticos tienen un “espectro” característico que contienen muchas frecuencias distintas. En un vacío libre todas las frecuencias tienen la misma importancia. Pero dentro de la cavidad, donde el campo es reflejado sucesivamente entre los espejos, la situación es distinta. El campo se amplifica si múltiplos enteros de la mitad de la longitud de onda encajan exactamente en la cavidad. Esta longitud de onda corresponde a la “resonancia de cavidad”. A otras longitudes de onda, por contra, se suprime el campo. Las fluctuaciones del vacío se suprimen o aumentan dependiendo de si la frecuencia corresponde a la resonancia de cavidad o no.

                                        

Una cantidad física importante cuando se discute la Fuerza de Casimir es la “presión de radiación de campo”. Cada campo –incluso en campo de vacío– lleva energía. Como todos los campos electromagnéticos puede propagarse en el espacio también ejercen presión en las superficies, como un río que fluye y empuja una compuerta. Esta presión de radiación aumenta con la energía – y por tanto la frecuencia – del campo electromagnético. En la frecuencia de resonancia de cavidad la presión de radiación dentro de la cavidad es más fuerte que la del exterior y los espejos por lo tanto son alejados. Fuera de la resonancia, por contra, la presión de radiación dentro de la cavidad es menor que la del exterior y los espejos se unen.

Casimir a la caza del gravitón - Naukas

Ilustración del Efecto Casimir: Este fenómeno se debe a que los fotones situados entre dos placas conductoras no pueden oscilar con cualquier frecuencia, sino solo con las que resultan compatibles con las condiciones de contorno que las placas imponen sobre el campo electromagnético en uno y otro extremo

Esto supone que, en equilibrio, los componentes atractivos tienen un impacto ligeramente mayor que los repulsivos. Para dos espejos planos perfectos paralelos la Fuerza de Casimir es, por lo tanto, atractiva y los espejos son empujados uno contra otro. La fuerza, F, es proporcional al área de la sección, A, de los espejos y se incrementa 16 veces cada vez que la distancia, d, entre los espejos se reduce a la mitad: F ~ A / d 4. Aparte de estas cantidades geométricas la fuerza depende solo de valores fundamentales – la constante de Planck y la velocidad de la luz.

Mientras que la Fuerza de Casimir es demasiado pequeña para ser observada para espejos que están separados varios metros, puede ser medida si los espejos están a unas micras uno de otro. Por ejemplo, dos espejos con un área de 1 cm2 separados por una distancia de 1 µm tienen una Fuerza de Casimir atractiva de unos 10-7 N – aproximadamente el peso de una gotita de agua de medio milímetro de diámetro. Aunque esta fuerza podría parecer pequeña, a distancias por debajo de un micrómetro la Fuerza de Casimir se convierte en la mayor fuerza entre dos objetos neutros. De hecho a separaciones de 10 nm – unas cien veces el tamaño normal de un átomo – el efecto Casimir produce el equivalente a 1 atmósfera de presión.

Aunque no tratamos directamente con estas distancias tan pequeñas en la vida diaria, son importantes en las estructuras nano-escalares y los sistemas micro-electromecánicos (MEMS). Estos son dispositivos “inteligentes” del tamaño de una micra en lo que los elementos mecánicos y partes móviles, tales como diminutos sensores y actuadores son tallados en un sustrato de silicio. Los componentes electrónicos están conectados a los dispositivos para procesar información sensible o para guiar el movimiento de las partes mecánicas. Los MEMS tienen muchas aplicaciones posibles en la ciencia y la ingeniería, y ya se usan como sensores de presión en los air-bags de los vehículos.

Leer más

Siempre tratando de conocer el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡El Universo! Gracias a la Astronomía, la Astrofísica y otras disciplinas y estudios relacionados, estamos conociendo cada día lo que en realidad es nuestro Universo que, nos tiene deparadas muchas, muchas sorpresas y maravillas que ni podemos imaginar. ¡Son tantas las cosas que aún tenemos que aprender de éste Universo Inmenso!

Las primeras estrellas en la historia del universo

“Aproximadamente 250 millones de años después del Big Bang, la gran explosión que dio origen al cosmos, comenzaron a nacer las primeras estrellas del universo. Así lo atestigua una investigación publicada hoy en la revista Nature, que ha sido posible gracias al uso del observatorio ALMA y del Very Large Telescope (VLT).”

