miércoles, 20 de noviembre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nuestro lugar en el Universo…¿cuál será?

Autor por Emilio Silvera    ~    Archivo Clasificado en El hombre en el Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 
Las coincidencias deben ser vigiladas y, cuando se dan, buscar el origen de las mismas nos puede llevar a desvelar secretos profundamente escondidos en la Naturaleza. Ya hemos hablado aquí alguna vez de la coincidencia de Grandes Números entre Constantes de la Naturaleza y lo que de ello opinaba aquel personaje extraño que, lo mismo se sentía cómodo como matemático, como físico experimental, como destilador de datos astronómicos complicados o como diseñador de sofisticados instrumentos de medida. 

Resultado de imagen de Robert Dicke

 

Robert Dicke era su nombre y tenía los intereses científicos más amplios y diversos que imaginarse pueda, el decía que al final del camino todos los conocimientos convergen en un solo punto, el saber. No nos damos cuenta de ello pero, al final del camino, todos los conocimientos convergen y están relacionados de alguna extraña manera.

 

 

 

Como pregona la filosofía, nada es como se ve a primera vista, todo depende del punto de vista desde el que miremos las cosas, o,  de la perspectiva que podamos tener de ellas conforme a las herramientas que tengamos a nuestra disposición, incluida la intelectual. Nosotros, que estudiamos el Universo y no lo sabemos todo de él, ya pensamos en la posible existencia de otros universos.

           Si es que existen, ¿cómo serían esos otros universos? ¿dejarían un margen para alguna forma de vida? y, de ser así, ¿cómo serían?

Resultado de imagen de Universos paralelosResultado de imagen de Universos paralelos

Resultado de imagen de Universos paralelosResultado de imagen de Universos paralelos

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es importante comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que ha comprendido hasta ese momento no es verdadero.”

Douglas Adams

 

Antes en la entrada que más arriba tenéis (“Observar la Naturaleza… da resultados”), comentaba sobre los grandes números de Dirac y lo que el personaje llamado Dicke pensaba de todo ello y, cómo dedujo que para que pudiera aparecer la biología de la vida en el Universo, había sido necesario que el tiempo de vida de las estrellas fuese el que hemos podido comprobar que es y que, el Universo, también tiene que tener, no ya las condiciones que posee, sino también, la edad que le hemos estimado.

Para terminar de repasar la forma de tratar las coincidencias de los Grandes Números por parte de Dicke, sería interesante ojear retrospectivamente un tipo de argumento muy similar propuesto por otro personaje, Alfred Wallace en 1903. Wallace era un gran científico que, como les ha pasado a muchos, hoy recibe menos reconocimiento del que se merece.

Fue él, antes que Charles Darwin, quien primero tuvo la idea de que los organismos vivos evolucionan por un proceso de selección natural. Afortunadamente para Darwin, quien, independientemente de Wallace, había estado reflexionando profundamente y reuniendo pruebas en apoyo de esta idea durante mucho tiempo, Wallace le escribió para contarle sus ideas en lugar de publicarlas directamente en la literatura científica. Pese a todo, hoy “la biología evolucionista” se centra casi porm completo en las contribuciones de Darwin.

Wallace tenía intereses muchos más amplios que Darwin y estaba interesado en muchas áreas de la física, la astronomía y las ciencias de la Tierra. En 1903 publicó un amplio estudio de los factores que hace de la Tierra un lugar habitable y pasó a explorar las conclusiones filosóficas que podrían extraerse del estado del Universo. Su libro llevaba el altisonante título de El lugar del hombre en el Universo.

Resultado de imagen de Wallace, Alfred Russell (1823-1913), naturalista británico"

Wallace, Alfred Russell (1823-1913), naturalista británico conocido por el desarrollo de una teoría de la evolución basada en la selección natural. Nació en la ciudad de Monmouth (hoy Gwent) y fue contemporáneo del naturalista Charles Darwin. En 1848 realizó una expedición al río Amazonas con el también naturalista de origen británico Henry Walter Bates y, desde 1854 hasta 1862, dirigió la investigación en las islas de Malasia. Durante esta última expedición observó las diferencias zoológicas fundamentales entre las especies de animales de Asia y las de Australia y estableció la línea divisoria zoológica -conocida como línea de Wallace- entre las islas malayas de Borneo y Célebes. Durante la investigación Wallace formuló su teoría de la selección natural. Cuando en 1858 comunicó sus ideas a Darwin, se dio la sorprendente coincidencia de que este último tenía manuscrita su propia teoría de la evolución, similar a la del primero. En julio de ese mismo año se divulgaron unos extractos de los manuscritos de ambos científicos en una publicación conjunta, en la que la contribución de Wallace se titulaba: “Sobre la tendencia de las diversidades a alejarse indefinidamente del tipo original”. Su obra incluye El archipiélago Malayo (1869), Contribuciones a la teoría de la selección natural (1870), La distribución geográfica de los animales (1876) y El lugar del hombre en el Universo (1903).

Pero sigamos con nuestro trabajo de hoy. Todo esto era antes del descubrimiento de las teorías de la relatividad, la energía nuclear y el Universo en expansión.  La mayoría de los astrónomos del siglo XIX concebían el Universo como una única isla de materia, que ahora llamaríamos nuestra Vía Láctea. No se había establecido que existieran otras galaxias o cuál era la escala global del Universo. Sólo estaba claro que era grande.

Wallace estaba impresionado por el sencillo modelo cosmológico que lord Kelvin había desarrollado utilizando la ley de gravitación de Newton. Mostraba que si tomábamos una bola muy grande de materia, la acción de la gravedad haría que todo se precipitara hacia su centro. La única manera de evitar ser atraído hacia el centro era describir una órbita alrededor. El universo de Kelvin contenía unos mil millones de estrellas como el Sol para que sus fuerzas gravitatorias contrapesaran los movimientos a las velocidades observadas.

