martes, 28 de febrero del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nos queda mucho por saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Demuestran el origen cosmológico de las señales FRB

Por EUROPA PRESS / lainformacion.com

 

 

Demuestran el origen cosmológico de las señales FRB

 

Demuestran el origen cosmológico de las señales FRB MADRID | EUROPA PRESS

Una de las señales de radio cósmicas que han desconcertado a los astrónomos desde su detección hace 10 años ha sido finalmente ligada a una fuente: una vieja galaxia enana a 3.000 millones de años luz.

Las ráfagas rápidas de radio (FRB), que parpadean sólo unos pocos milisegundos, crearon un revuelo entre los astrónomos porque parecían venir de fuera de nuestra galaxia, lo que significa que tendrían que ser muy poderosas para ser vistas desde la Tierra y porque ninguna de las primeros en ser observadas fueron vistas nuevamente.

Una explosión repetitiva fue descubierta en 2012, sin embargo, brindando la oportunidad a un equipo de investigadores de monitorear repetidamente su área del cielo con el telescopio Karl Jansky Very Large Array (VLA) en Nuevo México y el de Arecibo en Puerto Rico, con la esperanza de identificar su ubicación.

Resultado de imagen de Gracias al desarrollo de datos de alta velocidad y software de análisis de datos en tiempo real por un astrónomo de la Universidad de California, Berkeley, el año pasado VLA detectó un total de nueve ráfagas durante un período de un mes

Gracias al desarrollo de datos de alta velocidad y software de análisis de datos en tiempo real por un astrónomo de la Universidad de California, Berkeley, el año pasado VLA detectó un total de nueve ráfagas durante un período de un mes, suficiente para localizarlo dentro de un décimo de un arcosegundo. Posteriormente, las matrices de interferómetro de radio europeas y americanas más grandes lo localizaron a un centésimo de un arcosegundo, dentro de una región de aproximadamente 100 años luz de diámetro.

Imágenes profundas de esa región tomadas con el Telescopio Gemini Norte en Hawai revelaron una galaxia enana ópticamente débil que el VLA posteriormente descubrió también que emite continuamente ondas de radio de bajo nivel, típico de una galaxia con un núcleo activo quizás indicativo de un agujero negro central supermasivo. La galaxia tiene una baja abundancia de elementos distintos del hidrógeno y el helio, sugestivos de una galaxia que se formó durante la edad media del universo.

El origen de una explosión de radio rápida en este tipo de galaxias enanas sugiere una conexión a otros eventos energéticos que se producen en galaxias enanas similares, dijo el coautor y astrónomo de la UC Berkeley, Casey Law, quien dirigió el desarrollo del sistema de adquisición de datos y creó el Software de análisis para buscar FRB’s únicas.

Resultado de imagen de Gracias al desarrollo de datos de alta velocidad y software de análisis de datos en tiempo real por un astrónomo de la Universidad de California, Berkeley, el año pasado VLA detectó un total de nueve ráfagas durante un período de un mes

En este tipo de galaxias también se producen estrellas explosivas extremadamente brillantes, llamadas supernovas superluminosas, y rayos gamma largos, y ambos están hipotéticamente asociados con estrellas de neutrones masivas, altamente magnéticas y de rotación rápida llamadas magnetares. Las estrellas de neutrones son objetos densos y compactos creados en explosiones de supernova, vistos principalmente como pulsares, porque emiten pulsos de radio periódicos mientras giran.

“Todos estos hilos apuntan a la idea de que en este ambiente, algo genera estos magnetares”, dijo en un comunicado Law. “Podría ser creado por una supernova superluminosa o una explosión de rayos gamma larga, y luego más tarde, a medida que evoluciona y su rotación se ralentiza un poco, produce estos ráfagas de radio rápidas, así como emisión de radio continua impulsado por ese freno en la rotación. Se parece a los magnetares que vemos en nuestra galaxia, que tienen campos magnéticos extremadamente fuertes pero giran más como los pulsares ordinarios “.

En esa interpretación, dijo, las ráfagas rápidas de radio son como los berrinches de un niño pequeño. Sin embargo, esto es sólo una teoría. Hay muchos otras, aunque los nuevos datos descartan varias explicaciones sugeridas para la fuente de estas ráfagas.

“Somos los primeros en demostrar que esto es un fenómeno cosmológico, no es algo en nuestro patio trasero, y somos los primeros en ver dónde está sucediendo esta cosa, en esta pequeña galaxia, que creo que es una sorpresa”, dijo Law. “Ahora nuestro objetivo es averiguar por qué sucede eso.”