Primeras estrellas del universo son más jóvenes de lo que se pensaba

Las primeras estrellas aparecieron después de cientos de millones de años

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la Gravedad, las fuerzas Electromagnéticas y las Nucleares Débil y Fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo.

El "amanecer del universo": así eran las primeras estrellas que se crearon  tras el Big Bang - BBC News Mundo

Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos. Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol.

La vida pudo surgir en el Sistema Solar antes que la propia Tierra

Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

           Imagen de miniatura de un resultado de LensSi los fotones no tienen masa, ¿dónde almacenan la energía? | Fundación Dr.  Antoni Esteve

La liberación de los fotones hizo un Universo transparente y la luz, recorrió, desde entonces, todos los confines del Cosmos

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados. Avanza creando en el horno termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma descomunal de una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Leer más

Un paseo por el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

     AFP PHOTO/NASA/JPL-CALTECH. Es la Nebulosa Cygnus Loop en ultravioleta

 Cygnus Loop (W78 fuente de radio, o Sharpless 103) es un remanente grande supernova (SNR) en la constelación de Cygnus, una nebulosa de emisión que mide casi 3 ° de ancho. Algunos arcos del bucle, conocidos colectivamente como la Nebulosa del Velo o Nebulosa Cirrus, emite luz visible.

La parte visual del Cygnus Loop es conocida como la Nebulosa del Velo, también llamada la Nebulosa Cirrus o la Nebulosa filamentosa. Varios componentes tienen nombres e identificadores separados, incluyendo el “Velo occidental” o “Escoba de bruja”, “Velo del Este”, y Triángulo de Pickering.

ESO: Utilizando el Atacama Large Millimeter / submillimeter Array (ALMA), los Astrónomos han descubierto que los planetas que orbitan la estrella Fomalhaut deben ser mucho más pequeños de lo que se pensaba en un principio. Fomalhaut es la estrella más brillante en la constelación de Piscis Austrinuus (El Pez Austral). El nombre de la estrella tiene su origen en el árabe y su significado es Boca de Ballena (o del pez). Durante la historia esta estrella ha tenido varios nombres. En la antigua Persia se hacían rituales para ella y era una de las cuatro estrellas reales “persas”, recibiendo el nombre de Hastorang. En la religión de Strehería, Fomalhaut es un ángel caído y el cuarto guardián de la puerta del norte. Está situada a 25 años-luz del Sol.

 

La ESO ha obtenido la imagen infrarroja más precisa de la Nebulosa Carina captada por el Telescopio de Largo Alcance del Observatorio Austral Europeo. La Nebulosa de la Quilla, también llamada Nebulosa de Carina, Nebulosa de Eta Carinae o NGC 3372, es una gran nebulosa de emisión (cuatro veces más grande que Orión) que rodea varios cúmulos abiertos de estrellas. Entre estas estrellas se encuentran Eta Carinae y HD 93129A,  dos de las estrellas más masivas y más luminosas en la Vía Láctea. La nebulosa se encuentra a una distancia estimada de entre 6 500 a 10 000 años-luz de la Tierra. Se encuentra localizada en la constelación de la Quilla (Carina). Esta nebulosa contiene diversas estrellas tipo O.

Carina (la quilla),  es una constelación austral austral que forma parte de la antigua constelación de Argo Navis (el navío Argo).  La Unión Astronómica Internacional  la dividió en cuatro componentes: Carina (la Quilla), Vela (la Vela), Puppis (la Popa)  y Pyxis (el compás o la Brújula).

 

 

Captada por el Hubble, el conjunto de galaxias Arp 273, se encuentra en la constelación de Andrómeda y tiene esta particular forma de rosa cósmica. En la imagen aparece un galaxia espiral notable, junto con orta más pequeña, y juntas tienen una forma de S. Las galaxias Arp 273están a 300 millones de años luz de nuestra Vía Láctea. Las galaxias Arp 273 están en interacción. En primer lugar, se hace un zoom en el miembro más pequeño de la pareja. Se trata de una galaxia casi de canto, que muestra claros signos de intensa formación estelar en su núcleo. Esto fue provocado tal vez, por el encuentro con la galaxia compañera anterior.

Las fuerzas de marea de la galaxia compañera más pequeña y su tirón gravitacional han causado que la pareja simule un conjunto en forma de rosa, la llamada “rosa del espacio”.