 

William Thomson (Lord Kelvin)

En el año 1901, Lord Kelvin solucionó cualitativa y cuantitativamente de manera correcta el enigma de la oscuridad de la noche en el caso de un universo transparente, uniforme y estático. Postulando un universo lleno uniformemente de estrellas similares al Sol y suponiendo su extensión finita (Universo estoico), mostró que, aun si las estrellas no se ocultan mutuamente, su contribución a la luminosidad total era finita y muy débil frente a la luminosidad del Sol. El demostró también que la edad finita de las estrellas prohibió la visibilidad de las estrellas lejanas en el caso de un espacio epicúreo infinito o estoico de gran extensión, lo que contestó correctamente al enigma de la oscuridad.

Lo intrigante de la discusión de Wallace sobre este modelo del Universo es que adopta una actitud no copernicana porque ve cómo algunos lugares del Universo son más propicios a la presencia de vida que otros. Como resultado, sólo cabe esperar que nosotros estemos cerca, pero no en el centro de las cosas.

Wallace da un argumento parecido al de Dicke para explicar la gran edad de cualquier universo observado por seres humanos. Por supuesto, en la época de Wallace, mucho antes del descubrimiento de las fuentes de energía nuclear, nadie sabía como se alimentaba el Sol, Kelvin había argumentando a favor de la energía gravitatoria, pero ésta no podía cumplir la tarea.

En la cosmología de Kelvin la Gravedad atraía material hacia las regiones centrales donde estaba situada la Vía Láctea y este material caería en las estrellas que ya estaban allí, generando calor y manteniendo su potencia luminosa durante enormes períodos de tiempo. Aquí Wallace ve una sencilla razón para explicar el vasto tamaño del Universo.

“Entonces, pienso yo que aquí hemos encontrado una explicación adecuada de la capacidad de emisión continuada de calor y luz por parte de nuestro Sol, y probablemente por muchos otros aproximadamente en la misma posición dentro del cúmulo solar. Esto haría que al principio se agregasen poco a poco masas considerables a partir de la materia difusa  en lentos movimientos en las porciones centrales del universo original; pero en un período posterior serían reforzadas por una caída de materia constante y continua desde sus regiones exteriores a velocidades tan altas como para producir y mantener la temperatura requerida de un sol como el nuestro, durante los largos períodos exigidos para el continuo desarrollo de la vida.”

Vallace ve claramente la conexión entre estas inusuales características globales del Universo y las condiciones necesarias para que la vida evolucione y prospere en un planeta como el nuestro alumbrado por una estrella como nuestro Sol. Wallace completaba su visión y análisis de las condiciones cósmicas necesarias para la evolución de la vida dirigiendo su atención a la geología  y la historia de la Tierra. Aquí ve una situación mucho más complicada que la que existe en astronomía. Aprecia el cúmulo de accidentes históricos marcados por la vía evolutiva que ha llegado hasta nosotros, y cree “improbable en grado máximo” que el conjunto completo de características propicias para la evolución de la vida se encuentre en otros lugares. Esto le lleva a especular que el enorme tamaño del Universo podría ser necesario para dar a la vida una oportunidad razonable de desarrollarse en sólo un planeta, como el nuestro, independientemente de cuan propicio pudiera ser su entorno local:

“Un Universo tan vasto y complejo como el que sabemos que existe a nuestro alrededor, quizá haya sido absolutamente necesario … para producir un mundo que se adaptase de forma precisa en todo detalle al desarrollo ordenado de la vida que culmina en el hombre.”

cluster-galaxias

Hoy podríamos hacernos eco de ese sentimiento de Wallace. El gran tamaño del Universo observable, con sus 1080 átomos, permite un enorme número de lugares donde puedan tener lugar las variaciones estadísticas de combinaciones químicas que posibilitan la presencia de vida. Wallace dejaba volar su imaginación que unía a la lógica y, en su tiempo, no se conocían las leyes fundamentales del Universo, que exceptuando la Gravedad de Newton, eran totalmente desconocidas. Así, hoy jugamos con la ventaja de saber que, otros muchos mundos, al igual que la Tierra, pueden albergar la vida gracias a una dinámica igual que es la que, el ritmo del Universo, hace regir en todas sus regiones. No existen lugares privilegiados.

emilio silvera

¡El Universo! Y nosotros… ¿Seremos su parte que piensa?

Autor por Emilio Silvera    ~    Archivo Clasificado en El hombre en el Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

Einstein le llamó fotón: ¡El cuanto de Luz! »

 

 

 

 

 nuestra vida, libre de frecuentación pública,

Halla lenguas en los árboles, libros en los arroyos que fluyen,

Sermones en las piedras y  en todas partes.

Shakespeare

Por aquel entonces, predominaba en la antigua Grecia una concepción del Tiempo que era cíclica, y tan cerrada como las esferas cristalinas en las que Aristóteles aprisionaba el espacio cósmico. Platón, Aristóteles, Pitágoras que crearon escuela junto a una pléyade de seguidores, todos ellos, soteníam la idea, heredada de una antigua creencia caldea, de que la historia del universo consistía en una serie de “grandes años”, cada uno de los cuales era un ciclo de duración no especificada que finalizaba cuando todos los planetas estaban en conjunción, provocando una catástrofe de cuyas cenizas comenzaba el ciclo siguiente. Se pensaba que este proceso tenía lugar  siempre. Según el razonamiento de Aristóteles, con una lógica tan circular como los movimientos de las estrellas, sería paradójico pensar que el tiempo ha tenido un comienzo en el tiempo, de modo que los cielos cósmicos deben producirse eternamente.

