jueves, 23 de marzo del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Por qué es difícil viajar a Marte? II (Desde la NASA)

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                      Fotograma de la película ‘Marte’ (‘The Martian’). EM

¿Por qué es difícil ir a Marte? (II)

 

 

En la pasada entrada contextualizamos el problema de una misión humana a Marte para apreciar la dimensión del desafío que supone. Como vimos, la principal razón que la hace difícil es la enorme distancia que nos separa de ese planeta, lo que implica que la misión tendría una duración total de aproximadamente 2 años y medio. En esta entrada vamos a concretar cómo se plantea hoy en día esta misión, tomando como ejemplo la oportunidad para el año 2037.

Según está propuesto en la actualidad, para completar una misión humana a Marte serán necesarias 3 naves: dos de carga y una para la tripulación. Una de las naves de carga transportará a Marte el hábitat que albergará a la tripulación durante su estancia de 539 días en la superficie marciana. Este hábitat se denomina SHAB (Surface Habitat), y es ahí donde Mark Watney, el protagonista de ‘Marte’ The Martian, trata de sobrevivir en solitario.

 

 

 

 

La otra nave de carga es el denominado ‘vehículo de descenso y ascenso’, o DAV (Descent and Ascent Vehicle). El DAV es la nave a bordo de la que la tripulación, una vez acabada su estancia en Marte, abandonará este planeta, y es, por tanto, la nave que utiliza la tripulación al principio de la película para abortar su estancia en la superficie marciana en medio de una feroz tormenta de arena.

La nave con la tripulación es conocida como ‘vehículo de transferencia para Marte’, o MTV (Mars Transfer Vehicle), y es la que se encargará de transportar a la tripulación en sus dos trayectos interplanetarios: el de ida a Marte y el de regreso a la Tierra (las naves de carga solo tienen tiques de ida).

 

 

 

Concepto de vehículo de transferencia de tripulación para Marte. Fuente: NASA.

 

Estas tres naves habrán de ensamblarse en una órbita baja alrededor de la Tierra antes de ser enviadas por separado a Marte, pero estos ensamblajes y envíos se harán en tiempos distintos. Las naves de carga (SHAB y DAV) serán las primeras en ser ensambladas, y serán lanzadas al planeta rojo dos años antes que el MTV con la tripulación. ¿Por qué dos años? Porque es aproximadamente cada dos años que se da la posición relativa precisa entre Marte y la Tierra que permite que entre ambos planetas se pueda volar una trayectoria por la que se minimiza la cantidad de combustible a utilizar. Esto es de gran importancia porque son muchas las toneladas de combustible que se necesitan para hacer posible una misión así, como veremos luego.

 

 

 

Concepto de nave de carga para Marte. Fuente: NASA.

 

Una vez ensamblada cualquiera de estas tres naves en órbita alrededor de la Tierra, cada una de ellas es lanzada desde ahí hacia Marte a través del encendido de sus motores durante un corto espacio de tiempo. La nave es así acelerada hasta adquirir la velocidad necesaria para abandonar la influencia gravitatoria terrestre y dirigirse hacia Marte a lo largo de una trayectoria interplanetaria que es, en realidad, una órbita elíptica alrededor del Sol y cuyo punto más lejano intersectará con el paso de Marte por ese punto en el momento preciso. Cuando la velocidad deseada ha sido alcanzada, los motores se apagan y permanecen así durante toda la travesía (se encenderán en algún momento para hacer alguna corrección en la trayectoria). A pesar de encender los motores durante un corto espacio de tiempo, del orden de pocos minutos o decenas de minutos, la cantidad de combustible que se utiliza es enorme (decenas de toneladas).

Este lanzamiento hacia Marte desde una órbita baja alrededor de la Tierra se denomina ‘inyección transmarciana’, y nos referimos a él como TMI (Trans-Mars Injection). Nótese que al regreso de la tripulación desde Marte, el mismo proceso ocurrirá desde allí en sentido inverso: desde una órbita alrededor de Marte, la nave encenderá sus motores por un corto espacio de tiempo en lo que se denomina ‘inyección transterrestre’, o TEI (Trans-Earth Injection).

 

 

 

 

Una vez llegada una nave a las proximidades de Marte, esta debe frenarse para quedar capturada en una órbita alrededor de ese planeta desde donde acometer las siguientes operaciones. Esta maniobra de frenado se denomina ‘inserción en órbita marciana’, o MOI (Mars Orbit Insertion). El MOI puede hacerse de forma propulsada, encendiendo los motores otro corto espacio de tiempo, o de forma aeroasistida, utilizando la atmósfera marciana para frenar la nave en una maniobra llamada ‘aerocaptura’. Esta última opción se ha propuesto solo para las naves de carga de forma que sería mucho el combustible que se ahorraría en la misión. El problema es que nunca se ha volado una aerocaptura hasta la fecha, con lo que esta capacidad habría de ser demostrada antes. El SHAB (la nave portando el hábitat) permanecerá en órbita alrededor de Marte a la espera de la tripulación, pero el DAV (vehículo de descenso y ascenso) descenderá a la superficie marciana de forma autónoma.

