jueves, 19 de octubre del 2017 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




De estrella masiva a Agujero Negro

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

 

 

Resultado de imagen de La mejor imagen de un <a href=agujero negro" />

           La Singularidad escondida tras el horizonte de sucesos que gira creando energías increíbles

Cuando hablamos de un agujero negro estamos hablando de algo con un campo gravitacional tan intenso que su velocidad de escape supera la velocidad de la luz. Los agujeros negros se forman cuando las estrellas masivas colapsan al final de sus vidas. Un objeto que se colapsa se convierte en un agujero negro cuando su radio se hace menor que un tamaño crítico, conocido como radio de Schwarzschild, y la luz no puede escapar de él.

La superficie que tiene este radio crítico se denomina horizonte de sucesos, y marca la frontera dentro de la cual esta atrapada toda la información. De esta forma, los acontecimientos dentro del agujero negro no pueden ser observados desde fuera. La teoría muestra que tanto el espacio como el tiempo se distorsionan dentro del horizonte de sucesos y que los objetos colapsan a un único punto del agujero, que se llama singularidad, situada en el propio centro del agujero negro. Los agujeros negros pueden tener cualquier masa.

 

 

Resultado de imagen de La mejor imagen de un <a href=agujero negro" />

 

 

 

Pueden existir agujeros negros súpermasivos con cientos de miles de masas solares, verdaderos montruos, en los centros de las galaxias activas. En el otro extremo, mini-agujeros negros con un radio de 10-10 m y masas similares a las de un asteroide pudieron haberse formado en las condiciones extremas que se dieron poco después del BIg Bang.

 

 

 

 

 

El proceso comienza al final de la vida de las estrellas que, dependiendo de sus masas, serán enanas blancas, estrella de neutrones, o, en último lugar, Agujeros Negros, los más masivos y densos. Se habla ahora de la existencia de las estrellas de Quarks que, de existir, estarían en el punto intermedio entre las de neutrones y los agujeros negros.

Nunca se ha observado directamente un agujero negro, Kart Schwarzschild (1.837 – 1.916), dedujo la existencia de agujeros negros a partir de las ecuaciones de Einstein de la relatividad general de 1.915 que, al ser estudiadas en 1.916, un año después de la publicación, encontró en estas ecuaciones que existían tales objetos supermasivos.

 

 

Resultado de imagen de Las ecuaciones de <a href=Einstein de la Relatividad general" />

 

 

Antes, en la explicación sobre las estrellas, queriendo dejarlo para este momento, deje de explicar lo que hace el equilibrio en la vida de una estrella. La estrella está formada por una inmensa nube de gas y polvo que a veces tiene varios años luz de diámetro. Cuando dicho gas (sus moléculas) se va juntando se produce un rozamiento que ioniza los átomos de la nube de hidrógeno que se juntan y se juntan cada vez más, formando un remolino central que gira atrayendo al gas circundante, que poco a poco va formando una inmensa bola. En el núcleo, la fricción es muy grande y las moléculas apretadas al máximo por la fuerza de gravedad, por fin produce una temperatura de varios millones de grados K que es la causante de la fusión de los protones que forman esos átomos de hidrógeno. La reacción que se produce es una reacción en cadena; comienza la fusión que durará todo el tiempo de vida de la estrella. Así nacen las estrellas cuyas vidas están supeditadas al tiempo que tarde en ser consumido su combustible nuclear, el hidrógeno que mediante la fusión es convertido en helio.

 

 

 

 

Es estas regiones comienza la historia de lo que muchos millones de años más tarde, será un agujero negro. Estrellas nuevas supermasivas, azuladas y de intensa radiación ultravioleta (como esa que vemos abajo a la derecha), un día lejano en el tiempo llegará a su final y se convertirá en supernova, eyectará las capas exteriores de su masa al espacio interestelar y, el resto de la estrella, quedando libre de la fuerza de radiación que producía la fusión nuclear, quedará a merced de la fuerza de Gravedad que, haciendo su trabajo, la comprimirá hasta extremos insispechados convirtiéndola en un Agujero Negro. Si la masa es más pequeña (2 – 3 masas solares) será una estrella de neutrones, ya que, al ser comprimido losprotones y electrones allí presentes, se fusionaran para convertirse en neutrones que, al sentirse estrechamente enpaquetados, se degenerarán e impedirán que la masa de la estrella siga comprimiéndose.

 

 

El enigma de las estrellas monstruosas

 

Las estrellas muy grandes, conocidas como supermasivas, son devoradoras de hidrógeno y sus vidas son mucho más cortas que el de las estrellas normales. Una vez que se produce la fusión termonuclear, se ha creado el equilibrio de la estrella; veamos como. La inmensa masa que se juntado para formar la estrella genera una gran cantidad de fuerza de gravedad que tiende a comprimir la estrella bajo su propio peso. La fusión termonuclear generada en el núcleo de la estrella, hace que la estrella tienda a expandirse. En esta situación, la fusión que expande y la gravedad que contrae, como son fuerzas similares, se contrarresta la una a la otra y así la estrella continua brillando en equilibrio perfecto.

 

 

 

 

Pero, ¿qué ocurre cuando se consume todo el hidrógeno?

 

Pues que la fuerza de fusión deja de empujar hacia fuera y la gravedad continúa (ya sin nada que lo impida) hasta conseguir que la masa de la estrella implosiones, es decir, caiga sobre sí misma contrayendose más y más hasta llegar a tener una demnsidad enorme y un radio mucho más pequeño que el original. El resultado final dependerá de la masa inicial y conforme a ella se produce la transición de fase hacia una u otra clase de estrella.

Según sean estrellas medianas como nuestro Sol, grandes o muy grandes, lo que antes era una estrella, cuando finaliza el derrumbe o implosión, cuando la estrella es aplastada sobre sí misma por su propio peso, tendremos una estrella enana blanca, una estrella de neutrones o un agujero negro.

 

 

Resultado de imagen de <a href=enana blanca nebulosa" />

 

Las estrellas como el Sol, al final de sus vidas, se convierten en Gigantes Rojas primero y en enanas blancas después, quedando en el centro de hermosas Nebulosas planetarias.

 

Como si fuera una mariposa, esta estrella enana blanca comienza su vida envolviéndose en un capullo. Sin embargo, en esta analogía, la estrella sería más bien la oruga y el capullo de gas expulsado la etapa verdaderamente llamativa y hermosa. La nebulosa planetaria NGC 2440 contiene una de las enanas blancas conocidas más calientes. La enana blanca se ve como un punto brillante cerca del centro de la fotografía. Eventualmente, nuestro Sol se convertirá en una “mariposa enana blanca”, pero no en los próximos 5 mil millones de años. Las estrellas conocidas como “enanas blancas” pueden tener diámetros de sólo una centésima del Sol. Son muy densas a pesar de su pequeño tamaño.