La concepción cíclica del Tiempo no carecía de encantos. Expresaba un hastío del mundo y un elegante fatalismo del género que a menudo atrae a las personas con inclinaciones filosóficas, un tinte conservado en  indeleble por el historiador islámico Ahmad ibn ‘Abd al-Ghaffar, al-Kazwini al-Ghifari, quien relató la parábola del eterno retorno.

http://alexpantarei.files.wordpress.com/2008/03/tiempo3.jpg

              El mito del eterno retorno: la Regeneración del Tiempo

Tomado literalmente, el tiempo cíclico hasta sugiere una especie de inmortalidad.  Eudemo de Rodas, discípulo de Aristóteles, decía a sus propios discípulos: “Si creéis a los pitagóricos, todo retornará con el tiempo en el mismo orden numérico, y yo conversaré con vosotros con el bastón en la mano y vosotros os sentaréis como estáis sentados ahora, y lo mismo sucederá con toda otra cosa”. Por estas o por otras razones, el tiempo cíclico aún es popular hoy, y muchos cosmólogos defienden modelos del “universo oscilante” en los que se supone que la expansión del universo en algún momento se detendrá y será seguida por un colapso cósmico en los fuegos purificadores del siguiente big bang.

Según Penrose (físico teórico de la Universidad de Oxford), el Big Bang no fue el inicio del tiempo y el espacio, sino uno de tantos inicios,  de fases o etapas dentro de un universo mucho más viejo, y en el que  Big Bang marca el inicio de un  eón en su historia. Es tanto  decir que los 13.700 millones de años de nuestro tiempo, en los que han surgido estrellas, planetas y la vida; son una pequeña fracción de la vasta historia del universo.

Por supuesto, semejante afirmación viniendo de un físico tan prestigioso, ha de estar respaldada por algún  de observación empírica, y en este caso, se basa en los resultados obtenidos de la sonda WMAP de la NASA por el físico Vahe Gurzadyan del Instituto de Física Yerevan en Armenia, quien analizó  de microondas de siete años procedentes de la sonda, así como datos del experimento de globo BoomeranG de la Antártida.

Claro que, todas estas ideas de un Tiempo repetitivo y eterno en su “morir” y “renacer”, a mí me produce la sensación de una excusa que se produce por la inmensa ignorancia que, del universo tenemos. Fijémonos en que, los pueblos antiguos  los hindúes, sumerios, babilonios, griegos y mayas, todos ellos, tenían esa idea cosmológica del tiempo cíclico. Pero, pese a todos sus aspectos de aventura cósmica, esa vieja doctrina de la historia infinita y cíclica tenía el pernicioso efecto de tender a desalentar los intentos de sondear la genuina extensión del pasado. Si la historia cósmica consistía en una serie interminable de repeticiones interrumpidas por destrucciones universales, entonces era imposible determinar cual era realmente la edad total del universo.

Un pasado cíclico infinito es por definición inconmensurable, es un “tiempo fuera de la mente”, como solía decir Alejandro Magno. El Tiempo Cíclico tampoco dejaba mucho espacio  el concepto de evolución. La fructífera idea de que pueda haber innovaciones genuinas en el mundo.

  Todo, con el paso del Tiempo, se distorsiona y deteriora

Los griegos sabían que el mundo cambia y que algunos de sus cambios son graduales. Al vivir como vivían, con el mar a sus pies y las montañas a sus espaldas, se daban  de que las olas erosionan la tierra y estaban familiarizados con el extraño hecho de que conchas y fósiles de animales marinos pueden encontrarse en cimas montañosas muy por encima del nivel del mar. Al menos dos de los hallazgos esenciales de la ciencia moderna de la geología -que pueden formarse montañas a partir de lo que fue antaño un lecho marino, y que pueden sufrir la erosión del viento y del agua- ya eran mencionados en épocas tan tempranas como el siglo VI a. C. por Tales de Mileto y Jenófanes de Colofón. Pero tendían a considerar estas transformaciones como meros detalles, limitados al ciclo corriente de un cosmos que era, a la larga, eterno e inmutable. “Hay necesariamente algún cambio en el mundo como un todo -escribió Aristóteles-, pero no en el sentido de que nazca o perezca, pues el universo es permanente.”

 que la Ciencia empezase a estimar la antigüedad de la Tierra y del universo -situar el lugar de la Humanidad en las profundidades del pasado, lo mismo que establecer nuestra situación en el espacio cósmico-, primero era necesario romper con el círculo cerrado del tiempo cíclico y reemplazarlo por un tiempo lineal que, aunque largo, tuviese un comienzo definible y una duración finita. Curiosamente, este paso fue iniciado por un suceso que, en la mayoría de los otros aspectos, fue una calamidad para el progreso de la investigación empírica: el ascenso del modelo cristiano del universo.

Inicialmente, la cosmología cristiana disminuyó el alcance de la historia cósmica, asó como contrajo las dimensiones espaciales del universo empíricamente accesible. La grandiosa e impersonal extensión de los ciclos temporales griegos e islámicos fue reemplazada por una concepción abreviada y anecdótica del pasado, en la que los asuntos de los hombres y de Dios tenían más importancia que las acciones no humanas del agua sobre la piedra. Si para Aristóteles la historia era como el girar de una gigantesca rueda, para los cristianos era como una obra de teatro, con un comienzo y un final definidos, con sucesos únicos y singulares, como el nacimiento de Jesús o la entrega de la Ley a Moisés.

