domingo, 28 de mayo del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Extrañas estrellas de… Neutrones

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas masivas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La imagen es de todos bien conocida, su nombre: La Nebulosa del Cangrejo (en círculas científicos es conocida como M1, NGC 1952, Taurus A y Taurus A-1), es, como sabéis el resto de aquella explosión Supernova de tipo Plarión que fue observada allá por el año 1054 por astrónomos árabes y chinos. Ahí podemos contemplar, en su imagen familiar, como hilos del remanente estelar crean cuerdas de plasma que, con el paso del tiempo se difuminan.

 

 

Resultado de imagen de Estrella supermasiva

 

 

Antes de convertirse en esa Nebulosa que conocemos, el objeto original fue una estrella masiva que, al agotar su combustible nuclear, eyecto al Espacio ,mInterestelar las capas exterioress para formar la Nabulosa, y, la mayor parte de su masa, se contrajo más y más llevada por una enevitable fuerza de gravedad que, convirtió, toda aquella ingente masa, en una estrella de Neutrones.

 

 

Chandra-crab.jpg

 

 

Así, la mayor parte de la masa de aquella estrella masiva, se convirtió en un Púlsar que habita en las entrañas de la Nebulosa del Cangrejo, ahí, agazapado y que sólo puede ser visto por los agudos “ojos” de potentes telescopios (la imagen de arriba). El Púlsar ha sido nombrado como PSR B0531+21).

Su descubrimiento data del año 1969, tiene unos 25 km de diámetro y sus rayos girán frenéticamente cada 33 milisegundos, es decir, 0,30 veces cada segundo. Así, dentro de la Nebulosa Plarión: El viento de partículas procedente de la estrella genera emisiones sincrotrón, que producen la mayor parte de las emisiones de la Nebulosa, desde ondas de radio hasta rayos gamma.

 

 

Resultado de imagen de Rayos gamma emitidos por una estrella de <a href=neutrones" width="418" height="418" />

 

 

Este tipo de estrella son una buiena fuente de emisiones de rayos gamma y de ondas de radio. La dinámica de la Nebulosa hace que en la parte interior se produzca ese vciento ecuatorial del púlsar que viene a chocar con la Nebulosa, formando un choque de terminación, cuyas formas son cambiantes e inestables dependiendo de las emisiones. Allí se forman espirales que se enaltecen o empinan y se iluminan para atenuarse a medida que se alejan del púlsar que allí habita.

Resultado de imagen de Rayos gamma emitidos por una estrella de <a href=neutrones" width="418" height="418" />

 

 

Los rayos Gamma, se detectan utilizando telescopios en órbita, sensibles a este tipo de radiación de gran energía que no puede penetrar la atmósfera de la Tierra, y luego se observan en longitudes de onda más largas por otros telescopios desde el espacio y desde tierra.

Normalmente, sólo duran unos segundos, pero en casos muy raros los rayos gamma siguen durante horas. Uno de estos estallidos de rayos gamma de ultra larga duración fue captado por el satélite Swift el 9 de diciembre de 2011, denominándolo GRB 111209A. Era el GRB más largo y más brillante jamás observado.

Resultado de imagen de Estrella de <a href=neutrones binaria" width="304" height="171" />

Impresión artística de una estrella de neutrones acretando gas en un sistema binario. Embudos de material de la estrella compañera en un disco de acreción …

Las estrellas de neutrones nos muestran una variada tipología: Pulsares aislados, Estrellas de neutrones en remanentes de supernovas (como es el caso de la Nebulosa del Cangrejo), Estrellas de neutrones en ‘binarias de rayos X”, Estrellas de neutrones viejas aisladas. Se trata de la mayoría de las estrellas de neutrones ya que la emisión de pulsos es generalmente de corto tiempo (unos millones de años con excepción de los llamados ‘púlsares milisegundos’ que parecen tener una vida activa de miles de millones de años). Son estrellas de neutrones cuya rotación es suficientemente lenta para permitir acreción de materia del medio interestelar. Por la acreción la superficie de la estrella se vuelva a calentar y la estrella se puede observar como una fuente puntual de rayos X blandos si es suficientemente cercana.

 

 

Los astrónomos encontraron una clase extraña y enigmática de estrellas de neutrones, cuyo campo magnético es billones de veces más potente que el de nuestro Sol, es decir, que el de una estrella mediana, y, no digamos, del de la Tierra. Tan intenso es el campo magnético que genera una de estas estrellas que, podría borrar una tarjeta de crédito desde 160.000 kilómetros de distancia. Le pusieron de nombre magnetars (estrellas magnéticas).

