martes, 15 de enero del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La sustancia cósmica? ¡La semilla de la materia!

Autor por Emilio Silvera    ~    Archivo Clasificado en La ignorancia nos acompaña siempre    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Large_cosmos20130404-2-vgdwr3

 

Debajo de ésta imagen se puede leer:

“Hallan indicios de materia oscura unida al Cosmos. La evidencia muestra nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares. Un detector de rayos cósmicos de dos mil millones de dólares en la Estación Espacial Internacional halló la huella de algo que pudiera ser la materia oscura, la misteriosa sustancia que se cree mantiene unido al cosmos.”

“Pero los primeros resultados del Espectrómetro Magnético Alfa (AMS, por sus siglas en inglés) son casi tan enigmáticos como la materia oscura en sí, la cual nunca ha sido observada directamente. Muestran evidencia de nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares, anunciaron un miércoles científicos en el laboratorio europeo de física de partículas cerca de Ginebra.”

 

Como no me canso de repetir, cualquiera de estas noticias nos vienen a decir que, de la “materia oscura”, nada sabemos. Sería conveniente, para que las cuentas cuadren, que exista esa dichosa clase de materia o lo que pueda ser, toda vez que, sin ella, no resulta fácil llegar a una conclusión lógica de cómo se pudieron formar las galaxias, o, de por qué se mueven las estrellas de la manera que lo hacen.

http://misteriosaldescubierto.files.wordpress.com/2012/07/detectan-el-primer-filamento-de-materia-oscura-entre-dos-clusteres-de-galaxias.jpg

hace treinta años, los astrofísicos se enfrentan a este dilema: o bien las galaxias tienen mucha materia que no vemos, pero que causa una fuerte atracción gravitatoria sobre las estrellas externas (que por ello orbitarían tan rápido) o bien ni la ley de la gravedad de Newton ni la de Einstein serían válidas esas regiones externas de las galaxias. Las dos opciones son revolucionarias para la física: la primera implica la existencia de materia oscura en el universo (materia que no vemos pero que sí afecta al movimiento de las estrellas y galaxias), y la segunda implica que una ley básica (la de Newton/Einstein de la gravitación) es incorrecta.

Foto: M. Zemp

En el momento actual, no sabemos cual de esas dos opciones es la buena (podrían incluso ser buenas las dos, es decir, que existiera materia oscura y además que la teoría de Newton/Einstein estuviera mal. No creo que sea ese el problema, debe haber una tercera opción desconocida que debemos encontrar). La gran mayoría de los astrofísicos prefieren explicarlo con la materia oscura(un camino cómodo y fácil) antes que dudar de las leyes de la gravitación de Newton/Einstein. Esto no es sólo cuestión de gustos, es que las leyes de la gravitación funcionan con una increíble exactitud en todos los demás casos donde las hemos puesto a prueba (en los laboratorios, en las naves espaciales y los interplanetarios, en la dinámica del Sistema Solar, etc.).

El problema de la materia oscura (si es que realmente existe y no es que las leyes de Newton/Einsteinsean incompletas) es uno de los más importantes con los que se enfrenta la astrofísica hoy en día.

Cuando pienso en la existencia ineludible de esa “materia cósmica” primigenia, la primera y más sencilla clase de materia que se formó en las primeras fracciones del primer segundo del big bang, en la mente se me aparece una imagen llena de belleza creadora a partir de la cual, todo lo que ahora podemos contemplar es posible. La belleza de la idea es que toma dos problemas -la ventana del tiempo inadecuada para la fromación de las galaxias y la existencia de la “materia oscura”- y los une para conformar una solución al dilema central de la estructura del universo.

La “materia oscura”, por hipótesis, tiene una ventana de tiempo mucho más larga que la materia ordinaria, porque se desapareja más pronto en el Big Bang. Tiene mucho tiempo para acumularse antes de que la materia ordinaria sea libre para hacerlo y formar los átomos. La “materia oscura o sustancia cósmica primera, es de porte más sencillo y no tiene ni requiere la complejidad de la materia bariónica para formarse, es totalmente translúcida y se sitúa por todas partes, es decir, permea todo el universo invadiendo todas sus regiones a medida que este se expande más y más. Y fue esa “invisible” sustancia cósmica, la que realmente hizo posible que las galaxias se pudieran formar a pesar de la expansión de Hubble.

El hecho de que la materia ordinaria caiga entonces en el agujero gravitatorio creado de este modo sirve para explicar por qué encontramos galaxias rodeadas por un halo de algo que hemos dado en llamar “materia oscura”. Tal hipótesis mata dos pájaros de un sólo tiro.

Pero debemos recordar que en este punto sólo tenemos una idea que puede funcionar, no una teoría bien construida. Para pasar de la idea a la teoría, tenemos que responder dos preguntas importantes y difíciles:

1. ¿Cómo explicamos la estructura de la materia oscura?

2. ¿Que es la materia oscura?

3. ¿Qué partículas son las que conforman ésta materia fantasmal?

Se habla de materia oscura caliente y fría. También, algunas veces me veo sorprendido por las ocurrencias que tienen algunos científicos de hoy que, como los antiguos, imaginan respuestas para acomodar las cuestiones que realmente desconocen y, buscan así, una salida airosa sin que se note la inmensa ignorancia que llevan consigo.

http://quantitos.files.wordpress.com/2010/12/materia-oscura-3-big.jpg

Podríamos comenzar a examinar estas cuestiones pensando en el modo en que la “materia oscura” pudo separarse de la nube caliente en expansión, de materiales que constituía el universo en sus comienzos. Por analogía de la discusión del desaparejamiento de la materia ordinaria después de la formación de los átomos, llamaremos también desaparejamiento a la separación de la “materia oscura” de aquella fuente “infinita” de energía primera. Una transformarción como la que condujo a la formación de los átomos es necesaria para que ocurra el desaparejamiento. Todo lo que tiene que suceder es que la fuerza de la interacción de las partículas que forman la “materia oscura” caigan por debajo del punto en que el resto del universo puede ejercer una presión razonable sobre él. Después de esto, la “materia oscura” continuará a su aire, indiferente a todo lo que la rodee.

Resulta que desde el punto de vista de la creación de la estructura observada del universo, la característica más importante del proceso de desaparejamiento para la “materia oscura” es la velocidad de las partículas cuando son libres. Si el desaparejamiento tiene lugar muy pronto en el Big Bang, la “materia oscura” puede salir con sus partículas moviéndose muy rápidamente, casi a la velocidad de la luz. Si es así, decimos que la “materia oscura” está caliente. Si el desaparejamiento tiene lugar cuando las partículas están moviéndose poco a poco -velocidad significativamente menor que la de la luz- decimos que la materia está fría.

Foto

De los tipos de “materia oscura” que los cosmólogos toman en consideración, los neutrinos serán el mejor ejemplo de “materia oscura” caliente. Los neutrinos han llamado la atención de los científicos en relación a la “materia oscura” durante mucho tiempo. Para tener una idea aproximada del número de neutrinosdel universo, podríamos decir que existe actualmente un neutrino por cada reacción nuclear que tuvo lugar desde siempre. Los cálculos indican que hubo aproximadamente mil millones de neutrinosproducidos durante el Big Bang por cada protónneutrón o electrón. Cada volumen del espacio del tamaño de nuestro cuerpo contiene unos diez millones de estos neutrinos-reliquias y en ellos no se encuentran los que se produjeron más tarde en las estrellas. Está claro que toda partícula tan corriente como ésta podría tener en principio un efecto muy grande sobre la estructura del Cosmos, si tuviera una masa.