El DAV será la nave de ascenso que utilizará la tripulación en su día para despegar de la superficie al acabar su estancia en el planeta rojo. Con objeto de ahorrar el combustible necesario para ese lanzamiento, se propone que el DAV no porte el combustible con él, sino que lo produzca en Marte, in situ. Y es que sería prohibitiva la masa de una nave que descendiera a la superficie de Marte con el combustible para el lanzamiento posterior de 6 personas al finalizar su estancia allí. De hecho, se propone que el DAV no solo produzca in situ el combustible, siendo el metano/oxígeno la opción preferida, sino que también produzca el oxígeno, nitrógeno y el agua necesarios para la tripulación. Esta es otra área que precisa investigación y desarrollo tecnológico.

Dos años después de haber enviado las dos naves de carga, y después de comprobar que los consumibles (combustible, aire, agua) hayan sido producidos en Marte y de que todo allí funcione correctamente, la tripulación será lanzada finalmente al planeta rojo desde la Tierra. Una vez en órbita alrededor de Marte, el MTV (la nave en la que viaja la tripulación) se encontrará con el SHAB, que lo espera en órbita alrededor de Marte. Los astronautas pasarán al SHAB y procederán a bordo de esta nave al descenso a la superficie, donde aterrizarán a una corta distancia del DAV.

 

                Ejemplo de misión a Marte propuesta para la oportunidad de 2037. Fuente: NASA.

El descenso a Marte de naves de tanta masa es a día de hoy un problema no resuelto. Hasta la fecha se han enviado a Marte vehículos exploradores y aterrizadores de muy poca masa. El principal problema reside en que la atmósfera marciana es muy tenue y no consigue frenar una nave de reentrada lo suficiente sin necesidad de emplear retropropulsión supersónica o enormes superficies de frenado si la nave es lo suficientemente masiva. La tecnología a día de hoy permite como máximo aterrizar en Marte masas de alrededor de una tonelada, un valor muy lejano de las naves de varias decenas de toneladas que habrá que poder aterrizar en una misión humana, por lo que nuevas técnicas y tecnologías deberán también ser desarrolladas para este propósito, un área de investigación en el que personalmente trabajo parcialmente en la actualidad.

Después de los 539 días de estancia en Marte, la tripulación será lanzada en la etapa de ascenso del DAV al encuentro del MTV, que habrá permanecido en órbita alrededor de Marte todo ese tiempo. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de ingentes cantidades de combustible. Una vez transferidos al MTV, se procederá a la inyección transterrestre por la que los astronautas regresarán a casa unos 200 días después, para acabar haciendo una reentrada en la atmósfera de la Tierra a bordo de una cápsula Orion, la cual está siendo desarrollada en la actualidad.

Muchas personas me preguntan si sería posible reducir la estancia en Marte. Efectivamente, la estancia podría reducirse a tiempos de entre 30 y 90 días; pero, en ese caso, los tránsitos interplanetarios habrían de ser muy largos, de mas de 200 días de ida y de unos 400 días de vuelta; requiriendo, además, maniobras de asistencia gravitatoria en el camino; de otra manera, el coste sería prohibitivo. Se favorece la opción de viajes cortos y estancias largas para reducir la exposición de la tripulación a la radiación. Estando en Marte, el mismo planeta bloquea el 50% de la radiación a la que estarían expuestos los astronautas, ademas de que ciertas medidas de protección serian mas fáciles de implantar.

Como se ha dicho constantemente, las masas involucradas en una misión humana a Marte son enormes. Un elemento que contribuye significativamente a esto es el combustible, y es por esta razón que se ha propuesto la opción de utilizar propulsión nuclear-térmica en lugar de propulsión química, tal y como ha sido el caso en todas las misiones tripuladas hasta la fecha. Esta no es una decisión baladí ya que el ahorro en combustible entre una opción y otra es de unas 400 toneladas; esto es, aproximadamente la masa de una Estación Espacial Internacional (ISS). Para poner esto en perspectiva, apuntemos que se precisaron 10 años para ensamblar la ISS y algo más de una treintena de lanzamientos (aunque de menor capacidad que el Saturno V).

Según se estima en la actualidad, para llevar a cabo una única misión a Marte habrá que lanzar al espacio desde la Tierra un total de 850 toneladas en caso de que se utilice propulsión nuclear-térmica, o 1.250 toneladas en caso de utilizar propulsión química. Esto son 2 o 3 Estaciones Espaciales Internacionales. Asumiendo que un cohete lanzador de prestaciones similares al Saturno V de las misiones lunares puede emplazar 120 toneladas en una órbita baja alrededor de la Tierra, el número de lanzamientos requeridos en una sola misión humana a Marte sería aproximadamente de 7 u 11, dependiendo del tipo de combustible, y asumiendo que todos los elementos necesarios puedan ponerse en órbita con un lanzador así. El envió de la tripulación precisaría de un lanzamiento especifico a bordo de un cohete de menor capacidad, por ejemplo, y es posible que ciertas tareas de ensamblaje puedan requerir asistencia humana también.

Existen muchas variaciones en las arquitecturas propuestas para misiones tripuladas a Marte pero lo expuesto aquí refleja lo que viene a ser la arquitectura de referencia que se considera hoy en día. En cualquier caso, la envergadura de una misión humana a Marte es sobrecogedora. Espero que estas dos ultimas entradas hayan ayudado a entender un poco mejor la magnitud de una empresa tan ambiciosa y compleja. Las dificultades técnicas, operativas y tecnológicas que encierra no son para nada triviales, y resulta imposible siquiera mencionarlas todas en una entrada de un blog. Se requiere aún el desarrollo de tecnologías inexistentes en la actualidad para llevar a cabo una misión así, y muchas de las cuestiones planteadas no están aún resueltas. Aún estamos lejos de poder enviar seres humanos a Marte, pero también hace un siglo se estuvo muy lejos de alcanzar el espacio y la Luna. Estoy seguro de que el ser humano llegará a Marte algún día si así lo desea, pero creo, y esta es una opinión estrictamente personal, que ese día está más lejos de lo que muchos puedan pensar.

