viernes, 15 de octubre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Tenemos que saber! y, sabremos.

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Longitud de onda de De Broglie | Física | Khan Academy en Español - YouTube

En 1.949, el físico francés Louis de Broglie, que ganó el premio Nobel, propuso construir un laboratorio europeo de física de partículas. Su idea caló hondo en la comunidad internacional, y tres años más tarde, 11 países europeos dieron el visto bueno y el dinero para construir el CERN, inaugurado en Ginebra en 1.954, y al que tanto le debe la física y las Sociedades modernas del mundo.

FermilabEl acelerador de partículas Tevatron arroja indicios de avistamiento del  bosón de Higgs en la misma región que el LHC

Los aceleradores de partículas son un gran invento que ha permitido comprobar (hasta donde se ha podido, al menos) la estructura del átomo. En el acelerador del Fermilab, por ejemplo, un detector de tres pisos de altura que en su momento costó unos ochenta millones de dólares para poder captar electrónicamente los “restos” de la colisión entre un protón y un antiprotón. Aquí la prueba consiste en que decenas de miles de sensores generen un impulso eléctrico cuando pasa una partícula. Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.

 Joe Lykken habla de los avances científicos del Fermilab - Ciencia - Vida -  ELTIEMPO.COMResultados del Fermilab apuntan a una "nueva física"

El 13 de octubre de 1985 se produjo la primera colisión protón-antiprotón en el Tevatrón del Fermilab.

La ciencia, en especial la física de partículas, gana confianza en sus conclusiones por duplicación, es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto, que incluye en cada experimento los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías el resultado finalmente obtenido. Es un proceso largo y muy complejo; la consecuencia de muchos años de investigación de muchos equipos diferentes.

Una partícula diminuta podría alterar las leyes de la física - The New York  TimesUno de los nueve grandes imanes fabricados por Fermilab | Futuro | EL PAÍS

No es suficiente con un único resultado. Si muchos, en distintos lugares dan lo mismo…se pueden considerar ciertos

Yo puedo visualizar la estructura interna de un átomo. Puedo hacer que me vengan imágenes mentales de nebulosas de “presencia” de electrón alrededor de la minúscula mota del núcleo que atrae esa bruma de la nube electrónica hacia sí. Puedo ver los átomos, los protones y los neutrones, y en su interior, los diminutos quarks enfangados en un mar de neutrones. Claro que todo eso es posible por el hecho de que dicha imagen me es muy familiar. Creo que cada uno construirá sus propias imágenes conforme él las vea a partir de las ecuaciones o bien de cómo las formó en su mente a partir de sus lecturas o explicaciones oídas en charlas científicas.

IL LATO OSCURO DELL'UNIVERSO

“Frank Wilczek. compartió el Premio Nobel de Física del 2004 con David Cross y David Politzer. Los laureados han realizado un importante descubrimiento teórico relativo a la fuerza fuerte, o la “fuerza de color” como también ha sido llamada. La fuerza fuerte es la que domina en los núcleos atómicos, actuando entre los quarks del próton y del neutrón.

Wilczek es considerado uno de los físicos teóricos más eminentes del mundo. Conocido entre otras cosas, por el descubrimiento de la libertad asintólica, el desarrollo de la Cromodinamica Cuántica, la invención de axions, y el descubrimiento y explotación de nuevas formas de estadísticas quántum (el anyons). A los 21 años siendo estudiante graduado de la Universidad de Princenton, trabajando con David Gross, definió las propiedades del gluen coloreado que une a los núcleos atómicos.”

 

Cuando entraron en escena David Politrer, de Harvard, y David Gross y Frank Wilczek, de Pinceton, el panorama de lo que ocurría en el interior del núcleo se aclaró bastante. Ellos, descubrieron algo que llamaron libertad asintótica. Asintótico significa, burdamente, “que se acerca cada vez más, pero no toca nunca”. La interacción fuerte se debilita más y más a medida que un quark se aproxima a otro. Esto significa, paradójicamente, que cuando los quarks están muy juntos se portan casi como si fuesen libres; pero cuando se apartan, las fuerzas se hacen efectivamente mayores. Las distancias cortas suponen energías altas, así que la interacción fuerte se debilita a altas energías. Esto es justo lo contrario de lo que pasa con la fuerza eléctrica. Aún más importante era que la interacción fuerte necesitase una partícula mensajera, como las otras fuerzas, y en alguna parte le dieron al mensajero el nombre de gluón (del inglés glue, pegamento).

 

A todo esto, llegó Murray Gell-Mann con sus quarks para completar el panorama. Adjudicó a estas diminutas partículas color y sabor (nada que ver con el gusto y los colores reales) y llegó la teoría denominada cromodinámica cuántica. Todo aquello dio mucho que hablar y mucho trabajo a los teóricos y experimentadores, y al entrar en los años ochenta, se había dado ya con todas las partículas de la materia (los quarks y los leptones), y teníamos las partículas mensajeras, o bosones gauge, de las tres fuerzas, a excepción de la gravedad.

MATERIA

Primera generación

Segunda generación

Tercera generación

u

c

t

d

s

b

Son los quarks updowncharmedstrangetop y bottom.

Los leptons son:

υe

υμ

υτ

e

μ

τ

FUERZAS

Los bosones gauge:

Fotón

Electromagnetismo

W+, W-, Z0

Interacción débil

Ocho gluones

Interacción fuerte

 File:Leptones nombres.png

La familia de los leptones está compuesta por el electrón, muón y tau con sus correspondientes neutrinos. Así quedó prácticamente completo el llamado modelo estándar que describe las partículas que forman la materia conocida y las fuerzas que intervienen e interaccionan con ellas. La gravedad quedó plasmada en la relatividad general de Einstein.

¿Por qué es incompleto el modelo estándar? Una carencia es que no se haya visto todavía el quark top; otra, la ausencia de una de las cuatro fuerzas fundamentales, la gravedad. Otro defecto estético es que no es lo bastante simple; debería parecerse más a la tierra, aire, fuego y agua de Empédocles. Hay demasiados parámetros y demasiados controles que ajustar. Necesitamos una nueva teoría que sea menos complicada, más sencilla y bella, sin vericuetos intrincados que salvar, con la limpieza y serena majestad de la teoría de la gravedad que, con enorme simpleza y aplicando los principios naturales, trata los temas más profundos del universo. Esperemos que continúe desarrollándose la teoría de cuerdas y que, como parece, incluya todas las fuerzas, todas las partículas y, en fin, todos los parámetros que dan sentido al universo.