Shami Chatterjee, de la Universidad de Cornell y otros astrónomos del equipo, presentaron sus hallazgos en la reunión de la American Astronomical Society en Grapevine, Texas, en la revista científica Nature, y en dos artículos complementarios que aparecerán en Astrophysical Journal Letters.

El sigiloso asesino de galaxias

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Astronomía: Reportaje en El Español

La supervivencia del universo depende de las reservas de gas. Los astrónomos han podido descubrir el mecanismo que está acabando con ellas.

Recreación artística del mecanismo de Ram-pressure stripping en la galaxia NGC4921Recreación artística del mecanismo de Ram-pressure stripping en la galaxia NGC4921 ICRAR, NASA, ESA, the Hubble Heritage Team (STScI/AURA)

El caso

Nuestro universo se apaga. Por supuesto, su sombrío y gélido final no llegará hasta dentro de muchos miles de millones de años, sin embargo el camino hacia la oscuridad ya está en marcha y se puede constatar en la luz, cada vez más roja y antigua, que nos llega de las galaxias.

“Las galaxias son sistemas que van reciclando gas”, explica Miguel Santander, investigador en el Grupo de Astrofísica molecular del ICMM, “ese gas se acumula, se va condensando y finalmente forma estrellas. Pasa el tiempo y cuando esos soles mueren, devuelven gran parte del gas al medio, que una vez más se utiliza para formar nuevas estrellas, y así sucesivamente… mientras haya reservas de gas, las galaxias seguirán formando estrellas pero cuando se agoten esas reservas de gas, dejarán de formar estrellas y entonces podemos decir que son galaxias muertas”

Entonces, ¿se puede decir que las galaxias también mueren?

“No es un término científico, pero sí. Los astrofísicos decimos coloquialmente que una galaxia ha muerto cuando ha perdido la capacidad de formar nuevas estrellas”, aclara el investigador. “La galaxia pasa entonces a tener colores más apagados, al no surgir nuevos repuestos, las estrellas que tiene cada vez serán más viejas y su luz irá pasando del azul, al amarillo, al rojo… galaxias dominadas por antiguas estrellas rojas, que paulatinamente se irán apagando y que ya no serán reemplazadas por otras más jóvenes”.

Las pistas

Los astrofísicos saben desde hace años que la formación estelar en el universo primitivo, (hace 10.000 millones de años o más), era mucho mayor que hoy en día. Las galaxias que vemos cercanas, que son más jóvenes y actuales, presentan mucha menos formación estelar que las galaxias lejanas. Esto nos lleva a la triste conclusión de que el universo se está apagando progresivamente y hasta ahora no sabíamos exactamente por qué las galaxias actuales tenían menos capacidad para generar nuevas estrellas.

“Conocemos varios mecanismos que impiden formar nuevas estrellas”, explica Miguel Santander. “Por ejemplo, un gas cuanto más frío está, más se condensa. Así, una posibilidad para impedir que una galaxia forme nuevas estrellas sería calentar el gas… Lo calientas, aumenta la presión y entonces se opone a la acción de la gravedad que hace que ese gas se condense y forme nuevas estrellas”. Sin embargo, en un universo cada vez más frío esta posibilidad no parece una buena pista.

También existen colisiones de galaxias en las que una de ellas se queda con el gas de la otra. Aquí tenemos otro posible fenómeno que puede apagar una galaxia. Pero tampoco parece ser el caso que nos ocupa puesto que nuestras galaxias víctimas no presentan “signos de colisión”.

Así pues, si planteamos el asunto como un caso de detectives, debemos concluir que ha de existir algún otro mecanismo que esté robando el gas frío de las galaxias, impidiendo que formen nuevas estrellas, y haciendo por tanto que, tarde o temprano, terminen como galaxias muertas.

Las víctimas

 

Recreación artística del mecanismo Ram pressure stripping dejando un rastro de gas (en color azul) en la galaxia ESO 137-001.Recreación artística del mecanismo Ram pressure stripping dejando un rastro de gas (en color azul) en la galaxia ESO 137-001. NASA/ESA Hubble Space Telescope.

La imagen superior corresponde a una de las víctimas. Se trata de la galaxia ESO 137-001 y se está desplazando hacia el centro de un gigantesco cúmulo galáctico conocido como Norma Cluster o Abell 3627.

En su viaje interestelar hacia el centro del cúmulo está pasando de un medio con pocas partículas a otro medio mucho más denso. Esa diferencia de densidad hace que las partículas más ligeras, como el gas frío, se escapen de la galaxia y formen largas colas, igual que lo haría un cometa.