Fuente: NASA

Rumores del saber del Mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del saber del mundo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

         No intentes ver la verdad sin conocer la mentira.

     No sabrás lo que es la luz sin conocer las tinieblas.

         Si no sabes de donde vienes no sabrás nunca quien eres.

Lo sé por experiencia, la dificultad, agudiza el ingenio… ¡La crisis también!

Mi padre me dijo una vez que,  el respeto por la verdad es casi el fundamento de la moral.

Resultado de imagen de Partículas virtuales

Nada puede surgir de la “nada”, si surgió…, ¡es porque había!

A la edad de quince años, había aprendido a oír el silencio. En cualquier sitio, aunque no lo parezca, podemos “oir” lo que la Naturaleza nos dice. No es poco lo que nos perdemos por no saber observar lo que nos rodea. ¡Hay que prestar atenciòn!

La vida no es gratis, se nos da para pagarla. ¡De tantas maneras! Todos tenenos que llevar nuestra “carreta” para llegar al destino propuesto. Cualquier cosa que podamos alcanzar requiere de un precio, un esfuerzo y, si estamos dispuesto a pagarlo… ¡la tendremos!

          Más vale un… por si acaso, que un… yo creí.

¡Qué vida ésta!

En el Universo puede haber miles de millones de planetas. Si están habitados ¡Cuánto dolor y amargagura! Y, si no lo están… ¡Que desperdicio de mundos!

Resultado de imagen de La complejidad de la mante

En verdad, los seres humanos… ¡Son muy complejos! Y, hasta tal punto es así que, ni nosotros mismos llegaremos nunca a cocernos.

Siempre me ha llamado la atención el hecho de que, a lo largo de la historia, en cualquier parte del mundo, sin importar su condición u origen, de vez en cuando, surgieron personajes que, con sus hechos, dejaron señalado un camino que muchos siguieron y, de esa manera, ha ido caminando la Humanidad a lo largo de la Historia, influída por esas mentes que, en uno u otro ámbito del saber humano, abrieron los caminos a seguir. Muchos serían los ejemplos que podríamos poner aquí pero, hoy, dejaré una simple reseña de uno de ellos.

Pitágoras de Samos.  569 a.C. (Samos).475 a.C. (Tarento).

Pitágoras era hijo de un comerciante griego, por lo que viajó mucho de niño, acompañando a su padre.  No se conocen muchos detalles de su infancia, pero es seguro que recibió buena educación.  En Mileto, Tales y Anaximandro lo introdujeron en el mundo de las Matemáticas y le recomendaron ir a Egipto para profundizar en su estudio, lo que hizo en el 535 a.C. Estudió en el templo de Dióspolis.

Allí fue hecho prisionero hacia el 525 a.C. y llevado a Babilonia, de donde regresaría a Samos hacia el 520 a.C.  Al regreso, fundó una escuela que llamó El Semicírculo.  Al cabo de dos años se trasladó a Cretona, en el sur de Italia, donde fundó una escuela filosófica y religiosa que tuvo muchos seguidores.

Las enseñanzas principales decían que la realidad era matemática y que el estudio puede llevar a la purificación espiritual y la unión con la divino.

Creían que todo lo que existe son números y todas las relaciones podían reducirse a relaciones numéricas.  Además, atribuían a cada número una propia personalidad (masculina o femenina, perfecta o incompleta, bella o fea).

Por ejemplo, el 10 era el número perfecto, pues contenía en sí mismo los cuatro primeros enteros (1 + 2 + 3 + 4 = 10).

Escuela de Pitágoras, imagen perteneciente al libro “The story of greek people”, Eva March Tappan, Houghton Mifflin, 1909.

La escuela exigía a sus miembros estricta lealtad y secretismo por lo que los conocimientos en Matemáticas producidos por ellos eran siempre atribuidos a Pitágoras, y no podemos saber qué descubrió él personalmente y qué se le atribuyó.  Sin ir más lejos, el conocido teorema de Pitágoras (del que antes di un ejemplo) no lo descubrió él, sino que ya era conocido por los babilonios mil años antes, aunque puede que él fuese el primero en demostrarlo.

El objeto de estudio de esta escuela no eran las Matemáticas tal como las pensamos hoy, sino desde una perspectiva más filosófica.  Se preocupaban de los principios en que se basan las Matemáticas, el significado de los conceptos número o círculo, así como qué ha de entenderse por demostración (de un teorema por ejemplo).

Son varios los teoremas debidos a Pitágoras o, más genéricamente, a los pitagóricos: el que afirma que la suma de los ángulos de un triángulo es igual a dos ángulos rectos, o el teorema de Pitágoras, esto es, que un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos.

También descubrieron los números irracionales –que no se pueden expresar como el cociente de dos enteros- y los cinco sólidos regulares: el tetraedro, el hexaedro o cubo, el octaedro, el dodecaedro y el icosaedro.

