domingo, 15 de diciembre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Qué habrá más allá del Modelo Estándar de la Física de Partículas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                                                   Algún maestro decía:
“Inicialmente, se presenta, de modo simplificado, el Modelo Estándar como una teoría sofisticada que identifica las partículas elementales y sus interacciones. Después, en el ámbito de esa teoría, se enfocan aspectos – el vacuo no es vacío; partículas desnudas y vestidas; “materia oscura” y “viento oscuro”; materia y anti.materia; el campo y el bosón de Higgs; neutrinos oscilantes – que pueden ser motivadores desde el punto de vista de la enseñanza y del aprendizaje de la Física. Finalmente, se discute la probable superación de esa teoría por otra más completa.”
Resultado de imagen de Los leptones"
Los leptones sólo interaccionan entre sí mediante fuerzas débiles y/o electromagnéticas. Los quarks, sin embargo, interaccionan por cualquiera de las tres fuerzas indicadas. Y, en todo ésto, la gravedad está ausente y hace que la teoría esté incompleta. De todas las maneras, no debemos quitar mérito a tan compleja construcción de la mente humana que tan buenos resultados nos ha dado.
Gordon Kane, un físico teórico de la Universidad de Michigan nos dice:
“… el Modelo Estándar es, en la historia, la más sofisticada teoría matemática sobre la naturaleza. A pesar de la palabra “modelo” en su nombre, el Modelo Estándar es una teoría comprensiva que identifica las partículas básicas y especifica cómo interactúan. Todo lo que pasa en nuestro mundo (excepto los efectos de la gravedad) es resultado de las partículas del Modelo Estándar interactuando de acuerdo con sus reglas y ecuaciones.”
De acuerdo con el Modelo Estándar, leptones y quarks son partículas verdaderamente elementales, en el sentido de que no poseen estructura interna. Las partículas que tienen estructura interna se llaman hadrones; están constituidas por quarks: bariones cuando están formadas por tres quarks o tres antiquarks, o mesones cuando están constituidas por un quark y un antiquark.
Pero ¿cómo se da la interacción? ¿Quién “transmite el mensaje” de la fuerza entre las partículas que interactúan? Eso nos lleva a las partículas mediadoras o partículas de fuerza o, también, partículas virtuales.
Las interacciones fundamentales tienen lugar como si las partículas que interactúan “intercambiasen” otras partículas entre sí. Esas partículas mediadoras serían los fotones en la interacción electromagnética, los gluones en la interacción fuerte, las partículas W y Z en la interacción débil y los gravitones (aún no detectados) en la interacción gravitacional. Es decir, partículas eléctricamente cargadas interactuarían intercambiando fotones, partículas con carga color interactuarían intercambiando gluones, partículas con carga débil intercambiarían partículas W y Z, mientras que partículas con masa intercambiarían gravitones.
Las partículas mediadoras pueden no tener masa, pero tienen energía, o sea, son pulsos de energía. Por eso, se llaman virtuales. De los cuatro tipos de partículas mediadoras 8, las del tipo W y Z tienen masa, pero es común que todas sean llamadas partículas virtuales.
¡Pero faltan los campos! Los cuatro campos. Sabemos que un cuerpo con masa crea alrededor de sí un campo gravitacional, un campo de fuerza que ejerce una fuerza sobre otro cuerpo masivo y viceversa. Análogamente, un cuerpo cargado eléctricamente, crea un campo electromagnético (si está en reposo, se percibe sólo su componente eléctrico, si está en movimiento se manifiesta también el componente magnético) y ejerce una fuerza electromagnética sobre otro cuerpo electrizado y viceversa.
El problema en esa bella simetría de cuatro cargas, cuatro interacciones, cuatro fuerzas, cuatro tipos de partículas mediadoras y cuatro campos es que aún no hemos podido detectar ningún gravitón y la gravedad, en sí, no encaja bien en esa teoría llamada Modelo Estándar.
Resultado de imagen de Ña teoría de cuerdadResultado de imagen de Ña teoría de cuerdad
Resultado de imagen de Ña teoría de cuerdadResultado de imagen de Ña teoría de cuerdad

La Física actual busca una teoría más amplia que el modelo estándar . Una teoría que dé una descripción completa, unificada y consistente de la estructura fundamental del universo. ¿Será la compleja Teoría de cuerdas,que integra también la interacción gravitaroria?

Resultado de imagen de El Modelo Estándar"

El modelo estándar es una poderosa herramienta pero no cumple todas las expectativas; no es un modelo perfecto. En primer lugar, podríamos empezar por criticar que el modelo tiene casi veinte constantes que no se pueden calcular. Desde luego, se han sugerido numerosas ideas para explicar el origen de todos estos parámetros o números inexplicables y sus valores, pero el problema de todas estas teorías es que los argumentos que dan nunca han sido enteramente convincentes. ¿Por qué se iba a preocupar la naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el principio de la relatividad, pero no queremos abandonar todos los demás principios que ya conocemos. Ésos, después de todo, han sido enormemente útiles en el descubrimiento del modelo estándar. El mejor lugar para buscar un nuevo principio es precisamente donde se encuentran los puntos débiles de la presente teoría y, construímos máquinas como el LHC para que nos diga lo que no sabemos.

