martes, 28 de febrero del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




UNA COSMOLOGÌA NO CONVENCIONAL 1ª Parte

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología de vacío    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

UNA COSMOLOGÌA NO CONVENCIONAL

por Ramon Marquès Sala Filósofo de la Física Cuántica y de la Cosmología

RESUMEN.- Presento unos aspectos clave de la Cosmología del Vacío que, si bien no han sido demostrados ni reconocidos por la comunidad científica, tengo la esperanza que con el tiempo lo sean. En una Ciencia como la Cosmología del Vacío, donde la comprobación empírica es tan complicada, creo que la inteligencia, la intuición y la imaginación deben adelantarse.

Imagen relacionada

PALABRAS CLAVE: El big-bang, el espacio vibratorio en expansión, el bosón de Higgs, el efecto frenado, la gravedad, la masa y la inercia, el campo puro o primordial.

Imagen de archivo de colisiones de partículas en el descubrimiento del <a href=bosón de Higgs" />

INTRODUCCIÓN.- Se trata de una Cosmología no convencional. Haciéndose referencia de unos puntos de importancia capital que difieren de lo aceptado actualmente por la comunidad científica.  Lo cual no quiere decir que renuncie a su veracidad, tengo mucha fe en ellos y la esperanza que algunos aspectos apuntados se demuestren pronto, otros podrían tardar en ser reconocidos. Quizás resulte que yo no llegue a poder ver el reconocimiento, pero entiendo que la causa nunca muere y ya me considero pagado por tener la sensación de haber contribuido a ella. Algún aspecto, especialmente el efecto frenado y sus consecuencias, después del descubrimiento del bosón de Higgs, creo que sí podría darse ya por científicamente demostrado. El espacio vibratorio en expansión, del que vengo hablando desde hace muchos años, es una realidad admitida, aunque con palabras diferentes. Aunque esté convencido de mi Cosmología, esto no quita que sea consciente de que la falibilidad es una premisa fundamental de todo ser humano.
Los aspectos clave en cuestión son:

Resultado de imagen de La <a href=singularidad del Big Bang" width="299" height="393" />

1.-El big-bang no tuvo porqué comenzar en un punto
2.-El espacio vibratorio en expansión  (que equivale al espacio de Higgs) arrastra las partículas y el Universo
3.-El efecto frenado da la gravedad, la masa y la inercia
4.- Lo que han sido presentados como la enigmática energía oscura y la materia oscura.
5.-El  campo puro o primordial, un lugar para la Metafísica

1.-EL BIG-BANG NO TUVO PORQUÉ COMENZAR EN UN PUNTO.- La oposición principal a la teoría del big-bang en su momento fue la del Universo estacionario de Fred  Hoyle, pero curiosamente fue este mismo autor el que dio el espaldarazo definitivo a la teoría del big-bang, dándole el nombre y sobretodo mostrando que para la gran cantidad de H y He que existe en el Universo fue necesaria una temperatura extremadamente alta como preconiza el big-bang. Por otra parte últimamente se ha demostrado en el espacio el fondo de microondas, el resto de aquella temperatura inicial, por Arno Penzias y Robert Wilson en los laboratorios Bell.

quasars-como-resultado-de-un-choque-entre-dos-universos-paralelos/firstqsos_esa/" data-orig-file="https://milinviernos.files.wordpress.com/2012/06/firstqsos_esa.jpg?w=479" data-orig-size="650,488" data-comments-opened="1" data-image-meta="{"aperture":"0","credit":"","camera":"","caption":"","created_timestamp":"0","copyright":"","focal_length":"0","iso":"0","shutter_speed":"0","title":""}" data-image-title="primordialquasar" data-image-description="" data-medium-file="https://milinviernos.files.wordpress.com/2012/06/firstqsos_esa.jpg?w=479?w=300" data-large-file="https://milinviernos.files.wordpress.com/2012/06/firstqsos_esa.jpg?w=479?w=479" />

¿Pero fue necesario que todo comenzara en un punto inmensamente pequeño? Yo creo que no. Para mi resulta anti-intuitivo y debe haber otras opciones. Una posibilidad es que el origen del Universo fuera a consecuencia de la desestabilización y del choque entre dos universos diferentes, uno de materia y otro de anti-materia. Ello proporcionaría  una explosión con el calor necesario para la formación del H y del He, y explicaría la gran cantidad de pares de partículas- antipartículas que navegan por el vacío. Y nuestro Universo sería el resultado de las partículas que sobraron al no resultar anuladas en el apareamiento de las partículas-antipartículas consiguiente al choque.

Seguirá.

¡Objetos misteriosos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Kip Thorne, especialista en Agujeros Negros e impulsor del Proyecto LIGO que localizó las ondas gravitacionales,  nos cuenta en uno de sus libros, cómo algunos científicos especializados como él, pudieron despejar muchas de las incógnitas escondidas en los misteriosos objetos.  La idea de que Agujeros negros gigantes podían activar los cuásares y las radiogalaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos personajes de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.

Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).

En Cygnus X-1, en el centro galáctico, tenemos un Agujero Negro modesto que, sin embargo, nos envía sus ondas electromagnéticas de rayos X. En el disco de acreción, las corrientes de gas adyacentes rozarán entre sí, y la intensa fricción de dicho roce calentará el disco a altas temperaturas.

En los años ochenta, los astrofísicos advirtieron que el objeto emisor de luz brillante en el centro de 3C273, el objeto de un tamaño de 1 mes-luz o menor, era probablemente el disco de acreción calentado por la fricción de Lynden-Bell.

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273

Normalmente pensamos que la fricción es una pobre fuente de calor. Sin embargo, puesto que la energía gravitatoria es enorme, mucho mayor que la energía nuclear, la fricción puede realizar fácilmente la tarea de calentar el disco y hacer que brille con un brillo 100 veces mayor que la galaxia más luminosa.

¿Cómo puede un agujero negro actuar como un giróscopo? James Bardeen y Jacobus Petterson de la Universidad de Yale comprendieron la respuesta en 1975: si el agujero negro gira rápidamente, entonces se comporta precisamente como un giróscopo. La dirección del eje del giro permanece siempre firme fijo e inalterado, y el remolino creado por el giro en el espacio próximo al agujero permanece siempre firmemente orientado en la misma dirección.

Bardeen y Petterson demostraron mediante un cálculo matemático que este remolino en el espacio próximo al agujero debe agarrar la parte interna del disco de acreción y mantenerlo firmemente en el plano ecuatorial del agujero; y debe hacerlo así independientemente de cómo esté orientado el disco lejos del agujero.

A medida que se captura nuevo gas del espacio interestelar en la parte del disco distante del agujero, el gas puede cambiar la dirección del disco en dicha región, pero nunca puede cambiar la orientación del disco cerca del agujero. La acción giroscópica del agujero lo impide. Cerca del agujero el disco sigue y permanece siempre en el plano ecuatorial del mismo.

Sin la solución de Kerr a la ecuación de campo de Einstein, esta acción giroscópica hubiera sido desconocida y habría sido imposible explicar los cuásares. Con la solución de Kerr a mano, los astrofísicos de mitad de los años setenta estaban llegando a una explicación clara y elegante. Por primera vez, el concepto de un agujero negro como un cuerpo dinámico, más que un simple “agujero en el espacio”, estaba jugando un papel central en la explicación de las observaciones de los astrónomos.