Resultado de imagen de Materia oscura caliente

Pero resulta que la “materia oscura” caliente, actuando sola, casi con toda seguridad no podría explicar lo que observamos en el universo y que el escenario de “materia oscura-fria” debe modificarse por completo si queremos mantenerla como candidata a esa teoría última de la materia que “debe” existir en el universo pero, que no sabemos lo que es y la llamamos, precisamente por eso materia oscura”.

El tema de la materia desconocida, invisible, oculta y misteriosa que hace que nuestro universo se comporte como la hace… ¿sigue siendo una gran incognita! Nadie sabe el por qué las galaxias se alejan las unas de las otras, el motivo de que las estrellas en la periferia de las galaxias se muevan a mayor velocidad de lo que deberían y otros extraños sucesos que, al desconocer los motivos, son achacados a la “materia oscura”, una forma de evadirse y cerrar los ojos ante la inmensa ignorancia que tenemos que soportar en relación a muchos secretos del Universo a los que no podemos dar explicación.

Imagen relacionada

              Claro que otros, han imaginado cuestiones y motivos diferente para explicar las cosas

Aunque no todas si son muchas las GUT y teorías de supersimetría las que predicen la de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían ser un candidato perfecto para la “materia oscura”. Ejercen una atracción gravitatoria y no pueden ser rotas por la presión de la radiación en los inicios del Universo.

 El espesor estimado de una cuerda es de 10-30 centímetros, comparados con los 10-13 de un protón. Además de ser la más larga, y posiblemente la más vieja estructura del universo conocido, una cuerda cósmica sería la más delgada: su diámetro sería 100.000.000.000.000.000 veces más pequeño que el de un protón.. Y la cuerda sería terriblemente inquieta, algo así como un látigo agitándose por el espacio casi a la velocidad de la luz. Las curvas vibrarían como enloquecidas bandas de goma, emitiendo una corriente continua de ondas gravitacionales: rizos en la misma tela del espacio-tiempo. ¿Qué pasaría si una cuerda cósmica tropezara con un planeta? Al ser tan delgada, podría traspasarlo sin tropezar con un solo núcleo atómico. Pero de todos modos, su intenso campo gravitatorio causaría el caos.

Resultado de imagen de cuerdas cósmicas

Lo cierto es que todavía no se ha encontrado ninguna cuerda de este tipo. Si bien en los últimos años han surgido muchas candidatas a estar formadas por un efecto de lente de este tipo, la mayoría han resultado ser dos cuerpos distintos pero muy similares entre sí. Pese a ello, los astrofísicos y los teóricos de cuerdas no pierden la esperanza de encontrar en los próximos años, y gracias a telescopios cada vez más potentes, como el GTC y aceleradores como el LHC las evidencias directas de la existencia de este tipo de cuerdas; evidencias que no sólo nos indicarían que las teorías de cuerdas van por buen camino, sino que el modelo del Big Bang es un modelo acertado.

Resultado de imagen de Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Por tanto, cuando observásemos un objeto con una cuerda cósmica en la trayectoria de nuestra mirada, deberíamos ver este objeto dos veces, con una separación entre ambas del orden del defecto de ángulo del cono generado por la curvatura del espaciotiempo. Esta doble imagen sería característica de la presencia de una cuerda cósmica, pues otros cuerpos, como estrellas o agujeros negros,  curvan el espaciotiempo de manera distinta. Por tanto, una observación de este fenómeno no podría dar lugar a un falso positivo.

En este sentido, el nombre de cuerda cósmica está justificado debido a que son impresionantemente pesadas, pasando a ser objetos macroscópicos aun cuando su efecto es pequeño. Una cuerda de seis kilómetros de longitud cuya separación entre ambas geodésicas es de apenas 4 segundos de arco tendría ¡la masa de la Tierra!. Evidentemente, cuerdas de este calibre no se espera que existan en la naturaleza, por lo que los defectos de ángulo esperados son aún menores y, por tanto, muy difíciles de medir.

Una de las virtudes de la teoría es que puede detectarse por la observación. Aunque las cuerdas en sí son invisibles, sus efectos no tienen por qué serlo. La idea de las supercuerdas nació de la física de partículas, más que en el de la cosmología (a pesar de que, la cuerdas cósmicas, no tienen nada que ver con la teoría de las “supercuerdas”, que mantiene que las partículas elementales tienen forma de cuerda). Surgió en la década de los sesenta cuando los físicos comenzaron a entrelazar las tres fuerzas no gravitacionales – electromagnetismo y fuerzas nucleares fuertes y débiles – en una teoría unificada.

En 1976, el concepto de las cuerdas se había hecho un poco más tangible, gracias a Tom Kibble. Kibble estudiaba las consecuencias cosmológicas de las grande teorías unificadas. Estaba particularmente interesado en las del 10^-35 segundo después del Big Bang.

                  Podrían estar por todas partes

Aunque no todas si son muchas las Grandes Teorías Unificadas y teorías de supersimetría las que predicen la formación de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían un candidato perfecto la “materia oscura”. Ejercen una atracción gravitatoria, no pueden ser rotas por la presión de la radiación en los inicios del Universo.

Como habéis podido comprender, todas estas teorías están por demostrar y sólo son conjeturas derivadas de profundos pensamientos de lo que puso ser y de lo que podría ser. Nada relacionado con la materia oscura, las supercuerdas o las cuerdas cósmicas ha sido demostrado ni se han observado por medio alguno en nuestro Universo. Sin embargo, no descartar nada y hacer lo posible por demostrarlas, es la obligación de los científicos que tratan de buscar una explicación irrefutable de cómo es el Universo y por qué es así.

                El misterioso “universo” de los campos cuánticos que nadie sabe lo que esconde

A los cosmólogos les gusta visualizar esta revolucionaria transición como una especie de “cristalización”: el espacio, en un principio saturado de energía, cambió a la más vacía y más fría que rodea actualmente nuestro planeta. Pero la cristalización fue, probablemente, imperfecta. En el cosmos recién nacido podría haberse estropeado con defectos y grietas, a medida que se enfriaba rápidamente y se hinchaba. En fin, muchas elucubraciones y conjeturas que surgen siempre que no sabemos explicar esa verdad que la Naturaleza esconde y, mientras tanto nosotros, simples mortales de la especie Homo, seguimos dejando volar nuestra imaginación que trata, cargada siempre de curiosidad, de desvelar esos misterios insondables del Universo.

Finalmente sabremos sobre esa sustancia cósmica que impregna todo el universo pero, no será la materia oscura” de la que todos hablan, será otra cosa muy diferente e inimaginable en estos momentos en los que, nuestra ignorancia, echa mano de cualquier cosa para poder ocultarla… ¡materia oscura! ¿qué es eso?

emilio silvera

¡La “materia oscura”!

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Imágenes de "materia oscura"

 

Según los modernos postulados, el universo está impregnado de esa sustancia transparente que han dado en llamar “materia oscura” y que es, la responsable, del comportamiento de las galaxias y el movimiento de las estrellas.

 

Imaginaos ahora este instante en que los

murmullos se arrastran  discretamewnte t las

espesas tinieblas llenan el gran navío  del universo.

William Shakespeare

Enrique V, Acto IV. esc. 1

 

Imagen relacionada

 

El descubrimiento de la idea de la “materia oscura” nos lleva a un escenario que “revela” que la mayor parte del Universo está compuesto por materia que no podemos ver. Es de lo más natural preguntar que efecto debe tener éste “descubrimiento” sobre el problema de explicar la estructura a gran escala.

 

 

Resultado de imagen de Imágenes de "materia oscura"

 

Puede parecer extraño que los cosmólogos pongan sus esperanzas de comprender el universo en una materia tan misteriosa, que no pueden ver, que no saben de qué está formada, no emite radiación, y, sin embargo, si genera Gravedad. Eso es lo que está sucediendo en nuestros días. Todos se agarran, como el que se ahoga, al clavo ardiendo de la “materia oscura”, sin tener en cuenta nuestra gran ignorancia de la naturaleza de la supuesta “materia oscura” a la que le adjudican todas las propiedades necesarias para que resuelva todos los problemas inmediatos que, de otra manera, nos deja en un callejón sin salida.