 

 

                                 
IAC Nos muestra la Nebulosa Reloj de Arena, fue elegida por la NASA como la Imagen Astronómica del día. Las figuras arabescas y de una belleza sin igual que se forman en el espacio con el material interestelar son fabulosas y coloridas en función del material que las conforman que, merced a la radiación que ioniza las regiones y los vientos estelares emitidos por las estrellas nuevas, conforman conjuntos que ni nuestra inmensa imaginación pueden imaginar.
HUBBLE

Aquí la joven estrella S106 IR expulsa material a gran velocidad y perturba el gas y el polvo que la rodean, rebelándose contra su ’nube madre’. La postal captada por el Hubble tiene forma de ángel con las alas extendidas. El 16 diciembre de 2011, una de las cámaras de gran campo del telescopio espacial Hubble ha captado esta imagen de una nube de hidrógeno gigante iluminada por una brillante estrella joven. La imagen revela cuán violentas pueden llegar a ser las etapas finales del proceso de formación estelar.

Pese a los colores celestiales de esta imagen, nada ocurre tranquilamente en la región de formación estelar Sh 2-106, o S106. En ella se aloja la joven estrella S106 IR, que expulsa a gran velocidad material que altera el gas y el polvo circundantes. Esta estrella tiene una masa 15 veces superior a la del sol y está en las etapas finales de su formación; pronto, cuando entre en la fase de su evolución llamada ‘de secuencia principal’ –el equivalente a la etapa adulta de su vida estelar-, se calmará y brillará durante algunos millones de años. Vivirá menos que el Sol, ya que, su voracidad en consumir el mateiral estelar será mucho mayor.

Aquí el Hubble nos muestra a la Nebulosa NGC 3693, situada en la constelación de Carina. Ella, presumida, nos muestra ese Joyero de relucientes y doradas estrellas formadas en un bello cúmulo. NGC 3603. Sher 25 es la estrella brillante en la posición de uno con respecto al centro de la agrupación, entre dos parches de nebulosa y con un débil anillo que lo rodea.
Ahí se encuentra Sher 25, que es una estrella supergigante azul en la constelación Carina, ubicada aproximadamente a 25.000 años luz del Sol en la región H II NGC 3603 de la galaxia de la Vía Láctea. Es una estrella de tipo espectral B1Iab con una magnitud aparente de 12,2. Su masa secuencia principal inicial se calcula en 60 veces la masa de nuestro Sol, pero una estrella de este tipo ya se han perdido una parte sustancial de esa masa. No está claro si Sher 25 ha sido a través de una fase de supergigante roja o simplemente ha evolucionado a partir de la secuencia principal, por lo que la masa actual es muy incierto.