Los cristianos calculaban la edad del mundo consultando las cronologías bíblicas de los nacimientos y muertes de los seres humanos, agregando los “engendrados”, como decían ellos. este fue el método de Eusebio, que presidió el Concilio de Nicea convocado por el Emperador Constantino en 325 d. C. para definir la doctrina cristiana, y quien estableció que habían pasado 3.184 años entre Adán y Abrahan; de san Agustín de Hipona, que calculó la  de la creación en alrededor del 5500 a. C.; de Kepler, que la fechó en 3993 a.C.; y de Newton, que llegó a una fecha sólo cinco años anterior a la de Kepler. Su apoteosis llegó en el siglo XVII, cuando James Ussher, obispo de Armagh, Irlanda, llegó a la conclusión de que el “comienzo del tiempo… se produjo al comienzo de la noche que precedió al día 23 de octubre del año… 4004 a. C.”

La espuria exactitud de Ussher le ha convertido en el blanco de las burlas de muchos eruditos modernos, pero, a pesar de todos sus absurdos, su enfoque y, más en general, el enfoque cristiano de la historiografía-hizo más  estimular la investigación científica del pasado que el altanero pesimismo de los griegos. Al difundir la idea de que el universo tuvo un comienzo en el tiempo y que, por lo tanto, la edad de la Tierra era finita y medible, los cronólogos cristianos montaron sin saberlo el escenario para la época de estudio científico de la cronología que siguió.

La diferencia,  luego, era que los científicos no estudiaban las Escrituras, sino las piedras. Así fue como el naturalista George Louis Leclere expresó el credo de los geólogos en 1778:

http://www.ojocientifico.com/wp-content/052.jpg

Así como en la historia civil consultamos documentos, estudiamos medallones y desciframos antiguas inscripciones, a fin de establecer las épocas de las revoluciones humanas y fijar las fechas de los sucesos morales, así también en la historia natural debemos excavar los archivos del mundo, extraer antiguas reliquias de las entrañas de la tierra [y] reunir sus fragmentos… es el único modo de fijar ciertos puntos en la inmensidad del espacio, y de colocar una serie de señales en el camino eterno del tiempo.

Bueno, hemos dado una vuelta por las ideas del pasado y de épocas antiguas en las que, los humanos, confunduidos (como siempre), trataban de fijar el modelo del mundo, del Universo. , mirando hacia atrás en el tiempo, con la perspectiva que nos otorga algunos miles de años de estudio e investigación, nos damos cuenta de que, la mayor parte de nuestra historia, está escrita basada en la imaginación y, los hechos reales, van llegando a nuestra comprensión muy poco a poco para conocer, esa realidad, que incansables perseguimos.

 terminar, os recomendaré que nunca dejéis de lado la lectura:

¿Qué duda nos  caber?

¿Acaso no es un libro el mejor compañero de ?

No molesta, te distrae y te enseña.

Si alguna vez viajas,

Recuerda  reseña.

 

emilio silvera

La tecnología de vacío en la simulación espacial

Autor por Emilio Silvera    ~    Archivo Clasificado en El hombre en el Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de satélite Sputnik

Con el lanzamiento del primer satélite artificial, el Sputnik, comenzó una nueva tecnología que ha permitido a la Humanidad explorar el Universo físicamente.

Resultado de imagen de La llegada del hombre a la luna

            Hemos sobrepasado el 40 aniversario de la llegada del hombre a la Luna.

Imagen de Marte enviada por la sonda Insight

 

“Hay una belleza tranquila aquí”, tuiteó la NASA para compartir la segunda imagen de InSight desde Marte. La misión tardó siete minutos entre la entrada a la atmósfera hasta tocar la superficie del planeta.

De todos los esfuerzos realizados en ese empeño de conquistar el espacio exterior, como fue el primer amartizaje por la sonda Viking,

Resultado de imagen de La Estación Espacial

o la puesta en marcha del proyecto internacional común para la construcción  de la Estación Espacial Internacional,

Resultado de imagen de o la puesta en orbita del Telescopio Espacial Hubble

o la puesta en orbita del Telescopio Espacial Hubble,

Resultado de imagen de Cassini-huygens

el envio de los ingenios robotizados al sistema de Saturno de la Cassini y la Huygens (entre otros muchos), ha posibilitado que al dia de hoy, sepamos mucho mas de nuestro entorno, del Universo que nos acoge y de los objetos que lo pueblan y, cada dia que pasa, las esperanzas de colonizar otras Tierras crecen en posibilidades reales al mismo tiempo que crece el conocimiento de lo que por ahí fuera existe.

Resultado de imagen de Miran el espacio exterior desde el interior de la Estación Espacial

La ventana abierta hacia el espacio nos acerca al conocimiento que tenemos sobre nosotros mismos y hemos podido llegar a comprender que, estamos hechos del material fabricado en las estrellas. No olvidamos que formamos parte del Sistema Solar en el planeta Tierra y que estamos, por tanto, rodeados de vació, en medio de fuerzas gravitatorias y electromagnéticas, que convierten nuestro planeta en una maravillosa perla azul inmersa en un vasto territorio negro.

Resultado de imagen de Otros mundos

                                  Buscar otros mundos que en el futuro nos puedan acoger

Fruto de las necesidades de conocimiento sobre el espacio exterior que nos rodea y aquel otro mas profundo y lejano, hace surgir la necesidad y el planteamiento de buscar nuevas formas de conocerlo, El espacio esta esencialmente “vacío”. Parece por tanto evidente, que los avanzados sistemas de vació actuales puedan ayudarnos a comprender mejor los procesos y sucesos que ocurren fuera de la atmósfera terrestre. No solo en el espacio interestelar, sino también sobre la superficie de muchos de los planetas y objetos celestes en los que su presión atmosférica sea menor que la terrestre. Así, un sistema de vació puede ser un entorno adecuado donde recrear diferentes ambientes espaciales, controlando algunos de los parámetros físicos del sistema para poder aprender sin necesidad de desplazarnos materialmente.