Aunque Pitágoras es uno de los matemáticos griegos más conocidos, a mí, no se porqué, me gusta más Euclides.  Claro que a cada acontecimiento o a cada personaje, hay que valorarlo dentro del contexto de su obra en su época, en su “tiempo”.

El lenguaje, las matemáticas, la escritura,… son las cosas que nos hicieron distintos, partiendo siempre de la base de que teníamos los sentidos y la mente que requerían aquellos logros que nos separaron de los demás animales.

Resultado de imagen de Los primeros hominidos

La lengua o el lenguaje, cuyos comienzos se limitan a sonidos guturales y sin sentido de aquellos primeros homínidos que, caminando ya erguidos, vivían más o menos en comunidad y, ello, les llevó, a inventarse un sistema arbitrario de signos que los miembros de una comunidad establecían por convención, con el fin de comunicarse, así fueron los principios del lenguaje que, en cada caso, en cada lugar, está relacionado con la psicología y antropología específica de los distintos pueblos, lo que llevó a que el lenguaje, tomado en su conjunto, sea multiforme y heteróclito, y conectado con lo físico-fisiológico-psíquico y dentro de un dominio individual y a la vez social.

El lenguaje hablado se quiso expresar mediante escritura, y, el comienzo, fueron dibujos, signos, jeroglíficos, etc., hasta alcanzar un alto nivel mediante las reglas inventadas para la escritura.

La importancia del lenguaje y la escritura para la humanidad no está bien valorada, pocos piensan en lo importante que fue el hecho ocurrido hace ya muchos miles de años, cuando aquel ser primitivo, pintó un animal en la pared de su cueva, allí, en aquel lugar, se dio el primer paso.

Mediante un conjunto de sonidos articulados podemos manifestar lo que pensamos y comunicarnos con los demás y, cada pueblo, tiene su propio lenguaje.  Este hecho, el de distintas lenguas para cada región del mundo, expresa en realidad nuestro retraso en la evolución del lenguaje y en la de otros aspectos más generales que, algún día lejos aún en el futuro, nos llevarán a la unificación de todos y de todo en este planeta que pasará a ser una sola entidad ante el resto de civilizaciones que vendrán desde otros mundos pero, para que eso llegue…falta mucho.

(Sólo como aclaración tengo que dejar el apunte de que, los clásicos griegos bebieron de la fuente del saber egipcio, persa, hindú y otros.)

emilio silvera

¿La Física? ¡Una maravilla! Nos dice cómo funciona la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En su Libro Partículas, Gerard ´t Hofft, Premio Nobel de Física, nos cuenta:
“En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).”

Cuando llegamos a los seres unicelulares, se ve que ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala. Tranquilamente se pueden mover y desplazar por encima de una superficie acuática. Los pluricelulares no pueden hacer tal cosa.

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.

La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.

El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este de Van der Waals.

Los tamaños de los seres uniceculares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.

 

Hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo.

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Radiación de Cuerpo Negro

Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su , el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862.

La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro. Todo cuerpo emite energía en de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza, esto lo veremos más adelante.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de tal que con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

Si la mecánica cuántica tiene cosas extrañas y el espín es una de ellas. Y si uno piensa que la intuición le ayudará a comprender todo esto, pues no lo hará, o es poco probable que lo haga. Las partículas tienen un espín fundamental. Al igual que la carga eléctrica o la masa, el espín ayuda a definir que de partícula es cada una.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

La posición y el momento de una partícula nunca lo podremos saber con precisión ilimitada.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

La mecánica cuántica es muy extraña a nuestro “sentido común”, sabemos que se desenvuelve en ese “universo” de lo muy pequeño, alejado de nuestra vida cotidiana en el macrocosmos tetradimensional que, no siempre coincide con lo que, en aquel otro ininitesimal acontece.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Es cierto que, existe otro universo dentro de nuestro del que, aún, nos queda mucho por aprender.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.”

UniverseHologram

                                                 ¿Podría ser el Universo un Holograma?

También Gerardt Hooft es el autor de lo que han dado en llamar l principio holográfico es una conjetura especulativa acerca de las teorías de la Gravedad Cuántica propuesta en 1993 por este autor,  y mejorada y promovida por Leonard Susskin en 1995. Postula que toda la información contenida en cierto volumen de un espacio  concreto se puede conocer a partir de la información codificable sobre la frontera de dicha región. Una importante consecuencia es que la cantidad máxima de información que puede contener una determinada región de espacio rodeada por una superficie diferenciable está limitada por el área total de dicha superficie.

Por ejemplo, se pueden modelar todos los eventos que ocurran en un cuarto o una habitación creando una teoría en la que sólo tome en cuenta lo que suceda en sus paredes. En el principio holográfico también se afirma que por cada cuatro Unidades de Planck  existe al menos un grado de libertad  (o una unidad constante de Bolttzmann k de máxima entropía). Esto se conoce como frontera de Bekenstein:

S\le\frac{A}{4}

 

donde S es la entropía y A es la unidad de mensura considerada. En unidades convencionales la fórmula anterior se escribe:

S\le \left( \frac{kc^3}{G\hbar} \right) \frac{A}{4} = k \frac{A}{4\ell_P^2}

donde:

Claro que esta… ¡Es otra Historia!

emilio silvera

¡La Física! ¿Estará perdiendo el Norte?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Rocas interpretadas como pequeños deltas en un lago superficial de...

