sábado, 01 de agosto del 2015 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Una idea que persiste

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios


                             Charles Lyell (1797-1875)

“El libro de Lyell convirtió el viaje de Darwin en un viaje a través del tiempo. Darwin empezó a leerlo casi inmediatamente, en su litera, mientras sufría el primero de los muchos mareos que le atormentarían durante los cinco años siguientes. El Beagle, un bergantín sólido y macizo, de 28 metros de largo por 7,5 de ancho, era en general confortable, pero su casco era redondeado y se balanceaba mucho. Darwin empezó a aplicar lo que él llamaba “la maravillosa superioridad de la manera de Lyell de abordar la geología” tan pronto como la expedición tocó tierra en las islas de Cabo Verde.”

Terremoto.jpg

 

Cuando el epicentro de un terremoto se produce en la costa, las consecuencias también pueden ser devastadoras al crearse un Tsunami que arrasará la ciudad mñás cercana sin importar lo grande que esta pueda ser, y, las victimas mortales y destrozos causados están más que asegurados.,

Sin embargo, en conjunto, los terremotos representan una fracción muy pequeña de la energía liberada por los procesos tectónicos de la Tierra. Desde 1.900, en los mayores terremotos se han liberado anualmente una energía media cercana a los 450 PJ, que no supone más del 0’03 por ciento del flujo total de calor terrestre. La liberación anual de energía sísmica de todos los terremotos que se han medido alcanza unos 300 GW, que sumada a la energía de esfuerzo invertida en deformaciones irreversibles y al calor generado por fricción a lo largo de las fallas, daría un total próximo a 1 TW, lo cual representa solamente un 2’5 por ciento del flujo de calor global

 

 

 

La idea de que Agujeros negros gigantes podían activar los cuásares y las radiogalaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos  “personajes” de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.

Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).

Como pueden haber deducido por el título, me estoy refiriendo a cualquiera de los cuatro tipos diferentes de interacciones que pueden ocurrir entre los cuerpos.  Estas interacciones pueden tener lugar incluso cuando los cuerpos no están en contacto físico y juntas pueden explicar todas las fuerzas que se observan en el universo. Las cuatro fuerzas fundamentales que hacen de nuestro Universo el que podemos observar y los sucesos que en él se producen, los comportamientos de la materia… Muchas veces hemos comentado aquí que, si algunas de esas fuerzas fueran diferentes, también lo sería nuestro universo.
Leamos ahora; Un a idea que persiste

Un día de hace ya cerca de veinte años, allá por el año 1996, el pueblo americano escuchaba con asombro a su presidente, Clinton por aquel entonces, que en Marte podía existir vida. La noticia de que un antiguo meteorito caido en la Tierra y proveniente de dicho planeta, así parecía confirmarlo al contener fósiles de vida microbiana. Como podreis comprender, aquello impactó en la opinión pública de todo el mundo y, la noticia, fue objeto de todas las primeras planas y tambien, de todas las conversaciones en los corrillos en el trabajo, en el café, por las calles y en familia. ¡Vida en otro planeta!

A partir de aquel momento, cualquier señal se asimiló a la presewncia de vida allí

Aunque no lo podamos saber y no estemos al tanto de lo que pasa en el mundo científico (las noticias saltan cuando hay un descubrimiento relevante), lo cierto es que, durante los últimos años los científicos han llevado a cabo una espectacular puesta al día de sus ideas sobre el origen de la vida. Todos hemos podido leer en los libros de texto que, la vida, comenzó temprano en nuestro planeta. Según todos los indicios (los fósiles encontrados en las rocas más antiguas así lo afirman), la vida ha estado presente en la Tierra desde hace ya unos cuatro mil millones de años.

¿Quién está en posesión de asegurar o de negar nada, en relación a la presencia de vida en el pasado o en el presente en el planeta hermano que llamamos Marte? Sabemos mucho de la historia de aquel planeta y, el misterior que lo rodea de cómo pudo perder sus océanos y su atmósfera nos ctrae de cabeza. Sabemos que hace algunos millones de años puedo ser como la Tierra y, si es así (que lo es), a dón de marchó la posible clase de vida que ocupaba las distintas regiuones de aquel mundo.

Según nuestro poco conocimiento, algo nos hace sospechar de que, el único lugar al que pudo emigrar la vida, fue al subsuelo, allí existen innumerables tubos baturales por los que corría la lava igbea de un planeta con abundante actividad volcánica. En esas profundidades, las temperaturas son más altas y el agua, puede correr libremente, y, si hay agua líquida presente… ¡la vida no andará lejos!

Recreación del impacto de un meteorito y el cráter que produce. | Nicolle Rager-Fuller/NSF

   Encuentran microbios a dos kilómetros bajo tierra en un cráter en EEUU

Parece ahora que los primeros organismos terrestres vivían en el subsuelo profundo al calor de la joven Tierra, enterrados en rocas calentadas geotérmicamente en condiciones similares a las que podríamos encontrar en una olla a presión. Sólo posteriormente migraron estos organismos a la superficie. Sirprendentemente, los descendientes de esos microbios primordiales aún están allí, a kilómetros de profundidad bajo nuestros pies.

Hace algunos años nadie podía sospechar que la vida pudiera estar presente en un ambiente tan inhóspito escondidos en las rocas bajo la superficie de la Tierra y…  ¿de Marte?.