¿Qué intensidad tendrá el remolino del espacio cerca de un agujero gigante? En otras palabras, ¿cuál es la velocidad de rotación de los agujeros gigantes? James Bardeen dedujo la respuesta: demostró matemáticamente que la acreción de gas por el agujero debería hacer que el agujero girase cada vez más rápido. Cuando el agujero hubiera engullido suficiente gas en espiral para duplicar su masa, el agujero debería estar girando casi a su velocidad máxima posible, la velocidad más allá de la cual las fuerzas centrífugas impiden cualquier aceleración adicional. De este modo, los agujeros negros gigantes deberían tener típicamente momentos angulares próximos a su valor máximo.

En las imágenes podemos contemplar galaxias que se fusionarán y, sus agujeros negros centrales se harán gigantes

¿Cómo puede un agujero negro y su Disco dar lugar a dos chorros que apuntan en direcciones opuestas? De una forma sorprendentemente fácil, reconocieron Blandford, Rees y Lynden-Bell en la Universidad de Cambridge a mediados de los setenta. Hay cuatro formas posibles de producir chorros; cualquiera de ellas funcionaria, y, aquí, donde se explica para el no versado en estos objetos cosmológicos, sólo explicaré el cuarto método por ser el más interesante:

El Agujero es atravesado por la línea de campo magnético. Cuando el agujero gira, arrastra líneas de campo que le rodean, haciendo que desvíen el plasma hacia arriba y hacia abajo. Los chorros apuntan a lo largo del eje de giro del agujero y su dirección está así firmemente anclada a la rotación giroscópica del agujero. El método fue concebido por Blandford poco después de que recibiera el doctorado de física en Cambridge, junto con un estudiante graduado de Cambridge, Roman Znajek, y es por ello llamado el proceso Blandford-Znajet.

Resultado de imagen de Agujeros negros

Algunos dicen que en los agujeros negros está la puerta hacia la quinta dimensión (una idea peregrina), si miramos la manera en que ataca a una estrella vecina y la engulle, no creo que la lleve a dar una vuelta por esa quinta dimensión que imaginó Kaluza.

Este proceso es muy interesante porque la energía que va a los chorros procede de la enorme energía rotacional del agujero (esto debería parecer obvio porque es la rotación del agujero la que provoca el remolino en el espacio, y es el remolino del espacio el que provoca la rotación de las líneas de campo y, a su vez, es la rotación de las líneas de campo la que desvía el plasma hacia fuera.)

¿Cómo es posible, en este proceso Blandford-Znajet, que el horizonte del agujero sea atravesado por líneas de campo magnético? tales líneas de campo serían una forma de “pelo” que puede convertirse en radiación electromagnética y radiada hacia fuera, y por consiguiente, según el teorema de Price, deben ser radiadas hacia fuera. En realidad, el teorema de Price solo es correcto si el agujero está aislado, lejos de cualquier otro objeto.

Pero el agujero que estamos discutiendo no está aislado, está rodeado de un disco de acreción. Así que las líneas de campo que surgen del agujero, del hemisferio norte y las que salen del hemisferio sur se doblarán para empalmarse y ser una continuación una de otra, y la única forma de que estas líneas puedan entonces escapar es abriendo su camino a través del gas caliente del disco de acreción. Pero el gas caliente no permitirá que las líneas de campo lo atraviesen; las confina firmemente en la región del espacio en la cara interna del disco, y puesto que la mayor parte de dicha región está ocupada por el agujero, la mayoría de las líneas de campo confinadas atravesarán el agujero.

Imagen relacionada

¿De donde proceden esas líneas de campo magnético? Del propio disco.

Cualquier gas en el Universo está magnetizado, al menos un poco, y el gas del disco no es una excepción. Conforme el agujero acrece, poco a poco, gas del disco, el gas lleva con él líneas de campo magnético. Cada pequeña cantidad de gas que se aproxima al agujero arrastra sus líneas de campo magnético y, al cruzar el horizonte, deja las líneas de campo detrás, sobresaliendo del horizonte y enroscándose. Estas líneas de campo enroscadas, firmemente confinadas por el disco circundante, extraerían entonces la energía rotacional del agujero mediante el proceso de Blandford-Znajet.

Los métodos de producir chorros (orificios en una nube de gas, viento de un embudo, líneas de campo arremolinadas ancladas en el disco, y el proceso Blandford-Znajet) actúan probablemente, en grados diversos, en los cuásares, en las radiogalaxias y en los núcleos característicos de algunos otros tipos de galaxias (núcleos que se denominan núcleos galácticos activos).

El 16 de marzo de 2013 se cumplió medio siglo del descubrimiento de que los cuásares eran objetos extragalácticos muy brillantes y a enormes distancias de nosotros.

Si los cuásares y las radiogalaxias están activados por el mismo tipo de máquina de agujero negro, ¿qué hace que parezcan tan diferentes? ¿Por qué la luz de un cuásar aparece como si procediera de un objeto similar a una estrella, intensamente luminoso y de un tamaño de 1 mes-luz o menos, mientras que la luz de radiogalaxias procede de un agregado de estrellas similar a la Vía Láctea, de un tamaño de 100.000 años-luz?

Parece casi seguro que los cuásares no son diferentes de las radiogalaxias; sus máquinas centrales también están rodeadas de una galaxia se estrellas de un tamaño de 100.000 a.l. Sin embargo, en un cuásar el agujero negro central está alimentado a un ritmo especialmente elevado por el gas de acreción y, consiguientemente, el calentamiento friccional del disco es también elevado. Este calentamiento del disco hace que brille tan fuertemente que su brillo óptico es cientos o miles de veces que el de todas las estrellas de la galaxia circundante juntas.

Los astrónomos, cegados por el brillo del disco, no pueden ver las estrellas de la galaxia, y por ello el objeto parece “cuasi estelar” (es decir, similar a una estrella; como un minúsculo punto luminoso intenso) en lugar de parecer una galaxia.

La región más interna del disco es tan caliente que emite rayos X; un poco más lejos el disco está más frío y emite radiación ultravioleta; aún más lejos está más frío todavía y emite radiación óptica (luz); en su región mas externa está incluso más frío y emite radiación infrarroja. La región emisora de luz tiene típicamente un tamaño de aproximadamente un año-luz, aunque en algunos casos, tales como 3C273, puede ser de un mes luz o más pequeña.

Estas explicaciones para los cuásares y las radiogalaxias basadas en agujeros negros son tan satisfactorias que es tentador asegurar que deben ser correctas.

Está claro que hemos podido acceder a muchos conocimientos que no hace mucho tiempo eran impensables pero, las teorías de Einstein y Planck, deben ser sobrepasadas y debemos ir mucho más lejos, allí donde residen esas respuestas que hasta el momento nadie ha sabido dar y que responderán a preguntas que fueron posibles formular, gracias a Einstein y Planck, ya que, sin los conocimientos que ellos nos hicieron llegar, no podríamos intuir que hay muchas cosas que están más allá de sus postulados.

emilio silvera

¿Entenderemos alguna vez la Gravedad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Las constantes de la Naturaleza    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

Resultado de imagen de Dos nuevos estudios realizados por investigadores de Australia, Austria y Alemania han puesto en entredicho la forma en la que entendemos la física de la gravedad

 

Dos nuevos estudios realizados por investigadores de Australia, Austria y Alemania han puesto en entredicho la forma en la que entendemos la física de la gravedad. Los descubrimientos, publicados en las revistas Astrophysical Journal y Monthly Notices of the Royal Astronomical Society, se basan en observaciones de galaxias enanas satélite o galaxias más pequeñas que se encuentran en el extrarradio de la gran galaxia espiral que es la Vía Láctea.