Resultado de imagen de La materia oscura y la formaciçón de galaxias

        Dicen que las galaxias actuales tienen más materia oscura y por eso giran mucho más rápidas

De hecho parece que no necesitan conocer los detalles de cómo se comporta la “materia oscura” para comprender como resuelve el problema de la formación de galaxias. Con el conocimiento de la “materia oscura” parece que tienen la pieza final que necesitaban para completar el rompecabezas y recomponener el cuadro de cómo el Universo llegó a ser lo que es. Las galaxias se pudieron formar, a pesar de la expansión de Hubble, gracias a la presencia de la “materia oscura” que generó la Gravedad suficiente para retener la materia.

Resultado de imagen de La materia oscura y la formaciçón de galaxias

La idea básica respecto al papel de la “materia oscura” es fácil de comprender. La principal dificultad para imaginar como evolucionó el universo tiene que ver con el hecho de que, si el Cosmos entero está hecho de materia normal, la formación de galaxias no puede empezar hasta muy avanzado el “juego”, después de que el Universo se hubiera enfriado hasta el punto en el que pudieran existir átomos y la radiación se puede desaparejar. Para entonces, la expansión de Hubble hubiera diseminado tantro la materia que la Gravedad por sí misma no hubiera sido lo bastante fuerte para reunir cúmulos antes de que todo se escapara de su alcance… ¿Quyé estaba presente entonces allí que retenía la materia normal para que las galaxias se pudieran formar?

Resultado de imagen de La materia oscura y la formaciçón de galaxias

“La existencia de la materia oscura quedó confirmada a partir de 1974, aunque hasta 1980 aún se la llamaba “masa perdida” (“missing mass”) o “masa no visible” (“unseen mass”). Fritz Zwicky usó por primera vez el término “materia oscura” (“dunkle Materie” en alemán) en 1933, pero las estimaciones de la masa del disco galáctico de la Vía Láctea por James Jeans (1922) y Jacobus Kapteyn (1922) ya habían indicado la presencia de “estrellas oscuras” (tres estrellas tan poco luminosas que no se veían por cada una que era visible), algo que Jan Hendrik Oort confirmó en 1932. Nos cuenta la historia de la materia oscura galáctica Virginia Trimble (Departamento de Física y Astronomía, Universidad de California) en “The discovery of dark matter,” DV2010 – Darkness Visible, IoA Cambridge, August 2-6 2010.”

Extraído de: https://www.tispain.com/2012/02/la-materia-oscura-influye-en-la.html - Te interesa saber

Imagen relacionada

Todos, hasta el el LHC han querido participar en la carrera desenfrenada para encontrar los elementos esenciales que podrían componer esa “materia oscura” que dicen ser la responsable del Universo que podemos observar.

Los cosmologos suponen, en pro de sus argumentaciones, que existe un candidato a “materia oscura” que dejó muy pronto de interaccionar con la radiación en el Big Bang; por ejemplo en el primer segundo. Esta situación aparecería si la interacción de las partículas de materia negra con radiaciones dependería de las colisiones  entre las dos y, por tanto, se volviera pequeña cuando la temperatura cayera bajo cierto nivel. En tal caso, la “materia oscura” podría comenzar a acumularse bajo la influencia de la Gravedad mucho antes de la formación de átomos. La presión de la radiación no impediría este tipo de acumulación, porque nuestra hipótesis es que esa radiación no podría presionar sobre la “materia oscura” como sobre la materia ordinaria.

Resultado de imagen de La materia oscura y la formaciçón de galaxias

La Gravedad generada por esa ingente cantidad de “materia oscura” haría aparecer “hoyos” en la geometría del espacio-tiempo y, en ellos, se acumularon grandes cantidades de materia bariónica para formar las galaxias.

Si eso ocurrió de esa manera, entonces, la materia normal era libre de agregarse en grandes concentraciones formando cúmulos inmensos de galaxias gracias a la existencia primera de la “materia oscura” que posibilitó, de esa manera, que todo eso fuera posible.

Resultado de imagen de La materia oscura y la formaciçón de galaxias

Si damos por supuesto que todo eso fue así, ahora nos encontramos ante el dilema de contestar:

- ¿Cómo  explicar la estructura de la “materia oscura”?

- ¿Qué es y de qué está hecha la “materia oscura”?

- ¿Cómo puede ser invisible, no emitir radiación y en cambio generar Gravedad?

emilio silvera

Nueva revolución en la Física Cuántica

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un experimento mental cuestiona que pueda explicar la realidad y el papel del observador

Fuente: Tendencias Científicas

Un nuevo experimento mental revoluciona la física cuántica: añade más incertidumbre sobre su capacidad de explicar la realidad y cuestiona que el observador tenga alguna influencia en la suerte del gato de Schrödinger. Sugiere también que el concepto de tiempo y espacio debería ser revisado una vez más.


Renato Renner, uno de los artífices del nuevo experimento mental. Foto: Peter Rüegg / ETH Zurich).
Un nuevo experimento mental ha puesto patas arriba algunos de los cimientos de la física cuántica y abierto una apasionante polémica en el mundo académico. Los resultados de este experimento, realizado por Daniela Frauchiger y Renato Renner, del Instituto Federal Suizo de Tecnología, se publican en Nature Communications.La física cuántica lleva más de cien años envuelta en polémicas filosóficas, particularmente en lo que se refiere al papel del observador en la creación de realidad, un proceso conocido en física como colapso de la función de onda

 

Resultado de imagen de Ondas en el universo cuántico

 

 

 

Este proceso se refiere a lo que ocurre en el mundo cuántico, donde reina un caos en el que fluyen ondas de energía que muestran un universo de posibilidades infinitas. Se parece al patio de un colegio en el momento del recreo: cientos de niños corretean chillando de un lado para otro hasta que suena el timbre. En ese momento, todos se alinean y entran en clase.

La onda que representa ese conjunto de niños agitados se colapsa cuando suena el timbre y el caos de energías dispersas se concreta en una fila de niños dispuestos a aprender. En el universo cuántico, el colapso de energías dispersas se produce cuando interviene un observador: al medir lo que pasa, las ondas se convierten en partículas y forman la realidad que perciben nuestros sentidos (ver al respecto El cántico de la cuántica, Sven Ortoli y J.P. Pharabod, Gedisa, Barcelona, 1987).

Primera vuelta: un gato

 

 

Resultado de imagen de El gato de Schrödinger

 

 

El ejemplo del gato de Schrödinger, propuesto en 1935,  destaca la importancia del observador en el colapso de la función de onda y se corresponde con una filosofía concreta llamada idealismo cuántico.

Según este experimento mental, el gato de Schrödinger está encerrado en una caja que contiene, de un lado, comida y, de otro lado, veneno. El dueño lo sabe y espera. Pasado un tiempo abre la caja y puede encontrarse con que el gato ha tomado el alimento y vive, o bien que ha tomado el veneno y ha muerto. Schrödinger piensa que es el observador el que, al mirar dentro de la caja, convierte en real una u otra posibilidad.

Otra interpretación señala que el colapso de la función de onda (el gato vivo o muerto) se produce por efecto del dispositivo de medición, que es el que en realidad reduce a uno concreto los diversos estados de probabilidad, descartando el papel del observador que pretendía Schrödinger. Esta interpretación se conoce como realismo cuántico.