 

Una regla universal en la física de partículas es que para partículas con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez más pequeñas en el espacio y en el tiempo. El modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero existen varias razones para sospechar que sus predicciones pueden, finalmente (cuando podamos emplear más energía en un nivel más alto), resultar equivocadas.

Vistas a través del microscopio, las constantes de la naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático no hay nada que objetar, pero la credibilidad del modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas, o lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas. ¿Y por qué debería ser el modelo válido hasta aquí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables. ¿Dónde está la partícula de Higgs? ¿Cómo se esconde de nosotros el gravitón?

Si has leído algo sobre física, entonces habrás leído muchas palabras que terminan con “ón”; palabras como protón, neutrón, gluón, fotón, bosón, fermión y ón y ón y ón… Una de las palabras con la que puedes haberte encontrado es “gravitón”. Dejemos algo claro: Por el momento, el gravitón es un concepto totalmente teórico que camina al borde del límite entre los dominios de la ciencia seria y la especulación.

Parece que el Modelo estándar no admite la cuarta fuerza (la Gravedad)  y tendremos que buscar más profundamente, en otras teorías que nos hablen y describan además de las partículas conocidas de otras nuevas que están por nacer y que no excluya la Gravedad. Ese es el Modelo que necesitamos para conocer mejor la Naturaleza.

Claro que las cosas no son tan sencilla y si deseamos evitar la necesidad de un delicado ajuste de las constantes de la naturaleza, creamos un nuevo problema: ¿cómo podemos modificar el modelo estándar de tal manera que el ajuste fino no sea necesario? Está claro que las modificaciones son necesarias, lo que implica que muy probablemente haya un límite más allá del cual el modelo tal como está deja de ser válido. El modelo estándar no será nada más que una aproximación matemática que hemos sido capaces de crear, de forma que todos los fenómenos que hemos observado hasta el presente están reflejados en él, pero cada vez que se pone en marcha un aparato más poderoso, tenemos que estar dispuestos a admitir que puedan ser necesarias algunas modificaciones del modelo para incluir nuevos datos que antes ignorábamos.

Más allá del modelo estándar habrá otras respuestas que nos lleven a poder hacer otras preguntas que en este momento, no sabemos ni plantear por falta de conocimientos.  Si no conociéramos que los protones están formados por Quarks, ¿cómo nos podríamos preguntar si habrá algo más allá de los Quarks?

El gobierno de Estados Unidos, después de llevar gastados miles de millones de dólares, suspendió la construcción del supercolisionador superconductor de partículas asestando un duro golpe a la física de altas energías, y se esfumó la oportunidad para obtener nuevos datos de vital importancia para el avance de este modelo, que de momento es lo mejor que tenemos.

Se han estado inventando nuevas ideas, como la supersimetría y el technicolor. Los astrofísicos estarán interesados en tales ideas porque predicen una gran cantidad de nuevas partículas superpesadas, y también varios tipos de partículas que interaccionan ultradébilmente, los technipiones. Éstas podrían ser las WIMP’s (Weakly Interacting Massive Particles, o Partículas Masivas Débilmente Interactivas) que pueblan los huecos entre las galaxias, y serían así las responsables de la masa perdida que los astrofísicos siguen buscando y llaman materia oscura”.

Que aparezcan “cosas” nuevas y además, imaginarlas antes, no es fácil. Recordemos cómo Paul Dirac se sintió muy incómodo cuando en 1931 dedujo, a partir de su ecuación del electrón, que debería existir una partícula con carga eléctrica opuesta. Esa partícula no había sido descubierta y le daba reparo perturbar la paz reinante en la comunidad científica con una idea tan revolucionaria, así que disfrazó un poco la noticia: “Quizá esta partícula cargada positivamente, tan extraña, sea simplemente el protón”, sugirió. Cuando poco después se identificó la auténtica antipartícula del electrón (el positrón) se sorprendió tanto que exclamó: “¡Mi ecuación es más inteligente que su inventor!”. Este último comentario es para poner un ejemplo de cómo los físicos trabajan y buscan caminos matemáticos mediante ecuaciones de las que, en cualquier momento (si están bien planteadas), surgen nuevas ideas y descubrimientos que ni se podían pensar. Así pasó también con las ecuaciones de Einstein de la relatividad general, donde Schwarzschild dedujo la existencia de los agujeros negros.

Resultado de imagen de La expansión del Universo"

Se piensa que al principio del comienzo del tiempo, cuando surgió el Big Bang, las energías eran tan altas que allí reinaba la simetría total; sólo había una sola fuerza que todo lo englobaba. Más tarde, a medida que el universo se fue expandiendo y enfriando, surgieron las cuatro fuerzas que ahora conocemos y que todo lo rigen.