 

 

 

 

Hermosas Nebulosas planetarias con una enana blanca en su centro

 

Sí, en el Universo son muchas las cosas que existen para nuestro asombro y, no pocas veces, nuestras mentes tienen que hacer un alto en el camino, para pensar profundamente, hasta llegar a comprender lo que allí existe y como llegó a poder formarse.

Alrededor del agujero negro puede formarse un disco de acreción cuando cae materia sobre él desde una estrella cercana que, para su mal, se atreve a traspasar el horizonte de sucesos. Es tan enorme la fuerza de gravedad que genera el agujero negro que, en tal circunstancias, literalmente hablando se come a esa estrella compañera próxima. En ese proceso, el agujero negro produce energía predominantemente en longitudes de onda de rayos X a medida que la materia está siendo engullida hacia la singularidad. De hecho, estos rayos X pueden ser detectados por satélites en órbita. Se ha localizado una enorme fuente derayos X en el centro mismo de nuestra galaxia. En realidad han sido varias las fuentes localizadas allí, a unos 30.000 años luz de nosotros. Son serios candidatos a agujeros negros, siendo el más famoso Cygnus X-1.

 

 

 

 

Esta es una de las representaciones artísticas que nos hacen de Signus X-1. Es un ejemplo clásico de una Binaria de Rayos X, un sistema binario formado por un objeto compacto, que puede ser un agujero negro o una estrella de neutrones, y la estrella supergigante azul azul HDE 226868 de magnitud aparente 8,9. Como en toda binaria de rayos X, no es el agujero negro el que emite los rayos X, sino la materia que está a punto de caer en él. Esta materia (gas de plasma) forma un disco de acreción que orbita alrededor del agujero negro y alcanza temperaturas de millones de Kelvin que, quizás un día lejano aún en el futuro, podamos aprovechar como fuente de energía inagotable.

 

 

 

 

La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, SgrA) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros  supermasivos.

 

 

El centro galáctico: un misterio en ondas de radio

 

 

Al sintonizar hacia el centro de la Vía Láctea, los radioastrónomos exploran un lugar complejo y misterioso donde está SgrA que…¡Esconde un Agujero Nefro descomunal! Las observaciones astronómicas utilizando la técnica de Interferometría de muy larga base, a longitudes de onda milimétricas proporcionan una resolución angular única en Astronomía. De este modo, observando a 86 GHz se consigue una resolución angular del orden de 40 microsegundos de arco, lo que supone una resolución lineal de 1 año-luz para una fuente con un corrimiento al rojo z = 1, de 10 días-luz para una fuente con un corrimiento al rojo de z = 0,01 y de 10 minutos-luz (1 Unidad Astronómica) para una fuente situada a una distancia de 8 Kpc (1 parcec = 3,26 años-luz), la distancia de nuestro centro galáctico. Debemos resaltar que con la técnica de mm-VLBI disfrutamos de una doble ventaja: por un lado alcanzamos una resolución de decenas de microsegundos de arco, proporcionando imágenes muy detalladas de las regiones emisoras y, por otro, podemos estudiar aquellas regiones que son parcialmente opacas a longitudes de onda más larga.

 

 

 

(EUROPA PRESS)

 

Astrónomos que utilizan una red mundial de radiotelescopios han encontrado pruebas sólidas de que un potente chorro de materia o jet impulsado a la velocidad de la luz por el agujero negro central de la galaxia está soplando grandes cantidades de gas fuera de la galaxia. Este proceso está limitando el crecimiento del agujero negro y la tasa de formación de estrellas en la galaxia, por lo que es una clave para entender cómo se desarrollan las galaxias, según estos científicos.

En los núcleos de las galaxias se han detectado las radiaciones que son propias de la existencia allí de grandes agujeros negros que se tragan toda la materia circundante de gas y polvo e incluso de estrellas vecinas. El espacio a su alrededor se curva y el tiempo se distorsiona.

 

 

 

Resultado de imagen de Agujero negro sin rotaciónThis diagram shows how a shifting feature, called a corona, can create a flare of X-rays around a black hole

 

 

Agujeros negros en rotación. Cuando ambas rotaciones tienen lugar en el mismo sentido (imagen inferior), la “última órbita estable” coincide con el “radio …  En la imagen de abajo se muestra cómo una característica de desplazamiento, llamada corona, puede crear una llamarada de rayos X alrededor de un agujero negro. La corona (característica representada en colores purpúreos) se reúne hacia adentro (izquierda), haciéndose más brillante, antes de disparar lejos del agujero negro (medio y derecho). Los astrónomos no saben por qué cambian las coronas, pero han aprendido que este proceso conduce a un brillo de la luz de rayos X que puede ser observada por los telescopios.

 

Existen varias formas teóricamente posibles de agujeros negros.

 

  • Un agujeros negro sin rotación ni carga eléctrica (Schwarzschild).
  • Un agujero negro sin rotación con carga eléctrica (Reissner-Nordström).

En la práctica es más fácil que los agujeros negros estén rotando y que no tengan carga eléctrica, forma conocida como agujero negro de Kerr. Los agujeros negros no son totalmente negros; la teoría sugiere que pueden emitir energía en forma de radiación Hawking.

 

 

 

 

La estrella supermasiva, cuando se convierte en un agujero negro se contrae tanto que realmente desaparece de la vista, de ahí su nombre de “agujero negro”. “ Su enorme densidad genera una fuerza gravitatoria tan descomunal que la velocidad de escape (es la velocidad que debe tener un objeto para escapar de la atracción gravitatoria de un planeta, la Tierra exige 11 Km/s) supera a la de la luz, por tal motivo, ni la luz puede escapar de él. En la singularidad, dejan de existir el tiempo y el espacio; podríamos decir que el agujero negro está fuera, apartado de nuestro universo, pero en realidad deja sentir sus efectos ya que, como antes dije, se pueden detectar las radiaciones de rayos X que emite cuando engulle materia de cualquier objeto estelar que se le aproxime más allá del punto límite que se conoce como horizonte de sucesos.

Con la explicación anterior he querido significar que, de acuerdo con la teoría de la relatividad general de Einstein, cabe la posibilidad de que una masa redujera sin límite su tamaño y se autoconfinara en un espacio infinitamente pequeño y que, alrededor de esta, se forme una frontera gravitacional a la que se ha dado el nombre de horizonte de sucesos.

 

 

 

 

Puesto que el tamaño de un agujero negro depende de la energía absorbida por el mismo, cuanto mayor es la masa del agujero negro, tanto mayor es el radio de Schwarzschild, que viene dada por:

 

r_s = {2 G M \over c^2}

donde:

  • G es la constante gravitacional,
  • M es la masa del objeto y
  • c es la velocidad de la luz en el vacío.