Estas particulares estrellas de neutrones. Conocidas como AXP (Anamalous X-ray Púlsars), desafían cualquier explicación física desde que la primera de ellas fue descubierta en 1982. Los nuevos datos sobre sus características los han proporcionado desde el Observatorio Rossi X-ray Timing Explorer, de la NASA.

 

                         Lanzan una Intensa emisión de rayos Gamma al espacio

Claro que pueden llegar a estallar en el proceso, toda vez que coger nasa de objetos circundantes con el campo magnético que ya poseen y que, al inyectarle nuevo material también se agranda y pone la estabilidad de la estrella en un equilibrio defícil de mantener. Hasta hace muy poco no se sabía que esta clase de estrellas, los AXP, también podrían sufrir estallidos.

Fue el Rossi, precisamente, el que detectó el estallido en la estrella AXP 1E 1048-5937. Posteriores investigaciones indicaron que tiene un campo magnético  de aproximadamente 10^ 15 Gauss.

 

 

http://4.bp.blogspot.com/_XGCz7tfLmd0/TDUaKVAfCZI/AAAAAAAAGeA/pNphHD4hT8U/s1600/quapul02.jpg

 

 

En el verano de 1967 Anthony Hewish y sus colaboradores de la Universidad de Cambridge detectaron, por accidente, emisiones de radio en los cielos que en nada se parecían a las que se habían detectado hasta entonces. Llegaban en impulsos muy regulares a intervalos de sólo 1 1/3 segundos. Para ser exactos, a intervalos de 1,33730109 segundos. La fuente emisora recibió el nombre de “estrella pulsante” o “pulsar”.

 

 

 

 

   Esta es la imagen que de un púlsar tenemos pero… En general, las estrellas de neutrones pueden ser de variado rango o clase y hasta donde conocemos: De Neutrones, Púlsares y Magnetars cada una de ellas con sus extrañas y específicas cualidades que, al no llegar a comprenderlas… del todo, nos maravillan.

Lo cierto es que, una estrella de Neutrones es el resultado de la compresión de una ingente cantidad de masa, la estrella original puede haber tenido miles de kilómetros de diámetro y, al convertirse en estrella de Neutrones, tener sólo unos 25/30 km/de diámetro, lo que os puede dar una idea de su densidad de materia.

Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m3 (de 2,6×1014 a 4,1×1014 veces la densidad del Sol), lo que se compara con la densidad aproximada de un núcleo atómico de 3×1017 kg/m3.

Imaginar la densidad de un Agejero negro es escalofriante, mucho m´ñas denso que la estrella de neutrones, ¿en qué se convertirá la materia allí aprisionada? Sin embargo. según alñgunos cálculos:

Un agujero negro supermasivo tiene algunas propiedades interesantes que lo diferencian de otros de menor masa:

 

  • La densidad media de un agujero negro supermasivo puede ser muy baja, de hecho puede ser menor que la densidad del agua, si su masa es suficientemente grande. Esto ocurre porque el radio del agujero negro se incrementa linealmente con la masa, por lo que la densidad decae con el cuadrado de la masa, mientras que el volumen es proporcional al cubo del radio de Schwarzschild de tal manera que la densidad satisface la siguiente proporcionalidad:

 

{\displaystyle \rho \propto {\frac {M}{R_{S}^{3}}}\propto {\frac {c^{6}}{G^{3}M^{2}}}\approx 6,177\cdot 10^{17}\left({\frac {M_{\odot }}{M}}\right)^{2}\ {\frac {\mbox{g}}{{\mbox{cm}}^{3}}}}

 

Después de esta ingente cantidad de datos, nos podríamos relajar un poco oyendo ´´esta triste melodía.

VIOLÍN TRISTE.- MUSICA CELTA.- FIELDS OF FORTUNE. – YouTube

emilio silvera

Las estrellas masivas y en lo que se convierten al “morir”

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas masivas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Si preguntamos por el significado del Big Bang, la expansión del universo, cómo nacen y mueren las estrellas, qué es una singularidad, a qué se refiere la libertad asintótica de los quarks, qué son los nucleones, qué significan las constantes universales, qué es la mecánica quántica, el modelo estándar, la relatividad general, el significado de E = mc2, el principio de incertidumbre, la función de onda de Schrödinger, la exclusión de Pauli, el cuanto de acción, h, o el límite, la energía o tiempo de Planck…, cualquiera de estas cuestiones, todas tan importantes, serán desconocidas para el 99’99% de los encuestados. ¡Una auténtica calamidad!

big_bang

Esa es la penosa realidad en la que estamos inmersos. Esas personas desconocedoras de las preguntas que antes enumeramos, sí podrían contestar, en cambio, sobre cualquier tema que se les plantee sobre cuestiones mundanas e intrascendentes, de los “famosos” que siempre andan en la TV y las revistas de chismes (una autñéntica lástima que deja al descubierto la ignorancia de esas mayorías). Ninguna pregunta contestarán sobre, por ejemplo, una estrella supermasiva.