ESO nos enseña la la Imagen de un  agujero negro en la galaxia espiral NGC 300, a una distancia récord de unos seis millones de años luz de nuestro sistema solar, absorbe la materia de una estrella que le acompaña en un ’vals infernal. Estos terribles monstruos del Espacio, situados (por lo general), en el centro galáctico, son devoradores de materia y, ni las estrellas vecinas se pueden salvar para escapar de su terrible fuerza gravitatoria que las atrae para engullirlas y convertirlas quién sabe en qué clase de materia exótica desconocida de una densidad nunca jamás vista.
Aquí el Hubble ha captada la imagen del Cluster R136 para mostrarnos un paisaje de fantasía, repleto de luminosidad en contraste con los valles de sombras y oscuridad. Junto a una región en sombra en el centro que se asemeja a la silueta de un gran árbol navideño que está cuajada de estrellas jóvenes y radiantes, azuladas que emiten cantidad inmensa de radiación ultravioleta para ionizar el material circundante al que, dependiendo de los elementos de que están formados, le saca los distintos colores.
ESO / VISTA
Aquí podemos contemplar la primera imagen captada por el telescopio europeo VISTA de la Nebulosa de la Llama.  La nebulosa de la Llama, también conocida como NGC2024, es una región de gas y polvo oscurecido en el Complejo de la Nube Molecular de Orión, región de formación estelar que incluye la famosa nebulosa de la Cabeza del Caballo.
La nebulosa Cabeza de Caballo | Imagen astronomía diaria - ObservatorioNebulosa Creciente | Mass Effect Wiki | Fandom
situada a 1.500 años luz de distancia del Sistema Solar. Esta nebulosa es fácil de localizar dado que se encuentra muy cerca de la estrella brillante que está más a la izquierda en el cinturón de Orión: Alnitak. Esta estrella envía luz energética a la nebulosa de la Llama, lo que hace que se desprendan electrones del gas hidrógeno que reside allí. Gran parte del resplandor se produce cuando se recombinan los electrones y el hidrógeno  ionizado.
El Hubble nos muestra la imagen situada en los albores del Universo. La cámara infrarroja del telescopio espacial más famoso, ha captad0 esta imagen del universo cuando era muy joven, sólo tenía 600 millones de años después del comienzo del Tiempo, es decir, después del Big Bang. Sabemos (eso nos dicen todos los estudios realizados), que el Universo tiene ahora una edad de 13.750 millones de años y, desde aquel tiempo pasado en el que la imagen era una realidad que ahora no existe, el Hubble, nos la enseña haciendo posible que nosotros, situados a mucha distancia en el tiempo futuro de las galaxias que ahí se muestran, podamos saber cómo era entonces el Cosmos.
Donde nacen las estrellas - QuoCómo nace una estrella del universo? - VIXEl momento en el que muere una estrella – NuestroclimaLas estrellas mueren - Jot Down Kids
                Las estrellas macen y mueren continuamente después de “vivir” miles de millones de años
Desde entonces, muchas estrellas han nacido para morir y dejar sembrado el espacio interestelar de materiales complejos y de mundos que, como la Tierra, situados en la zona habitable de sus estrellas, probablemente tengan sistemas ecológicos en los que, la Vida, esté presente de mil maneras.
Aquí dejamos este paseo por el Universo que, siendo para nosotros “infinito”, tenemos que mostrarlo por partes y también, por partes contar, lo mucho que en él está presente y los sucesos que tuvieron lugar en tan vasto espacio, que tienen presencia en este mismo momento presente y, ¿qué duda nos puede caber?, tendrán lugar en el tiempo por venir.
¡Qué bello es el Universo! ¡Cuántas maravillas contiene! ¿Lo conoceremos alguna vez… del todo? ¿Tendrá algún compañero?
emilio silvera

 

 

 

 

 

 

 

Todo está en el Univervo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                                       El tiempo en Einstein

 

Einstein tuvo pronto que modificar ligeramente sus ecuaciones de universo, pues estas no eran compatibles con la ley de la conservación de la energía. Esto constriñó a Einstein a modificar sus ecuaciones de Universo, que adquirieron su forma definitiva tras la publicación en 1915 del artículo Aplicación de la teoría de la relatividad general al campo gravitatorio:

 Archivo:Star collapse to black hole.png

 En la imagen se reproducen las ondas gravitatorias emitidas por una estrella durante su colapso. En las ecuaciones de Einstein se descubre el misterioso proceso que ocurre en las estrellas al final de sus vidas y de como se convierten en agujeros negros.

¿Qué sería de la cosmología actual sin la ecuación de Einstein de la Relatividad General? Es la ecuación de Einstein donde el tensor energía-momento mide el contenido de materia-energía, mientras que es el Tensor de curvatura de Riemann contraído nos dice la cantidad de curvatura presente en el hiperespacio. La cosmología estaría 100 años atrás sin esta ecuación.

Los físicos teóricos realizan un trabajo impagable. Con imaginación desbordante efectúan continuamente especulaciones matemáticas referidas a las ideas que bullen en sus mentes. Claro que, de tener éxito, no sería la primera vez que descubrimientos teóricos en la ciencia física terminan dando en el clavo y dejando al descubierto de manera espectacular lo que realmente ocurre en la naturaleza. Los ejemplos son muchos:

BUAP on Twitter: "Alvaro de Rújula, uno de los físicos teóricos más  importantes del mundo, nos presenta en su conferencia, algunos de los  errores de Einstein. #CongresoNacionalDeFísica… https://t.co/muGfPTtlN8"

Alguna vez se dijo que, los físicos teóricos son seres superiores porque viven en las nubes. Ahí tenemos a Feynmann inmerso en su mundo de ecuaciones que quieren profundizar en el “universo” cuántico de las partículas subatómicas que se encuentran en las entrañas de la materia.