 

Archivo:Interacciones del modelo estándar de la física de particulas.png -  Wikipedia, la enciclopedia libreEl modelo estándar y el bosón de Higgs: El Modelo Estándar

Sí, al Modelo Estándar la faltan algunas cosas y le sobran otras, o, al menos, sería necesario explicarlas mejor. La Gravedad no está presente y, hay una veintena de parámetros aleatorios que, como el Bosón de Higgs, no se pueden explicar…aún. La Historia viene de lejos:

El modelo estándar: Historia resumida

Autores

Fechas

Partículas

Fuerza

Nota

Comentario

Tales (milesio)

600 a.C.

Agua

No se menciona

8

Fue el primero en explicar el mundo mediante causas naturales. Lógica en lugar de mito.

Empédocles (agrigento)

460 a.C.

Tierra, agua, aire y fuego

Amor y discordia

9

Aportó la idea de que hay múltiples partículas que se combinan para formar toda la materia.

Demócrito (Abdera)

430 a.C.

El átomo indivisible e invisible, o a-tomo

Movimiento violento constante

10

Su modelo requería demasiadas partículas, cada una con una forma diferente, pero su idea básica de que hay un átomo que no puede ser partido sigue siendo la definición básica de partícula elemental.

Isaac Newton (inglés)

1.687

Átomos duros con masa, impenetrables

Gravedad (cosmos); fuerzas desconocidas (átomos)

7

Le gustaban los átomos pero no hizo que su causa avanzase. Su gravedad fue un dolor de cabeza para los peces gordos en la década de 1.990

Roger J. Boscovich (dálmata)

1.760

“Puntos de fuerza” indivisibles y sin forma o dimensión

Fuerzas atractivas y repulsivas que actúan entre puntos

9

Su teoría era incompleta, limitada, pero la idea de que hay partículas de “radio nulo”, puntuales, que crean “campos de fuerza”, es esencial en la física moderna.

Michael Faraday (inglés)

1.820

Cargas eléctricas

Electromagnetismo

8’5

Aplicó el atomismo a la electricidad al conjeturar que las corrientes estaban formadas por “corpúsculos de electricidad”, los electrones.

Dimitri Mendeleev (siberiano)

1.870

Más de 50 átomos dispuestos en la tabla periódica de los elementos

No hace cábalas sobre las fuerzas

8’5

Tomó la idea de Dalton y organizó todos los elementos químicos conocidos. En su tabla periódica apuntaba con claridad una estructura más profunda y significativa.

Ernest Rutherford (neozelandés)

1.911

Dos partículas; núcleo y electrón

La fuerza nuclear fuerte más el electromagnetismo. La gravedad

9’5

Al descubrir el núcleo, reveló una nueva simplicidad dentro de todos los átomos de Dalton. El experimentador por excelencia.

Bjorken, Fermi, Friedman, Gell-Mann, Glasgow, Kennedy, Lederman, Peri, Richter, Schwartz, Steinberger, Taylor, Ting, más un reparto de miles.

1.992

Seis quarks y seis leptones, más sus antipartículas. Hay tres colores de quarks

El electromagnetismo, la interacción fuerte y débil: doce partículas que llevan las fuerzas más la gravedad.

?

Demócrito de Abdera ríe.

A todo esto y como he dicho, el quark top está perdido (ya se encontró) y el neutrino tau no se ha detectado directamente (pero experimentos nos han dicho que un neutrino muónico se puede transformar en uno tau), y muchos de los números que nos hacen falta conocer los tenemos de forma imprecisa. Por ejemplo, no sabemos si los neutrinos tienen alguna masa en reposo.

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos campo de Higgs, para preservar las coherencia matemática del modelo estándar. La idea de Higgs y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes. Parece, con tantos parámetros imprecisos (19), que el modelo estándar está asentado sobre arenas movedizas.

En realidad, no sabemos si la relatividad general y la teoría cuántica, son dos mundos antagónicos que nos empeñamos en unir. Por eso buscamos la gravedad Cuántica.

 

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “supersimetría”, “supercuerdas”, “teoría M” o, en último caso, “teoría de todo” o “gran teoría unificada”.

 

Las 11 dimensiones del Universo (explicadas)Teoría de cuerdas y dimensiones extra : Blog de Emilio Silvera V.

 

¿Universo de dimensiones extras?

 

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo. Hablan de 10, 11 y 26 dimensiones, siempre todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos ni sabemos, o no nos es posible intuir en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron en la longitud de Planck las dimensiones que no podíamos ver; ¡problema solucionado! ¿Quién puede ir a la longitud de Planck para verlas?

La puerta de las dimensiones más altas quedó abierta y a los teóricos se les regaló una herramienta maravillosa: el hiperespacio; todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí sí es posible encontrar esa soñada teoría de la gravedad cuántica.

 La teoría de Kaluza-Klein es una... - Función de onda Ψ | FacebookArchivo:Kaluza Klein compactification.svg - Wikipedia, la enciclopedia libre

                                                                ¡Tiene tantos secretos el Universo!

Así que las teorías se han embarcado a la búsqueda de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC, se necesitaría una energía de 1019 GeV.

La verdad es que la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. ¡Necesitamos algo más avanzado!

El lado oscuro del bosón de Higgs — Cuaderno de Cultura CientíficaPor qué el bosón de Higgs tiene la masa que tiene? - Quora

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las partículas que carecen de ella, disfrazando así la verdadera simetría del mundo. Cuando su autor lanzó la idea al mundo, resultó además de nueva, muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resultó ser complejo, lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones. Resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún; los quarks que estaban instalados en nubes de otras partículas llamadas gluones, y ahora queremos continuar profundizando, sospechando que después de los quarks puede haber algo más.

Bosón de Higgs: ¿Qué es la 'partícula de Dios'? | Ciencia | EL PAÍSHabrían hallado la "partícula de Dios" - Aptus | Noticias de educación,  cultura, arte, formación y capacitación

         Con aquellos últimos experimentos en el LHC, pudimos leer declaraciones como éstas:

“…confirmaron que durante este año, tal y como se ha anunciado hace semanas, se ha obtenido una auténtica marea de datos que dejan poco o ningún lugar a dudas sobre la existencia de la partícula que la teoría considera responsable de la masa de todas las demás partículas y sin la que el Universo, sencillamente no existiría tal y como lo conocemos.”

 

 Una partícula muy parecida al bosón de Higgs: ¡Eureka!Qué es el bosón de Higgs o partícula de Dios? – BeScienced

 

                                                En 1964 se predijo la existencia de esa partícula

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes, es decir, que si miramos a las estrellas en una noche clara, estamos mirando el campo de Higgs. Las partículas influidas por este campo toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado: del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquirirá energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra. Como E = mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein: la masa, m, tiene en realidad dos partes; una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c), o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

 

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas. Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Exchange Particles

Hasta ahora no tenemos ni idea de qué reglas controlan los incrementos de masa generados por Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC), pero el problema es irritante: ¿Por qué sólo esas masas ­­- las masas de los W+, W-, Z0, y el up, down, encanto, extraño, top y bottom, así como los leptones – que no forman ningún patrón obvio?