    Curiosity descubre un antiguo Lago en Marte

    ¿Queremos imitar el salto cuántico viajar más rápido?

A finales del siglo XIX y principios del XX algunos podían creer que los secretos de la Naturaleza estaban todos descubiertos gracias a los hallazgos que en el pasado hicieran Newton y otros y más recientemente Maxwell, Planck, Einstein y otros muchos que, con sus trabajos nos desvelaron cómo funcionaba la gravedad, qué era en realidad la electricidad y el magnetismo y también, nos llevaron el fascinante mundo de lo muy pequeño con el cuanto de acción, h, de Planck que nos trajo poco más tarde, la mecánica cuántica.

La mecánica, la óptica, la electricidad… todo estaba descubierto y explicado. Los científicos de la época pansaban que sus futuros colegas sólo se dedicarían a realizar medidas para obtener las constantes con mayor precisión vez. Después de todo aquello, se siguió avanzando y continuamos haciéndonos preguntas creyendo que nos llevarían a las respuestas últimas.

Si, por ejemplo, las supercuerdas nos conducen a las respuestas últimas, entonces, ¿en qué dirección debemos nuestra investigación?, ¿es que nos hemos introducido tanto en el mundo de lo desconocido y lo ininteligible que estamos a punto de ahogarnos en un mar de lo absurdo?, ¿estamos enterrados bajo tántas preguntas de los imposibles que deberíamos considerarnos perdidos?, ¿tiene algún sentido especular acerca de la “Teoria de Todo” en un  mundo extraño de las unidades de Planck?

Bueno, si queremos ser sinceros…, podemos discrepar de algunas de las cuestiones que hoy se están debatiendo y ser críticos con otras. Sin embargo, no podremos negar los avances que realmente se están logrando en el mundo de las nuevas tecnologías que, gracias a la Física, ya están en el futuro y, en nuestras vidas cotidianas lo estamos viendo continuamente.

Por otra , nada despierta más nuestra curiosidad que lo ininteligible y, precisamente por eso, tiene tanto éxito y llama la atención teorías como la de las supercuerdas. Miremos, por ejemplo, lo que es tan curioso en el mundo de la longitud de Planck es que no podemos encontrar absolutamente ningún modelo que nos pueda dar una descripción razonablemente autoconsistente de partículas que interaccionan entre sí con fuerzas gravitatorias tan intensas y que, al mismo tiempo, obedezcan a las leyes de la mecánica cuántica. Por tanto, incluso si hubiéramos sido capaces de realizar experimentos con choques de partículas con energías planckianas, no hubiéramos sabido como comparar los resultados con una teoría. Aquí hay para los físicos: hacer una teoría. No nos importa demasiado como describa esa teoría la interacción gravitatoria, pero tenemos suficientes requisitos en la lista como para que encontrar  esa candidata a ser la teoría sea una labor extremadamente difícil. La Teoría de Supercuerdas parecía estar a punto de conseguirlo, pero falló en los últimos momentos. Dicen que necesitamos la energía de Planck para poder verificarla y, si es así, nos queda espera para rato.

Imagen relacionada

Mientras buscamos esas teorías que están más allá de nuestras posibilidades reales de hoy, la Ciencia no se para y sigue avanzando en otros muchos campos que, como antes decía, nos están llevando a pasos agigantados un futuro que ya está con nosotros y, lo está haciendo con tal rapidez que ni nos hemos percatado de ello.

En cuanto a esa soñada Teoria de Todo, en primer lugar debe ser matemáticamente exacta y tiene que permitirnos calcular con extrema precisión el comportamiento de las partículas bajo todas las circunstancias imaginables. Por ahí circulan una y mil “teorías” que exponen las ideas más variopintas que imaginarnos podamos pero, desgraciadamente, son inútiles para los físicos porque sus descripciones no reúnen el rigor ni la prcisión que deben estar presentes en toda buena teoría. Por otra , los físicos prefieren que la teoría trate la fuerza gravitatoria de tal manera que esté de acuerdo con la obtenida en la formulación de la teoría de la relatividad general de Einstein. Sabemos que la fuerza gravitatoria cuerpos pesados como las estrellas y los planetas obedece a esta teoría con gran exactitud (como ha sido confirmado espectacularmente en las observaciones de los púlsares, estrellas compactas que rotan a gran velocidad. Nuestra teoría candidata debería explicar estas observaciones).

No digamos de los intrincados caminos que la Física ha sobrevolado cuando se ha querido meter en la posibilidad de viajes en el Tiempo y, los físicos se encontraron con una y mil paradojas extrañas. Además, como nos ocurre con la Teoría de cuerdas, al meternos en un sendero desconocido y de intrincados peligros…nunca hemos podido llegar al final después de largos y costosos recorridos. ¿Servirá para algo los muchos esfuerzos realizados?

Por otra somos conscientes y conocedores de que las leyes de la mecánica cuántica son inexorables y, por tanto, queremos que nuestra teoría sea formulada en términos de la mecánica cuántica. Tanto la mecánica cuántica como la teoría de la relatividad tienen la propiedad de que, tan pronto como uno admita la más pequeña desviación de esos principios, ambas darían lugar a una teoría totalmente diferente, que de ninguna manera se parecería al mundo que conocemos (o pensamos conocer). “Un poco relativista” o “un poco mecanicuántico” tan poco sentido como “un poco embarazado”. Podríamos imaginar, por otra parte, que la mecánica cuántica o la relatividad general, o ambas, serían marcos demasiado restrictivos nuestra avanzada teoría, de manera que habría que extender sus principios, llegar más lejos.