File:ALH84001.jpg

                                    Fotografía del meteorito ALH 84001

¿Cómo empezó la vida exactamente? ¿Qué procesos físicos químicos pueden transformar la materia “inerte” en un  organismo viv0? Esta compleja pregunta sigue siendo uno de los más grandes misterios de la naturaleza y quizás, el reto científico también mayor. Ejercitos de químicos y biólogos desde hace años, están abordando el complejo problema y tratan de desvelar el secreto tan celosamente guardado por la Naturaleza. Muchos de ellos, han tenido que concluir diciendo que, las leyes de la Naturaleza están predispuestas a favor de la vida y dicen que la vida se formará y surgirá en todos aquellos lugares que tengan las condiciones idóneas para ello.

File:ALH84001 structures.jpg

             Vista  microscópica de la estructura interna del ALH 84001

Así que, no sólo en la Tierra o Marte, también la vida podría estar presente en cualquier luna o planeta que, situado en la zona habitable de la estrella que los acoge, con atmósfera y elementos químicos y los demás ingredientes necesarios (Carbono, Hidrógeno,Oxígeno, Nitrógeno…) además de la presencia también de alguna clase de actividad tectónica-volcánica, una capa de ozono, la presencia de gases con efecto invernadero, agua líquida, ¿un planeta gigante?, existencia de un campo magnético…

La tectónica de placas y el vulcanismo activo de nuestro planeta habrían tenido un importante para mantener el clima . Estos procesos actúan como un gigantesco termostato natural que regula la cantidad de dióxido de carbono de la atmósfera, y manteniendo el efecto invernadero a raya.

Los gases de efecto invernadero tan satanizados hoy en día, son absolutamente imprescindibles para la vida. Los más importantes son el dióxido de carbono, vapor de agua y el metano que atrapan el calor del Sol que de otra forma escaparía al espacio. Sin estos gases en la atmósfera, el planeta entero sería un gigantesco congelador.

La capa de ozono es crítica para las plantas y animales bloqueando la mayor parte de estos nocivos rayos de alta energía procedentes del Sol.

El agua líquida es absolutamente imprescindible para la vida como la conocemos. Los océanos proporcionan el ambiente líquido perfecto para que proliferen los orgamisnos vivos. A pesar de todo, existen algunos organismos vivos exóticos capaces de sobrevivir en ambientes mucho más secos. El agua se filtra a gran profundidad en las rocas actuando además como natural en los movimientos de las placas tectónicas.

Este es uno de los aspectos más importantes para que la vida pueda desarrollarse. La zona habitable de un sistema estelar se suele definir como aquella región del sistema en la que el agua puede existir en forma líquida. Distancias menores a la estrellas provocarían que los océanos hirviesen y se secasen, distancias mayores causarían que los océanos se congelasen.

Algunos científicos opinan que la existencia de un planeta masivo como Júpiter en nuestro Sistema solar solar protege a la Tierra de impactos de asteroides y cometas. Júpiter actuaría como un escudo, absorbiendo la mayoría de impactos de asteroides y cometas, capaces de provocar una enorme destrucción en la biosfera.

Un planeta habitable necesitaría un campo magnético capaz de protegerlo de la embestida de partículas cargadas del viento estelar desviando la corriente. Sin la presencia de un campo magnético, el viento solar o estelar podría arrancar la atmósfera del planeta que escaparía al espacio. Un campo magnético también protege de la radiación cósmica…

La creencia en que la vida está inscrita en las leyes de la Naturaleza trae un débil eco de una era religiosa pasada, de un universo concebido para ser habitado por criaturas vivas. Muchos científicos menosprecian tales ideas, e insisten en que el origen de la vida  fue un accidente anómalo de la química que sólo se dio en la Tierra; y que la posterior emergencia de organismos complejos, incluyendo los seres conscientes, es así mismo un resultado puramente fortuito de una gigantesca lotería cósmica. En este debate está en juego el lugar mismo de la Humanidad en el Cosmos: ¿Quiénes somos y dónde encajamos dentro del gran esquema?

Bueno, ahora estamos vigilantes y queremos desvelar ese misterio. En cuanto a que todo esto es el resultado de una gran loteria cósmica… me parece que no. En una loteria sale un número y, sin embargo, en lo relativo a la vida, sabemos que actualmente sólo viven en nuestro planeta aproximadamente un uno por ciento de todas las especies que lo han poblado a lo largo de su existencia. Y, si es así (que lo es), ¿cómo es posible esa diversidad de criaturas en un caso fortuito? ¿No será más lógico pensar que, la vida, es consustancial de la dinámica del Universo?

Hemos conformado un modelo del universo y de él partimos para poder explicar su Historia. Hemos inventado un Big Bang que, en parte, nos explica el suceso de la presencia del universo y de cómo pudo surgir. Su nacimiento explosivo estuvo acompañado por un inmenso destello de calor intenso. Durante la primera fracción se segundo emergieron las fuerzas físicas básicas y las partículas fundamentales de la materia. Al cabo de este primer segundo, los materiales esenciales del Cosmos ya estaban formados. El espacio está repleto por todas partes de una sopa de partículas subatómicas -protones, neutrones y electrones- bañadas en radiación a una temperatura de dies mil millones de grados.

Bueno, lo que en realidad estamos llamando el principio aquí es el universo cuando la temperatura rondaba los 100,000,000,000 K. El universo ya había existido al menos por una pequeña fracción de segundo y estaba dominado por radiación con unas pequeñas trazas de materia. La radiación estaba en forma de fotones, neutrinos y antineutrinos. La materia estaba en forma de electrones, positrones y una pequeña concentración de protones y neutrones (denominados nucleones) – aproximadamente un nucleón por cada 1,000 millones de partículas -.