Como profesor amo las preguntas, mientras más mejor. Cuando juego a las  preguntas con mis alumnos, gana puntos extras si la pre

Las masas van desde la del electrón (0’0005 GeV) a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnética y débil. En la unidad hay cuatro partículas mensajeras sin masa – los W+, W-, Z0 y el fotón – que llevan la fuerza electrodébil. Además está el campo de Higgs, y rápidamente, los W y Z absorben la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos), y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen las teorías. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

 

Las masas de los W y Z se predijeron con éxito a partir de los parámetros de la teoría electro-débil, y las relajadas sonrisas de los físicos teóricos nos recuerdan que Hooft y Veltman dejaron sentado que la teoría entera está libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista de cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa. Una voz potente y segura nos dice “¡Higgs!”. Durante más de sesenta años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo de Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente, y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen en entredicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Resultado de imagenResultado de imagenResultado de imagenResultado de imagen

                                    ¿Sabremos alguna vez cómo adquieren masa las partículas?

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

Una cosa más; hemos hablado de los bosones gauge y de su espín de una unidad. Hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero. El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos donde quiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” (sin dirección) por esa razón.

 

La interacción débil, recordaréis, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón de Higgs “origen de la masa”… y algunas cosas más.

Hay que responder montones de preguntas: ¿Cuáles son las propiedades de las partículas de Higgs? y, lo que es más importante, ¿Cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión del LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas o sólo las hace incrementarse? ¿Cómo podemos saber más al respecto? Cómo es su partícula, nos cabe esperar que la veremos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del universo, añadiendo pues, un peso más a la carga que ha de soportar el Higgs.

Enroque de ciencia: ¿Qué es el campo de Higgs? (1)

Existirán los campos de Higgs, o…

Interacción en el campo de Higgs #infografia #infographic | Infografías en  castellano

… sólo será una creación de la mente.

El campo de Higgs, tal como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Éstas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuado que las partículas y la cosmología pintan juntas de un universo primitivo puro y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10-5 grados Kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así, por ejemplo, antes del Higgs teníamos unos W, Z y fotones sin masa y la fuerza electro-débil unificada.

El universo se expande y se enfría, y entonces viene el Higgs (que “engorda” los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electro-débil se rompe.

Definición y ejemplos de fuerzas nucleares débilesLas fuerzas fundamentales de la naturaleza y su partícula mediadora.:  Fuerza nuclear débil

Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W-, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que les hiciera parecer que tienen mucha masa.  Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas formas, es tanta la ignorancia que tenemos sobre el origen de la masa que nos agarramos como a un clavo ardiendo, en este caso, a la partícula de Higgs, que algunos han llegado a llamar “la partícula divina”.

¡Ya veremos en qué termina todo esto!

 

                                    Sí, dudas hemos tenido todos

Hay otras muchas cuestiones de las que podríamos hablar y, la Física y la Astronomía, siendo mi gran Pasión, ocupa mucho de mi tiempo. La Física, amigos míos, nos dirá como es el “mundo” y digo mundo querinedo significar Naturaleza y Universo. La Física encierra una belleza…, que está presente en:

  1. Una simetría unificadora.
  2. La capacidad de explicar grandes cantidades de datos experimentales con las expresiones matemáticas más económicas.

El Modelo Estándar falla en ambos aspectos, mientras que la relatividad general los exhibe, ambos, de manera bien patente. Nunca una teoría dijo tanto con tan poco; su sencillez es asombrosa y su profundidad increíble. De hecho, desde que se publicó en 1.915, no ha dejado de dar frutos, y aún no se han obtenido de ella todos los mensajes que contiene.

emilio silvera

¡Estrellas de Quarks! Materia extraña

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                      Si existen las estrellas de Quarks, tendrían una densidad intermedia entre las estrellas de Neutrones y los Agujeros Negros

“Si bien no se han observado objetos que puedan ser asociados a estrellas compuestas completamente de quarks, la existencia de quarks desconfinados en el interior de estrellas de neutrones no está descartada, ya que la composición de la materia a esas densidades (ρ ~ 1015 g/cm3) es aún incierta.

Se han descubierto dos posibles candidatos a estrellas de quarksRX J1856.5-3754 y 3C58.[cita requerida] Inicialmente catalogadas como estrellas de neutrones, la primera parece más pequeña y la segunda más fría de lo que deberían ser, lo que sugiere que pueden estar compuestas por un material de mayor densidad que la materia degenerada. No obstante, los resultados no son concluyentes. Recientemente, un tercer objeto, denominado XTE J1739-285, también ha sido propuesto como posible candidato.”

           Ya se especula con la existencia cierta de estrellas de Quarks y,  el río suena…

La Hipótesis de estrella de Quarks (EQs) podrían responder a muchos interrogantes surgidos a partir de observaciones astrofísicas que no coinciden con los modelos canónicos teóricos de las Estrellas de Neutrones ( ENs ). Decimos que son hipotéticas porque se conjetura que estarían formadas por Materia Extraña ( ME ). La comunidad astrofísica espera evidencias observacionales que permitan diferenciarlas de las ENs, ya que podrían explicar un conjunto de observaciones astronómicas que aún resultan una incógnita. Es sabido que una EN es el remanente del colapso de una estrella masiva. El colapso de la estrella, la supernova, da lugar a un núcleo compacto hiperdenso de hierro y otros metales pesados que sigue comprimiéndose y calentándose. Su densidad continúa aumentando, dando lugar a una “neutronización“ (recombinación de electrones con protones que resultan en neutrones) y el gas degenerado de neutrones frena el colapso del remanente.

Cómo distinguir estrellas de neutrones y estrellas de quarks con ondas  gravitatorias - La Ciencia de la Mula FrancisLos quarks: ¿son, realmente, partículas fundamentales? (Parte 1)

Se especula con la posibilidad de que existan estrellas de Quarks que estarían hechas de materia extraña de Quaks y Gluones.

Astrofísica y Física: Estrellas de quarks: el eslabón perdido entre las  estrellas de neutrones y los agujeros negros

Una EQ, a diferencia de una EN, no se originaría necesariamente de una evolución estelar después del agotamiento del combustible nuclear de una estrella normal. Sería, probablemente, producto de la transición de fase hadrón-quark a altísima densidad. La Cromo-dinámica Cuántica (CDC), la Teoría de las Interacciones Fuertes que ocurren dentro de los nucleones (protones y neutrones), concibe teóricamente la idea de la transición de fase hadrón-quark a temperaturas y/ o densidades extremadamente altas con el consecuente desconfinamiento de quarks y gluones, que formarían una especie de “sopa “. Sin embargo, los quarks libres no se han encontrado aún, en uno u otro límite, en ningún experimento terrestre.