La Ley de la gravitación universal de Newton, publicada en 1687, sirve para explicar cómo actúa la gravedad en la Tierra, por ejemplo por qué cae una manzana de un árbol. El profesor Pavel Kroupa del Instituto de Astronomía Argelander de la Universidad de Bonn (Alemania) explicó que «a pesar de que su ley describe los efectos cotidianos de la gravedad en la Tierra, las cosas que podemos ver y medir, cabe la posibilidad de que no hayamos sido capaces de comprender en absoluto las leyes físicas que rigen realmente la fuerza de la gravedad».

Resultado de imagen de Ley de <a href=Newton de la Gravedad" width="304" height="276" />

La ley de Newton ha sido puesta en entredicho por distintos cosmólogos modernos, los cuales han redactado teorías contradictorias sobre la gravitación que intentan explicar la gran cantidad de discrepancias que se dan entre las mediciones reales de los sucesos astronómicos y las predicciones basadas en los modelos teóricos. La idea de que la «materia oscura» pueda ser la responsable de estas discrepancias ha ganado muchos adeptos durante los últimos años. No obstante, no existen pruebas concluyentes de su existencia.

En esta investigación, el profesor Kroupa y varios colegas examinaron «galaxias enanas satélite», cientos de las cuales deberían existir en la cercanía de las principales galaxias, incluida la Vía Láctea, según indican los modelos teóricos. Se cree que algunas de estas galaxias menores contienen tan sólo unos pocos millares de estrellas (se estima que la Vía Láctea, por ejemplo, contiene más de 200.000 millones de estrellas).

No obstante, a día de hoy sólo se ha logrado detectar treinta de estas galaxias alrededor de la Vía Láctea. Esta situación se atribuye al hecho de que, al contener tan pocas estrellas, su luz es demasiado débil como para que podamos observarlas desde una distancia tan lejana. Lo cierto es que este estudio tan detallado ha deparado resultados sorprendentes.

«En primer lugar, hay algo extraño en su distribución», indicó el profesor Kroupa. «Estas galaxias satélite deberían estar distribuidas uniformemente alrededor de su galaxia madre, pero no es el caso.»

Resultado de imagen de Once galaxias enanas que orbitan la Vía Láctea

Los investigadores descubrieron que la totalidad de los satélites clásicos de la Vía Láctea (las once galaxias enanas más brillantes) están situados prácticamente en un mismo plano que dibuja una especie de disco. También observaron que la mayoría de estas once galaxias rotan en la misma dirección en su movimiento circular alrededor de la Vía Láctea, de forma muy similar a como lo hacen los planetas alrededor del Sol.

La explicación de los físicos a estos fenómenos es que los satélites debieron surgir de una colisión entre galaxias más jóvenes. «Los fragmentos resultantes de un acontecimiento así pueden formar galaxias enanas en rotación», explicó el Dr. Manuel Metz, también del Instituto de Astronomía Argelander. Éste añadió que «los cálculos teóricos nos indican la imposibilidad de que los satélites creados contengan materia oscura».

Estos cálculos contradicen otras observaciones del equipo. «Las estrellas contenidas en los satélites que hemos observado se mueven a mucha más velocidad que la predicha por la Ley de la gravitación universal. Si se aplica la física clásica, esto sólo puede atribuirse a la presencia de materia oscura», aseveró el Dr. Metz.

Este enigma nos indica que quizás se hayan interpretado de forma incorrecta algunos de los principios fundamentales de la física. «La única solución posible sería desechar la Ley de la gravitación de Newton», indicó el profesor Kroupa. «Probablemente habitemos un universo no Newtoniano. De ser cierto, nuestras observaciones podrían tener explicación sin necesidad de recurrir a la materia oscura

Resultado de imagen de Ley de <a href=Newton de la Gravedad" width="304" height="202" />

Hasta ahora, la Ley de la gravitación de Newton sólo ha sido modificada en tres ocasiones: para incluir los efectos de las grandes velocidades (la teoría especial de la relatividad), la proximidad de grandes masas (la teoría general de la relatividad) y las escalas subatómicas (la mecánica cuántica). Ahora, las graves inconsistencias reveladas por los datos obtenidos sobre las galaxias satélite respaldan la idea de que hay que adoptar una «dinámica newtoniana modificada» (MOND) para el espacio.

La teoría MOND, propuesta en 1981, modifica la segunda ley de la dinámica de Newton para que con ella se pueda explicar la rotación a velocidad uniforme de las galaxias, que contradice las predicciones newtonianas que afirman que la velocidad de los objetos separados del centro será menor.

Los nuevos descubrimientos poseen implicaciones de gran calado para la física fundamental y para las teorías sobre el Universo. Según el astrofísico Bob Sanders de la Universidad de Groningen (Países Bajos), «los autores de este artículo aportan argumentos contundentes. Sus resultados coinciden plenamente con lo predicho por la dinámica newtoniana modificada, pero completamente contrarios a la hipótesis de la materia oscura. No es normal encontrarse con observaciones tan concluyentes.»

Para más información, consulte:

Instituto Argelander de Astronomía:
http://www.astro.uni-bonn.de

Astrophysical Journal:
http://www.iop.org/EJ/journal/apj

Monthly Notices of the Royal Astronomical Society:
http://www.wiley.com/bw/journal.asp?ref=0035-8711

Todo lo que existe es Universo: Los pensamientos también

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Constituido por innumerables galaxias de estrellas, de sistemas planetarios, multitud de Nebulosas de las que “nacen” nuevas y brillantes estrellas de todo tipo y mundos, multitud de objetos exóticos como los la variedad que encierran las estrellas de neutrones como púlsares y magnétares, o, los agujeros negros misteriosos, explosiones Supernovas, y, todo ello, en un espacio de una magnitud inimaginable para nuestras mentes que, rodeados de los objetos y las cosas cotidianas, no se paran a pensar en esas inmensas verdades que están ahí, en la lejanía del espacio-tiempo inconmensurable.

La Humanidad, nuestra especie, siempre miró hacia los confines del cielo estrellado y se hacía preguntas que no podía contestar. En muchos de los trabajos que aquí se han expuesto quedaron reflejadas aquellas Civilizaciones antiguas que nos hablaban, con sus grabaciones en la piedra de  los lejanos confines del cosmos que ellos imaginaban. Hemos podido llegar a un nivel de tecnología que nos permite otear horizontes muy lejanos y captar, con nuestros ingenios, galaxias que se podría decir, sin temor a equivocarnos, que están situados en los confines del Universo.

Podemos examinar la radiación que emiten las estrellas jóvenes, estudiar nebulosas lejanas y captar los extraños átomos y moléculas que las conforman y, al mismo tiempo, observar como se van creando las condiciones precisas de gravitación, vientos estelares y otros fenómenos cósmicos para que, en los nuevos mundos y las nuevas estrellas surjan a la vida (así lo imagino yo). Somos testigos de un carrusel cosmológico que gira y gira “eternamente” envuelto en ciclos de destrucción y creación que se suceden en presencia de energías inimaginables, para que todo siga igual al mismo tiempo que todo cambia.

             Lo cierto es que hemos encontrado mundos muy parecidos a la Tierra

Nuestro Universo ofrece las mejores condiciones para que la Vida, hiciera acto presencia en él. Sin embargo, siempre habrá dos bandos que discrepan en ese sentido: Por un lado están aquellos que creen en la presencia de la vida en múltiples mundos en las galaxias que pueblan el espacio del universo inmenso, y, por la otra parte, están aquellos que niegan tal posibilidad y se aferran a que, para que surgiera la vida en la Tierra, se tuvieron que dar tal cúmulos de condiciones que es imposible que se vuelvan a repetir en ningún otro lugar.