Diferencias en partículas y formas entre el modelo estándar y la Teoría de Cuerdas

La cuerda es cuántica y gravitatoria, de sus entrañas surge, por arte de magia, la partícula mensajera de la fuerza de gravedad: el gravitón. Funde de natural las dos teorías físicas más poderosas de que disponemos, la mecánica cuántica y la relatividad general, y se convierte en supercuerda -con mayores grados de libertad- es capaz de describir bosones y fermiones, partículas de fuerza y de materia. La simple vibración de una cuerda infinitesimal podría unificar todas la fuerzas y partículas fundamentales.

Parece que todo está hecho de cuerdas, incluso el espacio y el tiempo podrían emerger de las relaciones, más o menas complejas, cuerdas vibrantes. La materia-materia, que tocamos y nos parece tan sólida y compacta, ya sabíamos que está casi vacía, pero no imaginábamos que era tan sutil como una cuerda de energía vibrando. Los átomos, las galaxias, los agujeros negros, todo son marañas de cuerdas y supercuerdas vibrando en diez u once dimensiones espaciotemporales.

Está claro que no trato de explicar aquí una teoría que no comprendo y, el tratar el tema se debe a la curiosidad de tratar de indicar el camino, o, los caminos, por los que se podría llegar más lejos, al , algo más allá. De una cosa si que estoy seguro: ¡Las cuatro fuerzas fundamentales del Universo, un día fueron una sola fuerza!

En el universo existen numerosas estrellas cuyas masas son considerablemente mayores que las del Sol, debido a lo cual, la fuerza gravitotoria en su superficie es considerablemente más intensa que sobre la Tierra o sobre el Sol. La enorme cantidad de materia de una de esas estrellas causa una presión inimaginablemente alta en su interior, pero como  las tenperaturasd en el interior de las estrellas es también altísima, se produce una presión contraria que evita que la estrella se colapse. La estrella, sin embargo, pierde calor continuamente. Al proncipio de su vida, en las estrellas se producen todo de reacciones nucleares que mantienen su temperatura alta y que incluso la pueden elevar, pero antes o después el combustible nuclear se acaba. Cuanto más pesada sea la estrella, mayor es la prsión y la temperatura, y más rápidamente se consume su combustible. La contrapresión disminuye progresivamente y la estrella se va colapsando bajo la presión,  según dismunye el tamaño de la estrella, la fuerza gravitatoria aumenta hasta que finalmente se produce una implosión -un colapso repentino y completo- que no puede ser evitado por más tiempo: ¡ha nacido un agujero negro!

Según todos los indicios, cuando la estrella es muy masiva, la Improsión finaliza convirtiendo toda la inmensa masa de la estrella en un A. N., pero antes, explota como supernova y llena el espacio de los materiales coplejos que han sido fabricados en sus nucleares, siembra el espacio con una Nebulosa de la que, años más tarde, nacerán nuevas estrellas y nuevos mundos…Y, ¿quién sabe? ¡Si nuevas formas de Vida!

A menudo implosión libera tanto calor que las capas exteriores de la estrella explotan por la presión de la radiación, y la implosión queda interrumpida produciéndose una esfera extremadamente compacta de “material nuclear” que conocemos como una estrella de neutrones. Algunas veces, estas estrellas de neutrones rotan con una tremenda velocidad (más de 500 revoluciones/segundo), y, debido a irregularidades en la superficie, emiten una señal de radio que pulsa con esa velocidad.

Si todos estos sucesos pudieran ser observados una distancia segura, las señales emitidas por el material durante la implosión pronto serían demasiado débiles para ser detectadas y, en el caso de un afgujero negro, el objeto se vuelve de ese color y desaparece de nuestra vista convertido en una “bola de gravedad pura”, se pueden calcular sus propiedades con precisión matemática. Sólo se necesitan tres parámetros para caracterizar completamente al agujero negro: su masa, su movimiento angular (cantidad de movimiento de rotación) y su carga eléctrica.

También se calcular como se comportan los chorros de partículas cuando se aventuiran cerca del agujero negro. Hawking ya nos habló de ello y explicó con suficiente claridad, lo que pasaba era que, en contra de lo que pudiéramos pensar, el agujero emite un débil flujo de partículas en ciertas circunstancias. ¿Esas partículas son reales! Agujero Negro está emitiendo un flujo constante de partículas de todas las especies concebibles.

Resultado de imagen de El Telescopio Espacial <a href=Hubble y Chandra" width="304" height="275" />Resultado de imagen de El Telescopio Espacial <a href=Hubble y Chandra" width="260" height="234" />

El Telescopio Espacial Hubble y Chandra han captado la imagen de un impresionante anillo de Agujeros negros. La fotografía corresponde al conjunto Arp 147, en el que aparecen 2 galaxias interactuando entre sí y que se ubican a una distancia de 430 millones de años luz de la Tierra. La NASA combinó datos del Chandra con imágenes del Hubble. Mientras los tonos rojos, azules y verdes fueron resultado del trabajo del Hubble; los de color magenta, del Chandra. La captura muestra un anillo formado por estrellas masivas que evolucionaron rápidamente y explotaron en supernovas, como consecuencia de una colisión galáctica. Es así como dejaron densas estrellas de neutrones y posiblemente, también agujeros negros.