Resultado de imagen de Supercolisionador de partículasResultado de imagen de Supercolisionador de partículas

Resultado de imagen de Supercolisionador de partículasResultado de imagen de Supercolisionador de partículas

Tenemos los medios, en los supercolisionadores de partículas, para viajar comenzando por 1.000 MeV, hasta finalizar en cerca de 1019 MeV, que corresponde a una escala de longitudes de aproximadamente 10-30 cm. Howard Georgi, Helen Quinn y Steven Weinberg descubrieron que ésta es la región donde las tres constantes de acoplamiento gauge se hacen iguales (U(1), SU(2) y SU(3)); resultan ser lo mismo. ¿Es una coincidencia que las tres se hagan iguales simultáneamente? ¿Es también una coincidencia que esto suceda precisamente en esa escala de longitud? Faltan sólo tres ceros más para alcanzar un punto de retorno. Howard Georgi y Sheldon Glashow descubrieron un modelo genuinamente unificado en el dominio de energías de 1019 MeV tal que, cuando se regresa de allí, espontáneamente surgen las tres fuerzas gauge tal como las conocemos. De hecho, ellos encontraron el modelo; la fórmula sería SU(5), que significa que el multiplote más pequeño debe tener cinco miembros.

http://cmcagustinos.files.wordpress.com/2010/10/circulo.jpg

Materia y Energía Oscura… Un Misterio…Sin resolver.

Y, a todo esto, ¿dónde está esa energía oculta? ¿Y donde la materia? Podemos suponer que la primera materia que se creo en el Universo fue la que llamamos (algún nom,bre había que ponerle) “Materia Oscura”, esa clase de Ilem o sustancia primera del Universo que mejor sería llamarla invisible, ya que, de no ser así, difícil sería explicar cómo se pudieron formar las primeras estrellas y galaxias de nuestro Universo, ¿dónde está el origen de la fuerza de Gravedad que lo hizo posible, sino en esa materia escondida?

¡Lo dicho! Necesitamos saber, y, deseo que de una vez por todas, se cumpla lo que dejó dicho Hilbert en su tumba de Gotinga (Alemania): “Tenemos que saber, ¡sabremos!. Pero…

¡Que sea pronto!

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 5c429929bc05dccc23a383dccc2d960e El Sistema Solar para niños

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. Según todos los datos que tenemos la edad de la Tierra data de hace unos 4.500 millones de años, y, los primeros signos de vida que han podido ser localizados fosilizados en rocas antiguas, tienen unos 3.800 millones de años, es decir, cuando la Tierra era muy joven ya apareció en ella la vida.

Resultado de imagen de La Tierra primitiva"

Nuestro mundo se fue enfriando y su contenido de elementos químicos, su evolución, la formación de su atmósfeta y de los océanos… Posibilitaron el surgir de la vida!

El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el Hidrógeno, Nitrógeno, Oxígeno, CARBONO, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro.  Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua.  En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la  radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

       La imagen del cielo de Canarias nos puede servir para mostrar una atmósfera acogedora para la vida

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

File:Ammonia World.jpg

Es cierto que la realidad puede ser mucho más imaginativa de lo que nosotros podamos imaginar. ¿Habrá mundos con formas de vida basadas en el Silicio? Aunque me cuesta creerlo, también me cuesta negarlo toda vez que, la Naturaleza nos ha demostrado, muchas veces ya, que puede realizar cosas que anosotros, nos parecen imposibles y, sin embargo, ahí está el salto cuántico… Por ejemplo.

Los biólogos, por ejemplo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.  La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc.  En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía.  Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

        Para nosotros ha pasado mucho tiempo, y, sin embargo, para el Universo ha sido solo un instante

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos.  Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina.  Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes.  Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN PUEDEN VERSE AFECTADOS DE MANERA ADVERSA. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades.  Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz.  Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso.  Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por M3 de espacio.  Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres.  Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.

http://www.observatoriobioetica.org/wp-content/uploads/2015/02/3-genetic-parent-babies.jpg

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos.  Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más. De todas las maneras, nosotros somos una parte esencial del universo: La que siente y observa, la que genera ideas y llega a ser consciente de que es, ¡la parte del universo que trata de comprender!

No pocas ideas de las aquí expuestas han sido tomada de hombres más sabios que yo.

emilio silvera

Nuevos Paradigmas… ¡¡Pronto!!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                               Velocidad de la luz desde la Tierra a la Luna

File:World line-es.svg

                                             Un suceso en un cono de luz temporal

Algunos  creen que desde que Einstein sacó a la luz su relatividad especial, las leyes de Newton habían quedado olvidadas en un cuarto oscuro y, nada más lejos de la realidad. La física newtoniana siguen utilizándose ampliamente en la vida cotidiana, en la mayoría de los campos de la ciencia y en la mayor parte de la tecnología. No prestamos atención a la dilatación del tiempo cuando hacemos un viaje en avión, y los ingenieros no se preocupan  por la contracción de la longitud cuando diseña la nave. La dilatación y la contracción son demasiado pequeñas para que sean tomadas en consideración.

Por supuesto, podríamos utilizar, si quisiéramos, las leyes de Einstein  en lugar de las leyes de Newton en la vida de cada día. Las dos dan casi exactamente las mismas predicciones para todos los efectos físicos, puesto que la vida diaria implica velocidades relativas que son muy pequeñas comparadas con la velocidad de la luz.