  • Planck, con su cuanto de acción, h, que trajo la mecánica cuántica.
  • Einstein, con sus dos versiones de la relatividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares. Además, nos dijo la manera de conseguir que el tiempo transcurriera más lentamente y nos avisó de la existencia de agujeros negros.
  • Heisemberg nos abrió los ojos hacia el hecho de que nunca podríamos saberlo todo al mismo tiempo, su Principio de Incertidumbre dejó al descubierto nuestras limitaciones.
  • Schrödinger, con su función de onda probabilística, que por medio de una ecuación matemática nos ayuda a encontrar la situación de una partícula.
  • P. Dirac, el físico teórico y matemático que predijo la existencia de la antimateria. Poco después de publicar su idea, descubrieron el positrón.

Constante de Planck - Wikipedia, la enciclopedia librePin en Ciencia/TecnologíaLas Teorías de la Relatividad, explicadas de forma sencilla en estos 8  vídeosConstante de Planck - Wikipedia, la enciclopedia libreAMIGOS PARA SIEMPRE: Física matemática

Con tan escasos signos… ¡Qué mensajes nos transmiten!

Así podríamos continuar elaborando una lista interminable de logros científicos que comenzaron con simples especulaciones deducidos de la observación sumada a la imaginación. Son muchas las cuestiones en las que, los físicos teóricos nos llevan a viajes alucinantes.

Esto es precisión en la medida: El electrón es una esfera perfecta, más o menos una parte en un billón. El resultado procede del último experimento en una larga lista para estudiar la forma de la partícula fundamental que porta la carga eléctrica.

Otros postulan que un electrón no es un “punto” sin estructura interna y de dimensión cero, sino una cuerda minúscula que vibra en un espacio-tiempo de más de cuatro dimensiones. Un punto no puede hacer nada más que moverse en un espacio tridimensional. De acuerdo con esta teoría a nivel “microscópico” se percibiría que el electrón no es en realidad un punto, sino una cuerda en forma de lazo. Una cuerda puede hacer algo además de moverse, puede oscilar de diferentes maneras. Si oscila de cierta manera, entonces, macroscópicamente veríamos un electrón; pero si oscila de otra manera, entonces veríamos un fotón, o un quark, o cualquier otra partícula del modelo estándar. Esta teoría, ampliada con otras como la de las supercuerdas o la Teoría M pretenden alejarse de la concepción del punto-partícula.

Actualmente, la teoría de cuerdas es la más considerada para tener una teoría unificada o Teoría del todo, es decir, una teoría capaz de describir todos los fenómenos ocurridos en la naturaleza debido a las cuatro fuerzas fundamentales: la fuerza gravitacional, la fuerza electromagnética y las fuerzas de interacción nuclear fuerte y débil.

El espacio-tiempo en el que se mueven las cuerdas y p-branas de la teoría no sería el espacio-tiempo ordinario de 4 dimensiones sino un espacio de tipo Kaluza-Klein, al que a las cuatro dimensiones convencionales se añaden 6 dimensiones compactificadas en forma de variedad de Calabi-Yau. Por tanto convencionalmente en la teoría de cuerdas existe 1 dimensión temporal, 3 dimensiones espaciales ordinarias y 6 dimensiones compactificadas e inobservables en la práctica.

La inobservabilidad de las dimensiones adicionales está ligada al hecho de que éstas están compactificadas, y sólo son relevantes a escalas tan pequeñas como la longitud de Planck. Igualmente con la precisión de medida convencional las cuerdas cerradas con una longitud similar a la longitud de Planck se asemejan a partículas puntuales.

Uno de los problemas ligados a las supercuerdas y que más resalta es el que tiene que ver con la propia pequeñez de las cuerdas, esos infinitesimales objetos vibrantes. Mientras más pequeño es algo, más difícil es de ver. Estas cuerdas son tan pequeñas que nuestra actual tecnología no es suficiente para bajar a esa escala microscópica para permitirnos experimentar en esas dimensiones; la energía necesaria para ello, no está a nuestro alcance en el mundo actual. Esa es la frustración de sus creadores y adeptos; no pueden demostrarla o ver si están equivocados. En la ciencia, no basta con sólo una bonita teoría bien elaborada y de fascinante presencia; hay que ir más allá, experimentar y comprobar con certeza lo que nos está diciendo.

            ¿Existen en nuestro Universo dimensiones ocultas?