A estas temperaturas y densidades tan extremas (la densidad equivalía a unos 3.800 millones de veces la densidad del agua), todas estas entidades se comportan como partículas. Eso significa que están todo el tiempo colisionando entre ellas, casi como lo harían un montón de canicas que estuvieran bien empaquetadas en un container. En el universo primitivo no existían “paredes” físicas que contuvieran a esas partículas, sino que el elevado número de colisiones y la rapidez de éstas jugaban perfectamente el papel de “paredes del universo”. Sin embargo, esas “paredes” no eran estáticas, sino que a medida que se producían las colisiones el universo aumentaba de tamaño. La expansión del universo producía una disminución de la densidad de energía que tenía que distribuirse en un volumen cada vez mayor. Este proceso implicaba a su vez una disminución de la temperatura del universo, proceso que continúa ocurriendo hoy en día.

 Las colisiones entre partículas tenían tres importantes consecuencias. La primera es que el universo estaba en equilibrio térmico. Para dar al lector una idea de lo que esto significa, vamos a fijarnos en un vaso de agua a 40 grados. La temperatura de un objeto es una medida de la energía media del movimiento (energía cinética) de sus moléculas. Pero no todas las moléculas la misma energía cinética correspondiente a una temperatura de 40 grados, sino que existen moléculas con menos energía y moléculas con más energía.

PRIMER CAMINO

Los núcleos de deuterio colisionan con un protón formando 3He, y seguidamente con un neutrón formando 4He

SEGUNDO CAMINO

El deuterio colisiona primero con un neutrón formando 3H (habitualmente conocido como tritio), y posteriormente con un protón para formar de nuevo 4He

Este núcleo fue el más pesado que se formó en el universo primitivo, debido a que en el momento en que esto fue posible, la densidad de energía ya era demasiado baja para permitir que los núcleos colisonarán con suficiente energía para fundirse. En el momento en que comenzó la nucleosíntesis, la abundancia relativa de protones y neutrones era: 13% de neutrones y 87% de protones. Todos los neutrones fueron utilizados para formar los núcleos de Helio. Los protones quedarían de esa manera como núcleos de hidrógeno. Por lo tanto, tenemos que en el momento en que se completó la nucleosíntesis primigenia, el universo consistía en prácticamente un 25% de He y un 75% H (en peso) con ligeras trazas de otros elementos ligeros.

El paso final en la formación de los elementos fue la captura de los electrones libres por parte de los núcleos para formar los átomos neutros (proceso conocido curiosamente como recombinación a pesar de que es la primera vez que se ligaban electrones y núcleos).

Pero los electrones tenían aún suficiente energía para y el proceso de recombinación no ocurriría de forma masiva hasta que transcurrieran unos 700,000 años. La captura de los electrones para formar los átomos tuvo una consecuencia importantísima: sin electrones libres, la radiación electromagnética (los fotones) ya no tenían con quién interactuar y el universo se volvería transparente al paso de ésta. Esto significó que los fotones serían capaces de expandirse junto con el universo. Esos fotones que acabaron por ser libres tenían energías altísimas que se traducía en longitudes de onda muy cortas. Pero la expansión del universo causó el alargamiento de esta longitud de onda. Esos fotones de longitud de onda alargada debida a la expansión son a los que nos referimos cuando hablamos del fondo de microondas. Éste es un remanente del Big Bang. Hemos sido capaces de medir la intensidad de este fondo de radiación que se ajusta casi perfectamente a lo que predicen los cálculos teóricos. Ésta ha sido una de las evidencias más rotundas a favor de la imagen del universo que proporciona el modelo del Big Bang.

Unos doscientos millones de años más tarde de todos aquellos sucesos, el universo estaba más frío y los átomos se unieron para formar las primeras estrellas que comenzaron a brillar en el espacio interestelar del jóven universo. Así, durante diez mil millones de años, se fueron transmutando nuevos materiales en los nucleares, las estrellas masivas habían explosionado y dejado el rastro de nubes moleculares gigantescas, nacieron nuevas estrellas de II generación situadas en Sistemas solares que posibilitaron, presididos por una estrella mediana, amarilla de la clase G2V, que en un planeta situado a la distancia adecuada y con todos los ingredientes y parámetros necesarios, surgieran seres vivios a partir de la materia “inerte” evolucionada y, en alguna de aquellas especies, cuatro mil años más tarde, se llegó a adquirir la conciencia.

Personajes como Fred Hoyle, Brandon Carter, Eugene Wigner, Erwin Schrödinger, Martin Rees, Bernard Carr, Freeman Dyson y Tommy Gold, Lewis Wolpert y Sydney Brenner, Jhon Coway y Manfred Eigen y Grahan Cairns-Smith. Todos ellos grtandes especialistas en sus campos que abarcaban desde la biología, las matemáticas, la genética hasta la astronomía y la astrofísica…Todos ellos y más tarde otros,  como Casrl Sagan, creyeron ciegamente en la existencia de la vida por todo el universo. Para ellos (y para mí también), era una regla inamovible y consustancial con la dinámica y el ritmo que marca el Universo para que la Vida, esté en él presente.

http://lamemoriacelular.com/blog/wp-content/uploads/2010/04/celula.png

La historia científica de la vida es una narración apasionante que, correctamente explicada, nos ayuda a comprender no sólo nuestro pasado biológico sino también la Tierra y toda la vida que nos rodea en la actualidad. Esa diversidad biológica es el producto de casi cuatro mil millones de años de evolución. Somos parte de ese legado; al intentar comprender la historia evolutiva de la vida, comenzamos a entender nuestro propio lugar en el mundo y nuestra responsabilidad como administradores de un planeta que nos dio cobijo y al que nos tuvimos que adaptar lo mismo que él, el planeta, se adaptó a la presencia de la vida que, de alguna manera cambió su entorno climático, precisamente debido, a esa presencia viviente que generó las precisas condiciones para poder estar aquí.