Todos sabemos la enorme complejidad que presentan las misiones espaciales y el elevado numero de inconvenientes que conllevan, sobre todo su elevado coste y, la no fiabilidad sobre la garantía del éxito de la misión que, al tener que desarrollarse en un ambiente hostil y en condiciones, casi siempre precarias donde pueden surgir agentes no deseados, hace imposible la seguridad de la misión y de su resultado final.

Resultado de imagen de La nave de la Nasa que explotó y murieron sus viajerosResultado de imagen de La nave de la Nasa que explotó y murieron sus viajeros

Siete astronautas perecieron a bordo del transbordador espacial Challenger de la NASA el 28 de enero de 1986. Un cuarto de siglo después, el accidente ocurrido a escasos 73 segundos del despegue,…

Todo lo anterior viene a colación de que la NASA, ha tardado 20 años en volver a mostrar interés por Marte, este es el periodo de tiempo que hay entre la sonda Viking y el Mars Pathfinder (MPf). Durante este tiempo los científicos han estudiado las 57.000 imágenes de la Viking, que ha permitido conocer la geología del planeta rojo con bastante exactitud. Sin lugar a dudas no hay planeta del Sistema solar con mejores condiciones para albergar la vida, extinta o actual, que Marte. Se parece a la Tierra en muchos aspectos: El proceso de formación, la historia climática de sus primeros tiempos, sus reservas de agua y fenómenos geológicos como los volcanes y otras.

Resultado de imagen de Rover descubre agua en MarteResultado de imagen de Rover descubre agua en Marte

                                              Pequeño Rover descubre agua en Marte

Las misiones desde MPf tienen un carácter de exploración física y ambiental del entorno, para lo cual la exploración no solo se realiza con satélites y sondas como la Viking, sino también con Rovers (pequeños vehículos todoterrenos) que son capaces de recorrer la no pocas veces intrincada superficie marciana, cada vez con mayor autonomía. En las futuras misiones a Marte, no solo por la NASA sino también por la ESA, se desea caracterizar la climatología, así como la búsqueda de la vida primigenia, en la que mediante una tecnología basada en biosensores, se puedan analizar muestras in situ y de enviar los resultados a la Tierra en tiempo real.

Resultado de imagen de La cámara de simulación de MarteResultado de imagen de La cámara de simulación de Marte

Para que las futuras misiones a Marte tengan mayor garantía, se ha diseñado y fabricado La cámara de simulación de MARTE, esta especialmente diseñada para estudiar condiciones marcianas e introducir muestras electrónicas reales. Para ello, se puede modificar la temperatura en el portamuestras en un rango entre 80 K y 450 K, y además es capaz de modificar la temperatura ambiental entre 200 K y 400 K y de generar “tormentas de polvo” en su interior. El principal objetivo de esta cámara es la de probar nuevos dispositivos electrónicos “sensores”, por lo que su ámbito de aplicación se destina principalmente a la calibración de sensores e instrumentación ambiental que serán enviados al espacio en futuras misiones espaciales…

Resultado de imagen de La Curiosity

El principal reto, esta en poder combinar rangos de temperatura en el portamuestras distintos a los de la atmósfera, y cruzar estos con cambios bruscos de presión, mientras se mantiene la composición gaseosa de Marte. El portamuestras de MARTE, esta diseñado para poder soportar dispositivos electromecánicos de grandes dimensiones usando la misma geometría de las mesas ópticas, y pudiendo ser enfriado y calentado desde el interior. En cuanto a la atmósfera el interior, de MARTE cuenta con unos anillos refrigeradores de nitrógeno líquido que en función de la presión y la composición de la atmósfera permite enfriar la misma no solo por radiación sino también por conducción y conveccion.

Además la cámara, esta diseñada para poder generar tormentas de polvo en su interior mediante un ingenioso sistema  de deposición, que mediante la combinación de un tamiz vibratorio, la gravedad y la diferencia de presiones es capaz de producir una niebla de polvo de partículas de hierro, similar a las de Marte. Sobre todo este conjunto de posibilidades también hay unos pasamuros, en los que se pueden adaptar fuentes de luz halógenas y de xenón, siguiendo el esquema de movimiento del Sol en el hemisferio norte de Marte, de ese modo se simula la incidencia de luz solar en función de la dependencia angular.

Resultado de imagen de la estación meteorológica REMSResultado de imagen de la estación meteorológica REMSResultado de imagen de la estación meteorológica REMSResultado de imagen de la estación meteorológica REMS

Todos estos complejos sistemas han sido desarrollados para testear los sensores de la estación meteorológica REMS de la misión MSL de la NASA, así como otros proyectos para la ESA, como ExoMars. No cabe duda alguna de que, con proyectos como este de la Cámara MARTE, nuestros conocimientos avanzaran, no solo ya sobre el planeta Marte en particular, sino que, también lo hará sobre el espacio y el vació en general.

El avance de la tecnología del vació, dado por la consecución de presiones cada vez menores, es debido no solo a las mejoras de las bombas, sino también al avance en materiales contenedores de vació, “cámaras”, con presiones de vapor y permeabilidades cada vez mas bajas.

Resultado de imagen de Misión a Saturno

La experiencia ha demostrado que la simulación no es solo un recurso de innovación tecnológica, sino también una herramienta útil, que permite validar la responsabilidad de las misiones espaciales, que debido al alto coste de las mismas condicionan su propia viabilidad. Del fruto de la simulación de algo tan complejo y tan vasto como es un sistema climático, en el que una mínima variación de un parámetro condiciona el comportamiento global del sistema. Así que, de todas estas experiencias de la simulación se están obteniendo grandes provechos tecnológicos, que nos permitían en un futuro cada vez mas cercano verificar nuestros propios resultados, y realizarnos preguntas sobre fenómenos que ni siquiera podemos conocer.