Una explicación algo más precisa sería: Siguiendo la fórmula de arriba de la imagen: M es la masa del agujero negroG es la constante gravitacional de Newton, y c2 es la velocidad de la luz elevada al cuadrado. Así, el radio de Schwarzschil para el Sol que tiene un diámetro de 1.392.530 Km, sería de sólo tres kilómetros, mientras que el de la Tierra es de 1 cm: si un cuerpo con la masa de la Tierra se comprimiera hasta el extremo de convertirse en una singularidad, la esfera formada por su horizonte de sucesos tendría el modesto tamaño de una bolita o canica de niños. Por otro lado, para una estrella de unas 10 masas solares el radio de Schwarzschild es de unos 30 kilómetros. Que para nuestro Sol, como he dicho antes, se quedaría en sólo tres kilómetros, tal es su grado de encogimiento sobre sí mismo.

Por otra parte, los acontecimientos que ocurren fuera del horizonte de sucesos en un agujero negro, tienen un comportamiento como cualquier otro objeto cósmico de acuerdo a la masa que presente. Por ejemplo, si nuestro Sol se transformara en un agujero negro, la Tierra seguiría con los mismos patrones orbitales que antes de dicha conversión del Sol en agujero negro.

 

 

 

 

 

Ahora bien, y en función de la fórmula anteriormente descrita, el horizonte de sucesos se incrementa en la medida que crece la masa del agujero a medida que atrae masa hacia él y se la traga introduciéndola en la singularidad. Las evidencias observacionales nos invitan a pensar que en muchos centros de galaxias se han formado ya inmensos agujeros negros supermasivos que han acumulado tanta masa (absorciones de materia interestelar y estrellas) que su tamaño másico estaría bordeando el millón de masas solares, pero su radio de Schwarzschil no supera ni las 20 UA  (unidad astronómica = 150 millones de Km), mucho menor que nuestro sistema solar.

 

 

 

 

 

La singularidad es el pico de abajo que llega a desaparecer de la vista, la densidad adquirida por la materia es tan inmensamente grande que, parece como si hubiera entrado en otro mundo. Sin embargo, su infinita fuerza de gravedad se deja sentir y atrae a todos aquellos objetos que, en las cercanias de sus dominios, osen traspasar el horizonte de sucesos, es decir, la línea de irás y no volverás.

Comprender lo que es una singularidad puede resultar muy difícil para una persona alejada de la ciencia en sí.

Es un asunto bastante complejo el de la singularidad en sí misma, y para los lectores más alejados de los quehaceres de la física, será casi imposible aceptarla. En el pasado, no fue fácil su aceptación, a pesar de las conclusiones radicales que expuso Kart Schwarzschild en su trabajo inspirado en la teoría y ecuaciones de Einstein. De hecho, hasta el mismo Einstein dudó de la existencia de tales monstruos cosmológicos (tal como dudó Dirac de la existencia de los positrones que auguraban sus ecuaciones). Incluso durante largo tiempo, la comunidad científica lo consideró como una curiosidad teórica. Tuvieron que transcurrir 50 años de conocimientos experimentales y observaciones astronómicas para empezar a creer, sin ningún atisbo de duda, que los agujeros negros existían realmente.

 

 

 

 

 

Sí, es posible que una vez que hayamos representado la singularidad mediante las matemáticas de la relatividad general, la única otra manera de hacerlo sea en el interior de nuestras mentes, imaginando lo que puede ser. Claro que, también la imagen pueda estar refiriéndose a que, nuestras mentes también son singularidades de la materia que han llegado a ser conscientes.

El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión. La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir. Además, en la singularidad, según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.

 

 

 

Resultado de imagen de Singularidad de un <a href=agujero negro" width="304" height="228" />Imagen relacionada

 

 

La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de enana blanca o de estrella de neutrones, para convertirse en una singularidad.

 

 

 

 

Un largo recorrido de estrella masiva a Agujero Negro

 

Estrellas de Neutrones que, con sus campos magnéticos influyen en todo el espacio circundante y, sus pulsos luminosos cuando se dejan ver como púlsares, son como los faros del cielo que avisan a seres de mundos lejanos, que maravillas como esa están ahí.

 

 

Resultado de imagen de Púlsares

 

 

 

Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad, la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.

Oppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro, al desarrollar el planteamiento de una nube de polvo colapsante. En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidad de la que pasará a formar parte.

 

 

 

 

 

Alrededor de un agujero negro, y, en objetos cercanos a él, se pueden ver efectos extraordinarios que finalizan con su desaparición dentro del Agujero Negro que, los engulle y cada vez se hace más y más poderoso. Algunos son verdaderos monstruos del Universo y llegan a poseer miles de millones de masas solares. ¿Os imaginais dar un paseo por sus cercanias?

Desde entonces, muchos han sido los físicos que se han especializado profundizando en las matemáticas relativas a los agujeros negros. John Mahler (que los bautizó como agujeros negros), Roger Penrose, Stephen Hawking, Kip S. Thorne, Kerr y muchos otros nombres que ahora no recuerdo, han contribuido de manera muy notable al conocimiento de los agujeros negros, las cuestiones que de ellas se derivan y otras consecuencias de densidad, energía, gravedad, ondas gravitacionales, etc, que son deducidas a partir de estos fenómenos del cosmos.

 

 

 

 

 

Se afirma que las singularidades se encuentran rodeadas por un horizonte de sucesos, pero para un observador, en esencia, no puede ver nunca la singularidad desde el exterior. Específicamente implica que hay alguna región incapaz de enviar señales al infinito exterior. La limitación de esta región es el horizonte de sucesos, tras ella se encuentra atrapado el pasado y el infinito nulo futuro. Lo anterior nos hace distinguir que en esta frontera se deberían reunir las características siguientes:

 

  • debe ser una superficie nula donde es pareja, generada por geodésicas nulas;
  • contiene una geodésica nula de futuro sin fin, que se origina a partir de cada punto en el que no es pareja, y que
  • el área de secciones transversales espaciales jamás pueden disminuir a lo largo del tiempo.

Todo esto ha sido demostrado matemáticamente por Israel, 1.967; Carter, 1.971; Robinson, 1.975; y Hawking, 1.978 con límite futuro asintótico de tal espaciotiempo como el espaciotiempo de Kerr, lo que resulta notable, pues la métrica de Kerr es una hermosa y exacta formulación para las ecuaciones de vacío de Einstein y, como un tema que se relaciona con la entropía  en los agujeros negros.

 

 

 

Resultado de imagen de El espacio se distorsiona en presencia de grandes masas

 

Las grandes masas determinan la geometría del Espacio-Tiempo

El espacio se distorsiona en presencia de grandes masas. ¿Qué transformaciones no sufrirá en presencia de un Agujero Negro?

No resulta arriesgado afirmar que existen variables en las formas de las singularidades que, según las formuladas por Oppenheimer y su colaborador Snyder, después las de kerr y más tarde otros, todas podrían existir como un mismo objeto que se presenta en distintas formas o maneras.