Las predicciones de Einstein y Newton comienzan a diferir fuertemente sólo cuando las velocidades relativasd se aproximan a la velocidad de la luz, Entonces, y sólo entonces debemos abandonar las predicciones de Newton y atenernos estrictamente a las de Einstein. Este es un ejemplo de una pauta muy general. Es una pauta que se ha repetido una y otra vez a lo largo de la historia de la física del siglo XX: un conjunto de leyes (en este caso las leyes newtonianas) es ampliamente aceptado al principio, porque concuerda muy bien con el experimento.

Ilustración abstracto con líneas y flashes  Foto de archivo - 8141891

Pero los experimentos cada vez se hacen más precisos y este conjunto de leyes resultan funcionar bien sólo en un dominio limitado, su dominio de validez (para las leyes de Newton) el dominio de velocidades pequeñas comparadas con la velocidad de la luz en el vacío. Entonces los físicos se esfuerzan, experimental y teóricamente, para comprender qué está pasando en el límite de dicho dominio de validez, finalmente formulan un nuevo conjunto de leyes que es muy acertado dentro, cerca y más allá del límite (en el caso de Newton, la relatividad especial de Einstein, que sí es válida a velocidades próximas a las de la luz tanto como a más bajas velocidades.

                        La Gravedad se deja sentir por todo el espacio “infinito”

Hoy día, el mundo moderno de la física se funda notablemente en dos teorías principales, la realtividad general y la mecánica cuántica, aunque ambas teorías parecen contradecirse mutuamente. Los postulados que definen la teoría de la relatividad de Einstein y la teoría del quántum estan incuestionablemente apoyados por rigurosa y repetida evidencia empírica. Sin embargo, ambas se resisten a ser incorporadas dentro de un mismo modelo coherente.

Nuevas maneras de sondear la Naturaleza y desvelar sus secretos están en marcha y, más adelante en el futuro, saldrán a la luz nuevas formas y nuevas teorías que, para entonces, sí que se podrán comprobar de manera experimental. Pero sigamos con la relatividad de Einstein que, en su primera fase, la relatividad especial comienza a fracasar cuando se hace presente la Gravedad de una manera importante, entonces, tiene que ser reemplazada por un nuevo conjunto de leyes que llamamos relatividad general; ésta fracasa en presencia de una singularidad interna de un agujero negro y, entonces, debe ser reemplazada por otro nuevo conjunto de leyes que conocemos como Gravedad Cuántica y que aún, no hemos podido dominar.

http://www.cosmonoticias.org/wp-content/uploads/2011/05/energia-oscura-y-gravedad.jpg

Einstein  nos decía que el espacio se curva en presencia de grandes masas que modelan su geometría

Lo cierto que es que, se ha dado una característica sorprendente en cada transición de un viejo conjunto de leyes a otro nuevo: en cada caso, los físicos (si demostraban ser suficientemente inteligentes) no necesitaban ninguna guía experimental que les dijera dónde empezaría a fallar el viejo conjunto, es decir, que les indicara el límite de su dominio de validez. Ya hemos podido ver eso para la física newtoniana: las leyes de la electrodinámica de Maxwell no encajaban bien con el espacio absoluto de la física newtoniana. En reposo en el espacio absoluto (en aquel sistema del éter), las leyes de Maxwell eran simples y bellas -por ejemplo, las lineas de campo magnético no tienen extremo. En los sistemas en movimiento se vuelven complicadas y feas, las lineas de campo magnético tienen a veces extremos. Sin embargo, las complicaciones tienen una influencia despreciable sobre el resultado de los experimentos cuando los sistmas se mueven., con relación al espacio absoluto, a velocidades pequeñas comparadas con la de la luz; entonces casi ninguna linea de campo tiene extremos. Sólo a velocidades que se aproximan a la de la luz era previsible que las feas complicaciones tuvieran una influencia suficientemente grande como para ser medidas con facilidad: montones de extremos. De este modo,  era razonable sospechar, incluso en ausencia del experimento de Michelson-Morley, que el dominio de validez de la física newtoniana podría ser el de las velocidades pequeñas comparadas con la de la Luz, y que las leyes newtonianas podrían venirse abajo a velocidades cercanas a la de la luz.

http://francisthemulenews.files.wordpress.com/2010/03/dibujo20100330_first_colission_lhc_at_cms_detector2.jpg

El LHC es un esfuerzo internacional, donde participan alrededor de siete mil físicos de 80 países. Consta de un túnel en forma de anillo, con dimensiones interiores parecidas a las del metro subterráneo de la Ciudad de México, y una circunferencia de 27 kilómetros. Está ubicado entre las fronteras de Francia y Suiza, cerca de la ciudad de Ginebra, a profundidades que van entre los 60 y los 120 metros debido a que una parte se encuentra bajo las montañas del Jura.

