martes, 08 de octubre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Evolución por la energía

Autor por Emilio Silvera    ~    Archivo Clasificado en Energía = Materia    ~    Comentarios Comments (15)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Estructuras fundamentales : Blog de Emilio Silvera V.Nanopartículas y lubricantes – Rc Machines Blog

 

 

Descubren cómo viajar a través de un agujero de gusano y no morir en el intento

Cualquier cosa que podamos imaginar… ¡Podría estar en nuestro Universo!

El universo entero es energía. En sus formas diferentes la energía cambia continuamente y lo mismo hace que brillen las estrellas del cielo, que los planetas giren, que los estables átomos formen moléculas y materia, que las plantas crezcan o que las civilizaciones evolucionen.

La ciencia del siglo XIX reconoció la universalidad de la energía y supo ver que la Humanidad sin energía que hiciera el trabajo más duro, no evolucionarían en el bienestar social y el saber.

De todas maneras, aún hoy día, a comienzos del siglo XXI, no tenemos un conocimiento unificado de todos los ámbitos y disciplinas, que relacionados de una u otra manera con la energía, nos presente una visión global y completa de este problema. Los estudios energéticos modernos se presentan fragmentados, divididos en disciplinas, y los científicos que trabajan en cada una de ellas están muy ocupados para leer el resultado obtenido en los otros estudios.

 

Resultado de imagen de Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planetaResultado de imagen de Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta

 

Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta por el movimiento de las placas tectónicas, rara vez están al día de los descubrimientos en las otras ramas de la energética moderna, donde se estudia desde el esfuerzo de un corredor de élite hasta el vuelo de un colibrí.

Los ingenieros se preocupan por las plantas generadoras de electricidad y piensan poco en las constantes fundamentales de la energía o en los cambios que determinaron la evolución de las sociedades antes de la llegada de la civilización de los combustibles fósiles.

 

Capta las mejores puestas de sol con tu móvil gracias a esta appSiete riesgos en el embarazo que debes conocer - Policlínica Metropolitana

 

Energía es todo, desde el Sol hasta un embarazo; desde el pan que comemos hasta un microchip. Sin embargo, es difícil que un técnico pueda pensar en ello cuando está centrado en resolver el problema del momento.

La progresión lógica se realiza siguiendo una secuencia progresiva desde los flujos de energía planetarios a la vida de las plantas y los animales, siguiendo con la energía humana, la energía en el desarrollo de las sociedades preindustriales y modernas, y concluyendo con el transporte y los flujos de información, que son las dos características más importantes de la civilización de los combustibles fósiles.

 

Resultado de imagen de Entropíaque es ENTROPIA?Tema 6: Las fuerzas de la naturaleza | Biología y Geología "Amor de Dios" ValladolidLamina Interactiva: El Átomo - Rincón educativo

 

Los que han leído algunos de mis trabajos saben que aquí podrán encontrarse con datos y materias diversas, y aunque el tema central, como he reseñado por título, es la evolución por la energía, también podrán leer sobre la entropía, las fuerzas de la naturaleza, el átomo, o incluso, del Sol, los vientos, radiación solar o cualquier dato que, en realidad, pueda estar conectado con el concepto de energía.

Operamos con unidades

 

Resultado de imagen de Resultado de imagen de E = mc2

 

El conocimiento, las peculiaridades y las complejidades de las diferentes formas de energías, así como su almacenamiento y transformación, requiere que cuantifiquemos esas cualidades y procesos. Para ello debemos introducir cierto número de conceptos científicos y medidas, así como sus unidades correspondientes.

Al hablar sobre energía nos encontramos con el problema de que el uso en el habla común de muchos términos científicos está equivocado. Como dice Henk Tennekes, “hemos creado una terrible confusión con los conceptos físicos simples en la vida ordinaria”. Pocos de esos malentendidos son tan generales y molestos como los relacionados con los términos energíapotencia y fuerza.

 

Resultado de imagen de Empujar un bloque de piedra

Definimos fuerza como la intensidad con la que intentamos desplazar – empujar, tirar, levantar, golpear… – un objeto. Podemos ejercer una fuerza enorme sobre la roca que sobresale en una montaña incluso si ésta permanece inmóvil. Sin embargo, sólo realizamos trabajo cuando el objeto que empujamos se mueve en la dirección de la fuerza aplicada. De hecho, se define el trabajo realizado como el producto de la fuerza aplicada por la distancia recorrida. La energía, como se define en los libros de texto, es “la capacidad de hacer trabajo”, y así, ésta se medirá con las mismas unidades que el trabajo.

 

Resultado de imagen de Unidades que tiene nombres especiales

 

Si medimos la fuerza en unidades denominadas newton (N), llamada así en honor de Isaac Newton, y la distancia en metros (m), el trabajo se mide en la malsonante unidad de newton-metro. Para simplificar, los científicos llaman al newton-metro julio (J), en honor de James Prescot Joule (1818 – 1889), quien publicó el primer cálculo preciso de la equivalencia entre trabajo y energía. El julio es la unidad estándar de trabajo y energía.