“Se les conoce como galaxias medusa (Jellyfish galaxies) y para ver más claramente a qué nos referimos, en la imagen se ha coloreado artificialmente de azul el gas que van perdiendo en su viaje hacia el centro del cúmulo”. Casi podríamos decir que la galaxia se desangra lenta y sigilosamente, dejando atrás el gas frío que necesita para formar estrellas.

El sospechoso

Bajo el sugerente título de Galaxy murder mistery investigadores del International Centre for Radio Astronomy Research (ICRAR) en Australia han publicado esta semana una posible solución al enigma que está apagando estas galaxias. Y precisamente en Australia se encuentra el investigador español, Ángel R. López-Sánchez, astrofísico multifrecuencia en el Australian Astronomical Observatory y la Universidad de Macquarie (Sídney), quien finalmente nos desvela el misterio: “El gran sospechoso es un mecanismo conocido como Ram-pressure stripping... que traducido sería algo así como expulsión de gas por la presión de arrastre”.

Cada galaxia se mueve por el espacio y se siente atraída gravitatoriamente por los objetos masivos que encuentra a su paso, tales como grandes cúmulos u otras galaxias. Cuando esa galaxia, que originariamente se estaba moviendo en un medio que casi era vacío, se aproxima a estos cúmulos muy masivos, empieza a desplazarse en un medio que es más denso.

“Es entonces, cuando la galaxia se adentra en un medio más denso, pierde sus componentes más livianos, en este caso el gas frío, mediante este mecanismo de Ram-pressure stripping, y al decir adiós a esas reservas de gas, pierde también la capacidad de formar nuevas estrellas”, señala López-Sánchez.

“Este fenómeno de Ram-pressure stripping se había comprobado en numerosos cúmulos de galaxias”, indica el astrofísico, “teníamos constancia de que ocurría en estas gigantescas agrupaciones en donde las galaxias que estaban más próximas al centro suelen tener mucho menos gas que las galaxias que están en las regiones más exteriores. Al desplazarse dentro del cúmulo, las galaxias que se adentran en un medio más denso ven como el gas frío se queda atrás”.

Hasta ahora sabíamos que este mecanismo afectaba a galaxias que se desplazaban en grandes cúmulos con más de 100 galaxias, en los que además existen grandes cantidades de materia oscura que también influían gravitatoriamente en su desplazamiento.

Sin embargo, el artículo publicado por los investigadores de ICRAR amplía el modus operandi de nuestro asesino, no solo a grandes cúmulos galácticos sino también a pequeñas galaxias fuera de esas regiones. El estudio ha utilizado métodos estadísticos con miles de galaxias y han encontrado que la pérdida de gas frío es mayoritaria.

La solución

El estudio ha utilizado datos en óptico del cartografiado SLOAN (que tiene datos de millones de galaxias) y con el que han analizado el color y magnitud de las galaxias. En paralelo, y es lo que tiene un valor extra, han usado también datos en radio del cartografiado ALFALFA, realizado por el gran telescopio de Arecibo. “Con estos dos tipos de datos (óptico y radio) han analizado más de 10.000 galaxias diferentes y han podido correlacionar estadísticamente dónde se encuentra la galaxia, qué ritmo de formación estelar tiene, qué color tiene (lo que además nos indica la edad de la galaxia) y qué cantidad de gas posee” aclara López-Sánchez. “De esta manera a cada galaxia de SLOAN le dan un valor de hidrógeno (el gas frío más común para formar estrellas) extraído del cartografiado ALFALFA”.

¿Qué han encontrado? La solución es que un alto porcentaje de las galaxias analizadas están perdiendo gas. Son galaxias que aún están formando estrellas, sí, pero que apenas tienen gas frío para continuar renovándose. El mecanismo de Ram-pressure stripping las está “asfixiando“, haciendo que el combustible necesario para renovar sus estrellas se escape fuera de ellas y consiguiendo que, lenta y sigilosamente, se conviertan en galaxias muertas.

¿Cuántas galaxias tiene nuestro Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El universo observable tiene diez veces más galaxias de las que se pensaba

 

Resultado de imagen de Imagen de una porción del cielo conocida como GOODS South

Imagen de una porción del cielo conocida como GOODS South. Crédito: NASA, ESA, GOODS Team, y M. Giavialisco.

 

Hasta ahora los astrónomos estimaban que el Universo observable contenía entre 100 y 200 mil millones de galaxias, pero las últimas observaciones del Telescopio Espacial Hubble y otros instrumentos indican que al menos tiene diez veces más, es decir, unos dos billones (2 x 1012) de galaxias.

Mediante modelos matemáticos y una exhaustiva revisión de datos astrofísicos, un equipo internacional de investigadores liderado desde la Universidad de Nottingham (Reino Unido) ha deducido que alrededor del 90% de las galaxias son tan débiles o están tan lejos que todavía no las hemos visto.