Resumen de un articulo de los Fisicos Sres. Sobrado y Martin Gago publicado en la Revista de la RSEF.

Los secretos de la Naturaleza ¿Los podremos desvelar?

Autor por Emilio Silvera    ~    Archivo Clasificado en El hombre en el Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

   ¿Qué estará pasando por esa cabecita?

El psicólogo Eric Ericsson llegó a proponer una teoría de estadios psicológicos del desarrollo. Un conflicto fundamental caracteriza cada fase. Si este conflicto no queda resuelto, puede enconarse e incluso provocar una regresión a un periodo anterior. Análogamente, el psiicólogo Jean Piaget demostró que el desarrollo mental de la primera infancia tampoco es un desarrollo continuo de aprendizaje, sino que está realmente caracterizado por estadios discontinuos en la capacidad de conceptualización de un niño. En un mes, un niño puede dejar de buscar una pelota una vez que ha rodado fuera de su campo de visión, sin comprender que la pelota existe aunque no la vea. Al mes siguiente, esto resultará obvio para el niño.

Quinteto de Stephan

Los procesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será.

Esta es la esencia de la dialéctica. Según esta filosofía, todos los objetos (personas, gases, estrellas, el propio universo) pasan por una serie de estadios. Cada estadio está caracterizado por un conflicto entre dos fuerzas opuestas. La naturaleza de dicho conflicto determina, de hecho, la naturaleza del estadio. Cuando el conflicto se resuelve, el objeto pasa a un objetivo o estadio superior, llamado síntesis, donde empieza una nueva contradicción, y el proceso pasa de nuevo a un nivel superior.

Los filósofos llaman a esto transición de la “cantidad” a la “cualidad”.  Pequeños cambios cuantitativos se acumulan hasta que, eventualmente, se produce una ruptura cualitativa con el pasado. Esta teoría se aplica también a las sociedades o culturas. Las tensiones en una sociedad pueden crecer espectacularmente, como la hicieron en Francia a finales del siglo XVIII. Los campesinos se enfrenaban al hambre, se produjeron motines espontáneos y la aristocracia se retiró a sus fortalezas. Cuando las tensiones alcanzaron su punto de ruptura, ocurrió una transición de fase de lo cuantitativo a lo cualitativo: los campesinos tomaron las armas, tomaron París y asaltaron la Bastilla.

Las transiciones de fases pueden ser también asuntos bastante explosivos. Por ejemplo, pensemos en un río que ha sido represado. Tras la presa se  rápidamente un embalse con agua a enorme presión. Puesto que es inestable, el embalse está en el falso vacío. El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado  de menor energía. Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.

Resultado de imagen de La explosión atómica

También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico.  De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente. Esto se denomina desintegración radiactiva. Sin embargo, disparando neutronescontra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de Einstein E = mc2. Por supuesto, dicha liberación es una explosión atómica; ¡menuda transición de fase! De nefasto recuerdo por cierto.

Las transiciones de fase no son nada nuevo. Trasladémoslo a nuestras propias vidas. En un libro llamado Pasajes, el autor, Gail Sheehy, destaca que la vida no es un flujo continuo de experiencias, como parece, sino que realmente pasa por varios estadios, caracterizados por conflictos específicos que debemos resolver y por objetivos que debemos cumplir.

Fábricas de estrellas en el Universo lejano

Los contornos recubiertos muestran la estructura de la galaxia al ser reconstruida desde las observaciones hechas bajo el fenómeno de lente gravitatorio con el radiotelescopio Submillimeter Array. La formación de nuevas estrellas en el Universo es imparable y, la materia más sencilla se constituye en una estructura que la transformará en más compleja, más activa, más dispuesta para que, la vida, también pueda surgir en mundos ignotos situados muy lejos del nuestro.

             Sí, todo cambia y nada permanece: transiciones de fases hacia la complejidad

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado. Aquí existe simetría. Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado.  Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.

Rompamos ahora la simetría. Supongamos ahora que el primer comensal toma la copa que hay a su derecha. Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha. Nótese que la imagen de la mesa del banquete vista en el espejo produce la situación opuesta.  Cada comensal ha tomado la copa izquierda. De este modo, la simetría izquierda-derecha se ha roto.

Resultado de imagen de El niño del espejo le da a su amiguito reflejado la mano derecha y aquel, le saluda, con la izquierda.

El niño del espejo le da a su amiguito reflejado la mano derecha y aquel, le saluda, con la izquierda. ¡La simetría especular…! Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.

Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron las primeras quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.  Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

Cadena pp

 En las estrellas se tiene que producir el proceso triple alfa para que exista el Carbono

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados.  Avanza creando en el hornotermonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de  una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Puesto que el peso promedio de los protones en los productos de fisión, como  el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante la conocida fórmula E = mc2. Esta es la fuente de energía que también subyace en la bomba atómica. Es decir, convertir materia en energía.

Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente (lo sé por experiencia), no dice nada, pero su rostro refleja escepticismo. ¿Cómo puedo vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución y poder contarlo.

Resultado de imagen de Hay cosas que, cambiando... ¡Nunca cambian! La entropía se encarga de ello

                         Hay cosas que,… ¡Nunca cambian! Son las constantes universales

Pero volviendo a las cosas de la Naturaleza y de la larga vida de las estrellas, sí, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol. Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar, la estrella más cercana a la Tierra (150 millones de Km =  1 UA), con un diámetro de 1.392.530 Km, tiene una edad de 4.500 millones de años, y, como todo en el Universo, su discurrir la va desgantando, evoluciona hacia su imparable destino como gigante roja primero y enana blanca después.