La historia de la vida tiende a relatarse (no pocas veces) al estilo de la genealogía de Abraham: las bacterias engendraron a los protozoos, los protozoos engendraron a los invertebrados, los invertebrados engendraron a los peces, y así sucesivamente. Tales listas de conocimientos adquiridos pueden memorizarse, pero no dejan mucho espacio para pensar. La cuestión no es tan sencilla y los descubrimientos de la paleontología, la más tradicional de las empresas científicas, se entrelazan con nuevas ideas nacidas de la biología molecular y la geoquímica.

Los huesos de los Dinosaurios son grandes y espectaculares y hacen que los que los contemplan (niños y mayores), abran los ojos como platos, asombrados de tal maravilla. Pero, aparte del tamaño de sus habitantes, el mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutiles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hacia el mundo que conocemos hoy.

Pero, ¿cómo podemos llegar a comprender acontecimientos que se produjeron hace mil millones de años o más? Una cosa es aprender que en las llanuras mareales de hace mil quinientos millones de años vivían bacterias fotosintéticas, y otra muy distinta cómo se infiere que unos fósiles microscópicos pertenecen a bacterias fotosintéticas, cómo se averigua que las rocas que los rodean se formaron en antiguas llanuras mareales y cómo se estima su edad en mil quinientos millones de años.

       Bueno, en realidad, todo comenzó con aquella primera célula que fue capaz de replicarse a partir de un protoplasma vivo

El leitmotiv epistemológico de cómo sabemos lo que creemos que sabemos, en realidad, aparece de manera espontánea a base de mucho estudio de campo, investigación exhaustiva en los más dispares rincones de la Tierra y, un profundo estudio concatenado en el tiempo de todo aquello que, en cada exploración pueda ir apareciendo. En tanto que empresa humana, estamos inmersos también en un relato de exploración que se extiende desde el espacio interior de las moléculas al espacio literalmente exterior de Marte y otros planetas.

Uno de los temas más claros de la historia evolutiva es el carácter acumulativo de la diversidad biológica. Las especies individuales (al menos las de los organismos nucleados) aparecen y desaparecen en una sucesión geológica de extinciones que ponen de manifiesto la fragilidad de las poblaciones en un mundo de competencia y cambio ambiental –de formas de vida con una morfología y fisiología características- es una historia de acumulación. La visión de la evolución a gran escala es indiscutiblemente la de una acumulación en el tiempo gobernada por las reglas de funcionamiento de los ecosistemas. La serie de sustituciones que sugieren los enfoques al estilo de la genealogía de Abraham no consigue captar este atributo básico de la historia biológica.

Así, creemos saber que la vida nació por mediación de procesos físicos en la Tierra primigenia. Estos mismos procesos –tectónicos, oceanográficos y atmosféricos- sustentaron la vida era tras era al tiempo que modificaban continuamente la superficie de la Tierra. Por fin la vida se expandió y se diversificó hasta convertirse en una fuerza planetaria por derecho propio, uniéndose a los procesos tectónicos y físico-químicos en la transformación de la atmósfera y los océanos.

Dondequiera que choquen las relativamente rápidas placas tectónicas oceánicas con las enormes placas continentales, se forman cadenas montañosas en continua elevación. Los ejemplos más espectaculares se subducción y formación montañosa son, respectivamente, la placa del Pacífico sumergiéndose en las profundas fosas del Asia oriental, y el Himalaya, que se eleva por el choque de las placas índica y euroasiática. Todo forma parte del proceso que llevó a la vida.

Para mí y para cualquiera que emplee la lógica de la ciencia que se guía por los hechos probados, el surgimiento de la vida como una característica definitoria –quizá la característica definitoria- de nuestro planeta es algo extraordinario.

                           ¿Quién podría negar que no somos parte del Universo?

¿Cuántas veces ha ocurrido lo mismo en la vastedad del Universo? Es lo primero que se me viene a la mente cuando (en la noche silenciosa, oscura y tranquila lejos del bullicioso ambiente de las ciudades y de su molesta contaminación lumínica), miro hacia las estrellas brillantes del cielo que, muy lejanas en regiones remotas, también como nuestro Sol, están rodeadas de mundos que, como el nuestro, habrán tenido la misma posibilidad que la Tierra para que la vida, pudiera surgir.

Hacer aquí un recorrido pormenorizado del largo camino que la vida ha tenido que recorrer, y dibujar un esquema a modo de un árbol de la vida, es imposible. El presente trabajo trata simplemente, de dejar una idea básica de cómo la vida llegó aquí, al planeta Tierra, y, de cómo pudo evolucionar con el paso del tiempo y dentro de su rica diversidad.

[clip_image021[5].jpg]

                                Estos escenarios son precursores de vida

Los expertos si han construido un árbol de la vida a partir de comparaciones ente secuencias de nucleótidos de genes de diversos organismos, las plantas y los animales quedan reducidos, en ese árbol, a brotes en la punta de una sola de las ramas. La mayor diversidad de la vida y, por extensión, la mayor parte de su historia, es microbiana. Así lo atestiguan todos y cada uno de los hallazgos encontramos en las rocas precámbricas que contienen fósiles de aquellas primeras formas de vida.

                        Hasta que la evolución de la materia llegó… ¡Hasta nosotros!

Y, una cosa está muy clara y no se presta a ninguna clase de dudas: Las Bacterias y las Arqueas, son los arquitectos de los ecosistemas terrestres.

