domingo, 19 de mayo del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Conociendo el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 La Mejor Evidencia Observable de la Primera Generación de Estrellas del Universo

 

https://encrypted-tbn3.gstatic.com/images?q=tbn:ANd9GcS6VCjINkOP1fHpNNHZPBbTpl6DBbZwr0XacjtDjHTeaQAFIfxKBw

 

Utilizando el Very Large Telescope de ESO, un equipo de astrónomos ha descubierto la galaxia más brillante encontrada hasta ahora en el universo temprano, hallando además evidencias de que, acechando en su interior, hay ejemplares de la primera generación de estrellas. Estos objetos masivos, brillantes y puramente teóricos hasta ahora, fueron los creadores de los primeros elementos pesados de la historia, los elementos necesarios para forjar las estrellas que nos rodean hoy en día, de los planetas que las orbitan y de la vida tal y como la conocemos. La galaxia recién descubierta, apodada CR7, es tres veces más brillante que la galaxia distante más brillante conocida hasta ahora. El apodo de CR7 es la abreviatura de COSMOS Redshift 7, una medida de su ubicación en términos de tiempo cósmico. Fue inspirado por el gran futbolista portugués, Cristiano Ronaldo, conocido como CR7.

 

 

                                                     Estrellas de la Población III

 

 

Los astrónomos han teorizado durante mucho tiempo sobre la existencia de una primera generación de estrellas — conocida por los astrónomos como estrellas de población III — que nacieron del material primordial del Big Bang. Todos los elementos químicos más pesados (como oxígeno, nitrógeno, carbono y hierro, que son esenciales para la vida) se forjaron en el interior de las estrellas. Esto significa que las primeras estrellas debieron haberse formado a partir de los únicos elementos que existían antes de las estrellas: hidrógeno, helio y trazas de litio.

Estas estrellas de población III habrían sido enormes (varios cientos o incluso mil veces más masivas que el Sol ­— ardientes y efímeras —) y habrían acabado explotando como supernovas después de tan solo unos dos millones años. Pero hasta ahora la búsqueda de la prueba física de su existencia no había encontrado ninguna evidencia clara.

Impresión artística de CR7: la galaxia más brillante del universo temprano
Impresión artística de CR7: la galaxia más brillante del universo temprano. Image Credit: ESO

Un equipo dirigido por David Sobral, del Instituto de Astrofísica y Ciencias del Espacio, la Universidad de Lisboa (Portugal) y el Observatorio de Leiden (Países Bajos), ha utilizado el Very Large Telescope (VLT de ESO) para mirar hacia el universo antiguo, hacia un periodo conocido como reionización que tuvo lugar aproximadamente 800 millones de años después del Big Bang. En lugar de llevar a cabo un estudio profundo y limitado de un área pequeña del cielo, ampliaron su alcance para producir el sondeo más amplio de galaxias muy lejanas jamás elaborado.

Resultado de imagen de VLT de EsoResultado de imagen de Observatorio W. M. Keck

VTL de ESO                                                                                   Observatorio W.M. Keck

Resultado de imagen de Telescopio SubaruResultado de imagen de Telescopio Hubble

Telescopio Saburu                                                              Hubble de la NASA

Este amplio estudio se hizo utilizando el VLT con ayuda del Observatorio W. M. Keck y del telescopio Subaru, así como del Telescopio Espacial Hubble de NASA/ESA. El equipo descubrió — y confirmó — una serie de galaxias muy jóvenes asombrosamente brillantes. Una de ellas, bautizada como CR7, era un objeto excepcionalmente raro, sin duda la galaxia más brillante nunca observada en esa etapa en el universo. Con el descubrimiento de CR7 y de otras galaxias brillantes, el estudio ya suponía un éxito, pero una nueva revisión proporcionó más noticias emocionantes.

Observing Platform VLT.jpg

El VLT se encuentra en el Observatorio OParanal sobre el centro Paranal en la ciudad de Taltal, una montaña de 2.635 metros localizada en el desierto de Atacama, al norte de Chile.