 

Resultado de imagen de función de onda de schrödinger

 

 

En medio de ambas teorías emerge la Escuela de Copenhague, para la cual la física cuántica no debe ir tan lejos. Considera que estas interpretaciones se refieren no a la realidad en sí misma, sino al conocimiento que tenemos de ella. Ese conocimiento está descrito por la función de onda y es normal que la función de onda se altere por la medición, ya que al actuar modificamos nuestro conocimiento de la realidad.

Segunda vuelta

 

Resultado de imagen de Segunda versión del gato de Schrödinger

 

 

Una segunda vuelta del gato de Schrödinger la desarrolló otro físico eminente, Eugene Wigner, en los años sesenta. En este escenario, la caja del gato de Schrödinger está dentro de otra caja mayor en la que hay otro físico observando, el así llamado “amigo de Wigner”. En el exterior, Wigner contempla lo que pasa en el experimento mental.

La Escuela de Copenhague se queda pequeña para interpretar lo que pasa en este experimento. El amigo de Wigner ya ha abierto la caja y descubierto que el gato está vivo (por ejemplo), pero Wigner desconoce el resultado de la observación. Sólo puede saberlo si abre la segunda caja y le pregunta a su amigo.

Como hay dos observadores, ¿en qué momento se ha convertido el paquete de ondas de probabilidad en una realidad concreta (el gato está vivo o muerto), cuando el amigo abrió la caja del gato o cuando Wigner descubrió la observación de su amigo?

Una escuela de pensamiento dice que la onda se colapsó cuando el amigo de Wigner abrió la caja del gato. Si es así, el la influencia del observador no sería determinante, ya que uno de ellos ha estado al margen del proceso.

Pero si la  onda colapsó después de que Wigner preguntara a su amigo, eso significaría que la función de onda no colapsa hasta que se concreta la observación al completo, estando el gato vivo y muerto a la vez hasta que ambos observadores concretan la reducción del paquete de ondas.

 

 

Tercera vuelta
Resultado de imagen de Una moneda al aire

En el nuevo experimento mental, los científicos suizos complican el colapso de la función de onda. Ya no sólo hay un gato y un observador (Schrödinger) o un gato y dos observadores (Wigner y su amigo). Ahora el gato se sustituye por una moneda y hay dos Wigner y dos amigos de ambos Wigner (Alice y Bob).

Uno de los Wigner coloca a su amiga Alice en una caja y  le pide que lance una moneda al aire, desconociéndose si al caer ofrecerá la cara o la cruz. El segundo Wigner también coloca a su amigo Bob en otra caja.

Cuando la moneda de Alice cae, esta amiga le envía un mensaje cuántico a Bob diciéndole el resultado. Bob descifra el mensaje y conoce que la moneda ha caído de cara (por ejemplo).

Si todo transcurriera según la lógica ordinaria, cuando los dos Wigner abrieran las cajas de sus respectivos amigos, ambos descubrirían que la moneda había caído de cara (siguiendo con el ejemplo).

Sin embargo, lo que ha descubierto este experimento mental es que no siempre es así: un Wigner descubre que la moneda ha caído de cara y el otro de cruz. Ambos están hablando de la misma moneda y del mismo proceso, pero sus observaciones son contradictorias. Y no se deben a errores de cálculo (al menos que se sepa hasta ahora).

 

Observador enredado

 

Resultado de imagen de La riqueza del mundo cuántico

 

 

 

Una vez más, el mundo cuántico desconcierta a la comprensión humana: el efecto del gato de Schrödinger se diluye a medida que se complejiza la observación y cuestiona que podamos tener alguna influencia en la creación de los procesos físicos.

Una de las consecuencias de este nuevo experimento es que refuerza la idea de la coherencia cuántica, según la cual, tal como explicó uno de sus protagonistas, Dieter Zeh, en esta entrevista con Tendencias21 (2002), el “verdadero mundo cuántico” debe ser mucho más rico que nuestro mundo observado. En términos clásicos hay que decir que existen “muchos mundos” que en total forman el único y verdadero mundo cuántico.

 

 

Imagen relacionada

 

 

Para Dieter Zeh, entre otros autores, los así llamados modelos de decoherencia permiten explicar la ausencia de superposiciones en los estados macroscópicos de la materia (el gato vivo o muerto, la moneda de cara o de cruz), sin necesidad de una intervención determinante del observador.

El nuevo descubrimiento también  añade más incertidumbre acerca de si la física cuántica puede explicar la realidad. Para sus protagonistas, tal como señalan en un comunicado, la única explicación de su resultado es que, aparentemente, la mecánica cuántica no es, como se pensó anteriormente, universalmente aplicable y, por lo tanto, no es válida para los objetos ordinarios, a pesar de que ha sido repetidamente confirmada por la experiencia.

Existen otras posibilidades además de lo que consideramos como cierto. Quizás incluso tengamos que revisar nuestro concepto de espacio y tiempo una vez más, concluyen estos investigadores.

El observador se enreda, una vez más, en su propia observación.

 

ReferenciasQuantum theory cannot consistently describe the use of itself. Daniela Frauchiger & Renato Renner. Nature Communications, volume 9, Article number: 3711 (2018). DOI:https://doi.org/10.1038/s41467-018-05739-8Reimagining of Schrödinger’s cat breaks quantum mechanics — and stumps physicists. Davide Castelvecch. Nature News, 18 september 2018.

El misterioso Tartessos

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber, Rumores del saber del mundo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Bronce tartésico conocido como «Bronce Carriazo», que representa a la diosa fenicia Astarté como diosa de las marismas y los esteros

ABC -HISTORIA

Bronce tartésico conocido como «Bronce Carriazo», que representa a la diosa fenicia Astarté como diosa de las marismas y los esteros (Huelva está rodeada de marismas y esteros).

El misterio de los Tartessos: La rica civilización ibérica desapareció de forma abrupta y desconocida. El Consejo  Internacional de Coordinación del Programa Mab de la Unesco ha aprobado la ampliación de la Reserva de la Biosfera “Marismas del Odiel” en Huelva, que pasa de 7.158 Has. a 18.875 Has.

Imagen relacionadaImagen relacionadaResultado de imagen de Marismas y esteros de HuelvaImagen relacionada

Paisajes especataculares de marismas

Autores como Heródoto resaltaron en su obra la felicidad y la longevidad de los habitantes de esta especie de El Dorado, que se ubicaba más allá de las Columnas de Hércules. Su historia se mueve entre la leyenda y las evidencias arqueológicas, como Javier Ramos y Javier Martínez-Pinna tratan de explicar en su libro «El enigma Tartessos»

 

 

El arqueólogo y filólogo alemán Adolf Schulten no se conformó con pasar a la historia como el descubridor de las ruinas de Numancia, también quiso hallar el rastro de la antigua y misteriosa Tartessos. En un tiempo donde mitos e historia se entremezclaban, el alemán persiguió a esta civilización más allá de las Columnas de Hércules ( estrecho de Gibraltar) y excavó con toda su alma por Doñana y su entorno, pero su búsqueda resultó infructuosa. Su obsesión ha sido retomada cada pocos años por la arqueología española, fascinada por los tesoros aúreos que se le atribuye a esta civilización, de la que el periodista Javier Ramos y el historiador Javier Martínez-Pinna acaban de publicar el estudio «El enigma Tartessos: La primera civilización de la Península Ibérica» (Actas).

El libro aborda las características de esta civilización, lo que se sabe de ellos, sus rastros arqueológicos, sus peculiar tránsito al más allá y sus deidades, al mismo tiempo que hace las veces de guía de viajes por la geografía española, de Huelva a Gibraltar, de Portugal a Extremadura… Muchos son los misterios aún abiertos sobre Tartessos, como también es mucho lo que se sabe a base de juntar piezas sueltas en un enorme puzle que se remonta a hace miles de años. Así lo intentan Ramos y Martínez-Pinna en su obra.