La teoría es avanzada y tiene problemas que se encuentran dentro de los enunciados de sus propios conceptos. Para desarrollar su formulación es necesario aplicar al menos diez dimensiones y, en algunos casos, se ha llegado hasta un número de veintiséis: sólo vemos tres dimensiones de espacio y una de tiempo, el resto de dimensiones adicionales están enroscadas en el límite de Planck e invisibles para nosotros, ya que en el Big Bang, las dimensiones que podemos ver se expandieron, mientras que las otras permanecieron compactadas. Hay numerosas explicaciones que tratan de decirnos el motivo de que estas dimensiones permanecieran en su estado primitivo, pero ninguna parece muy convincente.

          ¿Sabremos alguna vez comprender la verdadera naturaleza del Universo?

Sin embargo, y a pesar de tantos inconvenientes, cada día que pasa la teoría M tiene más amigos. Parece la única candidata seria a que algún día se convierta en la teoría de Todo. En ella encontramos todas las fuerzas, explica todas las partículas y la materia, la relatividad, la mecánica cuántica y también la luz; están allí presentes, perfectamente encajadas en una perfecta simetría y sin que surjan infinitos sin sentido como ocurre con otras teorías. Es la esperanza de muchos, la llave que necesitamos para abrir la puerta hacia el futuro.

En el universo en que vivimos, nada desaparece; con el tiempo se cumplen los ciclos, todas las cosas y se convierten en otras distintas, es un proceso irreversible. Nada se destruye, simplemente cambia y, de esa manera, la materia “inerte” llega a convertirse en materia evolucionada hasta el punto de adquirir “vida” y ser consciente. Todo comienza en lugares como el que abajo podeis contemplar. Ahí se forman y nacen las estrellas que, más tarde, durante la secuencia principal y también al final de sus vidas, crean materiales complejos y rregresan a su origen de Nebulosas, mientras la mayor parte del material que la conforma, queda convertida (dependiendo de su masa) en una enana blanca, estrella de neutrones o agujero negro.

La Piel de Zorra, el Unicornio, y el Arbol de Navidad

Las Nebulosas como estas donde el gas hidrógeno es el protagonista al hacer posible el nacimiento de nuevas estrellas mediante la compleja unión del gas con nubes de polvo creando intensas zonas de radiación ultravioleta que ionizan toda la región circundante, todo ello, forma una amalgama con la rojiza emisión nebular excitada por la energética radiación de las estrellas nuevas que inciden en las oscuras nubes de polvo haciéndolas radiantes hasta formar una azulada nebulosa de reflexión.

En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es super-masiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

http://1.bp.blogspot.com/_rMKJIW2qoEg/THCWa9znCXI/AAAAAAAADeY/V8tml-iq_bQ/s1600/Nasa.+polvo+y+creaci%C3%B3n+espacial.jpg

                  Sería asombroso el que pudiéramos contemplar como se forman las estrellas

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

Para hacernos una idea y entender algo mejor la fuerza de gravedad que puede generar la singularidad de un agujero negro (que es el destino final las estrellas súper masivas), pongamos el ejemplo de un objeto más cercano, el planeta Tierra.

Cuál es el tamaño del Sol comparado con el de la Tierra?

La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado desde la superficie terrestre a una velocidad de 11,18 km/s; el sol exige 617’3 km/s. Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida para escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.

Qué significa realmente el concepto de «universo observable»? – Ciencia de  Sofá

La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que la luz alcanza en el vacío y que es de 299.792.458 metros por segundo. La velocidad de la luz es el límite infranqueable con el que tendremos que luchar para viajar (de verdad) al espacio. Si no conseguimos burlarla, nunca podremos llegar a otros mundos de estrellas lejanas.

Pues bien, es tal la fuerza de gravedad que genera un agujero negro que, ni la luz. puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su nombre, agujero negro, cuando la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.

Las singularidades ocurren en el Big Bang, en los agujeros negros y (si finalmente se produjera -que parece que no) en el Big Crunch (que se podría considerar como una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevaría a un final del que emergería un nuevo comienzo).