                              El Sol, como gigante roja, engulle a Mercurio

Cuando ese momento llegue, ¿dónde estaremos? Pues nosotros, si es que para entonces estamos por aquí,  contemplaremos el acontecimiento desde otros mundos. La Humanidad habrá dado el gran salto hacia las estrellas y, colonizando otros planetas se habrá extendido por regiones lejanas de la Galaxia.

El Universo siempre nos pareció inmenso, y, al principio, aquellos que empezaron a preguntarse cómo sería, lo imaginaron como una esfera cristalina que dentro contenía unos pocos mundos y algunas estrellas, hoy, hemos llegado a saber un poco más sobre él. Sin embargo, dentro de unos cuantos siglos, los que detrás de nosotros llegaran, hablarán de universos en plural, y, cuando pasen algunos eones, estaremos de visita de un universo a otro como  vamos de una ciudad a otra.

¡Quién pudiera estar allí!

¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!

         Todo lo grande está hecho de cosas pequeñas

Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros.

Esta ecuación nos habla de lo que se conoce como masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único número de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!).

Esto significa que tratamos de localizar una partícula con la precisión de una Longitud de Planck,  las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck,  y los efectos de la fuerza gravitatoria entre partículas, así, sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.

Lo cierto es que, esas unidades tan pequeñas, tan lejanas en las distancias más allá de los átomos, son las que marcan nuestros límites, los límites de nuestras teorías actuales que, mientras que no puedan llegar a esas distancias… No podrán avanzar en el conocimiento de la Naturaleza y, tampoco, como es natural, en la teoría de supercuerdas o en poder saber, lo que pasó en el primer momento del supuesto big bang, hasta esos lugares, nunca hemos podido llegar.

emilio silvera

¡El Universo! Y nosotros… ¿Seremos su parte que piensa?

Autor por Emilio Silvera    ~    Archivo Clasificado en El hombre en el Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

Einstein le llamó fotón: ¡El cuanto de Luz! »

 nuestra vida, libre de frecuentación pública,

Halla lenguas en los árboles, libros en los arroyos que fluyen,

Sermones en las piedras y  en todas partes.

Shakespeare

Por aquel entonces, predominaba en la antigua Grecia una concepción del Tiempo que era cíclica, y tan cerrada como las esferas cristalinas en las que Aristóteles aprisionaba el espacio cósmico. Platón, Aristóteles, Pitágoras que crearon escuela junto a una pléyade de seguidores, todos ellos, soteníam la idea, heredada de una antigua creencia caldea, de que la historia del universo consistía en una serie de “grandes años”, cada uno de los cuales era un ciclo de duración no especificada que finalizaba cuando todos los planetas estaban en conjunción, provocando una catástrofe de cuyas cenizas comenzaba el ciclo siguiente. Se pensaba que este proceso tenía lugar  siempre. Según el razonamiento de Aristóteles, con una lógica tan circular como los movimientos de las estrellas, sería paradójico pensar que el tiempo ha tenido un comienzo en el tiempo, de modo que los cielos cósmicos deben producirse eternamente.

La concepción cíclica del Tiempo no carecía de encantos. Expresaba un hastío del mundo y un elegante fatalismo del género que a menudo atrae a las personas con inclinaciones filosóficas, un tinte conservado en  indeleble por el historiador islámico Ahmad ibn ‘Abd al-Ghaffar, al-Kazwini al-Ghifari, quien relató la parábola del eterno retorno.

http://alexpantarei.files.wordpress.com/2008/03/tiempo3.jpg

              El mito del eterno retorno: la Regeneración del Tiempo

Tomado literalmente, el tiempo cíclico hasta sugiere una especie de inmortalidad.  Eudemo de Rodas, discípulo de Aristóteles, decía a sus propios discípulos: “Si creéis a los pitagóricos, todo retornará con el tiempo en el mismo orden numérico, y yo conversaré con vosotros con el bastón en la mano y vosotros os sentaréis como estáis sentados ahora, y lo mismo sucederá con toda otra cosa”. Por estas o por otras razones, el tiempo cíclico aún es popular hoy, y muchos cosmólogos defienden modelos del “universo oscilante” en los que se supone que la expansión del universo en algún momento se detendrá y será seguida por un colapso cósmico en los fuegos purificadores del siguiente big bang.

Según Penrose (físico teórico de la Universidad de Oxford), el Big Bang no fue el inicio del tiempo y el espacio, sino uno de tantos inicios,  de fases o etapas dentro de un universo mucho más viejo, y en el que  Big Bang marca el inicio de un  eón en su historia. Es tanto  decir que los 13.700 millones de años de nuestro tiempo, en los que han surgido estrellas, planetas y la vida; son una pequeña fracción de la vasta historia del universo.

Por supuesto, semejante afirmación viniendo de un físico tan prestigioso, ha de estar respaldada por algún  de observación empírica, y en este caso, se basa en los resultados obtenidos de la sonda WMAP de la NASA por el físico Vahe Gurzadyan del Instituto de Física Yerevan en Armenia, quien analizó  de microondas de siete años procedentes de la sonda, así como datos del experimento de globO BoomeranG de la Antártida.

Claro que, todas estas ideas de un Tiempo repetitivo y eterno en su “morir” y “renacer”, a mí me produce la sensación de una excusa que se produce por la inmensa ignorancia que, del universo tenemos. Fijémonos en que, los pueblos antiguos  los hindúes, sumerios, babilonios, griegos y mayas, todos ellos, tenían esa idea cosmológica del tiempo cíclico. Pero, pese a todos sus aspectos de aventura cósmica, esa vieja doctrina de la historia infinita y cíclica tenía el pernicioso efecto de tender a desalentar los intentos de sondear la genuina extensión del pasado. Si la historia cósmica consistía en una serie interminable de repeticiones interrumpidas por destrucciones universales, entonces era imposible determinar cual era realmente la edad total del universo.