 

Resultado de imagen de La Civilización de Tartessos

 

¿Cómo surgió esta civilización?

Resultado de imagen de La Civilización de Tartessos

Para contestar a esta pregunta debemos recurrir sin falta a las fuentes, tanto arqueológicas como documentales. El problema es que estas son relativamente escasas y muy contradictorias, lo que ha dado lugar a interpretar Tartessos desde un punto de vista legendario e incluso esotérico. Afortunadamente, los estudios arqueológicos han evolucionado y en la actualidad podemos definir esta civilización como el resultado de un proceso de aculturización que los pueblos colonizadores procedentes del Mediterráneo Oriental (sobre todo los fenicios) y otros de procedencia atlántica llevaron a cabo sobre las poblaciones del valle del Guadalquivir y la zona de Huelva a partir del Bronce Final.

Defendéis que la arqueología no ha sido capaz de desvelar muchos de los misterios, ¿qué nos falta por saber que sea insalvable para conocerlos de verdad?

Resultado de imagen de La Civilización de Tartessos

Todo lo que envuelve a esta civilización parece estar relacionado con el misterio, empezando por la naturaleza de esto que conocemos con el vago nombre de Tartessos, ya que seguimos sin saber si esta fue una región más o menos extensa situada en el sur peninsular o también una gran ciudad ubicada más allá de las Columnas de Hércules, tal y como aparece reflejado en los textos de autores grecolatinos. Tampoco sabemos a ciencia cierta los motivos por los que esta civilización terminó desapareciendo de una forma, digamos, tan abrupta, aunque en «El enigma Tartessos» proponemos al lector las hipótesis con mayor fuerza por parte de los historiadores actuales. Además de esto, sigue siendo un gran misterio la posible relación de Tartessos con la Tarsis bíblica y, sobre todo, el hallazgo de esta ciudad perdida que ha sido buscada durante más de cien años.

Resultado de imagen de La Civilización de Tartessos

Se han hallado indicios de la presencia de los asentamientos tartésicos en Doñana

«Tampoco sabemos a ciencia cierta los motivos por los que esta civilización terminó desapareciendo de una forma, digamos, tan abrupta, aunque en «El enigma Tartessos»

 

 

¿Se ha podido demostrar que existieran realmente?

Si hacemos caso a las fuentes, sin lugar a dudas. Debemos de tener en cuenta que son muchas las ocasiones en las que los autores de la talla de Heródoto, Estrabón o Plinio el Viejo insisten en la existencia de una gran ciudad que sería una especie de capital de una civilización poderosa con reyes legendarios como Argantonio. En cuanto a Tarsis, es mencionada en diversas ocasiones en el Antiguo Testamento, pero en una y otra ocasión nos falta la prueba material.

¿Qué hay de cierto en la imagen de una especie de Edad de Oro protagonizada por los Tartesos como un pueblo avanzado a su tiempo?

Resultado de imagen de Cómo desapareció tartessos fue un Tsunami

Probablemente la imagen que tenemos de Tartessos como una especie de Edad de Oro se deba al hecho de que cuando los primeros autores empezaron a hablar sobre este pueblo, el recuerdo que se tenía sobre Tartessos ya era muy fragmentario. Esto tuvo que contribuir a la aparición de todo tipo de fabulaciones que hablaban sobre una civilización y un reino floreciente, repleto de riquezas que se desarrolló en el sur de la península. Autores como Heródoto resaltaron en su obra la felicidad y la longevidad de los habitantes de esta especie de El Dorado, cuyo recuerdo había quedado difuminado como consecuencia del inexorable paso del tiempo. Además, debemos de tener en cuenta que cuando estas fuentes antiguas empezaron a ser estudiadas fue el momento en el que se produjeron, a nivel internacional, alguno de los descubrimientos arqueológicos más importantes de toda la historia, como los protagonizados por Schliemann con la ciudad de Troya, y esto animó a los investigadores a emular los logros de estos grandes arqueólogos, descubriendo la ciudad perdida de Tartessos relacionada con la Tarsis bíblica e incluso con la Atlántida de Platón.

Fotografía de Javier Ramos

 

 

          Fotografía de Javier Ramos

 

 

Una de las cosas más características de esta civilizac

ión, era su paso al más allá. ¿En qué consistían sus rituales funerarios?

En lo que se refiere al mundo tartésico, su creencia en el mundo del más allá está constatada desde el Bronce Final, en el tránsito entre el II y el I milenio antes de Cristo. De esta época son las famosas estelas de guerrero y los depósitos de armas en entornos acuáticos. Esta práctica la podemos identificar con la costumbre de abandonar los restos del difunto en el agua, acompañados por un ajuar de objetos de bronce, sobre todo de armas, que acompañarían al espíritu del fallecido hasta la otra vida. A partir del siglo VIII a.C. el panorama cambia de forma radical como consecuencia de la intensificación de las relaciones con los puebles de oriente. Es ahora cuando se generalizanlas grandes necrópolis asociadas a poblados estables, con todo tipo de enterramientos, tanto de inhumación como de incineración, y en algunas ocasiones empezamos a detectar grandes tumbas principescas cubiertas por túmulos que nos informan sobre la consolidación de grupos privilegiados gracias al comercio con los fenicios.

Imagen relacionada

Por el análisis de los restos materiales, sabemos que los tartesios practicaban complejos rituales tras la muerte de una persona en los que participaban todos los miembros de la comunidad. Para que el alma del difunto pudiese completar su viaje hacia el más allá debía asegurarse el favor de los dioses, por lo que se le ofrecían todo tipo de ofrendas, especialmente libaciones, al igual que se sacrificaban animales y se desarrollaron banquetes funerarios para congraciarse con los antepasados.

¿Por qué guardaban sus fabulosos tesoros?

Por dos motivos. En primer lugar, porque alguno de estos tesoros forma parte del ajuar funerario de los grupos más privilegiados desde el punto de vista económico y que se hicieron enterrar con parte de sus riquezas para poder disfrutarlas en la otra vida. El otro de tipo de tesoros que hemos encontrado aparece como consecuencia del ocultamiento de objetos de culto asociados a los santuarios tartésicos y fenicios justo en el momento en el que se produce el colapso de esta civilización, posiblemente debido a la graves crisis económica producida por la caída de Tiro (Líbano) y la paralización de las relaciones comerciales entre ambas orillas del Mediterráneo.

Resultado de imagen de Cómo desapareció tartessos fue un Tsunami

Su principal fuente de riqueza, una riqueza abundante que sin duda atrajo el interés de los pueblos de Oriente (sobre todo fenicios y griegos) en entablar relaciones comerciales y asentamientos urbanos

 

 

¿Por qué se les conoce más por el supuesto oro y plata que guardaban que por su cultura?

Porque era su principal fuente de riqueza, una riqueza abundante que sin duda atrajo el interés de los pueblos de Oriente (sobre todo fenicios y griegos) en entablar relaciones comerciales y asentamientos urbanos en el sureste peninsular. Las minas de la zona de Tartessos eran fecundas en la explotación de estaño, metal necesario para confeccionar las armas de bronce y que escaseaba en el Mediterráneo. Luego, a la vista está, con espléndidos tesoros como los del Carambolo o Aliseda, cómo trabajaban el oro y la plata para realizar ajuares de enorme belleza.

¿Qué relación existió entre los Tartessos y la Tarsis bíblica?

Resultado de imagen de los Tartessos y la Tarsis bíblica?

        Se cuentan historias de todo tipo pero… ¡La verdad permanece escopndida?