La “sopa“ que mencionamos antes, se conoce  Plasma Quark-Gluón ( PQG ). En el límite de altas temperaturas, el PQG está tratando de obtenerse en el laboratorio y existen fuertes indicios de que se logre con éxito experimentos de altas energías como el Colisionador Relativista de Iones Pesados (conocido por sus siglas en ingles como RHIC) de Brookhaven, New York.

La sopa resultado del Big-Bang fluye como el agua de nuestro grifo, según  un nuevo estudio - Republica.com

Por otro lado, se espera que a través de observaciones astronómicas se compruebe que la transición a altas densidades se hubiese producido en el interior de alguna EN. Esto se debe a que los valores de densidades estimados para que dicha transición tuviese lugar coinciden con densidades del orden de (3 exp. – 12) ρ0 (siendo ρ0 ̃ 0, 17 fmˉ ³ la densidad de equilibrio nuclear) que son típicas del interior de las ENs. Los cálculos basados en diferentes ecuaciones de  de la materia nuclear muestran estos resultados, por lo que sería razonable que el núcleo de las ENs estuviese formado por materia de quarks.

Recientemente, la relación entre campo magnéticos y materia densa está atrayendo la atención de los astrofísicos, especialmente después de las observaciones de emisiones peculiares de pulsares anómalos de rayos X, que se interpretan como ENs en rotación, y de emisiones de radiación γ de baja energía de los llamados repetidores de rayos γ suaves ( SGRs – soƒt gamma-ray repeaters ). El motor central de esas radiaciones podría ser un campo magnético mayor que 4 x 10¹³ Gauss, que es el campo crítico previsto por la Electrodinámica Cuántica.

Muchas observaciones astronómicas indirectas sólo se explicarían a través de la existencia de campos magnéticos muy intensos en los núcleos de ENs  en EQs, de manera que el papel que  el campo magnético en la ME aún constituye un problema abierto y de sumo interés en la Astrofísica.

Particle Interactions and Conservation LawsMateria extra˜na en el universo

 En particular, en un trabajo reciente, se ha analizado la ME considerando neutralidad de carga, equilibrio β y conservación del  bariónico. En dicho trabajo se obtuvo una cota superior para el valor del campo magnético que determina una transición de fase cuya explicación requiere ser estudiada en profundidad ya que sería independiente de la interacción fuerte entre los quarks. También se ha comprobado que la presencia de de campos magnéticos intensos favorece la estabilidad de la ME.

Por otro lado, estudios teóricos han demostrado que si la materia es suficientemente densa, la materia de quarks deconfinada podría estar en un estado superconductor de color. Este estado estaría formado por pares de quarks, análogos a los pares de Cooper (constituidos por electrones) existentes en los superconductores ordinarios.

Bag Model of Quark Confinement

Los quarks, a diferencia de los electrones, poseen grados de libertad asociados con el color, el sabor y el espín. Por este motivo, dependiendo del rango de densidades en el cual estamos trabajando, algunos patrones de apareamiento pueden verse favorecidos generando la aparición de distintas fases superconductoras de color. Según estudios teóricos, la fase superconductora más favorecida a densidades extremadamente altas sería la Color Flavor Locked (CFL), en la cual los quarks u, d y s poseen igual momento de Fermi, y en el apareamiento participan los tres colores y las dos proyecciones de espín de cada uno de ellos. Estudios recientes sobre la fase CFL han incluido los efectos de campos magnéticos intensos, obteniendo que bajo determinadas  el gas superconductor, que corresponde a la separación entre bandas de energía en el espectro fermiónico, crece con la intensidad del campo. A esta fase se la llama Magnetic Color Flavor Locked (MCFL).

MISTERIOS DEL UNIVERSOEl misterio de la abundancia de oro en el Universo que los científicos no  consiguen resolver - BBC News Mundo

 

Son muchos los misterios que contiene el Universo y, nosotros, debemos recorrer los caminos para desvelarlos.

 

En la superconductividad electromagnética usual, un campo magnético suficientemente fuerte destruye el  superconductor. Para la superconductividad de color no existe aún un consenso de cómo, la presencia del campo magnético, podría afectar al apareamiento entre los quarks.

En este  describiremos brevemente la materia extraña, con el objetivo de explicar su formación en el interior de una EN y entender la composición y características de una EQ. Posteriormente, utilizaremos el modelo fenomenológico de bag del Massachussets Institute of Technology (MIT) para encontrar las ecuaciones de estado de la ME en condiciones determinadas, comprobando la estabilidad de la misma, frente a la materia de quarks ordinaria formada sólo por quarks u y d. Presentaremos, además, algunas candidatas posibles a EQs según observaciones astrofísicas. Por último, trataremos de entender la superconductividad de color y la influencia del campo magnético intenso en las fases superconductoras.

Materia de Quarks:

Uno de los mayores logros alcanzados por los físicos en el último siglo, fue la construcción del Modelo Estándar en la física de partículas elementales. Este modelo sostiene que la materia en el Universo está compuesta por fermiones, divididos en quarks y leptones, que interactúan a través de los llamados bosones de calibre: el fotón (interacción electromagnética), los bosones W± y Zº (interacción débil), y 8 tipos de gluones (interacción fuerte). Junto con los bosones de calibre, existen tres generaciones de fermiones: ( v e, e ), u, d ); ( vµ, µ ), ( c, s ) ; ( v….); y sus respectivas antipartículas. Cada “ sabor “ de los quarks, up ( u ), down ( d ), charme ( c ), strange ( s , top ( t ) y bottom ( b), tiene tres colores ( el color y el sabor son números cuánticos ). La partícula que aún no ha sido descubierta experimentalmente es el bosón de Higgs, que cabe suponer sería responsable del origen de la masa de las partículas.

misterios del universo | XLSemanalLos misterios del universo que la tecnología nos ayudará a revelar en un  futuro cercano - BBC News Mundo

         Muchos son los científicos que buscan respuestas

Los quarks son los componentes fundamentales tanto de los hadrones fermiónicos (bariones formados por la combinación de tres quarks) como de los bosónicos (mesones formados por un quark y un antiquark). ES sabido que el núcleo de un átomo está compuesto por nucleones (protones y neutrones) que a su vez están compuestos por quarks (protón = udd). David Gross y Franks Wilczek y David Politzer, descubrieron teóricamente que en la CDC el acoplamiento efectivo entre los quarks disminuye  a medida que la energía entre ellos aumenta (libertad asintótica). La elaboración de  teoría permitió que recibieran el Premio Nobel de Física en el año 2004. En los años 60, la libertad asintótica fue comprobada experimentalmente en el acelerador lineal de Stanford ( SLAC ).