También es cierto que otros muchos mundos no podrían albergar la vida ni en el extremo de las posibilidades conocidas por nosotros y que denominamos extremófila por estar presente en condiciones que nunca podríamos (antes de ser descubierta), haber imaginado que pudiera ser posible que formas de vida existieran en condiciones imposibles. Existen regiones del Universo que son extremadamente peligrosas donde la radiación y las energías extremas están presentes y, ningún mundo que pudiera existir por sus alrededores tendría la posibilidad de albergar ninguna clase de vida.

Atmósferas corrosivas como la de Venus impide la presencia de vida en multitud de mundos

Somos conscientes de que no podemos vivir aislados y desde siempre hemos tratado de saber qué ocurría más allá, en la lejanía de las estrellas donde algunos imaginativos pensaban que otras criaturas habitaban un sin fín de mundos que, como la Tierra, tendrían las condiciones necesarias para ello. Para ellos, el Universo ofrecía todas las posibilidades a favor y en contra, su diversidad era tanta que mundos llenos de vida pululaban alrededor de estrellas situadas a decenas, cientos, miles o millones de años-luz de nosotros y, también, había mundos imposibles donde nada podía surgir a la vida.

Ni afirmar ni negar podemos. En lo referente a la vida en otros mundos, todo podría ser posible y la vida tanto inteligente como vegetativa en múltiples formas y con distintos metabolismos, como ocurre aquí en nuestro planeta, es posible que esté presente en aquellos mundos que como el nuestro tengan aquellos requisitos necesarios para su sustento. Atmósfera calentada por una estrella benigna que caliente el planeta, océanos y bosques, y, en defintiiva, todo aquellos que es necesario para mantener latente formas de vida que como la nuestra, parecida o totalmente diferentes, se desarrollen en un ambiente adecuado a las condiciones que cada especie pudiera requerir.

Foto

    Charles Darwin: “Creo que hasta el los lugares más inhóspitos, la vida podría estar presente.”

La vida más resistente que se conoce es la vida invisible: los microoganismos y las bacterias. Los seres vivos capaces de sobrevivir en condiciones extremas se llaman extremófilos. Sobreviven en condiciones que serían letales para cualquier otra forma de vida. Resisten temperaturas extremas, por encima del grado de ebullición del agua y por debajo del de congelación, condiciones de acidez, de falta de luz solar y de oxígeno, de presión, de salinidad… Pueden permanecer en estado de letargo durante miles de años y volver a reanimarse al contacto con el agua.

Resultado de imagen de Los extremófilos

            Podrían estar en cualquier parte

Lo único que necesitan los extremófilos es: materia orgánica, agua y una fuente de energía. La materia orgánica abunda por todo el Cosmos. Pueden emplear una fuente de energía distinta a la luz solar. De hecho, a comienzos de los 90, se descubrió una bacteria que vivía en el subsuelo, a 7 kms de profundidad, y se alimentaba a base de petróleo. Lo que sí necesita la vida extremófila es agua en estado líquido. O, al menos, así lo creemos. Hasta hoy, no hay pruebas de que ninguna forma de vida pueda sobrevivir sin agua líquida. Pero podemos estar equivocados.

Hasta ahora, la Tierra es el único lugar del universo donde está confirmada la existencia de agua en estado líquido. Pero en el propio Sistema Solar hay planetas y satélites con agua helada. Si se demostrara que los extremófilos pueden sobrevivir con agua helada, se abrirían nuevas posibilidades en la búsqueda de vida extraterrestre.

Foto

 Arquea productora de metano. Se han encontrado microorganismos productores de metano en dos ambientes extremos en la Tierra: enterrados bajo kilómetros de hielo en Groenlandia y en los suelos cálidos del desierto. Estos descubrimientos hacen más plausible la esperanza que tenemos sobre la existencia de vida en Marte.

Han pasado más de 150 años desde que Darwin publicara su famosa obra El origen de las especies. Sus ideas han prevalecido en el transcurrir del tiempo y ni los nuevos descubrimientos ni los muchos avances logrados han podido dejar de lado la idea de la evolución. Más de doscientos años después de su nacimiento, sus ideas siguen en el candelero de la Biología y nos habla de que, la vida, como el decía, puede surgir en cualquier charca embarrada y caliente.  Sus ideas han sido profundamente analizadas por los mejores especialistas en biología que han tenido que reconocer su influencia en el mundo científico de los distintos campos de la biología, en general, y de la biología evolutiva, en particular.

Pero es interesante ejemplarizar su capacidad sintetizadora y premonitoria en el por aquel entonces, campo novedoso de la biología, la extremofilia, a partir de la exploración de los lagos salobres del río negro en Argentina. A finales de 1831, Darwin se embarcó en el Beagle (ya contamos aquí aquella historia), tardaron meses en atravesar el Atlántico. Desembarcaron el Maldonado y recorrieron las costas de Uruguay y Argentina realizando numerosas observaciones geológicas, botánicas, zoológicas y antropológicas. Ciertamente, aquella “excursión” investigadora por méritos propios pasó a los anales de la Historia.

                                         La imagen está referida a la Misión Planck de la ESA

En cada tiempo hemos hecho las cosas como hemos posido, siempre en busca del saber y queriendo descubrir los secretos que la Naturaleza esconde. Darwin partió en el Beagle hacia lo desconocido en un viaje peligroso y aventurero en busca de lo desconocido. Ahora, nosotros mucho más adelantados, buscamos lo mismo: Saber. Sin emnbargo, utilizamos otros medios que, como la Misión Planck de la Esa, por ejemplo, vamos a la búsqueda del origen del Universo.

La misión que data de 2.009, no es algo improvisado que se hizo a la ligera, estuvo planificándose y preparándose durante dos décadas de manera muy cuidadosa y con exquisito esmero para cuidar hasta el último detalle dentro de las más avanzadas técnicas que la ciencia actual podía permitirse. El telescopio espacial Planck nos ha ayudado a comprender mejor la historia del Universo, desde una fracción de segundo después del Big Bang a la evolución de las estrellas y de las galaxias a lo largo de estos 13.700 millones de años. Aunque la fase de observaciones científicas ya haya terminado, el legado de esta misión sigue vivo. Planck se lanzó en el año 2009 y pasó 4.5 años observando el firmamento para estudiar cómo evolucionó la materia cósmica con el paso del tiempo.

      Planck y la radiación cósmica de microondas

Los científicos que trabajan con los datos de Planck presentaron la imagen más precisa de la radiación cósmica de microondas (CMB, por sus siglas en inglés), los restos de la radiación del Big Bang que quedaron grabados en el firmamento cuando el Universo tenía apenas 380.000 años.

La señal CMB es la imagen más precisa de la distribución de masa en el Universo primitivo. En ella se pueden detectar minúsculas fluctuaciones de temperatura que se corresponden con regiones que, en un principio, presentaban densidades ligeramente diferentes, y que constituyen las semillas de todas las estructuras, estrellas y galaxias que podemos ver hoy en día. Jan Tauber, científico del proyecto Planck para la ESA, declaraba:

“Planck nos ha proporcionado la imagen a cielo completo de la señal CMB más precisa de la historia, con la que podremos poner a prueba una gran variedad de modelos sobre el origen y la evolución del cosmos”

 

http://universodoppler.files.wordpress.com/2013/06/gaia_mapping_the_stars_of_the_milky_way_node_full_image.jpg

El objetivo principal de Gaia es crear un mapa en 3D de alta precisión de nuestra galaxia, la Vía Láctea, observando repetidamente mil millones de estrellas para determinar su posición precisa en el espacio y sus movimientos a través de él. La sonda espacial Gaia es otro de los muchos proyectos que tratan de investigar dónmde estamos situados en el contexto de nuestra Galaxia, la Vía Láctea.