La relación entre Tartessos y Tarsis es uno de los grandes enigmas a los que nos referimos en el libro. Las fuentes veterotestamentarias nos informan sobre la existencia de Tartessos, pero en esta ocasión relacionándola con esta desconocida ciudad bíblica, con la que los reyes de la monarquía unificada de Israel establecieron importantes relaciones comerciales que les valieron, en el caso de Salomón, para construir el mítico templo de Jerusalén. El problema es que no todos los investigadores están de acuerdo en identificar Tartessos con Tarsis, ya que muchos piensan que estaría situada en Oriente, aunque, en los últimos años el estudio del registro arqueológico y las referencias bíblicas parece que está inclinando la balanza a favor de su ubicación aquí en la península Ibérica. En este sentido, las investigaciones arqueológicas han logrado identificar en el centro histórico de la ciudad de Huelva material de principios del primer milenio antes de Cristo que, casi sin lugar a dudas, parece corroborar la existencia de las relaciones comerciales de la que hablan las fuentes entre el mundo oriental y el sur peninsular.

Javier Martínez-Pinna

 

 

            Javier Martínez-Pinna

 

 

¿Por qué se ha querido ver en ella un recuerdo lejano de la mítica Atlántida?

Porque según los relatos antiguos, ambos fueron dos lugares geográficos caracterizados por una cultura muy desarrollada, muy avanzada para su tiempo. Una cultura madre del Bronce Final con conocimientos superiores de los que bebieron otros pueblos posteriores en el tiempo. Varios autores encuentran semejanzas entre ellas, como el hecho de situarse más allá de las Columnas de Hércules. También porque Platón, quien nos habló en el Timeo y en el Critias de la Atlántida, menciona una tal ciudad de nombre ‘Gadeiros’, que guarda muchas similitudes con la Gadir fenicia (Cádiz).

¿Qué quedó de la tradición de los tartesios en las civilizaciones ibéricas actuales?

Los turdetanos fueron, según el historiador Estrabón, «los más cultos de los iberos». Una tribu ibera asentada en el sur de la península Ibérica que recogió el legado de Tartessos en esta zona geográfica. Según las fuentes, los turdetanos desarrollaron leyes y textos históricos que heredaron de los tartesios. Nos hablan de los reyes míticos Gárgoris y Habis, así como del mítico Argantonio, el monarca que según dicen gobernó Tartessos 80 años y vivió 120 años.

Si los lectores quisieran conocer esta civilización a través de la arqueología y de lugares actuales, ¿qué les aconsejarías?

Pues el lector viajero puede realizar un estupendo viaje alrededor de Tartessos y su zona de influencia. Para empezar, en Extremadura, se recomienda la visita del santuario de Cancho Roano y cuando se abra al público, el Turuñuelo (Guareña), ambos en la provincia de Badajoz. Luego debe viajar al sur, a Huelva, el epicentro de Tartessos. En la capital está el Cerro de San Pedro, y por la provincia resultan de obligada visita Tejada la Vieja, Riotinto o Doñana. En Sevilla, su Museo Arqueológico o las zonas de Montemolín, Lora del Río… Y en Cádiz, los restos de la Gadir fenicia, el oppidum de Olvera o los yacimientos de Pocito Chico y Asta Regia. Sin olvidarnos de Gibraltar, el entorno del Guadalquivir y enclaves iberos de Jaén como Cástulo o Giribaile. Para más información, incluimos en el libro una completa guía de viajes por todos estos y muchos más lugares del suroeste peninsular que de alguna u otra forma están relacionados con la fascinante cultura tartésica.

Las interacciones fundamentales

Autor por Emilio Silvera    ~    Archivo Clasificado en Interacciones fundamentales    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Las cuatro fuerzas fundamentales del universo

Como pueden haber deducido, me estoy refiriendo a cualquiera de los cuatro tipos diferentes de interacciones que pueden ocurrir entre los cuerpos.  Estas interacciones pueden tener lugar incluso cuando los cuerpos no están en contacto físico y juntas pueden explicar todas las fuerzas que se observan en el universo.

Imagen relacionada

           No parece que la Gravedad esté por la labor de unirse a las otras fuerzas

Viene de lejos el deseo de muchos físicos que han tratado de unificar en una teoría o modelo a las cuatro fuerzas, que pudieran expresarse mediante un conjunto de ecuaciones. Einstein se pasó los últimos años de su vida intentándolo, pero igual que otros antes y después de él, aún no se ha conseguido dicha teoría unificadora de los cuatro interacciones fundamentales del universo. Se han hecho progresos en la unificación de interacciones electromagnéticas y débiles.

Figuras

Estos diagramas son una concepción artística de los procesos físicos. No son exactos y no están hechos a escala. Las áreas sombreadas con verde representan la nube de gluones o bien el campo del gluón, las líneas rojas son las trayectorias de los quarks.

Decaimiento del <a href=

En el texto del recuadro dice: Un neutrón decae en un protón, un electrón y un antineutrino, a través de un bosón virtual (mediador). Este es el decaimiento beta del neutrón.

emás emenos hacia <i>B</i>0 <i>B</i>bar0″ align=”LEFT” vspace=”10″ /> <a name=

En el texto del recuadro dice: Una colisión electrón – positrón (antielectrón) a alta energía puede aniquilarlos para producir mesones B0 y Bbarra0 a través de un bosón Z virtual o de un fotón virtual.

eta_c hacia pimás K0 Kmenos

El texto del recuadro dice: Dos protones que colisionan a alta energía pueden producir varios hadrones más partículas de masa muy grande tales como los bosones Z. Este tipo de suceso es raro pero puede darnos claves cruciales sobre cómo es la estructura de la materia.

Aunque no pueda dar esa sensación, todo está relacionado con las interacciones fundamentales de la materia en el entorno del espacio-tiempo en el que se mueven y conforman objetos de las más variadas estructuras que en el Universo podemos contemplar, desde una hormiga a una estrella, un mundo o una galaxia. Las fuerzas fundamentales de la Naturaleza siempre están presentes y de alguna manera, afecta a todo y a todos.

Cuando hablamos de la relatividad general, todos pensamos en la fuerza gravitatoria que es unas 1040veces más débil que la fuerza electromagnética. Es la más débil de todas las fuerzas y sólo actúa entre los cuerpos que tienen masa. Es siempre atractiva y pierde intensidad a medida que las distancias entre los cuerpos se agrandan.

Resultado de imagen de El Gravitón particula mediadora de la fuerza de gravedad

       El Gravitón es la única partícula mediadora de una fuerza ( de la Gravedad), que no se deja ver

Como ya se ha dicho, su cuanto de gravitación, el gravitón, es también un concepto útil en algunos contextos. En la escala atómica, esta fuerza es despreciablemente débil, pero a escala cosmológica, donde las masas son enormes, es inmensamente importante para mantener a los componentes del universo juntos. De hecho, sin esta fuerza no existiría el Sistema Solar ni las galaxias, y seguramente, nosotros tampoco estaríamos aquí. Es la fuerza que tira de nuestros pies y los mantiene firmemente asentados a la superficie del planeta. Aunque la teoría clásica de la gravedad fue la que nos dejó Isaac Newton, la teoría macroscópica bien definida y sin fisuras de la gravitación universal es la relatividad general de Einstein, mucho más completa y profunda.

Resultado de imagen de Seguimos buscando respuestas a muchos enigmas presentes en el Universo que no sabemos explicar

       Seguimos buscando respuestas a muchos enigmas presentes en el Universo que no sabemos explicar

Nadie ha podido lograr, hasta el momento, formular una teoría coherente de la Gravedad Cuántica que unifique las dos teorías. Claro que, la cosa no será nada fácil, ya que, mientras que aquella nos habla del macrocosmos, ésta otra nos lleva al microcosmos, son dos fuerzas antagónicas que nos empeñamos en casar.