Qué sabemos (y qué no sabemos) sobre el confinamiento? | QuarkBits |  SciLogs | Investigación y CienciaConfirman que existe una partícula exótica de seis quarks

Sin embargo, la CDC no describe completamente el desconfinamiento en un régimen de alta densidad y baja temperatura, debido a su complejidad matemática y a su naturaleza no lineal  bajas energías. No obstante, es posible recurrir a una descripción fenomenológica para intentar entender la física de la formación de la materia de quarks en las ENs. La materia de quarks, es decir, el plasma de quarks deconfinados y gluones, es una consecuencia directa de la libertad asintótica cuando la densidad bariónica o la temperatura son suficientemente altas como para considerar que los quarks son partículas más fundamentales que los neutrones o protones. Esta materia, entonces, dependiendo de la temperatura y del potencial químico (µ) de los quarks, aparecería esencialmente en dos regímenes. Uno de ellos, el PQG, constituiría la fase “caliente”  de la materia de quarks cuando T >> µ constituyendo la mencionada ME, que se formaría en el interior de las Ens. Esta transición de fase estaría ocurriendo en el Universo cada vez que una estrella masiva explotara en  de supernova, con la consecuente aparición de una EN.

Las estrellas de Quarks, aunque de momento son una conjetura su existencia, hasta donde podemos saber, no sería nada extraña que, en cualquier momento, se pudieran  algunas y, pasarían a engrosar la lista de los objetos más masivos del Universo. Ellas estarían entre las estrellas de Neutrones y los Agujeros Negros.

En 1971 A.R. Bodmer propuso que la ME es más estable que el Fe, que es el más estable de todos los núcleos ordinarios. Por lo tanto, según su hipótesis, la ME constituía el  más fundamental de la materia. En la Naturaleza, la presencia de núcleos atómicos ordinarios. Por lo tanto, según su hipótesis, la ME constituía el estado más fundamental de la materia. En la Naturaleza, la presencia de núcleos atómicos ordinarios no se halla en contradicción con la mayor estabilidad que presenta la ME. Esto se debe a que la conversión de un núcleo atómico en ME, requiere que se transformen quarks u y d en quarks extraños s. La probabilidad de que esto ocurra involucra una transición débil que hace que los núcleos con peso atómico A ≥ 6 sean estables por más de 1060 Años.

Materia on Twitter: "La materia extraña, teóricamente confinada en el  corazón de las estrellas de neutrones, rompe literalmente las leyes de la  física. Si lograra escapar de ese encierro, podría convertir loAstrofísica: Materia extraña - Ciencia y educación en Taringa!

De manera que si la hipótesis de la ME fuera correcta, estaríamos en presencia del estado más estable de la materia hadrónica y  su formación se necesitaría un ambiente rico en quarks s o la formación de un PQG, Como ya mencionamos, podríamos alcanzar dicho estado en las colisiones de iones pesados relativistas, segundos después del Big Bang en el Universo primordial y en el interior de las Ens.

A) Formación de Materia Extraña en una Estrella de Neutrones:

Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle

Inmediatamente después de la transición de fase hadrónquark en el interior de la estrella, no existe una configuración de equilibrio químico  los quarks. Esto puede entenderse de la siguiente : en el punto de transición, la materia bariónica predominante son los quarks u y d con una pequeña cantidad de electrones. Así, la densidad del quark d es aproximadamente dos veces la densidad del quark u, Nd ~ 2Nu, debido al hecho de que la materia en las estrellas compactas es eléctricamente neutra. Por el principio de exclusión de Pauli, sería energéticamente más favorable  los quarks d decaer en quarks s hasta restablecer el equilibrio entre sabores vía interacciones débiles. Dado que la densidad bariónica de la materia de quarks en el interior de la estrella sería ~ 5ρ0, los potenciales químicos de los quarks deberían ser grandes respecto de las masas. Esto implicaría que las densidades de los quarks fueran prácticamente iguales. De esta forma, la configuración más estable en el interior de la EN, sería un núcleo de ME con una densidad bariónica Nb = Ni ( i= u , d, s ). Si el interior de una EN estuviese compuesto por ME, cabe entonces preguntarnos: ¿podría transformarse una EN en una EQ?

Primera reconstrucción de una explosión estelar en 3DSinc

 los astrónomos ha quedado bien establecido que el remanente estelar después de la explosión de una supernova podría resultar ser una  Enana Blanca, una En o un Agujero Negro, dependiendo de la masa de la estrella de origen. Observaciones astronómicas recientes sugieren un remanente aún más exótico: las EQs. La idea de la existencia de estas estrellas apareció en 1969, cinco años después de la predicción de Gell- Mann de la existencia de los quarks. En el año 1984, Farhi y Jaffe, basándose en el modelo de bag del MIT, mostraron en sus cálculos que la energía por barión de la ME era menor que la del núcleo atómico más estable, el Fe. Esto daba mayor solidez a la hipótesis de Bodmer- Witten e inmediatamente se comenzaron a desarrollar modelos teóricos de Eqs. En el año 2002, el Observatorio de Rayos X Chandra, de la NASA, reportó el descubrimiento de dos estrellas candidatas a ser Eqs.

Para que una EN se transforme en una EQ pura, necesitamos algún mecanismo mediante el cual su densidad aumente cada vez más. Pensemos, por ejemplo, que la EN  parte de un sistema binario. Para considerar que dos estrellas están en un sistema binario, debe analizarse su proximidad comparando el tamaño de las mismas con el radio del lóbulo de Roche, que es la región que define el campo de la acción gravitatoria de una estrella sobre otra.

Dark Matter and the Universe

Si el radio de cada estrella es menor que el lóbulo de Roche, las estrellas están desconectadas. Por el contrario, si una de ellas llena el lóbulo de Roche, el sistema es semi-conectado y la materia puede fluir a través del punto de Lagrange interno. El potencial gravitatorio de un sistema binario se consume la masa de la estrella compañera. Cuando la masa de la EN alcanza el valor de ~2 M  (M corresponde a la masa solar), sufre un colapso gravitatorio, pudiéndose transformar en una EQ.