Ahora bien, para que un ente, un objeto o un observador pueda introducirse dentro de una singularidad como un agujero negro, en cualquiera que fuese su forma, tendría que traspasar el radio de Schwarzschild (las fronteras matemáticas del horizonte de sucesos), cuya velocidad de escape es igual a la de la luz, aunque esta tampoco puede salir de allí una vez atrapada dentro de los límites fronterizos determinados por el radio. Este radio de Schwarzschild puede ser calculado usándose la ecuación para la velocidad de escape.

 

 

 

 

Para el caso de fotones u objeto sin masa (o una masa ínfina), tales como neutrinos,  se sustituye la velocidad de escape por la de la luz c2. Para otros objetos mayores como naves espaciales, hay que cumplir los requisitos exigidos por la Ley de la Gravedad que habrá que vencer para escapar del objeto o planeta del que queramos salir.

 

 

Resultado de imagen de La <a href=velocidad de escape de Júpiter" />

 

 

Dependiendo de sus masas, la velocidad de escape de un cuerpo será más o menos alta, a más masa más alta tiene que ser para poder escapar. Así, en los agujeros negros, ni la velocidad de la luz (299.792.458 m por segundo lo consigue).

 

La velocidad de escape está referida a la velocidad mínima requerida para escapar de un campo gravitacional. El objeto que escapa puede ser cualquier cosa, desde una molécula de gas a una nave espacial. Como antes he reflejado está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo del que pretende escapar (del núcleo). Un objeto que se mueva a velocidad menor a la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape,  se mueve en una trayectoria hiperbólica.

 

 

 

 

Así hemos comprendido que, a mayor masa del cuerpo del que se pretende escapar, mayor será la velocidad que necesitamos para escapar de él. Veamos algunas:

 

 

Objeto Velocidad de escape
La Tierra ………….11,18 Km/s
El Sol ………….617,3 Km/s
Júpiter ……………59,6 Km/s

Saturno……………35,6 Km/sVenus………….10,36 Km/sAgujero negro….+ de 299.000 Km/s

Ponernos a comentar sobre objetos y fenómenos que en el Universo están presentes, puede llegar a sar fascinante. A medida que nos sumergimos en las complejidades de las cosas, los procesos mediante los cuáles cambian para convertirse en otras diferentes de las que en un principio eran, los ritmos y energías, las fuerzas fundamentales que actúan sobre ellos…Es una maravilla.

emilio silvera

Divagando sin rumbo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen relacionada

No siempre podemos explicar el por qué de las cosas, y, como nuestra curiosidad es grande, tratamos de desvelar esos profundos secretos que la Naturaleza esconde. La pena es que, no todos sienten la necesidad de saber, Claro que, habría que tener en cuenta las circunstancias que rodean a cada cual, y, veríamos que, nada se les puede exigir a todos aquellos que tienen otros problemas cercanos que solventar.

Resultado de imagen de Tener una idea aceptable de cómo funciona la naturaleza y el universo

Todos deberíamos tener un mínimo de conocimientos sobre las cuestiones importantes de nuestro mundo y nuestro universo. Saber cuestiones básicas como el por qué brillan las estrellas, cómo se expande el universo y que la Tierra es una nave espacial que nos lleva en un viaje alrededor del Sol a 30 Km/s.

No puedo olvidar la fascinación que sentí (sin entenderlo) cuando vi por vez primera ante mis ojos E = mc2, su sencillez y la enormidad del mensaje que encierra, me dejaron totalmente sorprendido y al mismo tiempo, maravillado.

Pues bien, lo mismo que me ocurrió a mí, seguramente le ocurrirá a muchos otros si les damos la oportunidad de conocer, de saber sobre las cosas que les rodea y con las que conviven, sin que tengan la menor idea de qué son y cómo funcionan. La gravedad, el electromagnetismo, las fuerzas nucleares… creo que todo esto, sin tecnicismos ni profundidades científicas, puede ser explicado para dar un conocimiento básico que, al menos, evite la actual ignorancia, y para conseguirlo, el único camino es la divulgación.

Resultado de imagen de Tener una idea aceptable de cómo funciona la naturaleza y el universo

El Universo tiene memoria y nos habla continuamente de ella. Nosotros, sólo debemos escuchar con atención. Al menos, eso es lo que dice mii amigo José Manuel (alguien muy especial), está empeñado en celebrar reuniones periódicas en las que podamos hablar de todos estos temas. No se encuentra mucho apoyo oficial que subvencione, en este sentido, una actividad que al desarrollarla  no se sienta uno humillado asediado por los pocos medios que, al final, da al traste con cualquier iniciativa que trate de divulgar la ciencia y llevarla a todos de manera gratuita.

Resultado de imagen de La Ciencia debe ser divulgada a todos por igual

No pocas veces, he tenido la sensación de hablar directamente a la Naturaleza, ya que… ¡Nadie me responde!

He dado algunas charlas de este tipo, y en personas mayores corrientes no versadas, es difícil crear en una hora una situación que les interese. Te miran sin ver.  No se les nota interés alguno, e incluso, no es raro oír algún bostezo o ver alguna que otra cabezada de los intelectuales del público.

Recuerdo con satisfacción una charla que di a los chavales de segundo de bachiller de ciencia. Éstos sí que, a los diez minutos de empezar mi charla, estaban enganchados en los átomos, en la formación de las estrellas y en las fuerzas fundamentales del universo. La charla estaba prevista de 9 a 10. Tardó algo más, hasta las 12. Durante la misma se fueron agregando profesores y personal diverso y, al finalizar, les pregunté si tenían dudas sobre lo que se había tratado. Aquello duró hasta las 14 horas. Un sin fin de preguntas me bombardeó desde los alumnos y los profesores. Fue divertido, y creo que también instructivo.

Resultado de imagen de Congreso de Astrónomos y astrofísicos en Madrid

La osadía del ignorante no tiene límites. Recuerdo que hace años, estando por motivos de trabajo en Madrid, al regresar a mi hotel, sito frente al Congreso de los Diputados, vi un movimiento de gente inusual y pregunté. Se trataba de un congreso de astrónomos y astrofísicos. No teniendo mejor cosa que hacer, y como el tema me interesaba, me procuré la manera de acceder al salón preparado a tal efecto, y asistí a unas intervenciones muy interesantes.

Resultado de imagen de El conferenciante de astronomía responde a preguntas del p´çublico

En el coloquio final, los conferenciantes contestaban las preguntas, y ni corto ni perezoso pregunté: “¿No es posible que el  universo, al terminar pueda hacerlo como un enorme agujero negro que lo abarque todo?” Aquel amable caballero miró algo sorprendido hacia el lugar donde tan campechano me encontraba cómodamente sentado en mi confortable butaca (también giraron sus cabezas hacia mí los que me rodeaban), y me preguntó a su vez, “¿En qué se basa usted para preguntar eso?”. Mi respuesta, al parecer, les hizo gracia, y todo quedó en una anécdota simpática. Yo contesté.