       Seguimos empeñados en buscar esa teoría que una lo muy grande con lo muy pequeño y la Gravedad, hasta el momento no da el sí

Por el momento, no hay una teoría cuántica de la interacción gravitatoria satisfactoria. Es posible que la teoría de supercuerdas pueda dar una teoría cuántica de la gravitación consistente, además de unificar la gravedad con los demás interacciones fundamentales sin que surjan los dichosos e indeseados infinitos.

¿Hallado un «agujero» en el modelo estándar de la Física?

Las partículas colisionan ente sí y se producen cambios y transiciones de fase

Algunos han puesto en duda la realidad del Modelo Estándar que, como se ha dicho aquí en otros trabajos, está construido con el contenido de una veintena de parámetros aleatorios (entre ellos el Bosón que los del LHC anunciaron haber encontrado a bombo y platillo, pero del que no han dado todas las explicaciones necesarias)) que son necesarias para dar una conformidad a todo su entramado que, aunque hasta el momento ha sido una eficaz herramienta de la física, también es posible que sea la única herramienta que hemos sabido construir pero que no es… ¡la herramienta!  ideal.

Resultado de imagen de El modelo estándar

No podemos negar que, a pesar de sus carencias, ha sido una magnifica herramienta de trabajo

Es posible que solo sea cuestión de tiempo y de más investigación y experimento. En el sentido de la insatisfacción reinante entre algunos sectores, se encuentran los físicos del experimento de alta energía BaBar, en el SLAC, un acelerador lineal situado en Stanford (California). Según ellos, la desintegración de un tipo de partículas llamado «B to D-star-tau-nu» es mucho más frecuente de lo predicho por el modelo estándar. Puede que no sea importante y puede que, hasta la existencia del Bosón de Higgs esté en peligro a pesar de que en el LHC digan que se ha encontrado.

                                       Esquema del decaimiento Beta y una sencilla explicación de la interacción débil

La fuerza débil recibe su nombre porque a la escala de sus interacciones es la más débil dentro del modelo estándar. Pero ojo, esto no incluye la gravedad, puesto que la gravedad no pertenece al modelo estándar por el momento. La interacción débil ocurre a una escala de  metros, es decir, la centésima parte del diámetro de un protón y en una escala de tiempos muy variada, desde  segundos hasta unos 5 minutos. Para hacernos una idea, esta diferencia de órdenes de magnitud es la misma que hay entre 1 segundo y 30 millones de años.

La interacción débil, que es unas 1010 veces menor que la interacción  electromagnética, ocurre entre leptones y en la desintegración de los hadrones. Es responsable de la desintegración beta de las partículas y núcleos. En el modelo actual, la interacción débil se entiende como una fuerza mediada por el intercambio de partículas virtuales, llamadas bosones vectoriales intermediarios, que para esta fuerza son las partículas W+, W- y Z0.  Las interacciones débiles son descritas por la teoría electrodébil, que las unifica con las interacciones electromagnéticas.

                         Propiedades de los Bosones mediadores intermediarios de la fuerza débil

La teoría electrodébil es una teoría gauge de éxito que fue propuesta en 1.967 por Steven Weinberg y Abdus Salam, conocida como modelo WS.  También Sheldon Glashow, propuso otra similar.

La interacción electromagnética es la responsable de las fuerzas que controlan la estructura atómica, reacciones químicas y todos los fenómenos electromagnéticos. Puede explicar las fuerzas entre las partículas cargadas, pero al contrario que las interacciones gravitacionales, pueden ser tanto atractivas como repulsivas. Algunas partículas neutras se desintegran por interacciones electromagnéticas. La interacción se puede interpretar tanto como un modelo clásico de fuerzas (ley de Coulomb) como por el intercambio de unos fotones virtuales. Igual que en las interacciones gravitatorias, el hecho de que las interacciones electromagnéticas sean de largo alcance significa que tiene una teoría clásica bien definida dadas por las ecuaciones de Maxwell. La teoría cuántica de las interacciones electromagnéticas se describe con la electrodinámica cuántica, que es una forma sencilla de teoría gauge.

                               El electromagnetismo está presente por todo el Universo

La interacción fuerte es unas 102 veces mayor que la interacción electromagnética y, como ya se dijo antes, aparece sólo entre los hadrones y es la responsable de las fuerzas entre nucleones que confiere a los núcleos de los átomos su gran estabilidad. Actúa a muy corta distancia dentro del núcleo (10-15 metros) y se puede interpretar como una interacción mediada por el intercambio de mesones virtuales llamados Gluones. Está descrita por una teoría gauge llamada Cromodinámica cuántica.

CNO Cycle.svg

La interacción fuerte, también conocida como interacción nuclear fuerte, es la interacción que permite unirse a los quarks para formar hadrones. A pesar de su fuerte intensidad, su efecto sólo se aprecia a distancias muy cortas del orden del radio atómico. Según el Modelo estándar, la partícula mediadora de esta fuerza es el Gluón.  La teoría que describe a esta interacción es la cromodinámica cuántica  (QCD) y fue propuesta por David Politzer, Frank Wilczek y David Gross en la década de 1980 y por lo que recibieron el Nobel 30 años más tarde cuando el experimento conformó su teoría.

La interacción fuerte, como se ha explicado muchas veces, es la más fuerte de todas las fuerzas fundamentales de la Naturaleza, es la responsable de mantener unidos los protones y neutrones en el núcleo del átomo. Como los protones y neutrones están compuestos de Quarks, éstos dentro de dichos bariones, están sometidos o confinados en aquel recinto, y, no se pueden separar por impedirlo los gluones que ejercen la fuerza fuerte, es decir, esta fuerza, al contrario que las demás, cuando más se alejan los quarks los unos de los otros más fuerte es. Aumenta con la distancia.

En la incipiente teoría del campo electromagnético sugerida por Faraday, desaparecía la distinción esencial entre fuerza y materia, introduciendo la hipótesis de que las fuerzas constituyen un campo y la única sustancia física… (?)

Las características de las fuerzas eran:

  1. Cada punto de fuerza actúa directamente sólo sobre los puntos vecinos.

  2. La propagación de cualquier cambio de la intensidad de la fuerza requiere un tiempo finito.

  3. Todas las fuerzas son básicamente de la misma clase; no hay en el fondo fuerzas eléctricas, magnéticas ni gravitatorias, sino sólo variaciones (probablemente geométricas) de un sólo tipo de fuerza subyacente.

Lo importante al considerar la influencia de la metafísica de Faraday en sus investigaciones, es su suposición de que la teoría de campos ofrece una explicación última a todos los fenómenos. Los cuerpos sólidos, los campos eléctricos y la masa de los objetos son, de alguna forma,  sólo apariencias. La realidad subyacente es el campo, y el problema de Faraday era encontrar un lazo de unión entre las apariencias y la supuesta realidad subyacente.

       Estaría bueno que al final del camino se descubriera que todas son una sola fuerza con distintas manifestaciones según el escenario del momento.

Resultado de imagen de El Campo de Faraday

El concepto de campo de Faraday ha dado mucho juego en Física, es un concepto ideal para explicar ciertos fenómenos que se han podido observar en las investigaciones de las fuerzas fundamentales y otros. El campo no se ve, sin embargo, está ahí, rodea los cuerpos como, por ejemplo, un electrón o el planeta Tierra que emite su campo electromagnético a su alrededor y que tan útil nos resulta para evitar problemas.

Me he referido a una teoría gauge que son teorías cuánticas de campo creadas para explicar las interacciones fundamentales. Una teoría gauge requiere un grupo de simetría para los campos y las potenciales (el grupo gauge). En el caso de la electrodinámica, el grupo es abeliano, mientras que las teorías gauge para las interacciones fuertes y débiles utilizan grupos no abelianos. Las teorías gauge no abelianas son conocidas como teorías de Yang–Mills. Esta diferencia explica por qué la electrodinámica cuántica es una teoría mucho más simple que la cromodinámica cuántica, que describe las interacciones fuertes, y la teoría electrodébil que unifica la fuerza débil con la electromagnética. En el caso de la gravedad cuántica, el grupo gauge es mucho más complicado que los anteriores necesarios para la fuerza fuerte y electrodébil.