Biólogos expertos indiscutibles de probada valía y reconocido prestigio, han llegado a sugerir que los genes de los organismos actuales contienen el relato completo de la historia evolutiva. Pero, de ser así se trataría, como en las historias de Shakespeare, de relatos limitados a los vencedores de la vida. Sólo la paleontología nos puede hablar de los trilobites, los dinosaurios y otras maravillas biológicas que ya no adornan la faz de la Tierra.

Cualquiera que sea la ctividad química notable que haya podido tener lugar en la Tierra primordial o en algún otro planeta situado en cualquiera de los miles de millones de galaxcias que por el Universo pululan, la vida ha podido ser desencadenada no por una vorágine molecular como tal, sino -¡de algún modo!- por la organización de la información que ha dado la misma Naturaleza a la materia para que sepa, seguir su destino desde lo inerte hasta los pensamientos.

De ello, os hablaré en próximos trabajos.

emilio silvera

 

El futuro está con nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ray Kurzweil

     Ray Kurzweil

Director de ingeniería de Google, experto en inteligencia artificial

“EN 20 AÑOS AMPLIAREMOS NUESTRA EXPECTATIVA DE VIDA INDEFINIDAMENTE”

Alcanzar el puesto de director de Ingeniería en Google, tener un puñado de importantes patentes tecnológicas registradas a tu nombre, ser doctor honoris causa por 15 universidades, o que Forbes te defina como “la máquina de pensar suprema”, debería ser suficiente para sentirse satisfecho. A no ser que se quiera más. Mucho más. Que el objetivo de tu vida sea alcanzar la inmortalidad. Literalmente, no en el plano metafórico. Y esa es precisamente la aspiración de Ray Kurzweil quien, a sus 67 años, continúa pleno de actividad y con la misma energía que cuando creo su primer programa de ordenador en 1963.

Escucharle afirmar con vehemencia que la suya es la última generación que deberá cuidarse a la vieja usanza porque en diez años seremos capaces de revertir los efectos de la edad y mantenernos jóvenes eternamente, resultaría poco menos que increíble si sus predicciones anteriores no le otorgaran, cuanto menos, el beneficio de la duda. Además de un ingeniero brillante, un extraordinario inventor (fue el creador del primer OCR, del primer escáner para ordenador y del primer sintetizador de texto a voz) y un músico pionero (su trabajo con Stevie Wonder se tradujo en un sintetizador capaz de reproducir los sonidos de cualquier instrumento de forma fidedigna), Kurzweil es un reconocido futurista. O, lo que es lo mismo, un teórico de los caminos que seguirá en los próximos años el ser humano en su relación con la tecnología. Sus ideas han sido plasmadas en tres libros La era de las máquinas inteligentes, La era de las máquinas espirituales y La singularidad está cerca, en los que aventura cómo será el desarrollo tecnológico en un futuro (incluso tan lejano como el 2099) y qué influencia tendrá en nuestras vidas. Alguna de las predicciones realizadas en su primera obra, publicada en 1990, como el crecimiento exponencial de Internet, resultaron ciertas, por lo que cuando Kurzweil habla lo mejor es escucharle atentamente.

No está lejos entonces el día en que seamos capaces de hacer una copia de seguridad de nuestro cerebro y subirla a la nube, o que podamos crear un avatar prácticamente idéntico de alguien ya fallecido. Así de radical es Kurzweil en sus ideas: no sólo quiere conseguir la inmortalidad, sino que se atreve a resucitar a los muertos.

Fuente: El País

Fuerzas invisibles que inciden en nuestras vidas

Autor por Emilio Silvera    ~    Archivo Clasificado en Naturaleza misteriosa    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Archivo de la categoría “Ciencias de la Tierra”

Las corrientes de convección son movimientos que describen los fluidos. Cuando éstos se calientan, se dilatan y ascienden. Al llegar esos materiales a la corteza terrestre se enfrían debido a que esta capa tiene una baja temperatura. Al enfriarse los materiales, se contraen y descienden hasta alcanzar el núcleo de la Tierra, donde el proceso volverá a comenzar.

 

 

 

Toda esta energía térmica actúa sobre los materiales provocando el movimiento de estos, generando elevadas presiones que llevan a transformaciones en la estructura de los materiales. En ocasiones, estas presiones se liberan bruscamente. Todos hemos podido contemplar las consecuencias devastadoras de tales acontecimientos.

 

 

 

“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin; pues todas las cosas son de la misma clase y la misma forma”.

Marco Aurelio

Claro que él, quería significar que todo, desde el comienzo del mundo, ha sido igual, sigue unos patrones que se repiten una y otra vez a lo largo del transcurso de los tiempos: el día y la noche, el hombre y la mujer, el frío y el calor, el río muerto por la sequía o aquel que, cantarino y rumoroso ve correr sus aguas cristalinas hasta que desembocan en el océano. La Bondad y la maldad…Así ha sido siempre y, así continuará siendo por toda la eternidad.

 

d-brana

 

Sólo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”. Más que una imagen de tipo “espacio cociente” que evoca la analogía de Kaluza-Klein original:

El gráfico representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Klein, donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.

Es ampliamente sabido que el planeta Tierra actúa como un gran imán cuyas líneas de campo geomagnético surgen de un polo (el polo sur magnético) y convergen en el otro polo (polo norte magnético). El eje longitudinal de este imán tiene una desviación de aproximadamente 11^o con respecto al eje de rotación. Por ello, los polos del campo magnético generado no coinciden exactamente con los polos geográficos.

Este campo geomagnético es producido por la combinación de varios campos generados por diversas fuentes, pero en un 90% es generado por la exterior del núcleo de la Tierra (llamado Campo Principal o “Main Field”).