Recreación artística de la nave Euclides. | ESA

La Agencia Espacial Europea (ESA)  ha dado luz verde a la misión Euclides, que se lanzará en 2020 con el objetivo de estudiar la misteriosa energía oscura que compone el 73% del Universo. La misión Euclides contará con un telescopio de 1,2 metros de diámetro que nutrirá una cámara de 576 millones de píxeles con imágenes en muy alta resolución de 2.000 millones de galaxias, equivalente a las del Telescopio Espacial Hubble. Con esos datos, y mediante tecnología de infrarrojos, los científicos desarrollarán una cartografía de las grandes estructuras del Universo y medirán la distancia entre las galaxias captadas por la cámara.

El telescopio WISE ha llegó al final de su fase de mapear en infrarrojo, pero continuó con la misión de realizar el siguimiento de los más cercanos cometas y asteroides, además de enanas marrones. Se ideó un telescopio infrarrojo que orbitara la Tierra y que ha sido empleado para mapear objetos fríos, polvorientos o lejanos que los telescopios de luz visible no pueden observar. Durante 2010 ha tomó más de 1,8 millones de fotografías utilizando su telescopio de 16 pulgadas y cuatro detectores de longitudes de onda infrarrojas, observando el cielo una vez y media, descubriendo estrellas, cometas y más de 33.500 asteroides en el proceso.

[Img #13113]

“Un sistema de cinco planetas, de los cuales dos tienen un radio 1,41 y 1,61 veces superior al de la Tierra y están en la zona habitable”. Este es el título de un estudio que investigadores internacionales publican esta semana en Science. El hallazgo ha sido posible gracias a las observaciones del telescopio espacial Kepler de la NASA. La estrella anfitriona es Kepler-62 y los dos planetas protagonistas se han bautizado como Kepler-62 e y f, orbitando más lejos que sus compañeros b, c y d. A Kepler-62 e y f llega un flujo solar desde su estrella parecido al que reciben Venus y Marte por parte de nuestro Sol. Respectivamente, los dos exoplanetas reciben alrededor de 1,2 y 0,41 veces la radiación solar que alcanza la Tierra. Basándose en modelos y simulaciones computacionales, los científicos consideran que el tamaño de estos dos nuevos planetas sugiere que podrían ser rocosos, como la Tierra, o estar compuestos de agua sólida.

Resultado de imagen de La NASA descubre 7 planetas de los que 3 podrían ser habitablesResultado de imagen de La NASA descubre 7 planetas de los que 3 podrían ser habitables

Hace unos pocos días nos sorprendieron con la noticia. El nuevo sistema solar orbita en torno a una estrella enana roja llamada Trappist-1, un astro del tamaño de Júpiter ubicado en la constelación de Acuario a 40 años luz de nosotros.

Si miramos al cielo en una noche oscura y estamos en el lugar adecuado, podremos contemplar, la inemnsidad en la que estamos inmersos y situados en un pequeño planeta apto para albergar la vida, podemos admirar parte de nuestra Galaxia, la Vía Láctea que nunca hemos podido contemplar en su totalidad al estar confinados en el planeta y no tener los medios para salir fuera y poder tomar una imagen completa del lugar en el que vivimos. Podemos hacerlo con otras galaxias lejanas y, de la nuestra, sólo la conocemos por datos parciales que podemos ir juntando en los diversos estudios que para ello hemos llevado a cabo y seguimos llevando con misiones que, como las que más arriba se reseñan, nos facilitan datos precisos para que podamos saber, de nuestro lugar en el Universo desde esta Galaxía que es sólo una de entre cien mil millones.

Desde un lugar minúsculo, un pequeño terrón de roca y agua que orbita una estrella mediana que le suministra la luz y el calor necesario para que podamos estar aquí, sin pararnos a pensar en nuestra ínfima medida en el contexto del Universo,y, sin embargo, lo cierto es que lo queremos conquistar.

¡Ilusos!

emilio silvera

Causalidad ¡Ese Principio!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Descartes, Leibniz, Locke, Berkeley, Hume (que influyó decisivamente en Kant), entre otros, construyeron una base que tomó fuerza en Kant, para quien el conocimiento arranca o nace de nuestras experiencias sensoriales, es decir, de los datos que nos suministra nuestros cinco sentidos, pero no todo en él procede de esos datos.  Hay en nosotros dos fuentes o potencias distintas que nos capacitan para conocer, y son la sensibilidad (los sentidos) y el entendimiento (inteligencia).  Esta no puede elaborar ninguna idea sin los sentidos, pero éstos son inútiles sin el entendimiento.

Todo lo que pasa es causa de lo que antes pasó.  Y, ese Principio de la Física de la Causalidad, no está sólo allí presente, y, es tan cierto que, hasta en los Códigos legales se recogen sus esencias:En el art. 901 del CC, podemos leer: “Un efecto es adecuado a su causa cuando “acostumbra a suceder según el curso natural y ordinario de las cosas” . Como es natural, se refiere al efecto de las condiciones iniciales que marcarán las finales.
      También aquí, está presente la causalidad
En física existe un Principio que llaman !Causalidad! y en virtud del cual el efecto no puede preceder a la causa. Es muy útil cuando se conbina con el principio de que la máxima velocidad del universo es la velocidad de la luz en el vacío. Lo cierto es que, todo lo que ocurre es causa de algo que antes sucedió. Contaremos algunas cosas que tuvieron sus consecuencias.
En 1.893 el físico irlandés George Francis Fitzgerald emitió una hipótesis para explicar los resultados negativos del experimento conocido de Michelson-Morley. Adujo que toda la materia se contrae en la dirección del movimiento, y que esa contracción es directamente proporcional al ritmo (velocidad) del movimiento.

Según tal interpretación, el interferómetro se quedaba corto en la dirección del “verdadero” movimiento terrestre, y lo hacía precisamente en una cantidad que compensaba con toda exactitud la diferencia de distancias que debería recorrer el rayo luminoso. Por añadidura, todos los aparatos medidores imaginables, incluyendo los órganos sensoriales humanos, experimentarían ese mismo fenómeno.

 

                       Esquema de un interferómetro de Michelson.

 

Visualización de los anillos de interferencia.

Parecía como si la explicación de Fitzgerald insinuara que la naturaleza conspiraba con objeto de impedir que el hombre midiera el movimiento absoluto, para lo cual introducía un efecto que anulaba cualquier diferencia aprovechable para detectar dicho movimiento.

Este asombroso fenómeno recibió el nombre de contracción de Fitzgerald, y su autor formuló una ecuación para el mismo, que referido a la contracción de un cuerpo móvil, fue predicha igualmente y de manera independiente por H. A. Lorentz (1.853 – 1.928) de manera que, finalmente, se quedaron unidos como contracción de Lorentz-Fitzgerald.

A la contracción, Einstein le dio un marco teórico en la teoría especial de la relatividad. En esta teoría, un objeto de longitud l0 en reposo en un sistema de referencia parecerá, para un observador en otro sistema de referencia que se mueve con velocidad relativa v con respecto al primero, tener longitud contraccion_l-f, donde c es la velocidad de la luz. La hipótesis original atribuía esta contracción a una contracción real que acompaña al movimiento absoluto del cuerpo. La contracción es en cualquier caso despreciable a no ser que v sea del mismo orden o cercana a c.