La potencia es simplemente la tasa de trabajo, es decir, un flujo de energía por unidad de tiempo. A un julio por segundo lo llamamos vatio (W) en honor de James Watt (1736 – 1819), inventor de la máquina de vapor mejorada y el hombre que estableció la primera unidad de potencia, que no fue el vatio sino el caballo de vapor (CV), una unidad aproximadamente igual a 750 W.

Seguimos con algunas tablas para documentarnos:

Resultado de imagen de Reservas mundiales de material energético

 

Almacenamiento de energía
Energía de Magnitud
Reservas mundiales de carbón 200.000 EJ
Reservas mundiales de masa vegetal 10.000 EJ
Calor latente de un tormenta 5 PJ
Carga de carbón de un camión de 100 t 2 TJ
Barril de petróleo crudo 6 GJ
Botella de vino de mesa blanco 3 MJ
Garbanzo pequeño 5 KJ
Mosca en la mesa de la cocina 9 mJ
Gota de agua de 2 mm en una hoja de árbol 4 μJ
Flujos de energía
Energía de Magnitud
Radiación solar 5.500.000 EJ
Fotosíntesis mundial neta 2.000 EJ
Producción mundial de combustibles fósiles 300 EJ
Huracán típico en el Caribe 38 EJ
La mayor explosión de bomba H en 1961 240 PJ
Calor latente de un tormenta 5 PJ
Bomba de Hiroshima en 1945 84 TJ
Metabolismo basal de un caballo grande 100 MJ
Ingesta diaria de un adulto 10 MJ
Pulsación de una tecla del ordenador 20 mJ
Salto de una pulga 100 nJ

Resultado de imagen de Energía cinéticaResultado de imagen de Energía cinética

 

Para avanzar un poco más tenemos que pasar de empujar y tirar (lo que llamamos energía mecánica o energía cinética) a calentar (energía térmica). Definimos una unidad llamada caloría como la cantidad de calor necesario para elevar la temperatura de un gramo de agua desde 14’5 a 15’5 ºC. Usando esta unidad podemos comparar energías térmicas, pero una vez más, esta unidad no nos permite comparar todas las clases diferentes de energías.

Si nos preguntamos ¿qué es la energía?, esta pregunta no es fácil de contestar. Incluso uno de los más grandes físicos modernos resulta de poca ayuda: “es importante darse cuenta de que en física, en realidad, no se sabe muy bien qué es la energía. No tenemos una idea de por qué la energía está formada por pequeños pulsos de una cantidad definida”, decía Richard Feynman en su libro Lectures on Physics.

David Rose, para definir la energía, decía: “es un concepto abstracto inventado por los físicos en el siglo XIX para describir cuantitativamente una amplia variedad de fenómenos naturales”.

Explicación del principio de equivalencia masa-energía

 

Masa y energía son equivalentes. En la ecuación:

E: representa la energía

m: la masa

c: la velocidad de la luz en el vacío ¡casi 300 000 km/s!

Einstein nos dijo: “la masa y la energía son manifestaciones de una misma cosa”.

El conocimiento moderno de la energía incluye un número de descubrimientos fundamentales: la masa y la energía son equivalente; los diferentes tipos de energía están relacionados por muchas transformaciones; durante esas transformaciones, la energía no se destruye (primer principio de la termodinámica) y esta conservación de la energía está inexorablemente acompañada por una pérdida de utilidad (segundo principio de la termodinámica).

El primer descubrimiento, descrito en una carta de Einstein a un amigo suyo como una “idea atrevida, divertida y atractiva”, se resume en su ecuación m = E/c2, que en su versión más famosa se escribe como E = mc2; la ecuación más conocida de la física.

 

Sistema solar GIF - Encontrar en GIFER

Así viaja el Sol llevando a los planetas consigo, alrededor de la Galaxia

El segundo descubrimiento se demuestra continuamente en miles de trasformaciones energéticas que se producen en el universo. La energía gravitatoria mantiene las galaxias en movimiento, a la Tierra girando alrededor del Sol y confinada la atmósfera que hace nuestro planeta habitable. La transformación de la energía nuclear en el interior del Sol produce el continuo flujo de energía electromagnética, llamada radiación solar. Una pequeña parte de esa energía llega al planeta Tierra que, a su vez, libera energía geotérmica. El calor producido en ambos procesos pone en movimiento la atmósfera, los océanos y las gigantescas placas tectónicas terrestres.

 

Resultado de imagen de la energía del Sol se transforma en en energía química

Una pequeña parte de la energía radiante del Sol se transforma, a través de la fotosíntesis, en reservas de energía química, que son utilizadas por muchas clases de bacterias y plantas. Los seres heterótrofos (organismos que van desde las bacterias, los protozoos y los hongos hasta los mamíferos), ingieren y reorganizan vegetales de las plantas en nuevos enlaces químicos y los utilizan para crear energía mecánica (cinética).