Por otra , la interacción de la ionosfera con el viento solar y las corrientes que fluyen por la corteza terrestre componen la mayor del 10% restante. Sin embargo, durante las tormentas solares (eventos de actividad solar exacerbada) pueden introducirse importantes variaciones en el campo magnético terrestre.

grandes-tormentas-solares-fuente-quantum-com-do

        Las grandes tormentas solares inciden sobre nosotros y nuestras obras

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

[stephan_quinteto_2009_hubble.jpg]

Muchas veces he comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

Lo podríamos representar de cualquier manera, ya que, su cara nos es desconocida. El Gravitón es la única partícula mediadora de una fuerza (en este caso de la Gravedad), que no ha sido encontrada en ningún experimento. Sin embargo, todos los físicos creen que existe… ¡Dónde se esconde el puñetero!

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10-15 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

    Una de las fuentes productoras de rayos cósmicos es el Sol

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

emilio silvera

Recomendación

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

« Colaboraciones »

Si os gusta la Fisica, os recomiendo la lectura de esta colaboración del Contertulio y amigo Fandila. Es de lectura amena y sencilla y nos transporta a lugares mágicos, donde podemos contemplar maravillas de la Naturaleza relacionadas con esos pequeños objetos que llamamos partículas elementales (algunas más elementales que otras), él nos explica con gran maestría lo que en ese infinitesimal “universo” ocurre y, desde luego, te aseguro que, cuando finalices la lectura, serás un poquito más sabio... ¡A mí me ha pasado! y, podrás entrar en ese mágico universo de la física cuántica.

Pincha encima de “La cuántica y sus razones”, arriba, encima del nombre del autor, y, te verás transportado a ese lugar.


 

 

Desde el pasado pero, ¡siempre hacia el futuro!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Ahora todos hablamos del LHC. Sin embargo, la historia de los aceleradores no comenzó con éste moderno y complejo conglomerado de sofisticadas estructuras que hacen posible que visitemos lugares muy lejanos en el corazón de la materia. Tendríamos que recordar al acelerador lineal también llamado LINAC (linear accelerator) es un tipo de acelerador que le proporciona a la partícula subatómica cargada pequeños incrementos de energía cuando pasa a través de una secuencia de campos eléctricos alternos.

Mientras que el generador de Van de Graaff proporciona energía a la partícula en una sola etapa, el acelerador lineal y el ciclotrón proporcionan energía a la partícula en pequeñas cantidades que se van sumando. El acelerador lineal, fue propuesto en 1924 por el físico sueco Gustaf Ising. El ingeniero noruego Rolf Wideröe construyó la primera máquina de esta clase, que aceleraba iones de potasio hasta una energía de 50.000 eV.

 

 

 

La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, SgrA) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros  supermasivos.

 

Veámos que nos cuenta: “Desde el pasado pero, ¡siempre hacia el futuro!”

[IMG]

                      Imagem cedida por Diamond Light Source

Acelerador de partículas construido en las instalaciones del Diamond Ligth Source en Oxfordshire (Inglaterra). Llamado la Fuente luminosa de diamante, el Diamond synchrotron comenzó a funcionar en enero de 2007. La luz que puede generar este artefacto es 100 mil millones de veces más brillante que un rayo X estándar médico.

Un acelerador de partículas (como todos sabemos) es, a grandes rasgos, una máquina que mediante campos electromagnéticos acelera partículas hasta que alcanzan velocidades inimaginables. Luego, por ejemplo, hacen chocar estas partículas y así se consigue saber de qué está formada la materia en sus partes más diminutas (mucho más diminutas que un átomo). Eso es lo que hace el LHC.

Sin embargo, en el caso de este acelerador, los científicos esperaban usar la luz del Diamond synchrotron para “leer” los textos antiguos que han sufrido el daño significativo. Porque los potentes rayos X permitirán hacerlo sin ni siquiera abrir el libro. El synchrotron emite un rayo X tan poderoso que, al incidir en una voluta, permite producir una imagen de 3-D del texto.

La técnica ya había sido aplicada satisfactoriamente en textos escritos con la tinta de hierro, que los escribanos comenzaron a usar en el siglo XII. Algunas de las tintas hechas con extractos vegetales y sales de hierro utilizadas en el Siglo XII deterioran el tipo de pergamino utilizado, imposibilitando la lectura de documentos valiosos. Simplemente he querido incluir esta introducción para que os hagais una idea de hasta donde puede llegar nuestro ingenio.

Inventos-del-siglo-XXI-4.jpg

                                                                       (ilustración de un nano robot)

Si hablamos de nuevos inventos en los campos más diversos, nos podríamos sorprender de lo que se ha conseguido en los últimos años que, desde  una “mano robótica” capaz de realizar toda clase de movimientos, “El sexto sentido”, una interfaz gestual portable que permite la interacción entre los gestos y los movimientos naturales del cuerpo humano con una computadora,  o, un Implantes de retina, que devuelve la visión a pacientes con degeneración macular y ceguera mediante implantes microelectrónicos. Entre los últimos inventos dedestaca una variedad de plástico hecha con orina de cerdo y lentes de contacto biónicos. Se inventa un proceso capaz de cultivar parte de un corazón humano a partir de células madre, una máquina que puede imprimir una novela completa de 300 páginas en tan solo 3 minutos y por un costo ínfimo, una batería que funciona con cualquier solución azucarada y enzimas de digestión de glucosa capaz de extraer electrones que crean electricidad…

Inventos-del-siglo-XXI-0.jpg

Las nuevas tecnologías y los inventos que se están produciendo en el diglo XXI, harían abrir la boca por el asombro a los filósofos naturalistas del pasado que trataban de profundizar en el conocimiento de la Naturaleza. Ellos fueron los que pusieron las primeras piedras del Edificio que hoy, llamamos Ciencia.