En el Universo ocurren sucesos que no podemos ni imaginar, tales son las fuerzas y energías que ahí están presentes y que dan lugar a maravillas que desembocan en transiciones de fase que convierten unas cosas en otras muy distintas haciendo que la diversidad exista, que la belleza permanezca, que la monotonía no sea el camino.

Resultado de imagen de Cerca de un <a href=agujero negro" width="304" height="235" />

Es cierto que nunca hemos podido estar tan cerca de un agujero negro como poder comprobar, in situ, la radiación Hawking que, para su formulación, sólo utilizó leyes bien establecidas de la naturaleza y que, por tanto, el resultado debería ser incuestionable, pero no es del todo cierto por dos razones:

La primera razón es que nunca ( he dicho) hemos sido capaces de observar un agujero negro de cerca y mucho de un tamaño tan pequeño que su radiación Hawking pueda ser detectada. Ni siquiera sabemos si tales miniagujeros negros existen en nuestro universo, o si sólo forman una minoría extremadamente escasa entre los objetos del cielo. Aunque pensemos conocer la teoría, no nos habría hecho ningún daño haber podido comprobar sus predicciones de una o de otra. ¿Sucede todo exactamente como pensamos actualmente que debería suceder?

Otros, como Gerald ´t  Hooft, consiguieron construir otro de teorías alternativas y le dieron resultados distintos a los de Hawking, en la que el Agujero Negro podia radiar con una intensidad considerablemente mayor que la que la teoría de Stephen predecía.

Hay un aspecto relacionado con la radiación Hawking mucho más importante. El agujero negro disminuye su tamaño al emitir partículas, y la intensidad de su radiación crece rápidamente según se reduce su tamaño. Justo de llegar a los estadios finales, el tamaño del agujero negro se hará comparable a la longitud de Planck y toda la masa llegará a ser sólo un poco mayor que la masa de Planck, Las energías de las partículas emitidas corresponderan a la masa de Planck.

¡Solamente una teoría completa de la Gravedad Cuántica podrá predecir y describir exactamente lo que sucede al agujero negro en ese ! es la importancia de los Agujeros Negros la teoría de partículas elementales en la Longitud de Planck. Los agujeros negros serían un laboratorio ideal para experimentos imaginarios. Todos alcanzan, por sí mismos, el régimen de energía de los números de Planck, y una buena teoría debe ser capaz de decirnos como calcular en ese caso. casi una década, Gerad ´t Hoofft ha resaltando esa objeción en la teoría de supercuerdas: no nos dice nada de los agujeros negros y mucho de cómo un agujero negro comenzar su vida como un agujero negro de tamaño “astronómico” y acabar su vida explosivamente.

Lo cierto es que, andamos un poco perdidos y no pocos físicos (no sabemos si de manera interesada), insisten una y otra vez, en cuestiones que parecen no llevar a ninguna parte y que, según las imposibilidades que nos presentan esos caminos, no sería conveniente elegir otros derroteros para indagar nuevas físicas mientras tanto, avanzan las tecnologías, se adquieren más potentes y nuevas formas de energías que nos puedan permitir llegar a sondear las cuerdas y poder vislumbrar si, es cierto, que pueda existir alguna “materia oscura”, o, si existen bosones dadores de masa, o…¡tántas cosas más que, la lista, sería interminable! de las cosas que no sabemos.

emilio silvera

De nuevo el ciclo se cumple y, el Verano está llegando

Autor por Emilio Silvera    ~    Archivo Clasificado en Rememorando el pasado    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Quedan muchos misterios por desvelar

Resultado de imagen de vencejos y golondrinas

 

Cuando el Verano se acerca, todo cambia. En los salientes de las fachadas se pueden ver los nidos de golondrinas  y, en cuanto el día despunta, es una aténtica algarabía de sonidos que no precisamente trinos. A España las primeras golondrinas llegan desde África a mediados de febrero, atravesando el Estrecho de Gibraltar. En marzo ya pueden verse muchas golondrinas y en los primeros quince días de abril es cuando pasan el mayor número de golondrinas.  Durante todo el verano están por otdas partes y son el despertador de muchos pueblos y ciudades. En otoño la migración la hacen en sentido inverso, volviendo a África en los meses de septiembre y octubre.

Hace ahora un año, para contaros algo de por aquí, de mi tierra, os dejaba esta entrada en la que os enseñaba algunas de las playas de Huelva. Para recordarlo, aquí os lo dejo de nuevo, aunque algún comentario se quedara viejo.

“Ayer por la tarde, como suelo hacer casi todos los días menos los sabados y domingos que las playas están saturadas, con mi esposa, nos sentamos en la Terraza de un Chiringuito a orillas de la Playa, las olas finalizan su recorrido en la orilla dejando oir su rumor al romperse contra la fina arena blanca de Punta Umbria, a orillas del Atlántico.”

Si decides dar un paseo por el litoral, andando sobre la fina arena, éstos son los paisajes que vas dejando atrás a medida que avanzas. En la parte terrestre abundantes retamas en las que, con cierta facilidad puedes ver (si prestar antención, a los camaleones protegidos) y, en la parte del mar, las olas, si vas cerca de la playa, mojarán tus pies con sus idas y venidas. Es una sensación inigualable, el aire límpio y puro, exento de contaminaciones químicas, la Naturaleza en estado puro.