“Según he leído en alguna parte, en el corazón de nuestra galaxia habita un enorme agujero negro que se traga todo aquello que se le pueda acercar, engullendo la materia de objetos como estrellas que lo hace más grande y más poderoso.

Si estos monstruos estelares son el resultado final de las estrellas supermasivas, tienen que existir a cientos de miles por el universo. Y si todos se tragan la materia circundante, ¿por qué no llegará un momento en que se traguen los unos a los otros creando un enorme agujero negro con la materia de todo el universo?”

Resultado de imagen de El final del Universo un inmenso <a href=agujero negro" />

Aunque parezca mentira, mi pregunta fue la causante de una enorme discusión. Unos estaban a favor y otros en contra de mi idea. Por mi parte, llegó un momento que cansado me marché a dormir; tenía que madrugar. Pero aquello fue muy divertido.

No deberíamos sorprendernos por nada, nuestro cerebro se encuentra entre los objetos más complicados del universo y es sin duda una de las estructuras más notables que haya producido la evolución.

La percepción, los sentidos y los pensamientos… Para poder entender la conciencia como proceso es preciso que entendamos cómo funciona nuestro cerebro, su arquitectura y desarrollo con sus funciones dinámicas. Lo que no está claro es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.

Imagen relacionada

El cerebro humano es especial; su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo exterior, no se parece a nada que la ciencia conozca. Tiene un carácter único y ofrecer una imagen fidedigna del cerebro no resulta nada fácil; es un reto tan extraordinario que no estamos preparados para cumplir en este momento. Estamos lejos de ofrecer esa imagen completa, y sólo podemos dar resultados parciales de esta enorme maravilla de la naturaleza.

Nuestro cerebro adulto, con poco más de 1 Kg de peso, contiene unos cien mil millones de células nerviosas o neuronas. La parte o capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de treinta millones de neuronas y un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número posible de circuitos neuronales, tendremos que habérnoslas con cifras hiperastronómicas. Un 10 seguido de, al menos, un millón de ceros (en comparación, el número de partículas del universo conocido asciende a “tan sólo” un 10 seguido de 79 ceros). ¡A que va a resultar que no somos tan insignificantes!

Imagen relacionada

Con tan enorme cantidad de circuitos neuronales, ¿cómo no vamos a ser capaces de descifrar todos los secretos de nuestro universo? ¿De qué seremos capaces cuando podamos disponer de un rendimiento cerebral del 80 ó 90 por ciento?

El límite de lo que podremos conseguir tiene un horizonte muy lejano. Desde hablar sin palabras sonoras a la (no es broma) auto-transportación. Si somos pura energía pensante, no habrá límite alguno; el cuerpo que ahora nos lleva de un lugar a otro, ya no será necesario, y como los fotones que no tienen masa, podremos desplazarnos a velocidades lumínicas.

Creo que estoy corriendo demasiado en el tiempo, volvamos a la realidad. A veces mi mente se dispara. Lo mismo visito mundos extraordinarios con mares luminosos de neón líquido poblados por seres transparentes, que viajo a galaxias muy lejanas pobladas de estrellas de fusión fría circundadas por nubes doradas compuestas de antimateria en la que, los positrones medio congelados, se mueven lentamente formando un calidoscopio de figuras alucinantes de mil colores. ¡La mente, qué tesoro!

Resultado de imagen de Convertir en realidad los pensamientos

Hacer realidad los pensamientos, tener la llave que abre todas las puertas… ¡Se conseguirá alguna vez!

Cuando seamos capaces de convertir en realidad todo aquello en lo que podamos pensar, entonces, habremos alcanzado la meta.

Para eso aún falta un poco, sin embargo, nosotros tenemos mucho tiempo por delante. Dejamos lo que logramos descubrir a los que nos siguen, ellos a los que vendrán después, y así hasta el infinito.

El mundo físico se representa gobernado de acuerdo a leyes matemáticas (hay muchas opiniones a favor). Desde este punto de vista, todo lo que hay en el universo físico está realmente gobernado en todos sus detalles por principios matemáticos, quizá por ecuaciones tales como las que trataremos en los capítulos que en otra de mis libretas de ciencia tendré la oportunidad de ofrecer.

Lo más seguro es que la descripción real del mundo físico esté pendiente de matemáticas futuras, aún por descubrir, fundamentalmente distintas de las que ahora tenemos. Llegarán nuevos Gauss, Riemann, Euler, Ramanujan, etc. que, con sus nuevas ideas, transformarán el pensamiento matemático.