La energía química almacenada durante millones de años en los combustibles fósiles se libera por combustión en calderas y máquinas como energía termal (térmica), la cual, a través de muchos procesos se convierte en energía mecánica, química o electromagnética.

Resultado de imagen de TerremotosResultado de imagen de VolcanesTectónica de placas - Wikipedia, la enciclopedia librePlacas tectónicas, corrientes de convección y límites divergentes on Make a GIF

 

La colisión entre las placas terrestres lleva a que las rocas conformantes de la corteza puedan romperse (fallarse) o bien plegarse. Este último proceso ocurre en aquellos estratos rocosos que se ven sometidos a altas presiones y temperaturas, que permiten que las rocas se tornen dúctiles. Las cadenas montañosas o cordilleras se generan por la colisión de las placas tectónicas y, por lo general, se localizan cerca de sus márgenes.

 

Potencia de fenómenos de corta duración
Flujos de energía Duración Potencia
Terremoto de magnitud 8 en la E. Richter 30 s 1’6 PW
Gran erupción volcánica 10 h 100 TW
Energía cinética de una tormenta 20 min 100 GW
Gran bombardeo de la 2ª Guerra Mundial 1 h 20 GW
Tornado medio en EE.UU. 3 min 1’7 GW
Los cuatro motores del Boeing 747 10 h 60 MW
La mayor máquina de vapor de Watt 10 h 100 KW
Carrera de 100 m 10 s 1’3 KW
Lavadora doméstica 20 min 500 W
Audición de un CD 60 min 25 W
Una vela 2 h 5 W
El vuelo de un colibrí 3 min 0’7 W

Resultado de imagen de El segundo principio de la termodinámica

 

El segundo principio de la termodinámica se refiere a la inevitable realidad de que a lo largo de la cadena de transformación de la energía se va perdiendo la capacidad de realizar un trabajo útil. Hay una magnitud asociada con esta pérdida de utilidad de la energía que se llama entropía; en cada transformación la energía se conserva, pero la entropía del sistema en su conjunto sólo puede aumentar. No hay nada que podamos hacer contra esta disminución de utilidad. Un barril de petróleo es un almacén de energía muy útil y de baja entropía que se puede transformar en calor, electricidad, movimiento y luz. Las moléculas calientes de aire emitidas por el tubo de escape de un motor o la luz que rodea una bombilla representan un estado de alta entropía en el que se producen irrecuperables pérdidas de utilidad.

 

Resultado de imagen de El Universo como sistema cerrado

El Universo se puede considerar como un sistema cerrado

En un sistema cerrado, este proceso unidireccional de disipación entrópica tiene la inevitable consecuencia de una pérdida de la complejidad y un aumento de la homogeneidad. Esto se puede ver si usted compara la multitud de moléculas orgánicas que componen el petróleo con la monotonía de unos pocos tipos de moléculas sencillas que forman los gases del tubo de escape.

 

 

Por el contrario, todos los organismos vivos (desde las bacterias hasta las civilizaciones humanas) son sistemas abiertos, que están importando y exportando energía constantemente; son capaces de mantenerse en estado de desequilibrio químico y termodinámico, creciendo y evolucionando hasta una mayor heterogeneidad y complejidad. Desafían temporalmente la tendencia entrópica.

No conviene utilizar unidades inadecuadas para medir esta gran variedad de procesos, porque casi siempre las cifras estarían seguidas o precedidas de muchos ceros. Tanto el julio como el vatio representan respectivamente cantidades muy pequeñas de energía y potencia. Aproximadamente 30 microgramos de carbón o 2 segundos de metabolismo de un ratón de campo equivalen a 1 julio. Un vatio es la potencia de una pequeña vela encendida o el vuelo rápido de un colibrí.

Emilio Silvera V.

¿Energía y Materia oscura? ¿Eso que es?

Autor por Emilio Silvera    ~    Archivo Clasificado en Energía = Materia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

                                                 ¿Y si la energía oscura no existiera en absoluto?

Resultado de imagen de Expansión acelerada del UniversoResultado de imagen de Expansión acelerada del Universo

 

Consiguen explicar la expansión acelerada del Universo sin necesidad de recurrir a la misteriosa fuerza que atormenta a los científicos

Reportaje de ABC Ciencia

 

 

 

Un equipo de investigadores del Instituto de Física y Matemáticas de la Universidad Federal Báltica Immanuel Kant (IKBFU) acaba de publicar en la revista International Journal of Modern Physics un artículo en el que aporta nuevas ideas dobre el llamado Universo oscuro, que abarca cerca del 95 por ciento del Universo que nos rodea y del que prácticamente no sabemos nada.