Los instrumentos X-shooter y SINFONI, instalados en el VLT, descubrieron en CR7 una potente emisión de helio ionizado pero — crucial y sorprendentemente — ninguna señal de elementos más pesados en una brillante zona de la galaxia. Esto significó que el equipo había descubierto la primera evidencia válida de la existencia de cúmulos de estrellas de población III que habían ionizado el gas dentro de una galaxia en el universo temprano.

“El descubrimiento desafiaba nuestras expectativas desde el principio”, afirma David Sobral, “ya que no esperábamos encontrar una galaxia tan brillante. Entonces, al descubrir la naturaleza de CR7 paso a paso, comprendimos que no sólo habíamos descubierto la galaxia lejana más luminosa, sino que también nos dimos cuenta de que cumplía todas y cada una de las características esperadas de estrellas de población III. Esas estrellas fueron las que formaron los primeros átomos pesados que, en última instancia, nos ha permitido estar aquí. Realmente no hay nada más emocionante que esto”.

Dentro de CR7 se encontraron cúmulos de estrellas más azules y un poco más rojas, indicando que la formación de estrellas de población III había tenido lugar por oleadas, tal y como se había predicho. Lo que el equipo observó de forma directa fue la última oleada de estrellas de población III, sugiriendo que tales estrellas deben ser más fáciles de encontrar de lo que se pensaba previamente: residen entre estrellas normales, en las galaxias más brillantes, no sólo en las galaxias más tempranas, más pequeñas y más tenues, que son tan débiles que son extremadamente difíciles de estudiar.

Jorryt Matthee, segundo autor del artículo, concluyó: “siempre me he preguntado de dónde venimos. Incluso siendo niño quería saber de dónde provienen los elementos: el calcio de mis huesos, el carbono de mis músculos, el hierro de mi sangre. Descubrí que estos se formaron primero en los inicios del universo, por la primera generación de estrellas. Con este notable descubrimiento estamos empezando a ver estos objetos por primera vez”.

Está previsto llevar a cabo observaciones con el VLT, ALMA y el Telescopio Espacial Hubble de la NASA/ESA para confirmar, más allá de toda duda, que lo que se ha observado son estrellas de población III y buscar e identificar otros ejemplos.

Bueno, Cristiano me cae bien, es un luchador y, lo que tiene, nadie se lo regaló. Sin embargo, de ahí a tener el honor de que una galaxia lleve su nombre… ¡No hizo mérito para ello! Claro que, la galaxia no se llama así por él.

Esto último es mi opinión personal que queda fuera del reportaje.

emilio silvera

Siempre queriendo saber sobre… ¿Nuestra casa?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

CIENCIA-ABC

Plano de la Vía Láctea visto desde la Tierra

Plano de la Vía Láctea visto desde la Tierra - Bruno Gilli/ESO

Científicos logran, por primera vez, pesar la Vía Láctea con precisión. Los datos del Telescopia Espacial Hubble y del Observatorio Gaia, de la Agencia Europea (ESA), han permitido estimar que toda la Galaxia pesa 1,5 billones de soles. El 90 por ciento está formado de materia oscura.

Resultado de imagen de a materia oscura en la Vía Láctea

 

 

Imagen relacionada

A pesar de décadas de enormes esfuerzo, hasta ahora los astrónomos no habían sido capaces de estimar una de las cosas más básicas sobre el lugar donde vivimos: la Vía Láctea. ¿Cuánto pesa este gigantesco disco, compuesto por cien mil millones de estrellas, un número comparable de mundos y una extensión de 130.000 años luz?

Una investigación que se acaba de publicar en arXiv y que ha sido elaborada gracias a las medidas hechas con el telescopio espacial Hubble y el observatorio espacial Gaia, de la Agencia Espacial Europea (ESA), ha permitido a los científicos hacer una estimación precisa de la masa de toda la galaxia: 1,5 billones de masas solares (el Sol pesa 1,99 × 10^30 kilogramos, mientras que la Tierra solo llega a las 5,97 × 10^24 kilogramos).