Claro que, hablando de lo que nos ocupa, al contemplar la secuencia anterior de conjuntos de leyes (física newtoniana, relativista especial, relativista general, ¿gravedad cuántica?), y una secuencia similar de leyes que gobiernan la estructura de la materia y las partículas elementales, la mayoría de los físicos tienden a creer que estas secuencias están convergiendo hacia un conjunto de leyes últimas que verdaderamente gobiernan el Universo, leyes que obligan al Universo a mostrarse como es y comportarse como nosotros vemos que lo hace, que obligan a la lluvia a condensarse en las cristaleras de las ventanas, obliga al Sol a quemar combustible nuclear para convertir lo elemental y sencillo en más complejo que, más tarde tendrá su función determinada, obliga a los agujeros negros a producir ondas gravitatorias cuando colisionan entre ellos, a que las estrellas masivas, al final de sus vidas exploten como supernovas para formar hermosas Nebulosas y conformar nuevos objetos masivos como púlsares, estrellas de neutrones y agujeros negros… Y, por eso…

           ¡La Gravedad! Siempre está presente e incide en los comportamientos de la materia

Todo esto ha podido ser comprendido con el paso del tiempo y a medida que se sumaban los descubrimientos y los pensamientos de unos y otros, y, por ejemplo, Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. Einstein generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).

Otras de las conclusiones de la teoría de Einstein en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.

Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.

http://4.bp.blogspot.com/_zBAdWxgEeX0/R87vhcBGPII/AAAAAAAACI4/MCE-Wi6d2v0/s320/galatomo.jpg

            Todo lo grande está hecho de cosas pequeñas

Claro que, podríamos objetar que, cada conjunto de leyes en la secuencia “tiene un aspecto” muy diferente del conjunto precedente. (Por ejemplo, el tiempo absoluto de la física newtoniana tiene un aspecto muy diferente de los muchos flujos de tiempos diferentes de la relatividad especial.) ¿Por qué,  entonces, deberíamos esperar una convergencia? La respuesta es que hay que distinguir claramente entre las predicciones hechas a partir de un conjunto de leyes y las imágenes mentales que las leyes transmiten (lo que las leyes “aparentan”). Yo espero la convergencia en términos  de predicciones, pero esto es todo lo que finalmente cuenta. Las Imágenes mentales (un tiempo absoluto en la Física newtoniana frente a los muchos flujos de tiempo en la física relativista) no son importantes para la naturaleza última de la realidad.

          Todo ha tenido siempre una explicación aunque no supiéramos darla

Se podría objetar que cada conjunto de leyes en la secuencia, tiene su propio su aspecto y que, no tienen porque converger. El mismo conjunto de leyes de Newton tiene un aspecto muy diferente de los muchos flujos de tiempos diferentes de la relatividad especial. En los aspectos de las leyes no existe ningún tipo de convergencia y, desde luego, las características de cada conjunto de leyes, aunque sean diferentes,  no son importantes esas diferencias para el resulta último final de la realidad última a la que la Naturaleza quiere llegar.

Un agujero negro es lo definitivo en distorsión espacio-temporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.


En cuanto a la distorsión del espacio y el tiempo, tenemos que Hermann Minkowski unificaba el espacio y el Tiempo y Einstein lo distorsionaba.

“Las ideas de espacio u tiempo que deseo exponer ante ustedes han brotado del suelo de la física experimental, y en ello reside su fuerza. Son radicales. En lo referente al espacio por sí mismo, y el tiempo por sí mismo, están condenados a desvanecerse en meras sombras, y sólo un tipo de unión de ambos conservará una realidad independiente: ¡El Espaciotiempo!”

Con esas palabras proféticas Minkowski reveló al mundo, en septiembre de 1908, un nuevo descubrimiento sobre la naturaleza del espacio y el tiempo. Einstein había demostrado que el espacio u el tiempo eran “relativos”. La longitud de un objeto y el flujo del tiempo eran diferentes cuando se miran desde diferentes sistemas de referencia.

Cono de luz en el espacio-tiempo de Minkowski

Minkouski comprendió, de manera perfecta, la profundidad y el verdadero mendaje que la teoría de Eisntein llevaba consigo y, habiéndola entendido a la pefección, le expuso al mundo el nacimiento del espaciotiempo: Ambos, Tiempo y Espacio conformados como un todo.

Hay una historia (adaptada de Taylor y Wheeler (1992) que ilusta la idea subyacente al descubrimiento de Minkowski pero, la dejaré para otra ocasión. El tema de las leyes de Newton, las dos versiones relativistas y la no hallada gravedad cuántica, nos daría para glunos abultados tomos que, no pueden ser escritos aquí

emilio silvera

Unos se van y otros llegaran. Todo sigue su curso

Autor por Emilio Silvera    ~    Archivo Clasificado en Anécdotas de personajes de la Ciencia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nadie puede quedarse aquí eternamente, y, como todos en su momento, también se fue Marvin Minsky,el padre de la inteligencia artificial que inspiró “2001 y ” Parque Jurásico”

Resultado de imagen de 20012 una Odisea del EspacioResultado de imagen de 20012 una Odisea del Espacio

Resultado de imagen de Parque JurásicoResultado de imagen de Parque Jurásico

 

Marvin Minsky falleció a los 88 años tras una vida dedicada a la reflexión sobre el pensamiento y el diseño de máquinas capaces de aprender

 

                                                                 Marvin Lee Minsky

Marvin Minsky creía que, en el futuro, los humanos seremos máquinas reparables y los robots tendrán una inteligencia equiparable a la nuestra. Aunque ese tiempo aún no ha llegado, el camino que Minsky inició en la década de los años 50 como uno de los padres de la inteligencia artificial ha cambiado para siempre el desarrollo de ordenadores y otras tecnologías que algún día podrían llegar a cumplir el mayor de sus sueños: tener sentido común.