“Es alucinante pensar que el 90% de las galaxias del Universo todavía no se haya estudiado; quién sabe qué propiedades interesantes nos encontraremos cuando las observemos con la próxima generación de telescopios”, explica Christopher Conselice, la investigadora principal del trabajo.

Resultado de imagen de Distribución de galaxias en el Universo

En las últimas décadas se vienen realizados diferentes cartografías digitales de la distribución de galaxias en el Universo, que en muchos aspectos están …

Los análisis también revelan que las galaxias no se han distribuido de forma uniforme a lo largo de los más de 13.000 millones de años del Universo. De hecho, parece que hubo un factor de 10 galaxias más por unidad de volumen cuando el Universo tenía sólo unos pocos miles de millones de años de edad en comparación con la actualidad. La mayoría de esas galaxias fueron relativamente pequeñas y débiles, y muchas se fusionaron, lo que redujo drásticamente su número.

Esta disminución a lo largo del tiempo ayuda a resolver una antigua paradoja astronómica, conocida como paradoja de Olbers: ¿Por qué el cielo es oscuro por la noche? (Si se supone que en un Universo infinito en cada punto del cielo hay parte de una galaxia con sus estrellas y debería brillar.)

Resultado de imagen de Distribución de galaxias en el Universo

Si se observa la distribución de las galaxias en el universo, entonces se ve un cuadro sorprendente: Se ven estructuras reticulares a gran escala.

Según los autores, la respuesta estaría en que la mayoría de estas galaxias son invisibles para el ojo humano, e incluso para los telescopios modernos, debido a una combinación de factores: desplazamiento al rojo de la luz, la naturaleza dinámica del Universo y la absorción de la luz por el polvo y gas intergaláctico. Todos estos factores se combinan para garantizar que el cielo nocturno siga siendo, en su mayor parte, oscuro.

El artículo “The Evolution Of Galaxy Number Density At z < 8 And Its Implications” será publicado en The Astrophysical Journal.

Fuente: SINC

Pensando en el Universo y en las nuevas Teorías

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Resultado de imagen de Nada muere, simplemente cambiaResultado de imagen de nada muere todo se transforma

En el universo en que vivimos, nada desaparece; con el tiempo se cumplen los ciclos de las cosas y se convierten en otra distinta, es un proceso irreversible.

En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

Cuando están a punto de ser estrellas verdaderas, pero aún no lo son, se llaman estrellas T Tauri. Son un tipo de estrellas variables irregulares nombradas a partir del objeto prototípico del grupo, la estrella T Tauri. Son estrellas jóvenes que aún no han entrado en la Secuencia Principal (estrellas pre-secuencia principal). Se encuentran cerca de nubes moleculares y se identifican por su variabilidad estelar  y la presencia de líneas intensas en su cromosfera.

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

Resultado de imagen de Formando una <a href=singularidad" width="304" height="378" />

Tanto la descripción del espacio-tiempo como de la materia que hacen las teorías científicas, no pueden describir la singularidad.

Para hacernos una idea y entender algo mejor la fuerza de gravedad que puede generar la singularidad de un agujero negro (que es el destino final las estrellas súper masivas), pongamos el ejemplo de un objeto más cercano, el planeta Tierra.

La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado desde la superficie terrestre a una velocidad de 11’18 km/s; el sol exige 617’3 km/s.

Imagen relacionada

Salir de la Gravedad terrestre requiere gran energía

Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida para escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.

Imagen relacionada

La luz se esparce isotrópicamente cuando es eyectada por los astros.

La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que la luz alcanza en el vacío y que es de 299.793’458 km/s.

Resultado de imagen de Ni la luz escapa de un <a href=agujero negro" width="295" height="393" />

Pues bien, es tal la fuerza de gravedad de un agujero negro que ni la luz puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su nombre, agujero negro, cuando la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.

Las singularidades ocurren en el Big Bang, en los agujeros negros y en el Big Crunch (que se podría considerar como una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevará a un fin  que será el nuevo comienzo).

Resultado de imagen de Ni la luz escapa de un <a href=agujero negro" name="-C1B7eizZPQ0hM:" data-src="https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcRRNajNHYWN4XNN37K18CDFnLnuHxGV_jcyB0C-bFovlrhmokUU" data-sz="f" />

Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, hacia la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.

La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el nombre de agujero negro se debe a Wehleer.

Así, el conocimiento de la singularidad está dado por las matemáticas de Einstein y más tarde por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada hacia la singularidad, donde desaparece para siempre sumándose a la masa del agujero cada vez mayor.