Un pasado cíclico infinito es por definición inconmensurable, es un “tiempo fuera de la mente”, como solía decir Alejandro Magno. El Tiempo Cíclico tampoco dejaba mucho espacio  el concepto de evolución. La fructífera idea de que pueda haber innovaciones genuinas en el mundo.

  Todo, con el paso del Tiempo, se distorsiona y deteriora

Los griegos sabían que el mundo cambia y que algunos de sus cambios son graduales. Al vivir como vivían, con el mar a sus pies y las montañas a sus espaldas, se daban  de que las olas erosionan la tierra y estaban familiarizados con el extraño hecho de que conchas y fósiles de animales marinos pueden encontrarse en cimas montañosas muy por encima del nivel del mar. Al menos dos de los hallazgos esenciales de la ciencia moderna de la geología -que pueden formarse montañas a partir de lo que fue antaño un lecho marino, y que pueden sufrir la erosión del viento y del agua- ya eran mencionados en épocas tan tempranas como el siglo VI a. C. por Tales de Mileto y Jenófanes de Colofón. Pero tendían a considerar estas transformaciones como meros detalles, limitados al ciclo corriente de un cosmos que era, a la larga, eterno e inmutable. “Hay necesariamente algún cambio en el mundo como un todo -escribió Aristóteles-, pero no en el sentido de que nazca o perezca, pues el universo es permanente.”

 que la Ciencia enpesace a estimar la antigüedad de la Tierra y del universo -situar el lugar de la Humanidad en las profundidades del pasado, lo mismo que establecer nuestra situación en el espacio cósmico-, primero era necesario romper con el círculo cerrado del tiempo cíclico y reemplazarlo por un tiempo lineal que, aunque largo, tuviese un comienzo definible y una duración finita. Curiosamente, este paso fue iniciado por un suceso que, en la mayoría de los otros aspectos, fue una calamidad para el progreso de la investigación empírica: el ascenso del modelo cristiano del universo.

Inicialmente, la cosmología cristiana disminuyó el alcance de la historia cósmica, asó como contrajo las dimensiones espaciales del universo empíricamente accesible. La grandiosa e impersonal extensión de los ciclos temporales griegos e islámicos fue reemplazada por una concepción abreviada y anecdótica del pasado, en la que los asuntos de los hombres y de Dios tenían más importancia que las acciones no humanas del agua sobre la piedra. Si para Aristóteles la historia era como el girar de una gigantesca rueda, para los cristianos era como una obra de teatro, con un comienzo y un final definidos, con sucesos únicos y singulares, como el nacimiento de Jesús o la entrega de la Ley a Moisés.

Los cristianos calculaban la edad del mundo consultando las cronologías bíblicas de los nacimientos y muertes de los seres humanos, agregando los “engendrados”, como decían ellos. este fue el método de Eusebio, que presidió el Concilio de Nicea convocado por el Emperador Constantino en 325 d. C. para definir la doctrina cristiana, y quien estableció que habían pasado 3.184 años entre Adán y Abrahan; de san Agustín de Hipona, que calculó la  de la creación en alrededor del 5500 a. C.; de Kepler, que la fechó en 3993 a.C.; y de Newton, que llegó a una fecha sólo cinco años anterior a la de Kepler. Su apoteosis llegó en el siglo XVII, cuando James Ussher, obispo de Armagh, Irlanda, llegó a la conclusión de que el “comienzo del tiempo… se produjo al comienzo de la noche que precedió al día 23 de octubre del año… 4004 a. C.”

La espuria exactitud de Ussher le ha convertido en el blanco de las burlas de muchos eruditos modernos, pero, a pesar de todos sus absurdos, su enfoque y, más en general, el enfoque cristiano de la historiografía-hizo más  estimular la investigación científica del pasado que el altanero pesimismo de los griegos. Al difundir la idea de que el universo tuvo un comienzo en el tiempo y que, por lo tanto, la edad de la Tierra era finita y medible, los cronólogos cristianos montaron sin saberlo el escenario para la época de estudio científico de la cronología que siguió.

La diferencia,  luego, era que los científicos no estudiaban las Escrituras, sino las piedras. Así fue como el naturalista George Louis Leclere expresó el credo de los geólogos en 1778:

http://www.ojocientifico.com/wp-content/052.jpg

Así como en la historia civil consultamos documentos, estudiamos medallones y desciframos antiguas inscripciones, a fin de establecer las épocas de las revoluciones humanas y fijar las fechas de los sucesos morales, así también en la historia natural debemos excavar los archivos del mundo, extraer antiguas reliquias de las entrañas de la tierra [y] reunir sus fragmentos… es el único modo de fijar ciertos puntos en la inmensidad del espacio, y de colocar una serie de señales en el camino eterno del tiempo.

Bueno, hemos dado una vuelta por las ideas del pasado y de épocas antiguas en las que, los humanos, confunduidos (como siempre), trataban de fijar el modelo del mundo, del Universo. , mirando hacia atrás en el tiempo, con la perspectiva que nos otorga algunos miles de años de estudio e investigación, nos damos cuenta de que, la mayor parte de nuestra historia, está escrita basada en la imaginación y, los hechos reales, van llegando a nuestra comprensión muy poco a poco para conocer, esa realidad, que incansables perseguimos.

 terminar, os recomendaré que nunca dejéis de lado la lectura:

¿Qué duda nos  caber?

¿Acaso no es un libro el mejor compañero de ?

No molesta, te distrae y te enseña.

Si alguna vez viajas,

Recuerda  reseña.

 

emilio silvera