Resultado de imagen de Estrella Supermasiva

“Las estrellas supermasivas, de unas 30 veces la masa del Sol (pueden sobrepasar las 120 masas solares, si son más masivas su propia radiación las destruye), acaban su vida bien mediante una explosión como supernova o directamente mediante un colapso gravitatorio. Ambos procesos conducen teóricamente a la formación de agujeros negros, pero hasta hace relativamente bien poco tiempo no se tenían pruebas de ninguno de ellos. En el artículo que se publicó en Nature (“Evidence of a Supernova Origin for the Black Hole in GRO J1655-40″), astrónomos del IAC y de la Universidad de California, en Berkeley, presentaron los resultados de un estudio sobre la composición química de la estrella que orbita en torno al agujero negro del sistema GRO J1655-44 (Nova Scorpii 1994). Esta estrella muestra un alto contenido atmosférico de oxígeno, magnesio, silicio y azufre, diez veces superior al del Sol. Estos elementos químicos se originan en reacciones nucleares que tienen lugar en el interior de estrellas muy masivas al alcanzar temperaturas de miles de millones de grados y se expulsan al medio circundante si la estrella termina su vida explotando como supernova. En este proceso, además de enriquecer el entorno con nuevos productos químicos, se espera que tenga lugar la formación de una estrella de neutrones o de un agujero negro.”

EtaCarinae.jpg

Ahí podemos observar a una estrella muy joven, de dos o tres millones de años que, en un futuro lejano será una gran Supernova. Los procesos que podríamos observar al final de la vida de una estrella gigante… ¡Son fascinantes!

En esta imagen del telescopio espacial Hubble se pueden apreciar a la estrella Eta Carinæ y los restos de erupciones antiguas que forman la nebulosa del Homúnculo alrededor de la estrella. La nebulosa fue creada por una erupción de η Car cuya luz alcanzó la Tierra en 1843. Eta Carinae aparece como un parche blanco en el centro de la imagen, donde los dos lóbulos de la nebulosa Homúnculo convergen.

Eta Carinae (abreviado: η Carinae o η Car) es una estrella del tipo variable luminosa azul hipermasiva, situada en la constelación de la Quilla. Su masa oscila entre 100 y 150 veces la masa del Sol, lo que la convierte en una de las estrellas más masivas conocidas en nuestra Galaxia y sólo tiene una edad de unos tres millones de años.  Asimismo, posee una altísima luminosidad, de alrededor de cuatro millones de veces la del Sol; debido a la gran cantidad de polvo existente a su alrededor, Eta Carinae irradia el 99 % de su luminosidad en la parte infrarroja del espectro, lo que la convierte en el objeto más brillante del cielo en el intervalo de longitudes de onda entre 10 y 20 μm.

    Cuando agotan su combustible nuclear de fusión implosionan

Lo cierto es que para las estrellas supermasivas, cuando llegan al final de su ciclo y dejan de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella) y la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un agujero negro, una singularidad, donde dejan de existir el “tiempo” y el espacio. A su alrededor nace un horizonte de sucesos, que si se traspasa se es engullido por la enorme gravedad del agujero negro.

En la escena que antes explicabámos, por mucho tiempo que nos quedemos esperando y comtemplando el suceso, si uno está en reposo fuera de la estrella (es decir, en reposo en el sistema de referencia externo estático), uno nunca podrá ver que la estrella implosiona a través de la circunferencia crítica. Ese fue el mensaje inequívoco que Oppenheimer y Snyder nos enviaron. Para poder ver eso, habría que estar dentro de la estrella, instalado en la materia que está sufriendo la contracción y, no sabemos porque eso es así.

El tiempo, de esta manera, deja de existir en estas regiones del universo que conocemos como singularidad. El mismo Big Bang surgió (dicen) de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Estructura a gran escala de la distribución de luz en el universo.