Corazones e Hígados artificiales, el guante de braille para ciegos, o, yendo más allá…

Inventos-del-siglo-XXI-3.jpg

Un “Diente telefónico”. Se trata de un minúsculo implante que se coloca en el diente molar y que mediante un complejo sistema de señales y vibraciones permite recibir llamadas telefónicas. Tejido artificial nanotecnológico, Parche hormonal anticonceptivo, o, esa invención que hace posible que con una pequeña gota nos permite descubrir si en una bebida se ha vertido alguna de las llamadas “drogas del depredador” como las GHB o la Ketamina. Estas drogas suelen utilizarse por violadores y secuestradores pues facilitan dicho crimen al desinhibir a la víctima. El “Motor a nanoescala”, lo suficientemente pequeño como para viajar en la espalda de un virus. Un dispositivo que administra medicamentos a través de ondas sonoras que sustituyen las inyecciones, siendo igual de efectivas. Plástico inteligente capaz de modificar su estructura ante la exposición de determinadas longitudes de onda. Un dispositivo móvil creado por Aqua Sciences que permite beber agua del aire. ¿Os imaginais lo que supondrá eso en la travesía de un desierto? INSCENTINEL inventa un sistema de entrenamiento para que abejas sean capaces de detectar bombas y explosivos.

Como se descubrió la penicilina

  Las cosas no llegaron por arte de magia… ¡muchas ideas hicieron falta!

Ahora miramos a nuestro alrededor y todo lo que vemos que ocurre nos parece lo normal, que las cosas son así. Sin embargo, habría que pensar -por ejemplo, en el ámbito de la física de partículas- que, el diluvio de estructuras subnucleares que desencadenó “el acelerador”  de partículas, fue tan sorprende como los objetos celestes que descubrió el telescopio de Galileo. Lo mismo que pasó con la revolución galileana, con la venida de los aceleradores de partículas, la Humanidad adquirió unos conocimientos nuevos e insospechados acerca de cómo era el mundo, la naturaleza de la materia.

Que en este caso de los aceleradores se refería al “espacio interior” en lugar de al “espacio exterior” no los hacía menos profundos ni menos importantes. El descubrimiento de los microbios y del universo biológico invisible por Pasteur fue un descubrimiento similar y, ya puestos, haremos notar que pocos se acuerdan ya de Demócrito, aquel filósofo sontiente que, tomó prestado de los antiguos hindúes, la idea del á-tomo, la expresión “más pequeña de la materia” que era “indivisible”.

Ahora sabemos que Demócrito estaba equivocado y que el átomo, sí se puede dividir. Sin embargo, él señaló un camino y, junto a Empédocles, el que hablaba de “elementos” como agua, aire, fuego y tierra, para significar que eran los componentes, en la debida proporción de todo lo que existía…, junto a otros muchos, nos han traído hasta aquí. Así que, los inventos que antes se mencionaban, no han llegado porque sí, ha sido un largo camino, mucha curiosidad y mucho trabajo y, no lo olvidemos: ¡Observar, Imaginar y Experimentar!

Nos dimos cuenta y estaba claro que la búsqueda de la menor de las partículas requería que se expandiese la capacidad del ojo humano: primero lupas, después microscopios y, finalmente… ¡Aceleradores! que, utilizando energías inimaginables ( 14 TeV), nos llevaría hasta las entrañas de la materia que tratamos de conocer.

Todos estos experimentos en los aceleradores han posibilitado muchos de los avances que hoy día conocemos en los distintos campos del saber humano. Generalmente, cuando se habla de aceleradores de partículas, todos piensan en el Bosón de Higgs y cosas por el estilo. Sin embargo, las realidades prácticas de dichos ingenios van mucho más allá.

CERN

“La “gran ciencia” (big science) genera tecnología, tecnología punta, genera industria, mucha industria, genera riqueza. Los grandes aceleradores de partículas, como el LHC del CERN, son ejemplos perfectos de ello. La tecnología de aceleradores de partículas ha permitido desarrollar dispositivos de implantación iónica que se utilizan para la fabricación de mejores semiconductores, para la fabricación prótesis de rodilla más duraderas, para la fabricación de neumáticos menos contaminantes, para el desarrollo de nuevas terapias contra el cáncer. Esto último gracias a que lo último de lo último en superimanes superconductores está en los grandes aceleradores. Esta tecnología ha permitido desarrollar y permitirá mejorar los potentes imanes necesarios en el diagnóstico clínico (como en resonancia magnética nuclear) y para terapias contra el cáncer basadas en haces de protones. Nos lo cuenta Elizabeth Clements, en “Particle physics benefits: Adding it up,” Symmetry, dec. 2008″ (Francis (th)E mule Science’s News).

Beneficios de la investigación básica en Física de Partículas: La tecnología desarrollada en los aceleradores de partículas tiene beneficios indirectos para la Medicina, la Informática, la industria o el medio ambiente. Los imanes superconductores que se usan para acelerar las partículas han sido fundamentales para desarrollar técnicas de diagnóstico por imagen como la resonancia magnética. Los detectores usados para identificar las partículas son la base de los PET, la tomografía por emisión de positrones (antipartícula del electrón). Y muchos hospitales utilizan haces de partículas como terapia contra el cáncer.

 

Describe la propiedad de un núcleo atómico para girar sobre su eje como un trompo, transformándolo en un pequeño imán. Los núcleos atómicos de hidrógeno, …  La imagenología es la rama de la medicina que trata del diagnóstico morfológico empleando diferentes modalidades de visualización del cuerpo humano basado en imágenes obtenidas con radiaciones ionizantes u otras fuentes de energía,  así como procedimientos diagnósticos y terapéuticos. Los equipos de imagenología requieren instalaciones especiales, como obra civil, instalación eléctrica, jaulas de Faraday, clima controlado, entre otras para llegar en forma rápida y segura a la detección de muchas enfermedades.