Nunca podría estar en ese lugar que arriba podemos contemplar, el gentío me agobia y, aunque me encuentro bien conmigo mismo, una buena compañía nunca está nada mal. Alguien con quien poder conversar, intercambiar ideas y pareceres, poder expresar tus pensamientos y escuchar los ajenos de los que siempre, podremos aprender alguna cosa.

http://www.playasconencanto.net/wp-content/uploads/misericordia-atardecer.jpg

Aquí, seguramente, si me podréis encontrar en cualquier momento, tranquilamente sentado mirando al horizonte y pensando en la grandiosidad de la que formamos parte y en las muchas implicaciones que todo eso conlleva, nuestra complejidad que junto con la que nos rodea es ese conjunto de cosas que no hemos podido llegar a comprender y que, en conjunto, conforma la estructura de un vasto Universo lleno de secretos que tendremos que desvelar, más tarde o más temprano, de ello, dependerá lo que pueda ser de nuestra especie.

http://www.playasconencanto.net/wp-content/uploads/Punta-Umbria-vista.jpg

Esta vista de Punta Umbría, la Playa de Huelva, nos muestra desde el aire, un pueblecito de pescadores que se ha llenado de Hoteles y apartamentos, aquello parece una invasión de las masas que acuden en tropell y, sus vehículos, no dejan un hueco libre en plazas y calles. Parte del encanto que allí se podía disfrutar se fue, y, ahora, en contadas horas, puedes disfrutar de lugares tranquilos y de la belleza natural que la zona ofrece.

http://www.playasconencanto.net/wp-content/uploads/Punta-Umbria-vista-cerca.jpg

Aunque tenemos un Apartamento con garaje y trastero, al estar los dos chicos mayores en sus obligaciones: Uno en Madrid en una multinacional como Abogado Administrador de Empresas, encargado de la Tesorería de la central y filiales en Perú y México, y, la chica, en Sevilla de Sub-directora en una Escuela de Música, a la vez que da algún que otro concierto y participa en el Coro de la Ciudad, y, por último, los dos pequeños estudian en casa y no son muy playeros. Por nuestra parte, mi mujer prefiere un ratito de playa y volver a casa. Mientras tanto ella toma su baño mixto de agua y Sol, yo me sitúo cómodamente sentado en una silla con una mesa sobre la que coloco la libreta de turno o el libro (si ha tocado leer). Allí, en la tranquilidad y con el fondo del murmullo de las olas, escribo cada día durante algo más de una hora.

Así, desde mi privilegiada atalaya cercana al océano, puedo ver como mi esposa toma el Sol y se da un baño, mientras escribo mis pensamientos de cada día en estas libretas que llevo siempre a cuestas en el coche, en cuqluqier rincón de la casa, en la oficina, en cualquier lugar en el que, de pronto, se me puedan ocurrir ideas que merezcan la pena llevar al papel en blanco de sus hojas.

Los politicos embusteros, prometen para recoger y, nunca dan lo prometido

Aunque los políticos lo prometieron, el Ave aún no llegó a Huelva, y, como siempre ha pasado, tenemos que desplazarnos hasta Sevilla para poder cogerlo hasta Madrid. Lugar al que, de vez en cuando, tengo que desplazarme por razones de reuniones y seminarios relacionados con la Fisica o la Astronomía. Ser miembro de los Grupos Especializados de Astrofísica y Física Teórica de la RSEF, conlleva algunas obligaciones. Por estas fechas, se celebra la Bienal de Física en Valencia y se dará cuenta de las últimas elecciones a la Presidencia. Espero poder estar allí y que salga elegido mi amigo y compañero el Catedrático de Física de la Universidad de Valencia, Señor Azcárraga.

Así que, dejando a un lado el Avión que, a la larga es más engorroso que el Tren, los viajes y desplazamientos largos los hago mediante este medio más seguro y, aunque pueda tardar algo más, su comodidad compensa. En los viajes más cortos de menos de 300 kilómetros, prefiero mi propio coche que me da (nos da) la oportunidad de parar en cualquier sitio que nos guste para tomar alguna cosa o decansar.

Es cierto, no sólo de Pan vive el Hombre y, necesita tener otras cosas, disfrutar de otras cuestiones para poder llegar a ser feliz, sentir que su Alma está llena de gozo a través de admirar la Naturaleza, una conversación, una mirada o una caricia, un paisaje o una buena lectura. También los pensamientos pueden, en ocasiones, transportarnos hacia esos lugares soñados, a esos mundos idílicos que nos puedan proporcional la felicidad que aquí no encontramos, toda vez que, cuando miramos a nuestro alrededor, no todo es bello ni admisible para nuestros sentidos.

En mis libretas he podido escribir estos títulos mientras me arrullaban las olas del oceáno

Mientras tanto, yo continuaré escribiendo en mis libretas y en ellas, volcaré todos aquellos pensamientos que a mi mente acudan. Unas veces serán de Física y otras de Astronomía. No pocas veces me visita la filosófía y, cuando ésta no puede dilucidar mis preguntas, sigo adelante y llego hasta la metafísica en la que siempre me pierdo pero, en ella, puedo imaginar mundos que podrían ser, seres que posiblemente serán, y cuestiones que, sin ser de este mundo, en este mundo pueden ser pensadas.

¡La Imaginación! ¿Habrá algo más grande que eso en nuestro Universo?

emilio silvera