He leído en alguna parte, en relación a los agujeros negros, cosas como éstas: “…las condiciones únicas que se dan más allá del horizonte de sucesos (el punto de no retorno pasado el cual nada, ni siquiera la luz, puede escapar de su gravedad) de ciertos agujeros negros hace posible, en teoría, la existencia de vida y que ésta evolucione hasta dar lugar a civilizaciones avanzadas.” Bueno, sabemos poco pero, que dentro del agujero negro pueda existir y evolucionar la vida…es muy dudoso.

Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, hacia la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.

Un gran agujero negro tragándose una estrella fue observado por primera vez con un telescopio de la Nasa, en la constelación del Dragón, a cuatro mil millones de años luz de la Tierra.

Explosion cosmica swiff

“El objeto fue llamado Swift J164449.3+57345. Fenómenos como este suceden cada 100 millones de años y son conocidos como “chorros relativístas”, que pueden tener una dimensión de cientos de años luz.” Está claro que, cuando se escribe sobre estos temas, muchos son los que se toman licencias literarias que nada tienen que ver con la realidad, ya que, no tenemos forma de saber con qué frecuencia se producen estos fenómenos que, según creo, son más cotidianos y habituales de lo que algunos puedan pensar.

            Karl Schwarzschild.

La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el nombre de agujero negro se debe a Wehleer.

Así, el conocimiento de la singularidad está dado por las matemáticas de Einstein y más tarde por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada hacia la singularidad, donde desaparece para siempre sumándose a la masa del agujero cada vez mayor.

En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1.

 

Usando un vasto conjunto de radiotelescopios, han realizado una medida directa de la distancia a Cygnus X-1, permitiéndoles concluir la masa de la estrella oscura que resulta ser tan grande que solo puede ser un A.N. También han descubierto que gira más rápido que la mayor parte de sus compañeros.

Fue identificado por primera vez como posible anfitrión de un agujero negro en 1971, Cygnus X-1 fue una de las primeras fuentes de rayos-X descubiertas por los astrónomos. Por fortuna, Cygnus X-1 emite ondas de radio y un equipo de estudiosos apuntaron al objeto con el conjunto de Líneas Muy Grandes (VLBA) que consta de diez radiotelescopios de 25 metros dispersos desde Nueva Inglaterra y las Islas Vírgenes a California y Hawai. Este enorme conjunto mide posiciones 100 veces mejor que el Telescopio Espacial Hubble.

Imagen del centro de la Vía Láctea (Sgr A*) y de la estrella S2

Cygnus X-1 produjo resultados maravillosos y, el equipo pudo lograr una distancia de mucha precisión. La Paralaje indicó que Cygnus X-1 está a 6.050 años ñuz de la Tierra, con una incertidumbre de sólo 400 años-luz. A partir de esto, los astrónomos duducen que la estrella oscura es 14,8 veces más masiva que el Sol; la incertidumbre es sólo de una masa solar, por lo que el objeto está muy por encima de la línea divisoria de las estrellas de neutrones y los agujeros negros. La estrella Azul que la orbita es aún más masiva, con unas 19 masas solares.

Resultado de imagen de El centro de la Vía Láctea

El centro de la Galaxia es un gran laboratorio

Después de todo, la velocidad de la luz, la máxima del universo, no puede vencer la fuerza de gravedad del agujero negro que la tiene confinada para siempre. En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿Cuántos agujeros negros habrá? Para mí, la cosa está clara: el tiempo es imparable, el reloj cósmico sigue y sigue andando sin que nada lo pare, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros. Si eso es así como parece, llegará un momento que el número de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros hasta que todo el universo se convierta en un inmenso espacio ocupado por innumerables agujeros negros y, algunos, con una enorme singularidad, ¿será la gravedad la única fuerza presente si eso llega a suceder?. Bueno, dicen que al principio, cuando surgió el Big bang, lo único que había era una inmensa singularidad. ¿Se habrían unidos todos los agujeros negros del anterior universo?

 

Descubrieron 17 planetas nuevos y uno es como la Tierra

 

¡La Gravedad! Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo. La Gravedad es la que determina la geometría del Universo.

Esa reunión final de agujeros negros (si finalmente sucediera) sería la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando hasta parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás. Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego, el Big Crunch. Otra singularidad inicial de la que surgirá, un nuevo Universo.

Algunos objetos del Universo pueden llegar a ser inmensos. Comparación de planetas en tamaños, tenemos aquí a la Tierra que supera a Venus, Marte, Mercurio y el pequeño Plutón.