Resultado de imagen de Expansión acelerada del Universo"

Según explica Artyom Astashenok, primer firmante del artículo, «el hecho de que nuestro Universo se está expandiendo se descubrió hace casi cien años, pero no fue hasta la pasada década de los 90 cuando los científicos se dieron cuenta de cómo pudo esto suceder exactamente, tras la aparición de poderosos telescopios (incluidos los orbitales) y comenzó la era de la cosmología exacta. En el curso de las observaciones y análisis de los datos obtenidos, resultó que el Universo no solo se está expandiendo, sino que lo hace de forma acelerada, una aceleración que comenzó entre tres y cuatro mil millones de años después del Big Bang».

Durante mucho tiempo, la idea dominante era que el espacio estaba lleno de materia ordinaria, la que da forma a planetas, estrellas, cometas y asteroides, y de enormes y difusas nubes de gas enrarecido de esa misma materia que se extendían en el espacio entre galaxias. Sin embargo, si eso fuera así, la expansión acelerada del Unverso iría en contra a la ley de la gravedad, que dice que los cuerpos se atraen entre sí. Dicho de otro modo, las fuerzas gravitacionales podrían ralentizar la expansión del Universo, pero nunca acelerarla.

Resultado de imagen de Expansión acelerada del Universo"

«Y luego llegó la idea de que, en realidad, el Universo está en su mayor parte lleno no de materia ordinaria –prosigue Astashenok–, sino de algo que llamamos energía oscura y cuyas propiedades son muy especiales. Nadie sabe qué es y cómo funciona, de ahí su nombre, pero el 68% del Universo está hecho de esta desconocida energía». El restante 30% está hecho de materia oscura, que tampoco conocemos (27%) y de la materia ordinaria que nos es familiar (5%)

Desde que fue postulada, numerosos grupos de científicos han tratado en vabo de explicar la energía oscura, y ahora los científicos del IKBFU creen haber dsdo con la teoría correcta.

¿Qué es la energía oscura?

 

Resultado de imagen de Efecto CasimirResultado de imagen de Efecto Casimir

 

 

Desde hace mucho tiempo, los físicos conocen el llamado « efecto Casimir», llamado así en honor del físico alemán Hendrik Casimir, y que se manifiesta en el hecho de que dos placas de metal colocadas en un vacío se atraen entre sí. En principio, eso no debería ser así, ya que se supone que en el vacío no hay nada y la atracción no puede producirse. Sin embargo, según la Mecánica Cuántica, en realidad el vacío consiste en un bullicioso hervidero de partículas de vida muy breve que aparecen y desaparecen constantemente y que son las responsables de la «misteriosa» atracción de las dos placas metálicas.

Según los investigadores, lo mismo está sucediendo en el espacio, solo que al contrario que en el ejemplo de las placas lo que se genera es una repulsión, cuyo efecto sería precisamente el de acelerar la expansión del Universo. La idea tiene profundas implicaciones, ya que de esta forma no sería necesaria una «energía oscura» para explicar el fenómeno. En otras palabras, según Astashenok y sus colegas la energía oscura, simplemente, no existe.

Los límites del Universo

 

 

Resultado de imagen de Los límites del UniversoResultado de imagen de Los límites del Universo

 

Sin embargo, eso implica también que estaríamos ante una manifestación de los límites del Universo. Por supuesto, eso no significa que el Universo termine en algún lugar concreto, sino que puede tener alguna forma compleja de topología que hasta ahora se desconocía. Se podría hacer una analogía con la Tierra, que es finita, pero ilimitada. De hecho, podemos empezar a caminar en cualquier dirección y, siguiendo siempre en línea recta, terminaremos regresando al punto de partida sin haber encontrado límite alguno. La diferencia entre la Tierra y el Universo es que en el primer caso estamos tratando con un espacio bidimensional, mientras que en el segundo lo hacemos con uno en tres dimensiones.

Resultado de imagen de El Universo sin energía oscuraResultado de imagen de El Universo sin energía oscura

En su artículo, pues, Astashenok y su equipo presentan un modelo matemáticamente sólido de un Universo sin energía oscura y en el que el propio espacio produce una fuerza de repulsión, De este modo no existen contradicciones entre el hecho de que la expansión del Universo esté acelerando y las leyes de la gravitación. Naturalmente, ahora habrá que someter la nueva teoría a todo tipo de pruebas. Si finalmente es correcta, resultará que la energía oscura nunca ha existido y hemos pasado casi tres décadas persiguiendo fantasmas…

Comentario:

Parece que finalmente de impone la cordura… ¡Energía y materia oscura! Una idea que vino a camuflar la ignorancia de los cosmólogos en relación al movimiento observado en la aceleración de las galaxias. La “materia y la energía oscura” me parecieron siempre la alfombra bajo la cual podían barrer su falta de conocimientos sobre la realidad de un Universo que aún esconde muchos secretos.