Lo cierto es que hasta ahora se estimaba que la masa de la Vía Láctea estaba situada entre los 500.000 millones y los tres billones de masas solares. El origen de esta discrepancia se debe a lo difícil que es medir la distribución de la materia oscura, un tipo de materia invisible que mantiene cohesionada la galaxia y cuya masa constituye el 90 por ciento de toda la masa de la Vía Láctea.

Resultado de imagen de a materia oscura en la Vía Láctea

«Sencillamente, no podemos detectar la materia oscura directamente», ha explicado en un comunicado Laura Watkins, directora del estudio e investigadora en el Observatorio Europeo Austral (ESO). «Esto lleva a la presente incertidumbre con la masa de la Vía Láctea. ¡No puedes medir con precisión lo que no puedes ver!».

¿Cómo saber cuánto pesa lo invisible?

 

 

Resultado de imagen de Cúmulos globularesResultado de imagen de Cúmulos globularesResultado de imagen de Cúmulos globularesResultado de imagen de Cúmulos globulares

 

 

Por ello, los investigadores recurrieron a una triquiñuela: medir la velocidad de los cúmulos globulares, densas acumulaciones de estrellas que orbitan la espiral de la galaxia. ¿Por qué? Porque cuanto más masiva es una galaxia, más rápido se mueven estos cúmulos por efecto de su gravedad. En concreto, el estudio ha sido posible gracias a que Gaia ha medido las velocidades de 34 cúmulos globulares y que el Hubble ha seguido a otros 12.

Además, en esta ocasión hubo una diferencia fundamental, tal como ha explicado N. Wyn Evans, coautor del estudio e investigador en la Universidad de Cambridge. Mientras que en las mediciones hechas hasta ahora se había medido la velocidad de los cúmulos alejándose o acercándose a la Tierra, en este caso pudieron medir la velocidad lateral de estos objetos. Por eso, pudieron calcular su velocidad total y, en consecuencia, hallar la masa de la galaxia.

La alianza entre Gaia y el Hubble

 

Resultado de imagen de Telescopio Gaia

Resultado de imagen de El hubble y la Vía LácteaResultado de imagen de El hubble y la Vía Láctea

 

 

Además, ahora los científicos han tenido a su alcance las medidas de Gaia de cúmulos globulares situados a distancias de hasta 65.000 años luz. Conviene recordar que este instrumento está diseñado para crear un mapa tridimensional de los objetos astronómicos de toda la Vía Láctea y poder seguir su movimiento.

Al mismo tiempo, el Hubble permitió incorporar al estudio los cúmulos que se encuentran en un rango de 130.000 años luz. Dado que el Hubble ha estado observando algunos de estos objetos durante una década, ha podido encontrar las diferencias de posición y, por tanto, las velocidades de estos cúmulos.

Resultado de imagen de La mejor imagen de la Vía LácteaResultado de imagen de La mejor imagen de la Vía LácteaResultado de imagen de La mejor imagen de la Vía LácteaResultado de imagen de La mejor imagen de la Vía Láctea

«Hemos tenido la suerte de poder hacer esta gran combinación de datos», ha explicado P. van de Marel, coautor del estudio y científico en el Space Telescope Science Institute. «Al combinar las medidas de Gaia con las del Hubble, pudimos precisar la masa de la Vía Láctea de una forma que habría sido imposible sin estos dos telescopios espaciales».

Lograrlo es fundamental. No saberlo es un problema a la hora de estudiar el contenido y distribución de la materia oscura, puesto que esta es fundamental para comprender la evolución del Universo y el nacimiento de las galaxias. Además, es clave para comprender el contexto cosmológico en el que se sitúa toda la galaxia.