Explosión estelar brillando en el espacio profundo, la explosión de la  estrella cósmica en el universo. Alta resolución de fondo de la galaxia  Fotografía de stock - AlamyNASA | ¿Explosión estelar? Fenómeno podría iluminar la Tierra por dos  semanas | Astronomía | Ciencia | Astros | El Popular

¿Podría el colapso de una supernova dar origen a la formación de una EQ?  pregunta nos conduce a otra hipótesis teórica acerca de la formación de la EN, hay conservación del momento angular. La proto-estrella de neutrones tiene una fracción pequeña de su radio original, que era el de la supernova, por lo que su momento de inercia se reduce bruscamente. Como resultado, la EN se  con una altísima velocidad de rotación  que disminuye gradualmente. Los períodos de rotación se hacen cada vez más largos debido a la pérdida de energía rotacional por la emisión de vientos de electrones y positrones y de la radiación bipolar  electromagnética. Cuando la alta frecuencia de rotación o el campo electromagnético alcanzan un valor crítico, la EN se transforma en un pulsar que emite pulsos del orden de los milisegundos. Debido a la enorme fuerza centrífuga en estos objetos, la estructura interna se modifica, pudiendo alcanzar una densidad crítica por encima de la que corresponde a la transición de fase hadrón-quark. En estas , la fase de materia nuclear relativamente incomprensible se convertiría en la fase de ME, más comprensible, cuyo resultado final sería la aparición de una EQ.

La identificación de una EQ requiere señales observacionales consistentes. Con esto nos referimos a propiedades físicas de la estrella tales como su masa máxima, radio, período mínimo de rotación, enfriamiento por emisión de neutrinos. Todas estas propiedades dependen de una única ecuación de  para la materia densa de quarks que aún no ha sido completamente establecida. Sin embargo, existe un rango de valores aceptados para las cantidades antes mencionadas, con base en  observacionales recientes, que marcarían importantes diferencias entre las posibles Eqs y los demás objetos compactos.

Qué es una estrella de quarks?

Un rasgo característico de las Eqs es que la materia no se mantendría unida por la atracción  gravitacional, como ocurre en las Ens, sino que sería consecuencia directa de la interacción fuerte entre los quarks. En este caso, la estrella se dice auto-ligada. Esto implica una diferencia sustancial entre las ecuaciones de estado para las dos clases de estrellas. Las correcciones perturbativas a la ecuación de estado de la materia de quarks y los efectos de superconductividad de color complican aun más este punto. Otra característica para poder diferenciar las Eqs de las Ens es la relación entre su masa M y el radio R. Mientras que para una EQ, M ~ R³. De acuerdo con  relación, las Eqs tendrían radios más pequeños que los que usualmente se le atribuyen a las Ens. Además, las Eqs violarían el llamado límite de Eddington. Arthur Eddington (1882-1994) observó que las fuerzas debido a la radiación y a la gravitación de las estrellas normales dependían del inverso del cuadrado de la distancia. Supuso, entonces, que ambas fuerzas podían estar relacionadas de algún modo, compensándose para que la estrella fuera más estable. Para estrellas de altísima masa, la presión de radiación es la dominante frente  a la gravitatoria. Sin embargo, debería existir una presión de radiación máxima para la cual la fuerza expansiva debido a la radiación se equilibrara con la gravedad local. Para una estrella normal, el límite de Eddington está dado por una ecuación que omito para no hacer más complejo el tema.

Estrellas

Para cualquier valor de radiación que supere este límite, no habrá equilibrio hidrostático, causando la pérdida de masa de la estrella normal. El mecanismo de emisión en una EQ produciría luminosidades por encima de dicho límite. Una posible explicación a este hecho sería que la EQ es autoligada y por lo tanto su superficie alcanzaría temperaturas altísimas con la consecuente emisión térmica.

Por otro lado, una alternativa para explicar algunas observaciones de destellos de rayos γ, sería suponer que las emisiones provienen de Eqs con radios R ~ 6 km, valores demasiados pequeños si pensáramos que los destellos provienen de ENs.

En  sección, hemos presentado algunas características de las Eqs que las diferenciarían de las Ens. Futuras evidencias experimentales y observacionales nos permitirían saber si las Eqs realmente existen en la naturaleza.

http://www.mpa-garching.mpg.de/mpa/research/current_research/hl2014-1/fig1.jpg

                                 Observaciones astrofísicas: posibles Eqs

El mes de febrero de 1987 fue la primera oportunidad de poner a prueba, a través de las observaciones directas, las teorías modernas sobra la formación de las supernovas. En el observatorio de Las Campanas, en Chile, fue observada la Supernova 1987A en la Gran  de Magallanes. Algunas características de la emisión de neutrinos de la SN 1987ª, podrían explicarse sin una hipotética fuente de energía subnuclear como la ME contribuyera a su explosión. El remanente estelar que ha quedado como consecuencia de la explosión de la Supernova 1987ª, podría ser una EQ, ya que el período de emisión de este pulsar es de P= 0.5 ms. Una EN canónica no podría tener una frecuencia de rotación tan alta.

RX J185635-375: Candidato a Quark |PDF) Strange matter in the universe

El observatorio Chandra de rayos X de la NASA también encontró dos estrellas inusuales: la fuente RX J1856.5-3754 con una temperatura de 10 exp5.  K y la fuente 3C58 con un período de 65 ms. RX J1856.5-3754 es demasiado pequeña  ser una EN convencional y 3C58 parece haberse enfriado demasiado rápido en el tiempo de vida que se le estima.

Observatorio de rayos X Chandra - Wikipedia, la enciclopedia libreJubilados de la NASA salvan el telescopio espacial Hubble | Ciencia | DW |  20.09.2021

Combinando los  del Chandra y del telescopio espacial Hubble, los astrónomos determinaron que RX J1856. 5 – 3754 radia como si fuera un cuerpo sólido con una temperatura de unos 1x 10 exp5. ºC y que tiene un diámetro de alrededor de 11 km, que es un tamaño demasiado pequeño como para conciliarlo con los modelos conocidos de las Ens.

Las observaciones realizadas por el Chandra sobre 3C58 también produjeron resultados sorprendentes. No se pudo detectar la radiación que se esperaba en la superficie de 3C58, una EN que se cree producto de la explosión de una supernova vista por astrónomos japoneses y chinos en el año 1181 de nuestra era. Se llegó a la conclusión de que la temperatura de la estrella, de menos de un millón de grados Celsius, era un valor mucho menor que el que predice el modelo. Estas observaciones incrementan la posibilidad de que los objetos estelares mencionados sean Eqs.