Evolución por la energía II

Autor por Emilio Silvera    ~    Archivo Clasificado en Energía = Materia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cómo la música ayudó al ser humano a entender el universoResultado de imagen de La energía del Universo

Logran la imagen más completa de la energía del universo observableLos Astrónomos Descubren que la Energía Oscura Podría Variar con el Tiempo  :: NASA EN ESPAÑOL

 

 

La energía está en todo, eso es, el Universo

 

Potencia de fenómenos de corta duración
Flujos de energía Duración Potencia
Terremoto de magnitud 8 en la E. Richter 30 s 1’6 PW
Gran erupción volcánica 10 h 100 TW
Energía cinética de una tormenta 20 min 100 GW
Gran bombardeo de la 2ª Guerra Mundial 1 h 20 GW
Tornado medio en EE.UU. 3 min 1’7 GW
Los cuatro motores del Boeing 747 10 h 60 MW
La mayor máquina de vapor de Watt 10 h 100 KW
Carrera de 100 m 10 s 1’3 KW
Lavadora doméstica 20 min 500 W
Audición de un CD 60 min 25 W
Una vela 2 h 5 W
El vuelo de un colibrí 3 min 0’7 W

Resultado de imagen de Segundo principio de la termodinámica

El segundo principio de la termodinámica se refiere a la inevitable realidad de que a lo largo de la cadena de transformación de la energía se va perdiendo la capacidad de realizar un trabajo útil. Hay una magnitud asociada con esta pérdida de utilidad de la energía que se llama entropía; en cada transformación la energía se conserva, pero la entropía del sistema en su conjunto sólo puede aumentar. No hay nada que podamos hacer contra esta disminución de utilidad. Un barril de petróleo es un almacén de energía muy útil y de baja entropía que se puede transformar en calor, electricidad, movimiento y luz. Las moléculas calientes de aire emitidas por el tubo de escape de un motor o la luz que rodea una bombilla representan un estado de alta entropía en el que se producen irrecuperables pérdidas de utilidad.

Evolución por la Energía : Blog de Emilio Silvera V.

En un sistema cerrado, este proceso unidireccional de disipación entrópica tiene la inevitable consecuencia de una pérdida de la complejidad y un aumento de la homogeneidad. Esto se puede ver si usted compara la multitud de moléculas orgánicas que componen el petróleo con la monotonía de unos pocos tipos de moléculas sencillas que forman los gases del tubo de escape.

 

Por el contrario, todos los organismos vivos (desde las bacterias hasta las civilizaciones humanas) son sistemas abiertos, que están importando y exportando energía constantemente; son capaces de mantenerse en estado de desequilibrio químico y termodinámico, creciendo y evolucionando hasta una mayor heterogeneidad y complejidad. Desafían temporalmente la tendencia entrópica.

No conviene utilizar unidades inadecuadas para medir esta gran variedad de procesos, porque casi siempre las cifras estarían seguidas o precedidas de muchos ceros. Tanto el julio como el vatio representan respectivamente cantidades muy pequeñas de energía y potencia. Aproximadamente 30 microgramos de carbón o 2 segundos de metabolismo de un ratón de campo equivalen a 1 julio. Un vatio es la potencia de una pequeña vela encendida o el vuelo rápido de un colibrí.

Resultado de imagen de El vuelo rápido del colibríEl colibrí y sus curiosidades — Steemit

Prefijo de unidades científicas
Prefijo Abreviatura Notación científica
Deca- D 101
Hecto- H 102
Kilo- K 103
Mega- M 106
Giga- G 109
Tera- T 1012
Peta- P 1015
Exa- E 1018
Deci- d 10-1
Centi- c 10-2
Mili- m 10-3
Micro- μ 10-6
Nano- n 10-9
Pico- p 10-12
Femto- f 10-15
Atto- a 10-18

Como los múltiplos son inevitables, se introduce una serie de prefijos para abreviar los múltiplos más útiles: un kilogramo de buen carbón equivale a cerca de 30 millones de julios, 30 megajulios (MJ) de energía, y el consumo actual de combustibles fósiles en el mundo es aproximadamente diez billones de vatios, 10 teravatios (TW). Los mismos prefijos se añaden a las unidades de energía eléctrica: el voltio (v) es una medida de la diferencial de potencial entre dos puntos de un conductor, y el amperio (A), que mide la intensidad de la potencia eléctrica. La potencia de un sistema eléctrico es el producto de la diferencia de potencial y la intensidad de la corriente, lo que significa que un vatio es igual a un voltio por un amperio.

En la anterior tabla se relaciona una lista completa de los múltiplos y submúltiplos, algunos de los cuales se usan con mucha menos frecuencia cuando se trata de flujos de energías cotidianos.

Relación energética del Sol y la Tierra

Resultado de imagen de Relación energética del Sol y la TierraResultado de imagen de Relación energética del Sol y la Tierra

Mientras en el núcleo del Sol quede suficiente hidrógeno para mantener las reacciones termonucleares, la estrella que nos alumbra inundará la Tierra con radiación solar, que suministra la energía necesaria para mantener la mayoría de los procesos físicos y químicos que se producen en nuestro planeta.