En las teorías gauge, las interacciones entre partículas se pueden explicar por el intercambio de partículas (bosones vectoriales intermediarios o bosones gante), como los gluonesfotones y los W y Z.

El físico Enrico Fermi, refiriéndose al gran número de partículas existentes, dijo: “Si tuviera que saber el nombre de todas las partículas, me habría hecho botánico.” Por todo lo antes expuesto, es preciso conocer los grupos o familias más importantes de partículas, y lógicamente saber el cometido que cada una de ellas desempeña en la trama del “mundo”. Todo está descrito en el “universo” cuántico, allí donde “viven” todos esos objetos infinitesimales que son la base de todo lo grande que vemos en el Universo.

-  Protón, que es una partícula elemental estable que tiene una carga positiva igual en magnitud a la del electrón y posee una masa de 1’672614×10-27 Kg, que es 1836,12 veces la del electrónEl protón aparece en los núcleos atómicos, por eso es un nucleón que estáformado por partículas más simples, los Quarks. Es decir, un protón está formado por dos quarks up y un quark down.

Estructura de <a href=

-  Neutrón, que es un hadrón como el protón pero con carga neutra y también permanece en el núcleo, pero que se desintegra en un protón, un electrón y un antineutrino con una vida media de 12 minutos fuera del núcleo. Su masa es ligeramente mayor que la del protón (símbolo mn), siendo de 1’6749286(10)×10-27 kg. Los neutrones aparecen en todos los núcleos atómicos excepto en el del hidrógeno que está formado por un solo protón. Su existencia fue descubierta y anunciada por primera vez en 1.932 por James Chadwick (1891-1974. El protón está formado por tres quarks, dos quarks down y un quark up. Fijáos en la diferencia entre las dos partículas: la aparentemente minúscula diferencia hace que las dos partículas “hermanas” se comporten de formas muy distintas: la carga del protón es  +2/3 +2/3 -1/3 = +1. Pero como el neutrón tiene up/down/down su carga es +2/3 -1/3 -1/3 = 0. ¡No tiene carga!  No porque no haya nada con carga en él, sino porque las cargas que hay en su interior se anulan.

           Andamos a la caza de los neutrinos

Los neutrinos, se cree que no tienen masa o, muy poca, y, su localización es difícil. Se han imaginado grandes recipientes llenos de agua pesada que, enterrados a mucha profundidad en las entrañas de la Tierra, en Minas abandonadas, captan los neutrinos provenientes del Sol y otros objetos celestes, explosiones supernovas, etc.

-  Neutrino, que es un leptón que existe en tres formas exactas pero (se cree que) con distintas masas. Tenemos el ve (neutrino electrónico) que acompaña al electrónvμ (neutrino muónico) que acompaña al muón, y vt (neutrino tau) que acompaña a la partícula tau, la más pesada de las tres. Cada forma de neutrino tiene su propia antipartícula.

El neutrino fue postulado en 1.931 para explicar la “energía perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953 y definitivamente en 1.956. Los neutrinos no tienen carga y se piensa que tienen masa en reposo nula y viajan a la velocidad de la luz, como el fotón. Hay teorías de gran unificación que predicen neutrinos con masa no nula, pero no hay evidencia concluyente.

Se ha conseguido fotografíar a un electrón. Poder filmar y fotografiar un electrón no es fácil por dos razones: primero, gira alrededor del núcleo atómico cada 0,000000000000000140 segundos , y, segundo, porque para fotografiar un electrón es necesario bombardearlo con partículas de luz (y cualquier que haya intentado sacarle una foto a un electrón sabe que hay que hacerlo sin flash).

-  Electrón, que es una partícula elemental clasificada como leptón, con una carga de 9’109 3897 (54)×10-31Kg y una carga negativa de 1´602 177 33 (49) x 10-19 culombios. Los electrones están presentes en todos los átomos en agrupamientos llamados capas alrededor están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo; cuando son arrancados del átomo se llaman electrones libres. Su antipartícula es el positrón, predicha por Paul Dirac.

File:Helium atom QM.svg

   El núcleo del átomo constituye el 99% de la masa

En los átomos existen el mismo número de protones que el de electrones, y, las cargas positivas de los protones son iguales que las negativas de los electrones, y, de esa manera, se consigue la estabilidad del átomo al equilibrarse las dos fuerzas contrapuestas. El electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1940). El problema de la estructura (si la hay) del electrón no está resuelto. Si el electrón se considera como una carga puntual, su autoenergía es infinita y surgen dificultades en la ecuación conocida como de Lorentz–Dirac.

Es posible dar al electrón un tamaño no nulo con un radio ro, llamado radio clásico del electrón, dado por e2/(mc2) = 2’82×10-13cm, donde e y m son la carga y la masa, respectivamente, del electrón y c es la velocidad de la luzEste modelo también tiene problemas, como la necesidad de postular las tensiones de Poincaré.

Muchas son las partículas de las que aquí podríamos hablar, sin embargo, me he limitado a las que componen la materia, es decir Quarks y Leptones que conforman Protones y Neutrones, los nucleaones del átomo que son rodeados por los electrones. El Modelo Estándar es la herramienta con la ue los físicos trabajan (de momento) hasta que surjan nuevas y más avanzadas teorías que permitan un modelo más eficaz y realista. De Wikipedia he cogido el cuadro comparativo de las fuerzas.

Tabla comparativa

Interacción7 Teoría descriptiva Mediadores Fuerza relativa Comportamiento con la distancia (r) Alcance (m)
Fuerte Cromodinámica cuántica (QCD) gluones 1038  \frac {e^{- \frac {r}{R}}}{r^2} 10-15
Electromagnética Electrodinámica cuántica (QED) fotones 1036 \frac{1}{r^2} \infty
Débil Teoría electrodébil bosones W y Z 1025 \frac{e^{-m_{W,Z}r}}{r^2} 10-18
Gravitatoria Gravedad cuántica gravitones(hipotéticos) 1 \frac{1}{r^2} \infty

La teoría cuántica de campos es el marco general dentro del cual se inscriben la cromodinámica cuántica, la teoría electrodébil y la electrodinámica cuántica. Por otra parte la “gravedad cuántica” actualmente no consiste en un marco general único sino un conjunto de propuestas que tratan de unificar la teoría cuántica de campos y la relatividad general.

Resultado de imagen de La teoría de Maldacena

Van surgiendo por ahí nuevas conjeturas como, por ejemplo, las de Maldacena.

“Las consecuencias de esta conjetura son muy importantes, pues existe la posibilidad de que el resto de interacciones (electromagnéticas y nucleares) sean tan sólo una ilusión, el reflejo sobre el cristal de un escaparate del contenido de la tienda. Así, podría ser que el electromagnetismo tan sólo sea la imagen proyectada de la interacción de algunas cuerdas en un supuesto interior del espacio-tiempo. De la misma manera, la necesidad de compactificar las dimensiones adicionales desaparece en cierto modo si consideramos que, quizás, nuestro mundo sea solamente la frontera; siendo el interior del espacio-tiempo inaccesible.”

 

Resultado de imagen de El UNiverso se rige por una sóla fuerza

 

 

Que gran sorpresa sería si al final del camino se descubriera que en realidad solo existe una sola fuerza: La Gravedad, de la que se derivan las otras tres que hemos podido conocer en sus ámbitos particulares y que, ¿por qué no? podrían surgir a partir de aquella primera y única fuerza existente en los principios o comienzos del Universo: ¡La Gravedad! Que no acabamos de comprender.

emilio silvera