Más allá de nuestra imaginación

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Cúmulo del Trapecio en el rango óptico (izquierda) y en el de infrarrojos (derecha). Los astrónomos han hecho dos simulaciones de este cúmulo para hacer las estimaciones de los mundos errantes

Cúmulo del Trapecio en el rango óptico (izquierda) y en el de infrarrojos (derecha). Los astrónomos han hecho dos simulaciones de este cúmulo para hacer las estimaciones de los mundos errantes – Dominio público

Miles de millones de planetas viajan sin control por nuestra Galaxia

Resultado de imagen de Planetas errantesResultado de imagen de Planetas errantes

 

Astrónomos han estimado que existen 16.500 millones de planetas errantes en la Vía Láctea. Estos exoplanetas no están unidos a la gravedad de ni8nguna estrella

 

 

 

 

Resultado de imagen de Planetas errantes

Astrónomos de la Universidad de Leiden (Países Bajos) acaban de compartir un artículo en la plataforma arXiv, para su publicación en Astronomy & Astrophysics, en el que han llegado a una sorprendente conclusión: la Vía Láctea está recorrida por 16.500 millones de planetas errantes, objetos que vagan más allá del control gravitacional de ninguna estrella y que están sumidos en la oscuridad y el frío.

Los investigación, dirigida por A. van Elteren, revela que estos planetas errantes son mucho más abundantes de lo que se pensaba. Sus resultados indican que, de los 100.000 millones de exoplanetas que se estima que existen en la Vía Láctea, el 16,5 por ciento es un mundo errante. Por tanto, estos mundos vagabundos son abundantes en números de miles de millones.

Resultado de imagen de Cúmulo del trapecio

Estas conclusiones están basadas en dos sofisticadas simulaciones de ordenador. Los astrónomos han introducido las estadísticas definidas por nuestro conocimiento de los exoplanetas y las han aplicado a lo observado en el Cúmulo del Trapecio, un grupo de estrellas jóvenes situado en el corazón de la Nebulosa de Orión. Por tanto, estas conclusiones no son definitivas, aunque sí sugieren la gran abundancia de estos peculiares objetos.

Lo cierto es que, hasta el momento, solo se han identificado 20 de estos mundos errantes, mientras que se han descubierto 3.917 candidatos a exoplanetas, mundos «convencionales» anclados a la gravedad de sus estrellas.

Un punto negro en la oscuridad

 

Resultado de imagen de Una se basa en la detección de la curvatura del espacio-tiempo

 

 

La excepcionalidad de los planetas vagabundos no debería de resultar sorprendente, puesto que esos mundos son muy difíciles de ver: están lejos de la Tierra, son mucho más pequeños que las estrellas, no emiten luz propia y tampoco la reflejan. Apenas son un punto oscuro y pequeño en medio de la inmensa negrura del espacio.

A pesar de todo, pueden ser detectados por medio de dos técnicas. Una se basa en la detección de la curvatura del espacio-tiempo que genera su gravedad, y que desvía ligeramente los rayos de luz a causa de su efecto de lente gravitacional (la posición de las estrellas del fondo se modifica cuando un objeto muy masivo se interpone entre el observador y ellas). Otro método de detección se basa en la toma de imágenes infrarrojas.

En esta ocasión, los astrónomos de la universidad de Leiden recurrieron a una triquiñuela: los censos estelares. Teniendo en cuenta la pequeña porción de exoplanetas y estrellas que han sido cartografiados, los científicos extrapolaron las poblaciones y abundancias de cada tipo de objeto y lo aplicaron al Cúmulo del Trapecio.

Los 300 mundos expulsados

 

Resultado de imagen de Mundos 130 veces mayores que júpiter

 

 

Partiendo de las cerca de 500 estrellas parecidas al Sol que existen allí, aplicaron la estadística para estimar la cantidad de sistemas solares de cuatro, cinco o seis planetas existentes. Al final, obtuvieron la estimación de que en dichas estrellas existen un total de 2.522 exoplanetas, que van de los mundos tres veces mayores que la Tierra hasta los 130 veces mayores que Júpiter.