Ecuación de  para la materia de quarks:

Dibujo20130725 I-LOVE-Q diagram - quark star versus neutron star

Las técnicas utilizadas para resolver las ecuaciones de la CDC no proveyeron aún un resultado aceptable para densidades bariónicas finitas como en el caso de la Electrodinámica Cuántica para el núcleo atómico. Como consecuencia, es necesario recurrir a modelos fenomenológicos para describir la materia de quarks dentro de las estrellas compactas cuando se consideran las propiedades de confinamiento y de libertad asintótica de la CDC. Uno de los modelos más usados es el modelo bag del MIT. En este modelo los hadrones son considerados como quarks libres confinados en una región finita del espacio: el “Bag“ o bolsa. El confinamiento no es un resultado dinámico de la teoría fundamental, sino que se coloca como parámetro libre, imponiendo  de contorno apropiadas. Así, el modelo bag del MIT se basa en una realización fenomenológica del confinamiento.

Está claro que, las estrellas de Quarks, aunque con certeza no han sido aún detectadas, es casi seguro que andarán pululando por el inmenso Universo que, en relación a la materia bariónica, en muy buena parte, está conformado por Quarks.

Fuente: Revista de la RSEF

La Gravedad, esa fuerza misteriosa

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Investigadores de galaxias enanas satélite afirman que Newton podría  haberse equivocado | News | CORDIS | European CommissionEl universo y la fuerza de la gravedad by Juan Ángel Villaseñor Cornago

Qué es la gravedad? - VIXASTROFISICOS DE LA UNAM PROPONEN TEORIA DE LA GRAVEDAD EXTENDIDA –  UNIVERSITAM

 

La gravedad es la fuerza de atracción entre objetos. En el Universo toda la materia se mueve a causa de ésta y otras fuerzas. La gravedad depende de la masa de los objetos y de la distancia que los separa. … La zona esférica alrededor de un cuerpo donde actúa su gravedad es el campo gravitacional.

Dos nuevos estudios realizados por investigadores de Australia, Austria y Alemania han puesto en entredicho la forma en la que entendemos la física de la gravedad. Los descubrimientos, publicados en las revistas Astrophysical Journal y Monthly Notices of the Royal Astronomical Society, se basan en observaciones de galaxias enanas satélite o galaxias más pequeñas que se encuentran en el extrarradio de la gran Galaxia espiral que es la Vía Láctea.

La ley de la gravedad o gravitación universal - Qué es, fórmula,  descubrimiento de Isaac Newton - EspacioCiencia.com

La Ley de la gravitación universal de Newton, publicada en 1687, sirve para explicar cómo actúa la gravedad en la Tierra, por ejemplo por qué cae una manzana de un árbol. El profesor Pavel Kroupa del Instituto de Astronomía Argelander de la Universidad de Bonn (Alemania) explicó que «a pesar de que su ley describe los efectos cotidianos de la gravedad en la Tierra, las cosas que podemos ver y medir, cabe la posibilidad de que no hayamos sido capaces de comprender en absoluto las leyes físicas que rigen realmente la fuerza de la gravedad».

Los físicos buscan el axión un componente de la materia oscura mediante  haloscopios – UNIVERSITAM

 

“La teoría fue bautizada como “de gravedad emergente” y puede aclarar esa materia oscura que tantos dolores de cabeza está dando a los científicos. Erik Verlinde lleva seis años observando el cielo para explicarse el movimiento y la velocidad exacta de las estrellas y ahora concluye que no necesita invocar ninguna misteriosa partícula de materia oscura para entender qué pasa en las galaxias. Las cosas no funcionan exactamente como predijo Einstein, aunque el padre de la gravedad sí estableció las bases.”

Océanos de gas frío dan a luz a galaxias gigantes – LaFlechaPartículas del tamaño de una galaxia: la materia oscura borrosa

Las estrellas y las galaxias se comportan como si estuviesen presionadas o aguantadas por algo más fuerte que ellas. La gran fuerza gravitacional requerida desconcierta a los telescopios que intentan detectarla. Hasta ahora, los físicos han optado por la existencia de una “materia oscura” para explicar ese “algo” que desconocen y que sería necesaria para explicar el comportamiento gravitacional que los astrónomos observan en el Universo. Esa energía oscura -dicen- existe en gran cantidad (supone el 25% del Cosmos), pero hasta ahora nadie ha sido capaz de observarla, a pesar de los muchos esfuerzos por detectar su existencia y explicar qué pasa en las galaxias.

Ley de gravitación universal - Wikipedia, la enciclopedia libre

 

La ley de Newton ha sido puesta en entredicho por distintos cosmólogos modernos, los cuales han redactado teorías contradictorias sobre la gravitación que intentan explicar la gran cantidad de discrepancias que se dan entre las mediciones reales de los sucesos astronómicos y las predicciones basadas en los modelos teóricos. La idea de que la «materia oscura» pueda ser la responsable de estas discrepancias ha ganado muchos adeptos durante los últimos años. No obstante, no existen pruebas concluyentes de su existencia.

En esta investigación, el profesor Kroupa y varios colegas examinaron «galaxias enanas satélite», cientos de las cuales deberían existir en la cercanía de las principales galaxias, incluida la Vía Láctea, según indican los modelos teóricos. Se cree que algunas de estas galaxias menores contienen tan sólo unos pocos millares de estrellas (se estima que la Vía Láctea, por ejemplo, contiene más de 200.000 millones de estrellas).

Ant 2. Galaxia fantasma, vecina de la Vía láctea - PressReaderAstronomía en tu bolsillo - ¿Qué es el Grupo local y cuántas galaxias  forman parte de él? Se denomina Grupo Local, al cúmulo de galaxias en el  que se encuentra la Vía

 El Grupo Local dominados por Andrómeda y la Vía Láctea y unas decenas de compañeras enanas

No obstante, a día de hoy sólo se ha logrado detectar treinta de estas galaxias alrededor de la Vía Láctea. Esta situación se atribuye al hecho de que, al contener tan pocas estrellas, su luz es demasiado débil como para que podamos observarlas desde una distancia tan lejana. Lo cierto es que este estudio tan detallado ha deparado resultados sorprendentes.

«En primer lugar, hay algo extraño en su distribución», indicó el profesor Kroupa. «Estas galaxias satélite deberían estar distribuidas uniformemente alrededor de su galaxia madre, pero no es el caso.»

http://www.astroyciencia.com/wp-content/uploads/2008/02/grupo-local-galaxias.jpg

Distribución de las pequeñas galaxias alrededor de la Vía Láctea que, al ser un cuerpo de mayor masa, las atrae hacia sí como ocurre con la Pequeña Nube de Magallanes.

Los investigadores descubrieron que la totalidad de los satélites clásicos de la Vía Láctea (las once galaxias enanas más brillantes) están situados prácticamente en un mismo plano que dibuja una especie de disco. También observaron que la mayoría de estas once galaxias rotan en la misma dirección en su movimiento circular alrededor de la Vía Láctea, de forma muy similar a como lo hacen los planetas alrededor del Sol.