 

Con velocidades 10.000 veces mayor que una conexión típica, “The Grid” podrá enviar un catálogo completo de información desde Gran Bretaña a Japón en menos de 2 segundos. Esta red, creada en el centro de física de partículas CERN, puede proveer el poder necesario para transmitir imágenes holográficas; permitir juegos en línea con cientos de miles de personas, y ofrecer una telefonía de alta definición en video al precio de una llamada local.

Así, la World Wide Web (WWW), el ‘lenguaje’ en el que se basa Internet, fue creado en el CERN para compartir información entre científicos ubicados alrededor del mundo, y las grandes cantidades de datos que se producen motivan el desarrollo de una red de computación global distribuida llamada GRID. Los haces de partículas producidos en aceleradores tipo sincrotrón o las fuentes de espalación de neutrones, instrumentos creados para comprobar la naturaleza de la materia, tienen aplicaciones industriales en la determinación de las propiedades de nuevos materiales, así como para caracterizar estructuras biológicas o nuevos fármacos. Otras aplicaciones de la Física de Partículas son la fabricación de paneles solares, esterilización de recipientes para alimentos o reutilización de residuos nucleares, entre otros muchos campos.

Tambien en el campo de la Astronomía, el LHC, nos puede ayudar a comprender cosas que ignoramos. Nos henmos preguntado sobre la existencia de estrellas de Quarks-Gluones, y, sobre el tema, algo nos ha dicho ya el Acelerador Europeo de Partículas que trata de llegar hasta “la materia oscura” y algunos otros enigmas que nos traen de cabeza.

No es extraño encontrarnos una mañana al echar una mirada a la prensa del día, con noticias como éstas:

Colisión de iones pesados registrada por el experimento ALICE. (Imagen: CERN.)

El acelerador europeo ha obtenido plasma de quarks-gluones, el primer estado de la materia tras el Big Bang.

“No todo son bosones de Higgs en las instalaciones del CERN. Aún hay muchas preguntas sobre el universo y sus partículas que se pueden responder a base de colisiones de alta energía. Y en eso, elLHC es el mejor. Un grupo de investigadores del consorcio europeo ha realizado nuevas mediciones de la que creen que es el primer tipo de materia que hubo durante los instantes iniciales del universo. El plasma de quarks-gluones.

Los quarks y los gluones son, respectivamente, los ladrillos y el cemento de la materia ordinaria. Durante los primeros momentos tras el Big Bang, sin embargo, no estaban unidos constituyendo partículas —como protones o neutrones— sino que se movían libremente en estado de plasma. A base de colisionar iones de plomo —que es un átomo muy pesado— a velocidades cercanas a las de la luz, el LHC pudo recrear durante pequeños lapsos de tiempo las que se creen fueron las condiciones de los primeros momentos del universo.

El plasma de quarks-gluones es extremo y efímero. Por eso los investigadores han tenido que analizar los resultados de más de mil millones de colisiones para obtener resultados significativos.”

Evento de colisión de 7 TeV visto por el detector LHCb. El experimento del LHCb en el LHC estará bien ubicado para explorar el misterio de la antimateria. Crédito: LHC, CERN. Ya sabéis que, durante muchos años, la ausencia de antimateria en el Universo ha atormentado a los físicos de partículas y a los cosmólogos: mientras que el Big Bang debería haber creado cantidades iguales de materia y antimateria, no observamos ninguna antimateria primordial hoy en día. ¿Dónde ha ido? Los experimentos del LHC tienen el potencial de dar a conocer los procesos naturales que podrían ser la clave para resolver esta paradoja.

Cada vez que la materia es creada a partir de energía pura, se genera la misma cantidad de partículas y antipartículas. Por el contrario, cuando la materia y la antimateria se encuentran, se aniquilan mutuamente y producen luz. La antimateria se produce habitualmente cuando los rayos cósmicos chocan contra la atmósfera de la Tierra, y la aniquilación de materia y antimateria se observa durante los experimentos de física en los aceleradores de partículas.

Equipos de físicos en todo el mundo siguen analizando datos. Aquellas primeras colisiones de protones a la alta energía prevista de 7 Teraelectronvoltios (TeV), una potencia jamás alcanzada en ningún acelerador antes, nos puede traer noticias largamente esperadas y desvelar misterios, contestar a preguntas planteadas y, en definitiva, decirnos cómo es la Naturaleza allí, donde el ojo humano no puede llegar pero, si la inteligencia.

Lo cierto es que, todos tenemos que convenir en el hecho cierto de que, el LHC es el mayor experimento físico de la historia de la Ciencia y que, de seguro, nos dará la oportunidad de comprender muchas cuestiones que antes se nos aparecían oscuras e indistinguibles entre la bruma de esa lejanía infinitesimal de la cuántica. Ahora, tenemos una herramienta capaz de llevarnos hasta aquellos primeros momentos en los que se construyó la historia del universo y, si podemos, de esta manera “estar allí”, veremos, con nuestros propios ojos lo que pasó y por qué pasó de esa manera.

Toda esta larga exposición de temas, de alguna manerta conectados, viene al caso para dejar claro que, aquellos detractores del LHC, no llevaban la razón y, sus protestas no tenían un contenido científico. El Acelerador de Partículas que llamamos abreviadamente LHC, nos ha dado y nos seguirá dando, muchos beneficios para toda la Humanidad.

emilio silvera