Resultado de imagen de Planetas sin estrella

Recreación artística del planeta errante PSO J318.5-22 – MPIA/V. Ch. Quetz

Según los resultados de este modelo y de las estadísticas hechas con lo que sabemos hoy por hoy, entre todos estos 2.522 mundos hay 357 que fueron expulsados de sus sistemas solares en un rango de tiempo de solo 11 millones de años. Unos pocos quedaron atrapados en el cúmulo, cinco fueron capturados por otros sistemas solares y, la gran mayoría, 282 de ellos, abandonaron dicho cúmulo. Además, los astrónomos consideran que, probablemente, los mundos errantes tienen el mismo rango de tamaños que los que orbitan estrellas.

Resultado de imagen de Colisión de planetas errantes

En principio no habría que temer por el destino de estos exoplanetas errantes y disparados, porque el Universo es inmenso. Sin embargo, el modelo elaborado por estos astrónomos reveló que lo infrecuente ocurre muchas veces: 75 de estos 2.522 exoplanetas colisionaron con su estrella hospedadora y 34 chocaron entre sí.

Quizás estos fenómenos no son tan ajenos. Algunos científicos han propuesto varias hipótesis relacionadas con la existencia de planetas vagabundos: se sugiere que nuestro propio Sistema Solar tuvo un planeta más en el pasado y que luego fue expulsado, que Urano chocó con un planeta errante y por eso obtuvo la extraña inclinación de su eje, y que el hipotético Planeta X pudo ser un vagabundo capturado por la gravedad del Sol.

En el Centro de la Galaxia

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

 

Descubren extrañas partículas que parecen emanadas desde el Centro Galáctico están bombardeando la Tierra. Desde el Departamento de Física de la Universidad de  California se confirma que poderosos rayos Gamma están llegando  a nuestro planeta desde el mismo centro de la Galaxia.

 Dibujo20130829 Zoom into the galactic center - supermassive black hole Sgr A emitting a broad spectrum of light from radio up to x-rays

Existen argumentos más que fundados para creer que, en el Centro de nuestra Galaxia, la Vía Láctea, habita un enorme Agujero Negro que según las observaciones y  mediciones efectuadas, puede tener 4 millones de veces la masa del Sol. Así lo avalan los 16 años de investigación y estudio de 28 estrellas allí situadas y, sobre todo, el comportamiento de la estrella designada con el nombre S2 de cuyo comportamiento al orbitar el Centro Galáctico, se han deducido estos números increíbles. Se utilizaron telescopios y cámaras muy sofisticadas que hicieron el seguimiento de S2, y, cuando estaba a 1 dia-luz del Centro, pudieron comprobar de manera muy convincente los resultados de los efectos Gravitatorios que se produjeron en las cercanías de influencia del Agujero Negro Supermasivo que, aunque invisible para nuestros aparatos, no lo es en cuanto a la Gravedad que genera se refiere.

Resultado de imagen de En el centro de la Vía Láctea

Es un verdadero triunfo técnico el poder conseguir, desde una distancia de 27 000 a.l., el poder hacer comprobaciones como esta que nos dan las respuestas esperadas de ese lugar que hasta hace relativamente muy poco tiempo nos era totalmente misterioso.

Resultado de imagen de Credit: ESO , Stefan Gillessen ( MPE ) En el Centro de la Galaxia

                                Credit: ESO , Stefan Gillessen ( MPE ) En el Centro de la Galaxia

La Imagen nos muestra la acumulación de estrellas que existe en un radio de tres años-luz del centro de la Vía Láctea. Estamos contemplando una región altamente activa y donde están presentes enormes energías y ocurren sucesos que por nuestras latitudes no podemos contemplar como, por ejemplo,  fuertes emisiones de rayos X y Gamma como consecuencia del material que cae dentro del Agujero Negro y se produce la radiación Hawking.