Resultado de imagen de Robots del futuro con conciencia de SerResultado de imagen de Robots del futuro con conciencia de Ser

                            Robots del futuro que tendrán consciencia de Ser

Minsky murió el pasado domingo en Boston a los 88 años tras una vida dedicada a la investigación, la música y la ciencia-ficción. En 1968, Stanley Kubrick llamó a su puerta para que le asesorara sobre su película 2001, una odisea del espacio, en la que el mítico ordenador HAL se rebela contra sus creadores humanos. Minsky, que estuvo a punto de morir aplastado por maquinaria durante el rodaje, siempre fue un acérrimo defensor de la ciencia ficción para explicar las complejidades de la investigación: “Ayuda a dejar más claras las implicaciones de tu trabajo”, explicó.

Tras servir un año en la Marina durante la II Guerra Mundial, este neoyorquino se doctoró en matemáticas. En 1956 fue uno de los cuatro fundadores del campo de la inteligencia artificial en una mítica conferencia celebrada en el Dartmouth College de New Hampshire. Junto a él estaban John McCarthy, de la Universidad de Stanford y Allen Newell y Herbert Simon, ambos de Carnegie Mellon. Minsky es el único que quedaba vivo.

                                                 ‘Parque Jurásico’

 

Tres años después del acto fundacional el matemático creó el Laboratorio de Inteligencia Artificial del Instituto Tecnológico de Massachusetts (MIT), donde desarrolló casi toda su carrera. Los primeros ejemplos de su trabajo en los cincuenta y sesenta fueron un escáner visual para llevarlo en la cabeza, manos robóticas con sensores táctiles, el microscopio confocal, que aún se usa en biología, o las primeras redes neuronales capaces de aprender.

Uno de los mensajes constantes de Minsky fue que, en esencia, no hay diferencia entre la inteligencia humana y la robótica. Profundizar en el conocimiento del cerebro ayudaría a desarrollar máquinas cada vez más inteligentes que podrían llegar a hacer todo lo que hacen las personas.

Resultado de imagen de Robots del futuro con conciencia de Ser

Medio siglo después de la conferencia de Dartmouth, a Minsky le sorprendía la poca gente que intentaba entender el pensamiento a un nivel superior. “¿Cómo puede un chaval de tres o cuatro años ser tan bueno en el razonamiento basado en el sentido común que aparentemente ninguna máquina puede hacer?”, se preguntaba Minsky en 2006 en una entrevista en Tech Review. La gran diferencia, dijo, es que, cuando los pequeños tienen problemas para entender algo, piensan automáticamente: “¿Qué me pasa?, ¿Por qué estoy perdiendo el tiempo con esto? o ¿Por qué no me funciona esta forma de pensar, habrá alguna mejor?”.

En 1968, Stanley Kubrick llamó a su puerta para que le explicara hasta dónde podrían ser capaces de llegar las máquinas inteligentes

Su trabajo pionero también supuso una transformación revolucionaria en computación, la de convertir las enormes calculadoras que eran los primeros ordenadores en las máquinas versátiles y personales que son ahora. Minsky recibió en vida importantes galardones, como el premio Turing en 1970 y el Fronteras del Conocimiento en 2013.

En una entrevista con EL PAÍS en verano de 2014, el matemático recordó otra de sus contribuciones, cuando inspiró el argumento de Parque Jurásico a Michael Crichton. “Apenas fueron cinco minutos de conversación en la playa de Santa Mónica. Los suficientes para hablar de fósiles, células y dinosaurios”, explicó.

Fuente: El Pais.

Todo lo grande está hecho de cosas pequeñas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Tiempo de Planck
Resultado de imagen de El Tiempo de Planck
De acuerdo a la física el menor intervalo de tiempo es el cronón o tiempo de Planck, que equivale a 10-43 segundos y se mide como el tiempo que tarda un fotón viajando a la velocidad de la luz en atravesar una distancia igual a la longitud de Planck.”
La interpretación de las unidades naturales de Stoney y Planck no era en absoluto obvia para los físicos. Aparte de ocasionarles algunos quebraderos de cabeza para entender esos números tan endiabladamente pequeños.

El tiempo de Planck o cronón (término acuñado en 1926 por Robert Lévi) es una unidad de tiempo, considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el tiempo de Planck representa el instante de tiempo más pequeño en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:

 

 

<br />
t_P =<br />
\sqrt{\frac{\hbar G}{c^5}}<br />
\; \approx \quad<br />
5,39106(32) \cdot 10^{-44}<br />
segundos

donde:

\hbar es la constante de Planck reducida (conocida también como la constante de Dirac). 
G es la constante de Gravitación Universal;
c es la velocidad de la luz en el vacío.

Los números entre paréntesis muestran la desviación estándar.