 

 

 

 

Estructura a gran escala de la distribución de luz en el universo.

 

El universo es inimaginablemente inmenso. Y buena parte de él es vacío, o vacíos, para ser más precisos. Efectivamente, cuando se considera el universo a gran escala, en la que unas decenas de millones de años luz no son nada, se observa que las galaxias se agrupan formando murallas, como la Gran Muralla de Hércules-Corona Boreal (la estructura más grande del universo que sepamos), filamentos y supercúmulos separados entre sí por vastísimas regiones llenas de prácticamente nada, conocidas como vacíos cósmicos.

Vacíos cósmicos

Cuando miramos al cielo, ya sea con los ojos desnudos o con el más potente de los telescopios, vemos ahí arriba millones de estrellas y de galaxias que parecen, pero solo parecen, distribuirse uniformemente por el espacio. Sin embargo, a gran escala las cosas no funcionan así. La materia, la que se agrupa en estrellas y galaxias, tiende a concentrarse en determinados puntos, en detrimento de otros. Podríamos decir que la materia forma largos filamentos alrededor de grandes espacios vacíos. Pero algunos de de esos vacíos han desconcertado por completo a los científicos. Se trata de un inmenso espacio de mil millones de años luz de diámetro, el mayor jamas encontrado en todo el Universo, y para el cual los Cosmólogos no han encontrado respuesta. En su interior no hay estrellas, ni galaxias, ni planetas, ni siquiere el más leve signo de radiación…En otras palabras, allí no hay nada. Como un inmenso desierto cósmico, simplemente está ahí, desafiando con su sola presencia todos nuestros conocimientos. ¿Podría ser un agujero negro supergigante, con la masa de cientos de millones de galaxias? ¿O quizá la primera prueba de la existencia de un universo paralelo? Por ahora no lo sabemos…

https://jaivan.files.wordpress.com/2015/06/ciclo-de-vida-de-una-estrella.jpg

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y agujeros negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son a menudo esféricas. El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

El Gran Vacío, Vacío Boötes o Vacío del Boyero es una región enorme y casi esférica del espacio, que contiene muy pocas galaxias. Se encuentra ubicado en las inmediaciones de la Constelación del Boyero o Boötes. Tiene unos 250 millones de años luz de diámetro. El centro del Vacío Boötes esta a aproximadamente 700 millones de años luz de la Tierra.

El telescopio XMM-Newtton de la Agencia Espacial Europea (ESA) ha captado la imagen de dos estrellas de neutrones completamente diferentes, en etapas diferentes de sus vidas.

Mientras que en estas regiones (como el vacío de Boötes) la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble. Su densidad es de 1017 Kg/m3; los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del universo (si no existen estrellas de Quarks, en cuyo caso, serían las segundas más densas).

Resultado de imagen de El Universo curvo de Riemann

EL ESPACIO LIBRE DE RIEMANN Riemann se ocupó de los espacios curvos, cuyas características se muestran en la figura inferior.

163b

UNA VIDA CORTA PERO PROVECHOSA


Bernhard Riemann, al igual que su maestro, llegó a ser director del Observatorio de Göttingen desde el año 1859 al 1866, fecha en que murió. Hizo importantes contribuciones en muchos campos, incluyendo la topología, la teoría de las funciones, y la física matemática

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del universo. Pasando por Arquímedes, Pitágoras, Tales de Mileto, Empédocles, Demócrito de Abdera, Anaximandro, Galileo, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

La respuesta tan esperada en astronomía es el que alguien responda a la pregunta siguiente: ¿Qué es y donde está la energía y la materia oscura?

Resultado de imagen de La <a href=materia oscura" width="304" height="362" />

Sí, sabemos que su presencia puede ser inferida por sus efectos sobre los movimientos de las estrellas y galaxias, aunque no puede ser observada directamente debido a que emite poca o ninguna radiación. Se piensa que algo más del 90% de la masa del universo se encuentra en alguna forma de materia oscura. Existen evidencias de materia oscura en las galaxias espirales en sus curvas de rotación. La existencia de materia oscura en los cúmulos ricos de galaxias puede ser deducida por el movimiento de las galaxias constituyentes.