En algunos lugares he podido leer que algo grande está pasando en aquel lugar, algo que los Astrónomos no alcanzan (aún) a explicar. El Fermi, el Telescopio Espacial de Rayos Gamma de la NASA que, pudo descubrir allí dos gigantes burbujas de energía en erupción con la fuente en el mismo Centro de la Galaxia. ¿Qué fuerzas se están generando allí? ¿Que vientos estelares no se producirán para que surjan esas burbujas?

El origen de las burbujas es,  de momento misterrioso, y el Jefe del equipo que estudia el fenómeno ha declarado que las burbujas se extienden a 25.000 años-luz hacia arriba y abajo de cada lado de la Galaxia y contiene energías equivalentes a 100.000 explosiones de supernovas.

 

Los efectos que pueden provocar las supernovas, no se limitan a su entorno cercano y, a muchos liles de millones de kilómetros del lugar de la explosión, se pueden llegar a sentir y sufrir sus efectos devastadores.

Se piensa que dichas burbujas energéticas han podido surgir como consecuencia de una ola de nacimientos de estrellas jovenes y masivas de intensa radiación ultravioleta. Otra opción que barajan los expertos es que pueden tener su origen en un erupto gigantesco del Agujero Negro super masivo ubicado en el mismo Centro Galáctico.

Está claro, como declaró algún miembro del equipo que estudio el acontecimiento que, el Universo, “nos tiene reservadas muchas sorpresas” que no podemos ni imaginar.

Como siempre suele ocurrir en estos casos, cuando no tenemos la certeza de dar una explicación coherente, algunos acuden a la “materia oscura” para tratar de explicar lo que, de momento, no tiene explicación. Nuestra Galaxia, la Vía Láctea, ha dado lugar a escritos que podrían llenar una gran Biblioteca y, desde los tiempos más remotos, sabios que gustaban de la contemplación de los cielos, dejaron sus impresiones escritas de una u otra manera. Mirando por ahí encuentro el párrafo siguiente:

 

 

“La Vía Láctea ha fascinado a muchos más. Se han tejido mitos y leyendas a su alrededor.  Los antiguos la conocieron por muchos nombres.  Anaxágoras y Aratos ( 500 a. de C. ) le llamaban To Gala : La Rueda Brillante  ¿Rueda?  ¿De dónde? A mí me pareció una sola franja.  Resulta que esa franja continuaba por debajo de mis pies (del otro lado de la Tierra) hasta cerrarse. Esa parte invisible para mí esa noche aparecería en las madrugadas de otoño.  ¡Vaya que los primeros astrónomos eran buenos observadores!  Y también tenían imaginación, una imaginación a veces predictiva: Demócrito, el padre del átomo, sugirió que La Vía Láctea estaba formada por una multitud de estrellas … ¡En el año 430 a. de C.! Eratóstenes, quien midió la circunferencia de la Tierra la llamó  “El círculo de la Galaxia” ó “ Círculo Galáctico “ ¡Wow! ¡Que avanzados! ¿Cómo sabían que la Vía Láctea era una Galaxia? No lo sabían.  Su interpretación del término “Galaxia”  era distinto a la actual.  Galaxia sólo había una y se refería a la lechosa luz que cruzaba  el cielo nocturno ( Nótese la similitud entre los términos Lácteo y Galaxia ) Hoy, cuando escuchamos la palabra “Galaxia” nos imaginamos un gran remolino de estrellas, nubes y polvo, con un centro brillante.  En aquel entonces “Galaxia” no era otra cosa que el nombre propio de nuestra Vía Láctea.  En al año 175 a. de C. Hiparco la llamó simplemente “La Galaxia”. Aún hoy, cuando vemos la palabra Galaxia -con mayúscula- sabemos que se refiere a la nuestra.”