Resultado de imagen de Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria

En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1.

Después de todo, la velocidad de la luz, la máxima del universo, no puede vencer la fuerza de gravedad del agujero negro que la tiene confinada para siempre.

En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿cuántos agujeros negros habrá?

Para mí, la cosa está clara: el tiempo es imparable, el reloj cósmico sigue y sigue andando sin que nada lo pare, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros.

5630cab6b940e

Llegará un momento que el número de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros hasta que todo el universo se convierta en un inmenso agujero negro, una enorme singularidad, lo único que allí estará presente: la gravedad.

Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo.

Al final del camino toda la materia del Universo irá a parar a un enorme agujero negro que será lo único que quedará de todo este inmenso Cosmos. El Tiempo pasa, las estrellas mueren, cada vez son más agujeros negros los que ocupan las galaxias, la fuerza de gravedad que generan irán enguyendo la materia, todos se fusionaran en un sólo agujero negro enorme y de descomunal fuerza… La imaginación es libre ¿quién la puede parar?

Esa reunión final de agujeros negros será la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando hasta parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás.  Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego, el Big Crunch.

Resultado de imagen de La muerte del Sol como Gigante roja

Antes de que eso llegue, tendremos que resolver el primer problema: la muerte del Sol.

Los científicos se han preguntado a veces qué sucederá eventualmente a los átomos de nuestros cuerpos mucho tiempo después de que hayamos muerto. La posibilidad más probable es que nuestras moléculas vuelvan al Sol. En páginas anteriores he explicado el destino del Sol: se agotará su combustible de hidrógeno y fusionará helio; se hinchará en gigante roja y su órbita es probable que sobrepase la Tierra y la calcine; las moléculas que hoy constituyen nuestros cuerpos serán consumidas por la atmósfera solar.

Carl Sagan pinta el cuadro siguiente:

Resultado de imagen de A la muerte del Sol la gigante roja engulle Mercurio y Venus

El Sol engullirá Mercurio y Venus y, la Tierra…

“Dentro de miles de millones de años a partir de ahora, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable.  Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. Cuando miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

Resultado de imagen de Andrómeda se fusionará con la Vía LácteaImagen relacionada

Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, dos o tres veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a 125 km/s, y chocarán en un periodo de 5 a 10.000 millones de años. Como ha dicho el astrónomo Lars Hernquist de la Universidad de California en Santa Cruz, esta colisión será “parecida a un asalto. Nuestra galaxia será literalmente consumida y destruida“.

Así las cosas, no parece que la Humanidad del futuro lo tenga nada fácil.  Primero tendrá que escapar, dentro de unos 4.000 millones de años del gigante rojo en que se convertirá el Sol que calcinará al planeta Tierra. Segundo, en unos 10.000 millones de años, la escapada tendrá que ser aún más lejana; la destrucción será de la propia galaxia que se fusionará con otra mayor sembrando el caos cósmico del que difícilmente se podría escapar quedándonos aquí. Por último, el final anunciado, aunque para más largo tiempo, es el del propio universo que, por congelación o fuego, tiene los eones contados.

Por todas estas catástrofes anunciadas por la ciencia, científicos como Kip S. Thorne y Stephen Hawking sugieren viajar a otros universos paralelos a través de agujeros de gusano en el hiperespacio. Sería la única puerta de salida para que la Humanidad no se destruyera.

Imagen relacionada

Si al final conseguimos abrir ese camino, será lejos en el futuro

Si lo alcanzaremos o no, es imposible de contestar, no tenemos los datos necesarios para ello. Incluso se podría decir que aparte de estas catástrofes futuras que sabemos a ciencia cierta que ocurrirán, seguramente existan otras que están ahí latentes en la incertidumbre de si finalmente ocurren o no, sólo pendiente de decidir lo uno o lo otro por parámetros ocultos que no sabemos ni que puedan existir.

En esta situación de impotencia, de incapacidad física e intelectual, nos tenemos que dar cuenta y admitir que, verdaderamente, comparados con el universo y las fuerzas que lo rigen, somos insignificantes, menos que una mota de polvo flotando en el haz de luz que entra, imparable, por la ventana entre-abierta de la habitación.

Imagen relacionada

Descomposición molecular aquí y reconstrucción allí ¿Qué forma de viajar! Claro que, todo lo que podamos imaginar, algún día, será realidad.

Sin embargo, tampoco es así. Que se sepa, no existe ningún otro grupo inteligente que esté capacitado para tratar de todas estas cuestiones. Que la especie humana sea consciente de dónde vino y hacia dónde va, en verdad tiene bastante mérito, y más, si consideramos que nuestro origen está a partir de materia inerte evolucionada y compleja que, un día, hace probablemente miles de millones de años, se fraguó en estrellas muy lejanas.