Resultado de imagen de Las funciones modulares de Ramanujan

    Srinivasa Aiyangar Ramanujan

SITbGNDU1sSzuZ1YArFCvYxgc/9Wlrq+WhNnxGXGDjuoZgK9BTu422fu8sLaDsMNaSDlSS4iQHaZQPX6jFWMnm24XiDJGf5rWN34YB31obrxYJIWfwtoa+YFT/Em1RlCEuEiSfUsFy89JCiT8lHsZKvkjbSWTbssb+K7f3oVxDd6nep+0KNu194sNNW0NRE4+EBxgeG+WQbQtnHH3agnUjASVaxUVqFIRoybmmrYRqNJe3Je87pTEWBwvrajXn4F31GthVxptpmloWm+ZbO0Q454Y2J6Vfw4rfpJCb4iIidzp8/E75kGOfS3Z/fXlAL9uSR5sdNWBj3FwwcYOCM3lC2GhlocYRNX1iUDKmTzyp9G3rvp9freb/t8RiOI7zpmUm+dfSNpUbjefEVZgh3yrkanMXvZF//EqPD5sLPhuoz8CKXralj+56MWzILPGumZLJuFIuOaMqZsxgxs27DPgW0yeqKn3kvQsnadjgsYuFek9vQGErIuqjZrQGR+G9oskBqIe+TMB/mi4qlYw6aY6A+wdPmepxrYPxeSVH/KV1Gs9qcNt73wG0WEzP/gZ6wqZV6iM2J5c8mHLGOgjzoy+NZUl7Km0pj9trUlas2RMWFaHk2/SEi9WcCVKeF++TZos+ba1zO5kJmFoZZUWWUy6TRGX1S7TddbNwpt/aKuEiS50yVmltyWX35QXaerSaj7bwRSs6xEyVKtIW42XVDa399WBN7Lo3zh3K7hB5YNO5DwTX52XjJZvTpi069qrlg9ewj1SibouJXw1hFqnmjiBUg0y87CjaE5TbjAuC0UDZu6XwtIsGmD7wRigMT9OOrgoa8JYJ3w+ipF2zrG64sthkokaYCUwS3WoTnIB18EWvlyC/2fQTXTfrMECqTcD/wWtIOX9l4bxz+wl+WlO80Ln7uKvkGM7o7zGF3L9+zROgnMn2dQnBeh5b5l+G9PbVqh+DV31TWv4OuPLjnVqMgpD2+alrFR4wHq3g7hID27Ot1f8t8HaugYMH+xFGsNxu4RM52I2jItU8HB6sJ7jU0Pf2PP51E3BoNeO/YLXhhRdeeOGFF1544X8CmnLheuG7ULTw4StX/wpWqva8UcOPhZsHUX8FjQa5/jPoVlDumBQKl0oX+vgyqHYg7U3k356etthuqJM41MuPeWwlly1FyMb1TVIhsKIVTrcJwhsg5S5YFBVFZv8DtPUyuY55cE8SwCctrSi1TheXINzcr1cttV4juBcWUOMD8uReWIL57Fa3MFzyVc9FvgQgPwGg0zgdWxZZcNDXcbWq3YeXan8l9oKHe5QDay0ytput5wqR+UtwblgtoL4JbXyZlIv1zvr3WLAhYTSgjjntuooNIClY4FtbUZ7apImkxkkOrCn7dnHoK7F7l/2bgsbry96s2EPIX83aAwf7fxnO/k+e8ukRDTPoxaELq6H9tXW1PGZ8wFeOHnWxKgNNW/O2KJ+8m9+DtHVt+7gQhz7wW8ibAUwpCLvGSngwgANZEx2ffXy6A1XrpXQpDn3Tu0c6tLRVyeW6La9oVDeTCvL/4Ffxt6LzMaG0RZ/j0GXf9zdwQz7bAc1ofX4U5qtNox8QD49sfPI/I9js976AzXq/vt3d61di2/q2vffj0K1pmYC3jWO1ktFx3/ENwvEWG/TXU2HA3h5CgZSeU/hw0iX1KbD8aA+p9yQoTjTPEh3F9L2gIA1CwNrwWIUNeBqRIavqWlR3sIWDiFTzOOo2uVh26nTwizlbiENneVvsPI2561JwElTRPm2rVjrYG6Lo2j51yClS1gMO08RIIRxMcj2/m0oETsxvRYmDgJWkBn+LOyv0FyHvdH2H+dTYS4t1VNSbzPZpe2jdV6UwJh9LQgZjycSzdcETEq3hn4FPlNcWYsga5JJGp3IGa1uuAjq/NJUWinHRzVFxz73P6J0JFLNj8KfjzfjUnw4Xbu+0b7oxIDwPjDnt3aGMalHgUxKjJg4Jr388aOYhwDDPBNLE4kxMm+KXN6iJTmNhz187GPj0H/qnSwg3E6Yvv9EvAqbv2efGWTn6nYy7SHoRYEbYMZ01mfVDSTWRVZVC4G8cDdhyICEkDY67w9vBe7bk08OCEdkmI6se0NE0eA5DpN2pRMHNFbIEdcIe2l6G0tfYwfOYG6oXnd0Vpy2P04krbLp87r3hD0Vag/C50nB+FZ9GNosoYmPGr7dWXykZ68unWAcpHR7buXcbtbj8DVk4pXmA2ocT2rJ/Aogipo6oaadWMpfsE7Zzml+ap0yeBXXQRE4OK1jJldz3l84hHAlXytpBsKQfC6it69ta2lrLBr+Bb+fHZuQ7WH2mDaraRUqmgiVr4EKiM5PDpc/HW0Heup/u/xcxMpNI/BF5a21bBYOt8+x3wITgjVI1GGmKF8AYbV04tqJmwtZ9Sa2XlpCsMn07eLLM50Ok+/X7l1T4cviF/j4SaoBAUrU6n9RfFZKy/yGG8YFwNWqj/Up41HARQjmOzUnUWBMenvfUV2X33D5jbG6fna9edxWGPIzaZ7orlMWldbsfif3koZoqbD6+iV0xYMKYWXuXVm+4iqNOAU6fXSdYUBtidbh+4RXkm8GswXofnVoLbrm/2DR+Oxz4bT+NqBQphQw7greka3h64N23U2W472rgtjC1PXzy9bJboUbfHa4VH37C9hWfCMBJQ+CbA7ZhfUreZ3lPYZr9HlJqr86uXvbC/XDh0fcP8vULX7gbrhZFkfay9v+9QM5gvms4zz2dfSSivhUmqYp/YmbwEBQRMETFQNm9aPtTkJfp3gQ6h/2i7Q8iOBQ20WhTDv1F2x9EUmkReMmEWaAF0t7SpfWRYuNQ2r7i0H8GRugBWfRpcor9mKfCCy+88MILL7zwwgsvvPBPI1hX4f4Voz4L0iAHq9ey0CxYRA5Q/2VXD5Roq+jmPY/vAj66Qlz2P4aw0qQUwxSsZ3EasOGuuuTCG/r+WpY31TNmsHHebZgiZQ28cpbnW9eCnlOa2AmpF2KtfytQEaHQog7xSTaHkxb65B46RMn8oE34fG5MAXdTLE2gqXMIXCmNrzAkSzYiZZe3Cv+VeOP8oiCAZ9lS9So8FnW2+6VR55dg5PL/zC+nc67m22fcFkWBM0XSS5aiWAKo+6I3Jnl9Fhi5z