Un objeto que se moviera a 11,2 Km/s (la velocidad de escape de nuestro planeta) experimentaría sólo una contracción equivalente a 2 partes por cada 1.000 millones en el sentido del vuelo. Pero a velocidades realmente elevadas, tal contracción sería sustancial. A unos 150.000 Km/s (la mitad de la velocidad de la luz) sería del 15%; a 262.000 Km/s (7/8 de la velocidad de la luz), del 50%. Es decir, que una regla de 30 cm que pasara ante nuestra vista a 262.000 Km/s nos parecería que mide sólo 15’24 cm, siempre y cuando conociéramos alguna manera para medir su longitud en pleno vuelo. Y a la velocidad de la luz, es decir, 300.000 Km/s en números redondos, su longitud en la dirección del movimiento sería cero. Puesto que, presuntamente, no puede existir ninguna longitud inferior a cero, se deduce que la velocidad de la luz en el vacío es la mayor que puede imaginarse el universo.

El físico holandés Henrik Antón Lorentz, como hemos dicho, promovió esta idea pensando en los rayos catódicos (que ocupaban su actividad por aquellas fechas). Se hizo el siguiente razonamiento: si se comprimiera la carga de una partícula para reducir su volumen, aumentaría su masa. Por consiguiente, una partícula voladora, escorzada en la dirección de su desplazamiento por la contracción de Fitzgerald, debería crecer en términos de masa. Lorentz presentó una ecuación sobre el acrecentamiento de la masa, que resultó muy similar a la ecuación de Fitzgerald sobre el acortamiento. A 149.637 Km/s la masa de un electrón aumentaría en un 15%; a 262.000 Km/s, en un 100% (es decir, la masa se duplicaría); y a la velocidad de la luz, su masa sería infinita. Una vez más pareció que no podría haber ninguna velocidad superior a la de la luz, pues, ¿cómo podría ser una masa mayor que infinita?

El efecto Fitzgerald sobre longitudes y el efecto Lorentz sobre masas mantuvieron una conexión tan estrecha que aparecieron a menudo agrupadas como las ecuaciones Lorentz-Fitzgerald.

Mientras que la contracción Fitzgerald no podía ser objeto de mediciones, el efecto Lorentz sobre masas sí podía serlo, aunque indirectamente. De hecho, el muón tomó 10 veces su masa original cuando fue lanzado, a velocidades relativistas, en el acelerador de partículas, lo que confirmó la ecuación de Lorentz. Los experimentos posteriores han confirmado las ecuaciones de ambos: a velocidades relativistas, las longitudes se contraen y las masas se incrementan.

Como es conocido por todos, Einstein adoptó estos descubrimientos y los incorporó a su teoría de la relatividad especial, que aunque mucho más amplia, recoge la contracción de Fitzgerald y el aumento de la masa de Lorentz cuando se alcanzan grandes velocidades.

Algunas veces pienso que los artistas en general, y los poetas en particular, tendrían que adaptar e incluir en sus esquemas artísticos y poéticos los adelantos científicos, para asimilarlos en las diversas expresiones y sentimientos que serán después puestos al servicio del consumo humano. Estos adelantos científicos serían así coloreados con las pasiones humanas, y transformados, de alguna forma, en la sangre, y por qué no, los sentimientos de la naturaleza humana. Posiblemente, de haberlo hecho, el grado general de conocimiento sería mayor. De todas las maneras, no dejamos de avanzar en el conocimiento de la Naturaleza.

Hacemos mil y un inventos para poder llegar a lugares que, hasta hace muy poco tiempo se pensaba que nos estaban vedados. Y, a pesar de ello, la cultura científica, en general es pobre. Sólo uno de cada tres puede definir una molécula o nombrar a un solo científico vivo. De veinticinco licenciados escogidos al azar en la ceremonia de graduación de Harvard, sólo dos pudieron explicar por qué hace más calor en verano que en invierno. La respuesta, dicho sea de paso, no es “porque el Sol está más cerca”; no está más cerca. El eje de rotación de la Tierra está inclinado, así que cuando el hemisferio norte se inclina hacia el Sol, los rayos son más perpendiculares a la superficie, y la mitad del globo disfruta del verano. Al otro hemisferio llegan rayos oblicuos: es invierno. Es triste ver cómo aquellos graduados de Harvard podían ser tan ignorantes. ¡Aquí los tenemos con faltas de ortografía!

Por supuesto, hay momentos brillantes en los que la gente se sorprende. Hace años, en una línea de metro de Manhattan, un hombre mayor se las veía y deseaba con un problema de cálculo elemental de su libro de texto de la escuela nocturna; no hacía más que resoplar. Se volvió desesperado hacia el extraño que tenía a su lado, sentado junto a él, y le preguntó si sabía cálculo. El extraño afirmó con la cabeza y se puso a resolverle al hombre el problema. Claro que no todos los días un anciano estudia cálculo en el metro al lado del físico teórico ganador del Nobel de Física, T. D. Lee.

Leon Lederman cuenta una anécdota parecida a la del tren, pero con final diferente. Salía de Chicago en un tren de cercanías cuando una enfermera subió a él a la cabeza de un grupo de pacientes de un hospital psiquiátrico local. Se colocaron a su alrededor y la enfermera se puso a contarlos: “uno, dos tres…”. Se quedó mirando a Lederman y preguntó “¿quién es usted?”; “soy Leon Lederman” – respondió – “ganador del premio Nobel y director del Fermilab”. Lo señaló y siguió tristemente “sí claro,  cuatro, cinco, seis…”. Son cosas que ocurren a los humanos; ¡tan insignificantes y tan grandes! Somos capaces de lo mejor y de lo peor. Ahí tenemos la historia para ver los ejemplos de ello.

Resultado de imagen de La ciencia y la tecnología

Pero ahora más en serio, es necesario preocuparse por la incultura científica reinante, entre otras muchas razones porque la ciencia, la técnica y el bienestar público están cada día más conectados. Y, además, es una verdadera pena perderse la concepción del mundo que, en parte, he plasmado en estas páginas. Aunque aparezca incompleta, se puede vislumbrar que posee grandiosidad y belleza, y va asomándose ya su simplicidad.

“El proceso de la ciencia es el descubrimiento a cada paso de un nuevo orden que de unidad a lo que desde hacía tiempo parecía desunirlo.”

- Es lo que hizo Faraday cuando cerró el vínculo que unió la electricidad y el magnetismo.

- Es lo que hizo Clerk Maxwell cuando unió aquélla y éste con la luz.

- Einstein unió el tiempo y el espacio, la masa a la energía y relacionó las grandes masas cosmológicas con la curvatura y la distorsión del tiempo y el espacio para traernos la gravedad en un teoría moderna; y dedicó los últimos años de su vida al intento de añadir a estas similitudes otra manera nueva y más avanzada, que instaurara un orden nuevo e imaginativo entre las ecuaciones de Maxwell y su propia geometría de la gravitación.

 

 

Clic para ampliarClic para ampliar

Clic para ampliarClic para ampliar

Clic para ampliarClic para ampliar

 

Algunos momentos de la vida del Maestro

 

Cuando Coleridge intentaba definir la belleza, volvía siempre a un pensamiento profundo: la belleza, decía, “es la unidad de la variedad”. La ciencia no es otra cosa que la empresa de descubrir la unidad en la variedad  desaforada de la naturaleza, o más exactamente, en la variedad de nuestra experiencia que está limitada por nuestra ignorancia.