Resultado de imagen de La Teoría de <a href=Kaluza-Klein de la Quinta dimensión" width="304" height="214" />

“En el año 1919, leyó un trabajo que lo conmocionó y que fue  escrito por el matemático Kaluza. Sugería agregar una dimensión extra a las 4 existentes y reformuló la TGR en 5 dimensiones, logrando en pocas líneas hacer aparecer las ecuaciones de Einstein junto a las de Maxwell! En palabras simples, las ecuaciones de Maxwell se podían deducir como ondas viajando en la quinta dimensión. Otra forma de verlo era que si se extendía la TGR a 5 dimensiones, la teoría de Maxwell estaba escondida detrás de la teoría de Einstein.” (Publicado el abril 17, 2011 por

 

Resultado de imagen de Veneziano y SuzukiResultado de imagen de Veneziano el Físico Teórico

              Suzuki                                            Veneziano

Ya he comentado que la teoría de cuerdas tiene un origen real en las ecuaciones de Einstein en las que se inspiro Kaluza para añadir la quinta dimensión y perfeccionó Klein (teoría Kaluza-Klein). La teoría de cuerdas surgió a partir de su descubrimiento accidental por Veneziano y Suzuki, y a partir de ahí, la versión de más éxito es la creada por los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohm; ellos son conocidos en ese mundillo de la física teórica como “el cuarteto de cuerdas”.  Ellos han propuesto la cuerda heterótica (híbrida) y están seguros de que la teoría de cuerdas resuelve el problema de “construir la propia materia a partir de la pura geometría: eso es lo que en cierto sentido hace la teoría de cuerdas, especialmente en su versión de cuerda heterótica, que es inherentemente una teoría de la gravedad en la que las partículas de materia, tanto como las otras fuerzas de la naturaleza, emergen del mismo modo que la gravedad emerge de la geometría“.

Resultado de imagen de La <a href=relatividad general subyace en las cuerdas" width="304" height="314" />

Sin que nadie las llame, cuando los físicos de cuerdas trabajan con las ecuaciones de campo de esa teoría, sin que nadie las llame, allí aparecen, las ecuaciones de campo de Einsten de su relatividad general que, subyacen dentro de la teoría de cuerdas… ¿Por qué será?

La característica más notable de la teoría de cuerdas (como ya he señalado), es que la teoría de la gravedad de Einstein está contenida automáticamente en ella. De hecho, el gravitón (el cuanto de gravedad) emerge como la vibración más pequeña de la cuerda cerrada, es más, si simplemente abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió inicialmente atraído hacia la teoría de cuerdas.

Witten está plenamente convencido de que “todas las ideas realmente grandes en la física, están incluidas en la teoría de cuerdas“.

Resultado de imagen de Teoría´çia de la cuerda heterótica

No entro aquí a describir el modelo de la teoría de cuerdas que está referido a la “cuerda heterótica”, ya que su complejidad y profundidad de detalles podría confundir al lector no iniciado. Sin embargo, parece justo que deje constancia de que consiste en una cuerda cerrada que tiene dos tipos de vibraciones, en el sentido de las agujas del reloj y en el sentido contrario, que son tratadas de forma diferente.

Las vibraciones en el sentido de las agujas de reloj viven en un espacio de diez dimensiones. Las vibraciones de sentido contrario viven en un espacio de veintiséis dimensiones, de las que dieciséis han sido compactificadas (recordemos que en la teoría pentadimensional Kaluza-Klein, la quinta dimensión se compactificaba curvándose en un circulo). La cuerda heterótica debe su nombre al hecho de que las vibraciones en el sentido de las agujas de reloj y en el sentido contrario viven en dos dimensiones diferentes pero se combinan para producir una sola teoría de supercuerdas. Esta es la razón de que se denomine según la palabra griega heterosis, que significa “vigor híbrido”.

Resultado de imagen de Las rosas

Imagen relacionada

En conclusión, las simetrías que vemos a nuestro alrededor, desde el arcoiris a las flores y a los cristales (en el copo de nieve -última imagen- Cuando el agua se congela las fuerzas de interacción entre moléculas de H2O ganan a las fuerzas derivadas del movimiento térmico y forman un conjunto rígido que presenta su estado más estable), pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría decadimensional original.  Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia.

La teoría de cuerdas, a partir del descubrimiento Veneziano-Suzuki, estaba evolucionando hacia atrás buscando las huellas de Faraday, Riemann, Maxwell y Einstein para poder construir una teoría de campos de cuerdas.  De hecho, toda la física de partículas estaba basada en teoría de campos. La única teoría no basada en teoría de campos era la teoría de cuerdas.