 

Claro que, la inmensa Tierra nos está dando una imagen engañosa de su grandeza que, al ser comparadas con otros objetos planetarios, no queda bien parada. Aquí vemos a la tierra diminuta al lado de Neptuno, Urano, Saturno y la gigante Júpiter…

Si hablamos del Sol, nuestra estrella, y lo comparamos con el tamaño de la Tierra, podemos ver que incluso Júpiter, el gigante gaseoso, resulta ser minúsculo al lado de la estrella. Y, sin embargo, en el Universo existen estrellas que dejan enano a nuestro Sol. Mirad:

Pero no ya nuestro Sol, una simple estrella mediana, sino que, el mismo Sirius, esa estrella blanca enorme y luminosa, se nos queda pequeña al compararla con Pollux o Arcturus, no digamos en qué se nos queda nuestro Sol ante estas gigantescas estrellas pero, hay mucho más.

Si miramos la imagen de abajo, ya no se ve donde quedó el Sol, el mismo Arcturus parece ridículo al lado de las grandes Rigel y Aldebaran, y, si nos detenemos en Betelgeuse o Antares, nos podemos marear ¡Qué enormidades!

Antes de comentar el muestrario de estrellas de arriba, hablábamos del posible Big Crunch y el final del Universo pero, antes de que eso llegue, tendremos que resolver el primer problema: la muerte del Sol. Los científicos se han preguntado a veces qué sucederá eventualmente a los átomos de nuestros cuerpos mucho tiempo después de que hayamos muerto. La posibilidad más probable es que nuestras moléculas vuelvan al Sol. En trabajos anteriores he explicado el destino del Sol: se agotará su combustible de hidrógeno y fusionará helio; se hinchará en gigante roja y su órbita es probable que sobrepase la Tierra y la calcine; las moléculas que hoy constituyen nuestros cuerpos serán consumidas por la atmósfera solar. Bueno, eso será si aún estamos aquí y no hemos sido capaces de escapar a otros mundos.

http://jelbas.files.wordpress.com/2009/11/sunspot_cycle_from_1995_to_2009.jpg

El final de nuestro Sol cuando finalice su ciclo en la secuencia principal, será convertirse primera en gigante roja, expulsar material que formará nebulosa planetaria y, finalmente, se contraerá hasta que se degeneren los electrones y frene su implosión, quedamdo como una enana blanca masiva de alta radiación ultravioleta que se irá apagando con el paso del tiempo.

Carl Sagan pinta el cuadro siguiente:

Carl Sagan, el divulgador científico por excelencia

“Dentro de miles de millones de años a partir de ahora, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable. Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

Por fin sabemos cuándo Andrómeda chocará con nuestra galaxiaLa Vía Láctea y Adrómeda colisionarán dentro de 4.500 millones de años

El “Casamiento” de las dos galaxias más grandes del Sistema solar en unos 3.ooo Millones de años. ¿Qué será del sistema Solar y de la Tierra? Para entonces, no estaremos aquí

En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. Cuando miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

Por aquí andamos nosotros, una región relativamente tranquila y preciosa. En el Brazo espiral de Orión a 30.000 a.l. del Centro Galáctico

Menos mal que no estamos cerca del Centro galáctico de temibles turbulencias

Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, casi dos veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a 125 km/s, y chocarán en un periodo de 3.000 a 5.000 millones de años. Ambas galaxias se convertirán en una sola mucho mayor y no sabemos lo que podrá pasar con las estrellas, planetas y demás objetos que las pueblan, ¿Cómo se situarán y cuantos serán destruidos por colisiones?

Andromeda–Milky Way collision #astronomy | Galaxies, Galaxy photos,  Aesthetic gif

Mejor que para entonces… ¡No esté,mos aquí!

Así las cosas, no parece que la Humanidad del futuro lo tenga nada fácil. Primero tendrá que escapar, dentro de unos 4.000 millones de años del gigante rojo en que se convertirá el Sol que calcinará al planeta Tierra. Segundo, en unos 10.000 millones de años, la escapada tendrá que ser aún más lejana; la destrucción será de la propia galaxia que se fusionará con otra mayor sembrando el caos cósmico del que difícilmente se podría escapar quedándonos aquí. Por último, el final anunciado, aunque para más largo tiempo, es el del propio universo que, por congelación o fuego, tiene los eones contados.

emilio silvera