Imagen relacionada

Una parte de esta materia oscura puede encontrarse en forma de estrellas poco masivas u objetos con masa del orden de la de Júpiter; dicha materia normal se describe como bariónica (los bariones son los protones, neutrones y otras partículas formadoras de materia que podemos ver).  Por otra parte, también puede existir materia oscura en el espacio entre galaxias, ese espacio que llamamos vacío y que en realidad está abarrotado de partículas virtuales que aparecen sin saber de dónde y en manos de una millonésima de segundo desaparece sin que sepamos a dónde, y que podría hacer aumentar la densidad media del universo hasta la densidad crítica requerida para invertir la expansión actual.

Imagen relacionada

Si la teoría del Big Bang es correcta, como parece que lo es, debe de existir una gran proporción de materia oscura en forma no bariónica (que no podemos ver), quizás axiones, fotinos o neutrinos masivos, supervivientes de las etapas tempranas del Big Bang y, ¿por qué no?, también podríamos suponer que la materia oscura que tanto nos preocupa pudiera estar encerrada dentro de las singularidades de tantos y tantos agujeros negros que se han debido formar a lo largo de los 13.500 millones de años que es la edad del universo.

Imagen relacionada

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Pues bien, si en el universo existen innumerables agujeros negros, ¿”por qué no creer que sean uno de los candidatos más firmes para que sea la buscada “materia oscura”?.

Imagen relacionada

Para mí particularmente, sin descartar absolutamente nada de lo anterior (cualquier teoría podría ser la cierta), la denominada materia oscura podría estar situada en la quinta dimensión, y nos llegan sus efectos a través de fluctuaciones del “vacío”, que de alguna manera deja pasar a los gravitones que transportan la fuerza gravitacional que emite dicha materia y sus efectos se dejan sentir en nuestro universo, haciendo que las galaxias se alejen las unas de las otras a mayor velocidad de la que tendrían si el universo estuviera poblado sólo de la materia bariónica que nos rodea. Por otra parte, no hay que descartar como candidato a lo que tomamos como  “Materia oscura” , la fuerza gravitatoria que proviene de un universo vecino que está tirtando del nuestro.

Encuentran posibles signos de un universo paralelo

                            No sabemos tanto como para descartar la existencia de universos vecinos

Claro que mi pensamiento es eso, una teoría más de las muchas que circulan. No se puede  dogmatizar hablando de estas cuestiones sobre las que no se tienen la menor certeza. La cuestión es que, si atendemos a la expansión de Hubble, tampoco podemos explicar las formación de las galaxias, ya que, dicha expansión lo habría impedido, a no ser que, allí, existiera una fuerza invisible que sujetó a la materia el tiempo necesario para que se formaran las estrellas y las galaxias: la materia oscura. Si fue así, quiere eso decir que, la materia oscura fue la primera que hizo acto de presencia en nuestro Universo.

De todas las maneras, incluso la denominación dada: “materia oscura”, delata nuestra ignorancia.

Mientras tanto, dejamos que el “tiempo” transcurra y como en todo lo demás, finalmente, alguien nos dará la respuesta.

Imagen relacionada

Poder aprovechar las inmensas energías de los agujeros negros

Para que tengamos todas las respuestas que necesitamos para viajar a las estrellas, tener energía infinita obtenida de agujeros negros, lograr el traslado de materia viva a lugares distantes, dominar toda una galaxia, etc, tendrán que transcurrir algunos eones* de tiempo.

Hace menos de un siglo no existían televisores, teléfonos móviles, faxes, ni aceleradores de partículas. En los últimos cien años hemos avanzado de una manera que sería el asombro de nuestros antepasados.

¿Qué maravillas tendremos dentro de cincuenta años? ¿Qué adelantos científicos se habrán alcanzado?

Dejando a un lado, a los primeros descubridores, como Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:

Resultado de imagen de La Revolución de <a href=Einstein" width="304" height="238" />

La primera revolución de la física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos ayudo en nuestra comprensión de las leyes que gobiernan el universo. Esa primera revolución nos fue dada en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad general. Al final de su trabajo relativista, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y también la que hace posible la existencia de las galaxias.

Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el universo y que crean esta distorsión en función de su masa.  Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann) sobre la distorsión del espaciotiempo.

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.

Resultado de imagen de Agujeros negros y <a href=singularidad" width="304" height="306" />

Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m / π = 3’14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿Cómo puede ser esto? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.

Amigos de la Astronomía, mañana continuaremos con otros temas interesantes sobre el Universo y los fenómenos en el presente. Es un deseo del Nodo español para el Año Internacional de la Astronomía en 2009, en España (AIA-IYA2009), acercar el Universo a todos.

emilio silvera


* Eón: periodo de 109 años, es decir, 1.000 millones de años.