Resultado de imagen de La belleza de la teoría de cuerdas

De la teoría de cuerdas combinada con la supersimetría dio lugar a la teoría de supercuerdas. La cuerda es un objeto unidimensional que en esta nueva teoría se utiliza remplazando la idea de la partícula puntual de la teoría cuántica de campos. La cuerda se utiliza en la teoría de partículas elementales y en cosmología y se representa por una línea o lazo (una cuerda cerrada). Los estados de una partícula pueden ser producidos por ondas estacionarias a lo largo de esta cuerda.

En esta teoría se trata de unificar a todas las fuerzas fundamentales incorporando simetría y en la que los objetos básicos son objetos unidimensionales que tienen una escala de 10-35 metros y, como distancias muy cortas están asociadas a energías muy altas, para este caso la escala de energía requerida es del orden de 1019 GeV, que está muy por encima de la que hoy en día pueda alcanzar cualquier acelerador de partículas.

Resultado de imagen de los <a href=bosones sólo son consistentes como teorías cuánticas en un espacio-tiempo de 26 dimensiones" width="304" height="103" />

Como antes expliqué, las cuerdas asociadas con los bosones sólo son consistentes como teorías cuánticas en un espacio-tiempo de 26 dimensiones; aquella asociadas con los fermiones sólo lo son en un espacio tiempo de 10 dimensiones. Ya se ha explicado antes que las dimensiones extras, además de las normales que podemos constatar, tres de espacio y una de tiempo, como la teoría de Kaluza-Klein, están enrolladas en una distancia de Planck. De momento, inalcanzables.

Una de las características más atractivas de la teoría de supercuerdas es que dan lugar a partículas de espín 2, que son identificadas con los gravitones (las partículas que transportan la gravedad y que aún no se han podido localizar). Por tanto, una teoría de supercuerdas automáticamente contiene una teoría cuántica de la interacción gravitacional. Se piensa que las supercuerdas, al contrario que ocurre con otras teorías (entre ellas el Modelo Estándar), están libres de infinitos que no pueden ser eliminados por renormalización, que plagan todos los intentos de construir una teoría cuántica de campos que incorpore la gravedad. Hay algunas evidencias de que la teoría de supercuerdas está libre de infinitos, pero se está a la búsqueda de la prueba definitiva.

Resultado de imagen de Partículas que no respetan la Paridad

Aunque no hay evidencia directa de las supercuerdas, algunas características de las supercuerdas son compatibles con los hechos experimentales observados en las partículas elementales, como la posibilidad de que las partículas no respeten paridad*,  lo que en efecto ocurre en las interacciones débiles.

Estoy convencido de que la teoría de supercuerdas será finalmente corroborada por los hechos y, para ello, se necesitará algún tiempo; no se puede aún comprobar ciertos parámetros teóricos que esas complejas matemáticas a las que llaman topología nos dicen que son así.

Habrá que tener siempre a mano las ecuaciones de Einstein, las funciones modulares de Ramanujan y el Supertensor métrico de ese genio matemático que, al igual que Ramanujan, fue un visionario llamado Riemann.

Las historias de estos dos personajes, en cierto modo, son muy parecidas.  Tanto Riemann como Ramanujan murieron antes de cumplir los 40 años y, también en ambos casos, en condiciones difíciles. Estos personajes desarrollaron una actividad matemática sólo comparable al trabajo de toda la vida de muchos buenos matemáticos.

Resultado de imagen de Simetría conforme

¿Cómo es posible que, para proteger la simetría conforme original por su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto número de identidades matemáticas, que precisamente son las identidades de la función modular de Ramanujan?

En este trabajo he expresado que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas. Sin embargo, a la luz de la teoría cuántica, debo corregir algo esta afirmación, y para decirlo correctamente debería decir: las leyes de la naturaleza se simplifican cuando se expresan coherentemente en dimensiones más altas. Al añadir la palabra coherentemente hemos señalado un punto crucial. Esta ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez de dimensiones del espacio-tiempo. Esto a su vez, puede facilitarnos la clave decisiva para explicar el origen del universo.

emilio silvera


* Paridad: Símbolo P. Propiedad de la  función de ondas que determina su comportamiento cuando todas sus coordenadas espaciales son invertidas.