Esta radiación calienta la atmósfera y el océano, genera vientos y lluvias y sostiene el inexorable proceso de la denudación. De todas las conversiones generadas de las energías globales que se producen en la Tierra, las geotectónicas (la lenta modificación del fondo oceánico y de los continentes, acompañada de terremotos y las espectaculares liberaciones energéticas de los volcanes), son las únicas que no proceden de la radiación solar, sino de la gravedad y de la liberación gradual del calor terrestre.

Resultado de imagen de La luz solar y la fotosíntesisLOS SERES VIVOS Y EL SOL: Fotosíntesis

La luz solar también suministra la energía necesaria para la fotosíntesis, la más importante transformación bioquímica, creando nueva biomasa en bacterias, fitoplancton, plantas superiores y, sobre todo, en bosques y praderas. Esta síntesis es el fundamento de la cadena alimenticia necesaria para el metabolismo heterótrofo de animales y personas, a los cuales la nutrición les permite desarrollar actividades que van desde una simple carrera a trabajos más elaborados, como la ocupación laboral y el ocio.

Pastor - Wikipedia, la enciclopedia libreEscena de caza. Grupo de cazadores comentando aspectos de la cacería.  Grabado alemán. Años 1850 Stock Photo - Alamy

Así de importante es la luz. Las sociedades humanas, desde los pequeños grupos de cazadores o pastores hasta las sociedades más complejas que dependen de los enormes flujos de combustibles fósiles y electricidad, han estado ineludiblemente ligadas al continuo flujo de energía solar y a los almacenamientos energéticos procedentes de la misma.

Resultado de imagen de El proceso de formación del carbón a partir de vegetalesResultado de imagen de El proceso de formación del carbón a partir de vegetales

El proceso de formación de carbón a partir de restos vegetales acumulados en zonas acuáticas y sumergidos, de tal manera que estaban aislados de la atmósfera, sufrieron una transformación por efecto de las bacterias anaeróbicas, que aumentan la concentración de carbono de los azúcares y desprenden gases, como metano y anhídrido carbónico. Así se forma una masa gelatinosa de turba.

Orogenia Hercinica by manuel andrade

Posteriormente, ésta se hunde y sobre ella se van depositando nuevas capas. Las más inferiores pueden sufrir transformaciones metamórficas debido a la elevada presión y temperatura que soportan, convirtiéndose en grafito. Las condiciones biológicas, climáticas y estructurales más favorables para que tenga lugar esta serie de transformaciones se dieron durante el periodo carbonífero, que en Eurasia y Norteamérica se encontraban situadas en posición tropical y cubiertas de grandes bosques próximos al mar, que se inundaron debido a los movimientos verticales causados por la orogenia hercínica. Los yacimientos de carbón de mayor antigüedad proceden del devónico y los más modernos del cuaternario inferior.

Resultado de imagen de El proceso de formación del petróleoResultado de imagen de El proceso de formación del petróleo

                                                      Su formación se produce durante millones de años

El proceso de formación del petróleo se origina a partir de acumulaciones de plancton marino que sufre transformaciones, semejantes a la carbonización, por bacterias anaeróbicas, y que dan lugar a una materia denominada sapropel y posteriormente a la mezcla de hidrocarburos típica del petróleo. Esta transformación de hidrocarburos suele tener lugar al mismo tiempo que el proceso de sedimentación de arenas y arcillas que se transformarán en areniscas y margas, y quedarán impregnadas por el petróleo, dando lugar a las rocas madre de éste. Cuando éstas sufren presiones orogénicas o simplemente quedan sometidas a una mayor presión al hundirse los sedimentos, el petróleo migra hasta encontrarse con rocas impermeables que impiden su avance y se acumula en el subsuelo, generando los verdaderos yacimientos petrolíferos.

Petróleo - Wikipedia, la enciclopedia libreEl Gas Natural Es Una Mezcla de Compuestos de Hidrógeno y Carbono y  Pequeñas Cantidades de Compuestos No Hidrocarburos en Fase Gaseosa o en  Solución Con El Petróleo Crudo Que Hay en

Los hidrocarburos gaseosos están acumulados en la parte superior de estos yacimientos de petróleo (aceites de roca: del latín petram, “piedra” y oleum, “aceite”), que es un aceite mineral hidrocarbonato, oleaginoso, inflamable, de olor acre, densidad inferior a la del agua y cuyo color varía desde el negro al incoloro. Consta principalmente de hidrocarburos líquidos, en los que se encuentran disueltos hidrocarburos sólidos (asfaltos y betunes) y gaseosos (metano, butano y acetileno); también contiene pequeñas porciones de nitrógeno, azufre, oxígeno, colesterina, porfirinas, vanadio, níquel, cobalto y molibdeno. De todo esto, mediante procesos industriales de refinado, se obtienen los productos de todos conocidos como la gasolina, nafta, queroseno, gasóleo, etc.