2jyu6aZ6//4tmavr0LfcNZp7kU/qSpZY3GgPwEFQnhq9709ZWs47tGMeC4RnbyHd67bWWJfGcH6Jk+0ZV0DdPe+vN1LuPWt2PlB4jpz0RZFUNycUbL1eAeTz28e87HUgTow/DogSmJeqYa+n6Ct29ubMpNAcKLfKF8WLE4CJJ6c1pluznttImjvXx5DxPzB9zUpyiHsv45BN4oeIuRRQDBfAFwpCTM8SLXHbzZeUbcQ34TuF+m+s/cs6usXwu83SYojuSFjOaSUvGH+7lXrJ4R3BidIUB13FZAW7Hsxf7Cu9SNCrglDz4fDwT8ZhjoiabclT5JKGrubbBxbBpJh4EJiTy9Gaau0m9fSzYztnUdX5Q26rzHm+Y0csXvY4UVJgQzCMi41d/gOI2fEp+cSCyY22GusIvY8dLwwczc4xEbHE5uq4kz+QMPcNb3MR0v/atiZCWE2aIDh21lFlhPsmID11zS+zC2ybJtn9M5x2kbNK1vZ2gcr6hMZpXFOef1Iv9b7SfOCEUEkPKw4pKCgeee2Skozy6W8zD2NhE9yraKnKe9/QT7dB/IDJDU5illn0gnaRirNErYcpPbbi2yYjNG2X40Q3rUf7sFWl7xmteDMxhjF29bxF5KamhpwyTva8jowqKz2JSqLBjGy6oURUTkbYQDkmDJCiGm+t5SLXRqLsDrQ1ER0OPAZ7+Oj+OR+VRcVSxP6LtRXhuMS+p05cA3zBzuiqVAbsxv2czIa8mg6ignYBzLtZgzM5S1Ot9UIceO8rhU+m+QlKW2tdViwulK+tYa2Yvc4XSZhEHIfZU41C9l+34xvJZbHi20ivqftnPDGToTsRKgfsezRXKFAOQqFf2zHA6EhLYdt9t6D4KOM92MZT8r+aQDhx8hV40BEw8WsTy0Kfo7xyGCwbkL/DbY3e7DDZCQAfwDlN5oRI/uUc7McftFBW9NPldCpwlZINTEW6+r6tOCK2gAq+kzEU22Yh25oR/0m5LNLU4xzhKOz+NQ/y2Tgso7sytVpl6c7JgHqLQFRKqsyeYyt5R96cRBaYJg2IYZwOlf219CImfCwlemhqgDHATndmJ5FFf2hjLfIfDdS13yLDnlKMNnyeU/z1xPS4Uyy5VQCOKcNllBNxN5Q1ixYlT5YB1rBblxE/W6byAq2nY1A2hiOxze9sea0WH42KwEGjHW2ybzPeSYhP6clRokF9ntJDM0f0lZS4flntyBHrRQLOYM67fMRy6jJeEt3HTJRCZiwBNlkEJd95MTqLIABaw6W9g0LtN0yKaz/maRtWaVJ3ktsEsJxdbtgDM8trxYG+F0H7Kl7ZimzDisibiKESGOS8kXF41OaGuzD8lPsX6h9AfUG4ahNwVtysx1qt2Lnej+TWzGmWXndd3ZPvaKEcIP2hWsjIFC0mmgSP2CKmMi3PmtAayuopH3aMtPBh6hIFRN7r28YydsUd0nT8PKJv5EC7C2riNKlRMmqqtqdd+SzZ6q0hzMI+gD9K6iTjcKmmzTCYdEwE//PxwTlDxkOEp4R9cQ4BaVrng5qL7djTPzezHUbmwQ/jxg7sEzUO0bbI6OT4nPxx/YAeadVbfqMRxN4SL0uWo3mkCEswYZMqxmRt2H94ix/MIqI7klkN+17VBEzuE63IEA+WlCFXgT8WatwJxMmVJADKz54V0h3MxnJcp61l74aR8u3bxNG44j1jYoOqXvGn2XNt5zNDfIMQybPM5qqqmuJ5t8SaOttxjcOsM6sdItqIshVKMMrrOF4LvxEY1uLax4ZQkoyk51MRUwrJE8Ju68aRRrDXVCO/86HVpPMob3SY9lGqqks84t8wgiYsPuSLZ1SMCbnvTSYHMtK2gwL8mqt8mR+jCetTfm0wNssaQLXPM3zgLcI10GsIl7lu0SPtqm20R3RuDV8Hgo3E+737o1GK2toO2v1hAm1lW2JsNgTqnmyyXhhM7XMaZcT0wpnzxgyT4OQr/ZtGX+7E7RVYri2aDIjNWjlXzIxlJ04iRYqzZ1vBfrCXfHFCf49WgbBYrVC2A2MIOjVfUjb1J/I++eq5O1tVbu0RMeyidp8bqi0V8r1ECFPWL1MykJoRe4lr01JZE/u6uG9T8xs7CPjCMMNXNa9llyRNIVs0z3amnFMX89yu9lCNJZCCQVGM9d0Blu4TdilBAyqEZwn7jBYkhUUXJq2mR9sMFDYRCJtxWxAg3yMAJQT3GisB0tT0YQSqOheMRXTMqhpPfqlkTAvu6y3o9EsPxiqTUgoUntstbzX88iGQ7tXI99CTqkk6zWeIVDF8Df1QLunD3HbR9l0sNZhNPkybl/38YqJZcBdOb2fmNRTJgNellfePoH35DHaLsJujzxLDAQztDvXKvGn9aJTzQ62zJnu0Pdd6G/U1eyLFNDex+frDCm5ytbUSXlt9NI2SumU2HG0C7MaU+20HaNObm8O83BdQPBxNetEIFi+lDtXYvFwxwesNf4d7pE3EyG+LsioVa8t9Jq2iMoPo5MeeHclEYkt5kfGX8xaIuxKXydRNu5ZinbnWs9hMNReCnLbDCvYyKs3bgn13u1V4HeCa4K2B8LtRtlVzB5ahR8D9R5qud/PTnUBDjwcNy387Rl2BsfaBhBuljFwu1cOxmlbpoMRyviqbvwt3CMRpfBg0/EDz/Km3nE9wH7drkU5fGBan1tFBNm2jZ0Ik3/N2N3JBErb3a/KHoQ3oURkYKI9Pheqw9QEVCY5mfoxonl0aadak482D2NLW7pvivG7tinxqNUjJYSFD8/hy/c5jSHwDjro9LQpmUBaAv0uF1K6kwKiduO5XGumYTIbSQiBdVDMbubWH8us2lUEbZd0/PpVaUVPOSL9Lelm6I+Dzhb3VJXMHnaCotajrbyBG9YEElUkXPhrsj3phCfYjmVz8u1wQw27G47yUS5cjb7I6ZdtlhhAy2E+x9ReCOdxz0RZKZ4qpqBGrUYNLd4YxRflL0tkYaQRX72w8ySZiy/6K66KuRc0RPXmZOK/b+MBZNfzZeyNem7+BI6KKfo89dT/3m7qlxC/wv5GYG0TPVkVe7ZlSYI+G/9e+DISv+gJ8hdtfw5qrBe2Z7ZZwRbr/8XE8oxYVLaxjTx9xaCAIIT3GoBfmIKBegELCzyTVejvwn/bhDInH5SpfAAAAABJRU5ErkJggg==" alt="Resultado de imagen de Las funciones modulares de Ramanujan" />