 

 

 Resultado de imagen de Estamos En la parte interior del Brazo de Orión (señalada con la línea) está el Sistema Solar,

En la Otros veían la Galaxia como un gran río. Le llamaban “El Río del Cielo”.  Los árabes la conocían simplemente como “El Río”, los hebreos “El Río de Luz” Job la llamaba “La Serpiente Tortuosa”. Los chinos y japoneses veían también un río.  Los chinos la llamaban le llamaron “Tien Ho” es decir “El Río Celestial o Plateado”, y tenían una creencia muy singular (A mí me parece simpática).  Ellos decían que cuando los peces del río (las estrellas) veían aproximarse el anzuelo (una delgada Luna creciente) se ocultaban Los armenios y los sirios le llamaban “El gran Vendaje”.  Los romanos (Plinio), al estilo de Erastótenes, le llamaban el “Círculo Lácteo” además de “El Cinturón Celestial” “Vía Celeste Regia”  y Vía Láctea”,  

               Y la leche de Juno formó la Vía Láctea

¿De dónde salió tanta leche? Los indios norteamericanos y algunos pueblos de Noruega decían que la Vía Láctea era “El camino de los Fantasmas” por donde ascendían los espíritus de héroes y guerreros.  Los espíritus se detenían a descansar de vez en Los esquimales y algunos pueblos africanos veían en ella “El camino de las cenizas” que se elevaba sobre una gran pira.

En México nuestros abuelos o en los pueblitos la conocen  

Shirley MacLaine también hizo el Camino de Santiago
“El camino de Santiago de Compostela es una peregrinación famosa en todo el mundo que lleva siglos haciéndose. Dicen que el Camino se encuentra directamente debajo de la Vía Láctea, y que sigue líneas que reflejan la energía de los sistemas estelares suspendidos encima de él… El Camino de Santiago ha sido recorrido durante cientos de años por santos, pecadores, militares, inadaptados, reyes y reinas. El  

Muchas son las Rutas que nos pueden llevar a Santiago, allí los peregrinos ven algo que les llena de paz. Todos los que han ido dicen que la experiencia es única y, así, llegan de todas partes del mundo. Pero vamos a lo que nos traemos Lo cierto es que, “En 1961 el radioastrónomo Frank Drake, presidente del SETI (Instituto  

Bueno, la Galaxia es grande, el Universo mucho más, y, si en nuestra pequeña Tierra está presente la vida Inteligente, ¿qué Resultado de imagen de Frank Drake

                                     Frank Drake

Él nos dejó su fórmula que es la siguiente: N = R * fp * ne * fl * fi * fc * L

Donde

Es sorprendente, como funciona la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 +

               En cualquier galaxia pueden existir más de cien mil millones de estrellas

El Universo (al menos el nuestro), nos ofrece algo más, mucho más que grandes espacios vacíos, oscuros y fríos. En él podemos ver muchos lugares luminosos llenos de estrellas, de mundos y… muy probablemente de vida. Sin embargo, tenemos la sospecha de que, aparte del nuestro, otros universos podrían rondar por ahí y conformar un todo de múltiples Universos de caracterísiticas diversas y no en todos, serían posible la formación de estrellas y como consecuencia de la Vida.

Cuando me sumerjo en los misterios y maravillas que encierra el Universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, la sorprendente presencia de formas de vida y su variedad, y, sobre todo, que esa materia animada pudiera llegar hasta la consciencia, emitir ideas y pensamientos.

                ¿Qué “escalera” habrá que subir para llegar a ese otro universo?

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, hacemos conjeturas y comparaciones con otros que podrìan ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimensiones espacio-temporales, no contamos con las condiciones físico-tecnológicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado mucho más allá de nuestro alcance. Sin embargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para construir esa tecnología futurista que nos llevaría a esos otros horizontes.

                                                ¿Quién sabe lo que en otros mundos podremos encontrar?

¡Oh mundo de muchos mundos!

¡Oh vida de vidas!