Resultado de imagen de Combustión del petróleo y contaminaciónLa OPEP, salvando al cartel del petróleo - El Orden Mundial - EOM

Su combustión es una de las fuentes más importantes de contaminación por los elevados porcentajes de azufre y otras materias que contiene. Sin embargo, por obtener esta fuente de contaminación y “riqueza” se crean conflictos que desembocan en las guerras que azotan nuestro mundo.

Ahora, después de esta breve explicación, sabemos un poco más sobre esta materia prima que ha servido, y continuará aún algún tiempo sirviendo de base a muchas generaciones pasadas y alguna menos futura: civilizaciones del combustible sólido, con su profesión de servicios energéticos, transporte generalizado y exceso de información (no siempre deseable, ya que si elimináramos el 80% de las programaciones televisivas, el mundo sería algo más culto y estaría menos embrutecido).

Un observador extraterrestre no podría encontrar nada extraordinario que le permitiera distinguir el Sol entre las millones de estrellas similares que existen en la nuestra y otras galaxias, y que a su vez representan una fracción de cientos de miles de millones de cuerpos radiantes que las forman. Como se ha dicho otras veces, nuestro Sol pertenece a una clase común de estrella localizada aproximadamente en el centro de la secuencia principal* del esquema de clasificación conocido como de Herzsprung-Russell.

Diagrama Hertzsprung-Russell | Geofrik's BlogASTRONOMIA: Diagrama de Hertzsprung-Russell

denominada enana G2, que posee un característico color amarillo y una magnitud estelar poco importante (+4’83). Así que, después de 4.500 millones de años, el Sol está a la mitad de su vida y va camino de transformarse de enana en gigante roja. Cuando esto ocurra, su luminosidad será mil veces mayor que la actual, y su diámetro, enormemente expandido, alcanzará (probablemente) la Tierra. Durante algún tiempo el planeta girará dentro de una órbita en el interior de la ligera cubierta de la estrella, pero final e inevitablemente caerá describiendo una espiral hasta ser engullida por el núcleo de la gigante roja.

 

Tendremos dos soles, nuestro Sol y la supernova Betelgeuse: La estrella supergigante roja Betelgeuse esta preparándose para convertirse en Supernova, y cuando lo haga la Tierra podrá ver el proceso en primera fila. La explosión será tan intensa que por un breve período de tiempo nuestro planeta parecerá tener dos soles en el cielo. Betelgeuse esta localizada en la constelación de Orión, a unos 640 años luz de la Tierra y es una de las estrellas más grandes y brillantes en nuestra zona de la galaxia. Muy interesante este abstract, cuya traducción ofrecemos: Es posible que tu navegador no permita visualizar esta imagen.

[Img #20287]

Mucho antes de que el Sol se transforme en una gigante roja la vida en la Tierra desaparecerá. Según se contraiga el núcleo solar, las reacciones termonucleares calentarán su capa externa; el diámetro de la estrella se expandirá unas diez mil veces y la radiación de la subgigante roja evaporará los océanos y mares de la Tierra generando fortísimos vientos calientes en la convulsa atmósfera del planeta.

Sin embargo, mientras haya hidrógeno en el núcleo de la estrella, los inexorables cambios de su luminosidad serán graduales y el Sol continuará suministrando la energía necesaria, tanto para la vida en la Tierra como para la mayoría de las transformaciones físicas que ocurren en ella.

Resultado de imagen de nebulosa planetaria ojo de gato

Después de ser una gigante roja, el Sol pasará a transformarse en una estrella enana blanca en el centro de una bonita Nebulosa planetaria que, podría tomar cualquier forma de las muchas que tienen esa gama de nebulosas de fantástica belleza.

Las primeras explicaciones científicas de la radiación solar, cálculo basado en la gravitación de Hermann Helmholtz, conducen a una estimación de la vida de la estrella de unos treinta millones de años. La famosa ecuación de Einstein relacionando la materia y la energía abrió el camino hacia un modelo más preciso que, por sí sólo, tampoco nos ofrece una solución completamente satisfactoria. Por otra parte, no parece probable que la transformación total de materia solar, convirtiendo los núcleos atómicos y los electrones en radiación (según teorizaba Sir Arthur Eddington), pueda producirse ni siquiera a temperaturas superiores a los diez mil millones de grados Kelvin (K). La idea hoy aceptada de que la producción de la energía en el núcleo del Sol obedece a reacciones nucleares fue propuesta a finales de los años treinta por Hans Bethe, Charles Critchfield y Carl Friedrich von Weizsäcker.