REDES SOCIALES: Grupo Local de Galaxias

 

La explicación de los físicos a estos fenómenos es que los satélites debieron surgir de una colisión entre galaxias más jóvenes. «Los fragmentos resultantes de un acontecimiento así pueden formar galaxias enanas en rotación», explicó el Dr. Manuel Metz, también del Instituto de Astronomía Argelander. Éste añadió que «los cálculos teóricos nos indican la imposibilidad de que los satélites creados contengan materia oscura».

Estos cálculos contradicen otras observaciones del equipo. «Las estrellas contenidas en los satélites que hemos observado se mueven a mucha más velocidad que la predicha por la Ley de la gravitación universal. Si se aplica la física clásica, esto sólo puede atribuirse a la presencia de materia oscura», aseveró el Dr. Metz.

Este enigma nos indica que quizás se hayan interpretado de forma incorrecta algunos de los principios fundamentales de la física. «La única solución posible sería desechar la Ley de la gravitación de Newton», indicó el profesor Kroupa. «Probablemente habitemos un universo no Newtoniano. De ser cierto, nuestras observaciones podrían tener explicación sin necesidad de recurrir a la materia oscura

MIR, algo más que un simple laboratorio espacial, una belleza para la ciencia humana.

Hasta ahora, la Ley de la gravitación de Newton sólo ha sido modificada en tres ocasiones: para incluir los efectos de las grandes velocidades (la teoría especial de la relatividad), la proximidad de grandes masas (la teoría general de la relatividad) y las escalas subatómicas (la mecánica cuántica). Ahora, las graves inconsistencias reveladas por los datos obtenidos sobre las galaxias satélite respaldan la idea de que hay que adoptar una «dinámica newtoniana modificada» (MOND) para el espacio.

Teoría MOND y la materia oscura — AstronooUna nueva teoría de la gravedad podría explicar la materia oscura - Lanza  Digital - Lanza Digital


 

“Una nueva teoría de la gravedad podría explicar la materia oscura. Concretamente, esta ‘segunda ley de Newton’ predice exactamente la misma desviación de los movimientos que se suele explicar cuando se insertando materia oscura en la teoría.

El profesor Erik Verlinde, reconocido experto en teoría de cuerdas en la Universidad de Amsterdam y el Instituto Delta de Física Teórica, acaba de publicar este nuevo trabajo en el que amplía sus opiniones sobre la naturaleza de la gravedad.”

Europa Press

La teoría MOND, propuesta en 1981, modifica la segunda ley de la dinámica de Newton para que con ella se pueda explicar la rotación a velocidad uniforme de las galaxias, que contradice las predicciones newtonianas que afirman que la velocidad de los objetos separados del centro será menor.

Los nuevos descubrimientos poseen implicaciones de gran calado para la física fundamental y para las teorías sobre el Universo. Según el astrofísico Bob Sanders de la Universidad de Groningen (Países Bajos), «los autores de este artículo aportan argumentos contundentes. Sus resultados coinciden plenamente con lo predicho por la dinámica newtoniana modificada, pero completamente contrarios a la hipótesis de la materia oscura. No es normal encontrarse con observaciones tan concluyentes.»

Para más información, consulte:

Instituto Argelander de Astronomía:
http://www.astro.uni-bonn.de

Astrophysical Journal:
http://www.iop.org/EJ/journal/apj

Monthly Notices of the Royal Astronomical Society:
http://www.wiley.com/bw/journal.asp?ref=0035-8711

Einstein acierta otra vez: la gravedad terrestre deforma el espacio y el  tiempoMateria oscura - Wikipedia, la enciclopedia libre

La Fuerza o Interacción Gravitacional, siempre ha causado controversias en el sentido de que, a pesar de Newton y de Einstein con su la Relatividad, contiene rincones oscuros en los que no hemos podido entrar y son causantes de dudas y controversias. Acordaos de aquella teoría de Dirac en la que decía que la Gravedad, con el paso del tiempo sería cambiante.

Lo cierto es que, de las cuatro fuerzas fundamentales de la Naturaleza, es la Gravedad la que siempre nos ha causado más problemas para entenderla plenamente. Claro que, la ciencia no se para, las investigaciones y las observaciones continúan sin cesar, y, surgen nuevas teorías que tratan de despejar aquellas incognitas que todavía nos ponen ante la duda y no permiten el conocimiento pleno.

Esperemos que en un futuro próximo, lleguemos a despejar todas aquellas dudas que sobre ésta fuerza elemental de la Naturaleza aún tenemos.

emilio silvera

La Astrobiología: El Origen de la Vida en el contexto del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para comprender el Universo tenemos que estudiar sus componentes, tenemos que saber de qué está hecho. La componente clásica del Universo, la que corresponde a materia y energía similares a lo que vemos a nuestro alrededor en galaxias, estrellas y planetas es una parte minoritaria: menos que el 5%. El resto está constituido por componentes exóticos, llamados por nuestro desconocimiento, simplemente energía y materia oscura.

Las leyes de la Física, aplicables a toda la materia y la energía, tienen sin duda un papel fundamental en la comprensión del Universo y por ello la Astrofísica ha tenido un desarrollo espectacular en los últimos tiempos a pesar de la escasez de materia como la que conocemos.

Archivo:Interacciones del modelo estándar de la física de particulas.png -  Wikipedia, la enciclopedia libre

Los constituyentes básicos de la materia másica conocida son los fermiones como los “quarks” (púrpura) y “leptones” (verde). Los bosones (rojo) son “materia no-másica”, simplemente son las partículas mediadoras de las fuerzas fundamentales: El fotón para el electromagnetismo, el Gluón para la fuerza nuclear fuerte, las partículas W+ y W- más la Z0 intervienen en la fuerza nuclear débil.

El experimento XENON1T podría haber detectado energía oscuraQué es la energía oscura? - VIX

 

 

La densidad media de sus constituyentes primarios es de un 68,3 % de energía oscura, un 26,8 % de materia oscura fría y un 4,9% de materia ordinaria, según datos recogidos por la sonda Planck.

Por otro lado, como el Universo es muy grande, las densidades medias son muy bajas y la materia se encuentra normalmente en estructuras muy simples, en forma de átomos y partículas individuales. La composición química del Universo y sus procesos son por ello también importantes para comprender su evolución, dando pie al uso más o menos extendido de astro-química. Sin embargo, las moléculas complejas son relativamente raras y los organismos vivos muchísimo más.

Unidad i, pres 1. historia de la biología, origen de la vida y el un…Biología, estrellas, unidades naturales…, !Universo¡ : Blog de Emilio  Silvera V.

Pin on Interesting Facts