¿Cuál es tu centro?

¿Dónde estamos nosotros?

¿Habrá algo más de lo que vemos?

¿Debemos prestar atención a las voces que oímos en nuestras mentes?

¿Cómo pudimos llegar a saber de lo muy pequeño y de lo muy grande?

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

De los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3.

Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1.909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerisimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original.

De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

Si la estrella tiene la masa del Sol “muere” para convertirse en una nebulosa planetaria y en una enana blanca. Si la estrella que agota su combustible nuclear de fusión es más masiva en varias masas solares, el resultado es el de una Estrella de Neutrones, y, si es súper-masiva, será un agujero negro su destino final.

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

https://josemauronunes.files.wordpress.com/2009/11/201203.jpg

Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en carbono, el carbono en oxígeno, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

                               Nuestro Sol es la estrella más estudiada en nuestro mundo

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad! Sin embargo, en el contexto del Universo eso no supone nada si pensamos en su inmensidad. Si eso es así (que lo es), ¿qué somos nosotros comparados con toda esa grandeza? Bueno, si dejamos aparte el tamaño, creo que somos la parte del universo que piensa, o, al menos, una de las partes que puede hacerlo.

            Ahí se producen las transiciones de fase que transmutan la materia sencilla en la compleja

Objetos como estos pueblan el universo, e incluso más sorprendentes todavía, como es el caso de los agujeros negros explicado en páginas anteriores de este mismo trabajo. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos.

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 4.654.600.000 toneladas de hidrógeno en 4.650.000.000 toneladas de helio  (las 4.600 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de esta energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

En resumen, la masa del Sol supone el 99,9 % de toda la masa del Sistema solar.

Para completar datos diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado -, el Sol es hidrógeno en un 80 por ciento.

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654.000  toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más.

Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que ahora. El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo.

A medida que el Sol siga radiando, irá adquiriendo una masa cada vez mayor ese núcleo de helio y la temperatura en el centro aumentará. En última instancia, la temperatura sube lo suficiente como para transformar los átomos de helio en átomos más complicados. Hasta entonces el Sol radiará más o menos como ahora, pero una vez que comience la fusión del helio, empezará a expandirse y a convertirse poco a poco en una gigante roja. El calor se hará insoportable en la Tierra, los océanos se evaporarán y el planeta dejará de albergar vida en la forma que la conocemos.

La esfera del Sol, antes de explotar para convertirse en una enana blanca, aumentará engullendo a Mercurio y a Venus y quedará cerca del planeta Tierra, que para entonces será un planeta yermo.

Los astrónomos estiman que el Sol entrará en esta nueva fase en unos 5 ó 6 mil millones de años. Así que el tiempo que nos queda por delante es como para no alarmarse todavía. Sin embargo, el no pensar en ello… no parece conveniente.

Espero que al lector de este trabajo, encargado por la Asociación Cultural “Amigos de la Física 137, e/hc”, les esté entreteniendo y sobre todo interesando los temas que aquí hemos tratado, siempre con las miras puestas en difundir el conocimiento científico de temas de la naturaleza como la astronomía y la física. Tratamos de elegir temas de interés y aquellos que han llamado la atención del público en general, explicándolos y respondiendo a preguntas que seguramente les gustaría conocer, tales como: ¿por qué la Luna muestra siempre la misma cara hacia la Tierra?

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira hacia la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra.

Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.

                                               Luna roja sobre el Templo de Poseidon

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.

                      Siempre nos muestra la misma cara

Esto, a su vez, congela los abultamientos en una aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento. La Luna es un caso relativamente simple. En ciertas condiciones, el rozamiento debido a las mareas puede dar lugar a condiciones de estabilidad más complicadas.

Resultado de imagen de el planeta mercurio tarda 88 días terrestres en dar una vuelta completa alrededor del sol

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercan al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? ¿Hay algo más excitante que el descubrir y saber?

emilio silvera