 

Resultado de imagen de Objetos muy pequeños que no los podemos verImagen relacionada

Hablamos de las cosas muy pequeñas, las que el ojo desnudo no puede ver, tales como los núcleos atómicos, las moléculas, bacterias, y demás objetos subatómicos que necesitan de microscopio electronico para poder vislumbrar lo que ahí está presente.

Resultado de imagen de Fotón viajeroImagen relacionada

Si hablamos del Tiempo de Planck, hay que decir que es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck.  Está dado por , donde G es la constante gravitacional (6, 672 59 (85) x 10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2л = 1,054589 x 10-34 Julios segundo), c, es la velocidad de la luz (299.792.458 m/s).

El valor del tiempo del Planck es del orden de 10-44 segundos.  En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del Universo. Todo, desde Einstein, es relativo.  Depende de la pregunta que se formule y de quién nos de la respuesta.

       ¿El Tiempo? Muchos Filósofos lo quisieron explicar pero… ¡No pudieron!

Si preguntamos ¿Qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio 133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Baricéntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio, etc. etc.  Cada una de estas versiones del tiempo, tiene una respuesta diferente, ya que, no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo Universal.  Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta.

                                      … Y que el mismo tiempo suele borrar

En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas, los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es solo uno; ese que comenzó cuando nació el Universo y que finalizará cuando este llegue a su final.

Lo cierto es que, para las estrellas supermasivas, cuando llegan al final de su ciclo y deja de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella.  Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella), y, la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa.  Queda comprimida hasta tal nivel que llega un momento que desaparece,  para convertirse en un Agujero Negro, una singularidad, donde dejan de existir el “tiempo” y el espacio.  A su alrededor nace un horizonte de sucesos que, si se traspasa, se es engullido por la enorme gravedad del Agujero Negro.

         En la singularidad no se distorsiona, se para

El tiempo, de ésta manera, deja de existir en estas regiones del Universo que conocemos como singularidad.  El mismo Big Bang -dicen- surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Imagen relacionadaResultado de imagen de enanas blancas

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y Agujeros Negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico.  Han sido detectados vacíos con menos de una décima de la densidad promedio del Universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala.  Estas regiones son a menudo esféricas.  El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea.  La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercumulos a escalas muy grandes.

Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble.  Su densidad es de 1017 kg/m3, los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del Universo.

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del Universo.  Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

“Magia es cualquier tecnología suficientemente avanzada”

Arthur C. Clarke

 

Pero también es magia el hecho de que, en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver, estructuras complejas matemáticas que hacen posible que la Humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.

Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: La teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Gotinga en Alemania.  Aquello fue como abrir de golpe, todas las ventanas cerradas durante 2.000 años, de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante.  Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

Su ensayo de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios.  La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas.  La revolución rienmaniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias.  En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la Literatura en toda Europa.  Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del Universo y su evolución mediante su asombrosa teoría de la relatividad general Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del Universo.  El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico.  Era huraño, solitario y sufría crisis nerviosas.  De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis.

Riemann nació en 1.826 en Hannover, Alemania, segundo de los seis hijos de un pobre pastor luterano que trabajó y se esforzó como humilde predicador  para alimentar a su numerosa familia que, mal alimentada, tendrían una delicada salud que les llevaría a una temprana muerte.  La madre de Riemann también murió antes de que sus hijos hubieran crecido.

A edad muy temprana, Riemann mostraba ya los rasgos que le hicieron famoso: increíble capacidad de cálculo que era el contrapunto a su gran timidez y temor a expresarse en público.  Terriblemente apocado era objeto de bromas de otros niños, lo que le hizo recogerse aún más en un mundo matemático intensamente privado que le salvaba del mundo hostil exterior.

La Geometría de los espacios curvos de Riemann que dejó atrás a Euclides con sus lineas y puntos

Para complacer a su padre, Riemann se propuso hacerse estudiante de teología, obtener un puesto remunerado como pastor y ayudar a su familia.  En la escuela secundaria estudió la Biblia con intensidad, pero sus pensamientos volvían siempre a las matemáticas.  Aprendía tan rápidamente que siempre estaba por delante de los conocimientos de sus instructores, que encontraron imposible mantenerse a su altura.  Finalmente, el director de la escuela dio a Riemann un pesado libro para mantenerle ocupado.  El libro era la Teoría de números de Adrien-Marie Legendre, una voluminosa obra maestra de 859 páginas, el tratado más avanzado del mundo sobre el difícil tema de la teoría de números.  Riemann devoró el libro en seis días.

Legendre: Sobre la teoría de los números

Cuando el director le preguntó: “¿Hasta dónde has leído?”, el joven Riemann respondió: “Este es un libro maravilloso. Ya me lo sé todo”.

Sin creerse realmente la afirmación de su pupilo, el director le planteó varios meses después cuestiones complejas sobre el contenido del libro, que Riemann respondió correctamente.