Predicen una explosión que «cambiará el cielo» en 2022

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia – ABC

 

Sucederá cuando dos estrellas se fundan en una sola y será perfectamente visible desde la Tierra, sin necesidad de utilizar telescopio alguno. Los autores del estudio hablan de «algo nunca visto hasta ahora»

Astrónomos predicen una explosión que «cambiará el cielo» en 2022

 

Un equipo de astrónomos capitaneados por Larry Molnar han predicho que dentro de apenas cinco años, en 2022, se producirá una explosión que será perfectamente visible desde la Tierra, sin necesidad de utilizar telescopio alguno. «Estamos ante una de esas raras ocasiones (una de cada millón de veces) -explica Molnar- en las que podemos predecir una explosión. Será algo nunca visto hasta ahora».

Resultado de imagen de Dos estrellas binarias que se fusionan

                        Terminaran fusionandose en una sóla estrella

Según la predicción de este científico, se trata de un sistema binario (dos estrellas que orbitan una alrededor de la otra) y que, según los cálculos, se fundirán en una sola en el año 2022, produciendo una explosión catastrófica. En ese momento, la estrella resultante aumentará espectacularmente su brillo y se convertirá, durante un tiempo, en el objeto más brillante del firmamento. La estrella será visible como parte de la constelación del Cisne, y añadirá un nuevo y brillante punto de luz a las estrellas que forman la Cruz del Norte.

Resultado de imagen de la estrella KIC 9832227

Molnar comenzó a estudiar la estrella KIC 9832227 a finales de 2013. Empezó a hacerlo tras asistir a una conferencia en la que la astrónoma Karen Kinemuchi presentó un estudio sobre los cambios de brillo de esa estrella en particular, dejando abierta la cuestión de si se trataba de una estrella «pulsante» o de un sistema binario. El científico se tomó el asunto como un reto personal y decidió estudiar el objeto en profundidad.

Lo primero que hizo fue observar cómo el color de la estrella se relacionaba con su brillo, lo que le llevó a determinar que se trataba, definitivamente, de un sistema binario. De hecho, descubrió que en realidad se trataba de un sistema binario «de contacto», en el que las dos estrellas del sistema comparten una atmósfera común, como dos cacahuetes que están dentro de a misma cáscara.

Resultado de imagen de la estrella KIC 9832227

A partir de aquí, Molnar explica cómo Daniel Van Noord, estudiante del Calvin College, «logró determinar un periodo orbital muy preciso con los datos del satélite Kepler, y se sorprendió al descubrir que ese periodo era ligeramente inferior al que mostraban los primeros datos del satélite».

Este resultado recordó al astrónomo un estudio publicado previamente por su colega Romuald Tylenda, que mostraba cómo otra estrella (V1309) se estaba comportando justo antes de explotar de forma inesperada en 2008, produciendo una nova roja, uno de los tipos conocidos de explosión estelar. Los registros anteriores a esa explosión mostraban una binaria de contacto, con un período orbital cada vez más corto y a velocidades cada vez mayores. Para Molnar, este patrón de cambios orbitales fue como una “piedra Roseta” que le permitió interpretar los nuevos datos de la estrella que estaba estudiando.

Tomada muy en serio

 

 

Risultati immagini per KIC 8462852 Alien Megastructure

 

 

Molnar observó que los cambios en el período orbital de KIC 9832227 seguían cambiando durante 2013 y 2014, y en 2015 presentó sus resultados ante la Sociedad Astronómica Americana, donde aseguró que había una probabilidad muy alta de que KIC 9832227 siguiera los mismos pasos de V1309. Por supuesto, antes de tomarse su hipótesis completamente en serio, Molnar pasó meses enteros tratando de descartar otros motivos que podrían estar detrás de los cambios detectados en la estrella. «En pocas palabras -explica el investigador- en ese momento pensamos que nuestra hipótesis de la fusión de las dos estrellas debía ser tomada muy en serio, y que deberíamos utilizar los años siguientes para estudiar el acontecimiento a fondo para que, cuando la explosión se produzca, conozcamos con exactitud todos los pasos que llevaron a ella».

Por eso, Molnar y sus colegas pasarán todo el año próximo examinando KIC 9832227 en todas las longitudes de onda. Si las predicciones son correctas, será la primera vez que un grupo de astrónomos logra captar el momento en que los dos miembros de un sistema binario de estrellas se fusionan, y estudiar además al detalle lo que sucede durante los años que preceden a la explosión.

Si Molnar tiene razón. el espectáculo está servido para dentro de cinco años. Será entonces cuando, de la negrura del Universo, surgirá un nuevo punto brillante para iluminar nuestras noches.

————————————————————–

 Estos eventos son normales en el Universo y, de vez en cuando, los Astrónomos tiuenen la suerte de localizar uno que pueden observar para ir aprendiendo de cómo ocurren realmente este tipo de encuentros.