Resultado de imagen de El ciclo protón-protón

La fusión de hidrógeno en helio, en el ciclo protónprotón, se inicia cuando la temperatura alcanza los trece millones de grados Kelvin. Justo por encima de los 16 millones Kelvin empieza a dominar el ciclo carbono-nitrógeno que genera C12. No podemos estar seguros, pero de acuerdo con los mejores modelos, el ciclo C-N genera solamente un 1’5% de la energía total del Sol.

emilio silvera

¿Convertir energía en materia?

Autor por Emilio Silvera    ~    Archivo Clasificado en Energía = Materia    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sí, sería posible convertir energía en materia, pero hacerlo en grandes cantidades resulta poco práctico. Veamos por qué. Según la teoría de Einstein, tenemos que E = mc2, donde E representa la energía, medida en ergios, m representa la masa, medida en gramos, y c es la velocidad de la luz en centímetros por segundo. La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir: 3×1010 × 3×1010, ó 9×1020. Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.


Convertir la energía en materia requiere el poceso contrario al de converti la masa en energía, y, desde luego, se necesitaría una inmensa cantidad de energía para conseguir algo de masa. Fijémonos en que un fotón gamma, por ejemplo, aún siendo muy energético, sólo daría lugar a un electrón y un positrón (siendo la masa de ambos ridícula).

El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías. Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco para la vida de un hombre.

O digámoslo de otro modo: si fuese posible convertir en energía eléctrica la energía representada por un solo gramo de materia, bastaría para tener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años.


Claro que una cosa es convertir la masa en energía y otra muy distinta hacer lo contrario, pero ¿ sería posible convertir energía en materia? Bueno, ya antes hemos dado la respuesta: Sí, pero a costa de un gasto ingente de energía que haría el poceso demasiado costoso y poco rentable. Fijémonos en estos ejemplos:

La energía que representa un solo gramo de materia equivale a la que se obtendría de quemar unos 32 millones de litros de gasolina. Nada tiene de extraño, por tanto, que las bombas nucleares, donde se convierten en energías cantidades apreciables de materia, desaten tanta destrucción.

La conversión opera en ambos sentidos. La materia se puede convertir en energía y la energía en materia. Esto último puede hacerse en cualquier momento en el laboratorio, donde continuamente convierten partículas energéticas (como fotones de rayos gamma) en 1 electrón y 1 positrón sin ninguna dificultad. Con ello se invierte el proceso, convirtiéndose la energía en materia.


De momento, no hemos podido conseguir gran cosa para fines pacíficos en lo que a las reacciones nucleares se refiere. Si acaso la energía de fisión de las Centrales nucleares que, en realidad, no es muy aconsejable, y, por otro lado, con fines armamentísticos con las bombas atómicas y de otro tipo que utilizan la fusión.

Pero estamos hablando de una transformación de ínfimas cantidades de masa casi despreciable. ¿Pero podremos utilizar el mismo principio para conseguir cantidades mayores de materia a partir de energía?

Bueno, si un gramo de materia puede convertirse en una cantidad de energía igual a la que produce la combustión de 32 millones de litros de gasolina, entonces hará falta toda esa energía para fabricar un solo gramo de materia, lo que nos lleva al convencimiento de que no sería muy rentable invertir el proceso.

Fuente: Isaac Asimov

Hablemos de cuerpos

Autor por Emilio Silvera    ~    Archivo Clasificado en Energía = Materia    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de El planeta TierraResultado de imagen de El Sistema Solar

Resultado de imagen de GalaxiasResultado de imagen de NebulosasResultado de imagen de CometasResultado de imagen de Estrellas de neutronesResultado de imagen de Agujeros negrosResultado de imagen de Cúmulos de estrellasResultado de imagen de Cíclopes de galaxias

Me referiré en primer lugar a los que constituyen nuestro entorno ordinario, que sería todo el entorno que abarca nuestro planeta. En segundo lugar considerare los demás cuerpos y objetos del Universo. El análisis de muestras de esos diversos cuerpos ha puesto de manifiesto que, en función de la composición, los cuerpos pueden ser simples y compuestos. Los primeros son, precisamente, los llamados elementos químicos, a las que el insigne Lavoisier (conocido como padre de la Química), consideró como el último término a que se llega mediante la aplicación del análisis químico.

Resultado de imagen de Átomos isotópicos

Hoy sabemos que son colectividades de átomos isotópicos.

La mayoría de ellos son sólidos y se encuentran en la Naturaleza (nuestro entorno terráqueo) en estado libre o en combinación química con otros elementos, formando los diversos minerales.

La ordenación de los iones en las redes se manifiesta externamente en multitud de formas y colores. No obstante, debo señalar que, aun siendo abundante esta variedad, no es tan rica como la que corresponde a los cuerpos vivos, tanto animales como vegetales. La explicación se basa en que el número de especímenes moleculares y su complejidad son mucho mayores que en el reino inorgánico.

 

Resultado de imagen de Los iones en la redesResultado de imagen de Los iones en la redes

 

 

Leer más