Con mil sacrificios, el padre de Riemann consiguió reunir los fondos necesarios para que, a los 19 años pudiera acudir a la Universidad de Gotinga, donde encontró a Carl Friedrich Gauss, el aclamado por todos “Príncipe de las Matemáticas”, uno de los mayores matemáticos de todos los tiempos.   Incluso hoy, si hacemos una selección por expertos para distinguir a los matemáticos más grandes de la Historia, aparecerá indudablemente Euclides, Arquímedes, Newton y Gauss.

                                                       Hannover, Alemania

Los estudios de Riemann no fueron un camino de rosas precisamente.  Alemania sacudida por disturbios, manifestaciones y levantamientos, fue reclutado en el cuerpo de estudiantes para proteger al rey en el palacio real de Berlín y sus estudios quedaron interrumpidos.

En aquel ambiente el problema que captó el interés de Riemann, fue el colapso que, según el pensaba, suponía la geometría euclidiana, que mantiene que el espacio es tridimensional y “plano” (en el espacio plano, la distancia más corta entre dos puntos es la línea recta; lo que descarta la posibilidad de que el espacio pueda estar curvado, como en una esfera).

Para Riemann, la geometría de Euclides era particularmente estéril cuando se la comparaba con la rica diversidad del mundo.  En ninguna parte vería Riemann las figuras geométricas planas idealizadas por Euclides.  Las montañas, las olas del mar, las nubes y los torbellinos no son círculos, triángulos o cuadrados perfectos, sino objetos curvos que se doblan y retuercen en una diversidad infinita.  Riemann, ante aquella realidad se rebeló contra la aparente precisión matemática de la geometría griega, cuyos fundamentos., descubrió el, estaban basados en definitiva sobre las arenas movedizas del sentido común y la intuición, no sobre el terreno firme de la lógica y la realidad del mundo.

Resultado de imagen de la geometría de euclides

Euclides nos habló de la obviedad de que un punto no tiene dimensión.  Una línea tiene una dimensión: longitud.  Un plano tiene dos dimensiones: longitud y anchura.  Un sólido tiene tres dimensiones: longitud, anchura y altura.   Y allí se detiene.  Nada tiene cuatro dimensiones, incluso Aristóteles afirmó que la cuarta dimensión era imposible.  En Sobre el cielo, escribió: “La línea tiene magnitud en una dirección, el plano en dos direcciones, y el sólido en tres direcciones, y más allá de éstas no hay otra magnitud porque los tres son todas.”  Además, en el año 150 d. C. el astrónomo Ptolomeo de Alejandría fue más allá de Aristóteles y ofreció, en su libro sobre la distancia, la primera “demostración” ingeniosa de que la cuarta dimensión es imposible.

En realidad, lo único que Ptolomeo demostraba era que, era imposible visualizar la cuarta dimensión con nuestros cerebros tridimensionales (de hecho, hoy sabemos que muchos objetos matemáticos no pueden ser visualizados, aunque puede demostrarse que en realidad, existen).  Ptolomeo puede pasar a la Historia como el hombre que se opuso a dos grandes ideas en la ciencia: el sistema solar heliocéntrico y la cuarta dimensión.

La ruptura decisiva con la geometría euclidiana llegó cuando Gauss pidió a su discípulo Riemann que preparara una presentación oral sobre los “fundamentos de la geometría”.  Gauss estaba muy interesado en ver si su discípulo podía desarrollar una alternativa a la geometría de Euclides.

Riemann desarrolló su teoría de dimensiones más altas.

Parte real (rojo) y parte imaginaria (azul) de la línea crítica Re(s) = 1/2 de la función zeta de Riemann. Pueden verse los primeros ceros no triviales en Im(s) = ±14,135, ±21,022 y ±25,011. La hipótesis de Riemann, por su relación con la distribución de los números primos en el conjunto de los naturales, es uno de los problemas abiertos más importantes en la matemática contemporánea.

Finalmente, cuando hizo su presentación oral en 1.854, la recepción fue entusiasta.  Visto en retrospectiva, esta fue, sin discusión, una de las conferencias públicas más importantes en la historia de las matemáticas.  Rápidamente se entendió por toda Europa la noticia de que Riemann había roto definitivamente los límites de la geometría de Euclides que había regido las matemáticas durante los milenios.

Riemann creó el tensor métrico para que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresar a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la relación entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2.  El teorema de Pitágoras, por supuesto, es la base de toda la arquitectura; toda estructura construida en este planeta está basada en él.  Claro que, es una herramienta para utilizar en un mundo tridimensional.)

El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema para dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del espacio en presencia de grandes masas.  Precisamente, el tensor de Riemann, permitió a Einstein formular su teoría de la gravedad y, posteriormente lo utilizo Kaluza y Klein para su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de supergravedad, supersimetría y, finalmente las supercuerdas.

Para asombro de Einstein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854, que le había enviado su amigo Marcel Grossman, rápidamente se dio cuenta de que allí estaba la clave para resolver su problema.  Descubrió que podía incorporar todo el cuerpo del trabajo de Riemann en la reformulación de su principio.  Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de a relatividad general.  Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E=mc2.  La reinterpretación física de la famosa conferencia de Riemann se denomina ahora relatividad general, y las ecuaciones de campo de Einstein se sitúan entre las ideas más profundas de la historia de la ciencia.

emilio silvera