 

 

 

Hay muchas cosas que no podemos controlar, sin embargo, algo dentro de nosotros, nos envía mensajes sobre lo que podría ser importante para que nos fijemos mejor y continuemos profundizando.

Para comprender mejor el panorama, hagamos una excursión hasta la astrofísica; hay que explicar por qué la física de partículas y la astrofísica se han fundido no hace muchos años, en un nivel nuevo  de intimidad, al que alguien llamó la conexión espacio interior/espacio exterior.

Mientras los expertos del espacio interior construían aceleradores, microscopios cada vez más potentes para ver qué pasaba en el dominio subnuclear, los colegas del espacio exterior sintetizaban los datos que tomaban unos telescopios cada vez más potentes, equipados con nuevas técnicas cuyo objeto era aumentar su sensibilidad y la capacidad de ver detalles finos. Otro gran avance fueron los observatorios establecidos en el espacio, con sus instrumentos para detectar infrarrojos, ultravioletas, rayos X y rayos gamma; en pocas palabras, toda la extensión del espectro electromagnético, muy buena parte del cual era bloqueado por nuestra atmósfera opaca y distorsionadora.

                                                                                ¿Hasta donde llegaremos?

La síntesis de la cosmología de los últimos cien años es el modelo cosmológico estándar. Sostiene que el universo empezó en forma de un estado caliente, denso, compacto, hace unos 15.000 millones de años. El universo era entonces infinitamente, o casi infinitamente, denso; infinita, o casi infinitamente, caliente. La descripción “infinito” es incómoda para los físicos; los modificadores son el resultado de la influencia difuminadota de la teoría cuántica. Por razones que quizá no conozcamos nunca, el universo estalló, y desde entonces ha estado expandiéndose y enfriándose.

Ahora bien, ¿cómo se han enterado de eso los cosmólogos? El modelo de la Gran Explosión (Big Bang) nació en los años treinta tras el descubrimiento de que las galaxias (conjuntos de 100.000 millones de estrellas, aproximadamente) se estaban separando entre sí, descubrimiento hecho por Edwin Hubble, que andaba midiendo sus velocidades en 1.929.

Hubble tenía que recoger de las galaxias lejanas una cantidad de luz que le permitiera resolver las líneas espectrales y compararlas con las líneas de los mismos elementos de la Tierra. Cayó en la cuenta de que todas las líneas se desplazaban sistemáticamente hacia el rojo. Se sabía que una fuente de luz que se aparta de un observador hace justo eso. El desplazamiento hacia el rojo era, de hecho, una medida de la velocidad relativa de la fuente y del observador.

Más tarde, Hubble halló que las galaxias se alejaban de él en todas las direcciones; esto era una manifestación de la expansión del espacio. Como el espacio expande las distancias entre todas las galaxias, la astrónoma Hedwina Knubble, que observase desde el planeta Penunbrio en Andrómeda, vería el mismo efecto o fenómeno: las galaxias se apartaría de ella.

Cuanto más distante sea el objeto, más deprisa se mueve. Esta es la esencia de la ley de Hubble. Su consecuencia es que, si se proyecta la película hacia atrás, las galaxias más lejanas, que se mueven más deprisa, se acercarán a los objetos más próximos, y todo el lío acabará juntándose y se acumulará en un volumen muy, muy pequeño, como, según se calcula actualmente, ocurría hace 15.000 millones de años.

La más famosa de las metáforas científicas te pide que imagines que eres una criatura bidimensional, un habitante del Plano. Conoces el este y el oeste, el norte y el sur, pero arriba y abajo no existen; sacaos el arriba y debajo de vuestras mentes. Vivís en la superficie de un globo que se expande. Por toda la superficie hay residencias de observadores, planetas y estrellas que se acumulan en galaxias por toda la esfera; todo bidimensional. Desde cualquier atalaya, todos los objetos se apartan a medida que la superficie se expande sin cesar. La distancia entre dos puntos cualesquiera de este universo crece. Eso es lo que pasa, precisamente, en nuestro mundo tridimensional. La otra virtud de esta metáfora es que, en nuestro universo, no hay ningún lugar especial. Todos los sitios o puntos de la superficie sin democráticamente iguales a todos los demás. No hay centro; no hay borde. No hay peligro de caerse del universo. Como nuestra metáfora del universo en expansión (la superficie del globo) es lo único que conocemos, no es que las estrellas se precipiten dentro del espacio. Lo que se expande es que espacio que lleva toda la barahúnda. No es fácil visualizar una expansión que ocurre en todo el universo. No hay un exterior, no hay un interior. Sólo hay este universo que se expande. ¿En qué se expande? Pensad otra vez en vuestra vida como habitante del Plano, de la superficie del globo: en nuestra metáfora no existe nada más que la superficie.

Instalaciones en las entrañas de la Tierra que posibilitan viajar a lo más profundo de la materia

                  Hemos inventado tecnología que ha posibilitado que no estemos confinados en el planeta

Es mucho lo que podemos imaginar. Sin embargo, lo cierto es que,  como nos decía Popper:
“Cuánto más profundizo en el conocimiento de las cosas más consciente soy de lo poco que se. Mientras que mis conocimientos son finitos, mi ignorancia es ilimitada.”

Dos consecuencias adicionales de gran importancia que tiene la teoría del Big Bang acabaron por acallar la oposición, y ahora reina un considerable consenso. Una es la predicción de que la luz de la incandescencia original (presuponiendo que fue muy caliente) todavía está a nuestro alrededor, en forma de radiación remanente. Recordad que la luz está constituida por fotones, y que la energía de los fotones está en relación inversa con la longitud de onda. Una consecuencia de la expansión del universo es que todas las longitudes se expanden. Se predijo, pues, que las longitudes de onda, originalmente infinitesimales, como correspondía a unos fotones de gran energía, han crecido hasta pertenecer ahora a la región de las microondas, en la que las longitudes son unos pocos milímetros.

En 1.965 se descubrieron los rescoldos del Big Bang, es decir, la radiación de fondo de microondas. Esos fotones bañan el universo entero, y se mueven en todas las direcciones posibles. Los fotones que emprendieron viaje hace miles de millones de años cuando el universo era más pequeño y caliente, fueron descubiertos por una antena de los laboratorios Bell en Nueva Jersey.

File:WMAP Leaving the Earth or Moon toward L2.jpg

 

                                                  Imagen del WMAP de la anisotropía de la temperatura del CMB.

 

Así que el descubrimiento hizo imprescindible medir la distribución de las longitudes de onda, y se hizo. Por medio de la ecuación de Planck, esta medición de la temperatura media de lo que quiera (el espacio, las estrellas, polvo, un satélite, los pitidos de un satélite que se hubiese colado ocasionalmente) que haya estado bañándose en esos fotones.

Las mediciones últimas efectuadas por la NASA con el satélite COBE dieron un resultado de 2’73 grados sobre el cero absoluto (2’73 ºK). Esta radiación remanente es una prueba muy potente a favor de la teoría del Big Bang caliente.

Los astrofísicos pueden hablar tan categóricamente porque han calculado qué distancias separaban a dos regiones del cielo en el momento en que se emitió la radiación de microondas observadas por el COBE. Ese momento ocurrió 300.000 años después del Big Bang, no tan pronto como sería deseable, pero sí lo más cerca del principio que podemos.

Resulta que temperaturas iguales en regiones separadas del espacio que nunca habían estado en contacto y cuyas separaciones eran tan grandes que ni siquiera a la velocidad de la luz daba tiempo para que las dos regiones se comunicasen, y sin embargo, sí tenían la misma temperatura. La teoría del Big Bang no podía explicarlo; ¿un fallo?, ¿un milagro? Se dio en llamar a eso la crisis de la causalidad, o de la isotropía.

         Considerado a grandes escalas, el Universo es isotrópico

De la causalidad porque parecía que había una conexión causal entre distintas regiones del cielo que nunca debieran haber estado en contacto; de la isotropía porque donde quiera que mires a gran escala verás prácticamente el mismo patrón de estrellas, galaxias, cúmulos y polvo estelar. Se podría sobrellevar esto en un modelo del Big Bang diciendo que la similitud de las miles de millones de piezas del universo que nunca estuvieron en contacto es puro accidente. Pero no nos gustan los “accidentes”: los milagros están estupendamente si jugamos a la lotería, pero no en la ciencia. Cuando se ve uno, los científicos sospechan que algo más importante se nos mueve entre bastidores. Me parece que mi inclinación científica me hace poco receptivo a los milagros. Si algo para habrá que buscar la causa.

Resultado de imagen de Un universo de hidrógeno y Helio

El segundo éxito de gran importancia del modelo del Big Bang tiene que ver con la composición de nuestro universo. Puede parecer que el mundo está hecho de aire, tierra, agua y fuego, pero si echamos un vistazo arriba y medimos con nuestros telescopios espectroscópicos, apenas sí encontramos algo más que hidrógeno, y luego helio. Entre ambos suman el 98% del universo que podemos ver. El resto se compone de los otros noventa elementos. Sabemos gracias a nuestros telescopios espectroscópicos las cantidades relativas de los elementos ligero, y hete aquí que los teóricos del Big Bang dicen que esas abundancias son precisamente las que cabría esperar. Lo sabemos así.

 

 

El universo prenatal tenía en sí toda la materia del universo que hoy observamos, es decir, unos cien mil millones de galaxias, cada una con cien mil millones de soles. Todo lo que hoy podemos ver estaba comprimido en un volumen muchísimos menos que la cabeza de un alfiler. La temperatura era alta, unos 1032 grados Kelvin, mucho más caliente que nuestros 273 ºK actuales. Y en consecuencia la materia estaba descompuesta en sus componentes primordiales.

Una imagen aceptable de aquello es la de una “sopa caliente”, o plasma, de quarks y leptones (o lo que haya dentro, si es que hay algo) en la que chocan unos contra otros con energías del orden de 1018 GeV, o un billón de veces la energía del mayor colisionador que cualquier físico pueda imaginarse construir. La gravedad era rugiente, con su poderoso (pero aún mal conocido) influjo en esta escala microscópica.

Tras este comienzo fantástico, vinieron la expansión y el enfriamiento. A medida que el universo se enfriaba, las colisiones eran menos violentas. Los quarks, en contacto íntimo los unos con los otros como partes del denso grumo que era el universo infantil, empezaron a coagularse en protones, neutrones y los demás hadrones. Antes, esas uniones se habrían descompuesto en las inmediatas y violentas colisiones, pero el enfriamiento no cesaba; aumentaba con la expansión y las colisiones eran cada vez más suaves.

                                   La máquina del big bang reveló que, en aquellos primeros momentos…

Aparecieron  los protones y los neutrones, y se formaran núcleos estables. Este fue el periodo de nucleosíntesis, y como se sabe lo suficiente de física nuclear se pueden calcular las abundancias relativas de los elementos químicos que se formaron. Son los núcleos de elementos muy ligeros; los más pesados requieren de una “cocción” lenta en las estrellas.

Claro que, los átomos (núcleos más electrones) no se formaron hasta que la temperatura no cayó lo suficiente como para que los electrones se organizaran alrededor de los núcleos, lo que ocurrió 300.000 años después, más o menos. Así que, en cuanto se formaron los átomos neutros, los fotones pudieron moverse libremente, y ésta es la razón de que tengamos una información de fotones de microondas todavía.

La nucleosíntesis fue un éxito: las abundancias calculadas y las medidas coincidían. Como los cálculos son una mezcla íntima de física nuclear, reacciones de interacción débil y condiciones del universo primitivo, esa coincidencia es un apoyo muy fuerte para la teoría del Big Bang.

En realidad, el universo primitivo no era más que un laboratorio de acelerador con un presupuesto ilimitado. Nuestros astrofísicos tenían que saberlo todo acerca de los quarks y los leptones y las fuerzas para construir un modelo de evolución del universo. Los físicos de partículas reciben datos de su experimento grande y único. Por supuesto, para los tiempos anteriores a los 10-13 segundos, están mucho menos seguros de las leyes de la física. Así que, los astrofísicos azuzan a los teóricos de partículas para que se remanguen y contribuyan al torrente de artículos que los físicos teóricos lanzan al mundo con sus ideas: Higgs, unificación de cuerdas vibrantes, compuestos (qué hay dentro de los quarks) y un enjambre de teorías especulativas que se aventuran más allá del modelo estándar para construir un puente que nos lleve a la descripción perfecta del universo, de la Naturaleza. ¿Será posible algún día?

Esperemos a ver qué pasa con la historia que comenzaron Grabielle Veneziano, John Schwartz, André Neveu, Pierre Ramond, Jeff Harvey, Joel Sheik, Michael Green, David Gross y un dotado flautista de Hamelin que responde al nombre de Edward Witten.

La teoría de cuerdas es una teoría que nos habla de un lugar muy distante. Dice Leon Lederman que casi tan distante como Oz o la Atlántida; hablamos del dominio de Planck. No ha forma de que podamos imaginar datos experimentales en ese tiempo tan lejano; las energías necesarias (las de la masa de Planck) no están a nuestro alcance, lo que significa que no debemos perseverar.

Por lejos que esté… Siempre querremos llegar. ¿Qué habrá allí dónde nuestra vista no llega? ¿Cómo será aquel universo?

¿Por qué no podemos encontrar una teoría matemáticamente coherente (sin infinitos) que describa de alguna manera Oz? ¡Dejar de soñar, como de reír, no es bueno!

Pero en verdad, al final de todo esto, el problema es que siempre estarmos haciendo preguntas: Que si la masa crítica, que si el universo abierto, plano o cerrado… Que si la materia y energía del universo es más de la que se ve. Pasa lo contrario que con nuestra sabiduría (queremos hacer ver que hay más… ¡de la que hay!), que parece mucha y en realidad es tan poca que ni podemos contestar preguntas sencillas como, por ejemplo: ¿Quiénes somos?

 Ahí, ante esa pregunta “sencilla” nos sale una imagen movida que no deja ver con claridad

Sin embargo, hemos sabido imaginar para poder desvelar algunos otros secretos del universo, de la Naturaleza, del Mundo que nos acoge y, sabemos cómo nacen, viven y mueren las estrellas y lo que es una galaxia. Podemos dar cuenta de muchas cuestiones científicas mediante modelos que hemos ideado para explicar las cosas. No podemos físicamente llegar a otras galaxias y nos hemos inventado telescopios de inmensa capacidad para llegar hasta las galaxias situadas a 12.000 millones de años luz de la Tierra. También, hemos sabido descifrar el ADN y, si ninguna catástrofe lo remedia… ¡Viajaremos por las estrellas!

Claro que, sabemos representar los Modelos de Universo que imaginamos, y, aún no hemos llegado a saber lo que el Universo es. ¡Nuestra imaginación! que siempre irá por delante de la realidad que nos rodea y que no siempre sabemos ver. Todo es, como dijo aquel, la belleza que se nos regala: “La unidad de la variedad”. Además, no debemos olvidar que, todo lo grande está hecho de cosas pequeñas.

emilio silvera