Antes tendremos que haber descifrado las funciones modulares de los cuadernos perdidos de Ramanujan, o por ejemplo, el verdadero significado del número 137, ése número puro adimensional que encierra los misterios del electrón (e) – electromagnetismo –, de la constante de Planck (h) – el cuando te acción – y de la luz (c) – la relatividad –.

La conjetura de Poiuncaré tiene que ver con las matemáticas topológicas, sí, esas que ponen los pelos de las cejas de punta a los físicos. Pocos la entienden. Perelman la resolvió después de más de 100 años.

Los resultados son lentos, no se avanza con la rapidez que todos deseamos. Poincaré expuso su conjetura y ahora, más de un siglo después, Perelman la ha resuelto. Riemann expuso su geometría del espacio curvo, y hasta 60 años más tarde no fue descubierta por Einstein para hacer posible su formulación de la relatividad general, donde describe cómo las grandes masas distorsionan el espacio y el tiempo por medio de la fuerza de gravedad que generan.

Imagen relacionada

La topología nos dice que, si el objeto de estira, encoje o se aplasta, sus circunstancias esenciales siguen inmutables.

Pensar en las complejas matemáticas topológicas requeridas por la teoría de supercuerdas puede producir incomodidad en muchas personas que, aún siendo físicos, no están tan capacitados para entender tan profundas ideas (me incluyo).

Bernhard Riemann introdujo muchas nuevas ideas y fue uno de los más grandes matemáticos. En su corta vida (1826 – 1866) propuso innumerables propuestas matemáticas que cambiaron profundamente el curso del pensamiento de los números en el planeta Tierra, como el que subyace en la teoría relativista en su versión general de la gravedad, entre otras muchas (superficie de Riemann, etc.). Riemann les enseñó a todos a considerar las cosas de un modo diferente.

Resultado de imagen de Superficie de Riemann

La superficie de Riemann asociada a la función holomorfa “tiene su propia opinión” y decide por sí misma cuál debería ser el, o mejor, su dominio, con independencia de la región del plano complejo que nosotros podamos haberle asignado inicialmente.

Podríamos encontrar otros muchos tipos de superficies de Riemann.

Este bello concepto desempeña un papel importante en algunos de los intentos modernos de encontrar una nueva base para la física matemática (muy especialmente en la teoría de cuerdas), y al final, seguramente descubrirá el mensaje que encierra.

El caso de las superficies de Riemann es fascinante, aunque desgraciadamente sólo es para iniciados. Proporcionaron los primeros ejemplos de la noción general de variedad, que es un espacio que puede pensarse “curvado” de diversas maneras, pero que localmente (por ejemplo, en un entorno pequeño de cualquiera de sus puntos), parece un fragmento de espacio euclídeo ordinario.

La esfera de Riemann, superficie de Riemann compacta, el teorema de la aplicación de Riemann, las superficies de Riemann y aplicaciones complejas… He tratado de exponer en unas líneas la enorme importancia de este personaje para las matemáticas en general y la geometría en particular, y para la física.

Resultado de imagen de Reposo y movimiento uniforme en la Relatividad general

En escritos anteriores consideramos dos aspectos de la relatividad general de Einstein, a saber, el principio de la relatividad, que nos dice que las leyes de la física son ciegas a la distinción entre reposo y movimiento uniforme; y el principio de equivalencia, que nos dice de qué forma sutil deben modificarse estas ideas para englobar el campo gravitatorio.

Ahora hay que hablar del tercer ingrediente fundamental de la teoría de Einstein, que está relacionada con la finitud de la velocidad de la luz. Es un hecho notable que estos tres ingredientes básicos puedan remontarse a Galileo; en efecto, parece que fue también Galileo el primero que tuvo una expectativa clara de que la luz debería viajar con velocidad finita, hasta el punto de que intentó medir dicha velocidad. El método que propuso (1638), que implica la sincronización de destellos de linternas entre colinas distantes, era, como sabemos hoy, demasiado tosco. Él no tenía forma alguna de anticipar la extraordinaria velocidad de la luz.

Parece que tanto Galileo como Newton tenían poderosas sospechas respecto a un profundo papel que conecta la naturaleza de la luz con las fuerzas que mantienen la materia unida.

Bueno, en esta ocasion como en otras, empiezo con un tema y termino0 con otro distinto y, desde luego, cuando se escribe sabemos el comienzxo y casi nunca, somo dueño del final.

emilio silvera

Los misterios del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                 Los ojos de Alma atisban supercúmulos de protoestrellas


Los cúmulos globulares aparecen como brillantes aglomeraciones de hasta un millón de estrellas antiguas, son uno de los objetos más antiguos del Universo. Si bien están presentes en gran cantidad alrededor y dentro de muchas galaxias, los ejemplares recién nacidos son extremadamente raros y las condiciones necesarias para su aparición no habían sido detectadas hasta ahora.

 

 

 

 

Usando el Atacama Large Millimeter/submillimeter Array (ALMA), en Chile, un grupo de astrónomos descubrió lo que podría ser el primer cúmulo globular a punto de nacer que se conozca: una nube de gas molecular increíblemente masiva y densa pero aún sin estrellas.

“Podemos estar en presencia de uno de los más antiguos y extremos modos de formación estelar en el Universo”, dijo el astrónomo Kelsey Johnson, de la Universidad de Virginia en Charlottesville y autor principal de un artículo que será publicado en el Astrophysical Journal. “Este interesante objeto parece arrancado directamente del Universo temprano”, agrega Johnson, “descubrir un objeto que tiene todas las características de un cúmulo globular, pero que aún no haya comenzado a formar estrellas, es como encontrar un huevo de dinosaurio a punto de eclosionar”.

Este objeto, al que el astrónomo se refiere irónicamente como el Petardo, se encuentra a aproximadamente 50 millones de años luz, al interior de una famosa dupla de galaxias en colisión (NGC 4038 y NGC 4039) conocidas como las galaxias Antena. Las fuerzas gravitacionales generadas por el proceso de fusión entre ambas están desencadenando una cantidad colosal de formaciones estelares, gran parte de ellas al interior de densos cúmulos.

 

 

 

 

Pero lo que hace único al Petardo es su enorme masa concentrada en un espacio relativamente pequeño y sin la presencia de estrellas en él. Todos los cúmulos similares observados anteriormente por los astrónomos están repletos de estrellas. El calor y la radiación de esas estrellas han alterado considerablemente el ambiente circundante, borrando cualquier evidencia de sus fríos y tranquilos inicios.

Gracias a ALMA, los astrónomos pudieron encontrar y estudiar detalladamente un ejemplo prístino de un cúmulo en su estado original, antes que las estrellas cambien para siempre sus características únicas. Esto proporcionó a los astrónomos un primer vistazo de las condiciones que pueden haber llevado a la formación de muchos cúmulos globulares (si no todos).

 

 

Las galaxias Antena observadas en luz visible con el telescopio espacial Hubble (superior), extensas nubes de gas molecular (derecha). (Inferior) Primer cúmulo globular en formación que se haya identificado. (Foto: ALMA)

“Nebulosas con este potencial se habían considerado hasta ahora adolescentes, posteriores al inicio de la formación estelar”, dijo Johnson. “Esto significaba que el semillero ya se había alterado. Y para entender la formación de un cúmulo globular necesitas ver su verdadero origen”, agregó.

La mayoría de los cúmulos globulares se formaron durante un ‘baby boom’ ocurrido hace aproximadamente 12 mil millones de años, en los inicios de las galaxias. Cada una contiene densas agrupaciones de hasta un millón de estrellas de segunda generación, estrellas con concentraciones de metales pesados notoriamente bajas, lo que indica que se formaron muy temprano en la historia del Universo. Nuestra propia Vía Láctea es conocida por contener al menos unos 150 cúmulos de estas características, aunque podría contener muchos más.

A través del Universo se siguen formando cúmulos de estrellas de diferentes tamaños. Es posible, aunque muy improbable, que los más grandes y densos terminan transformándose en cúmulos globulares.

http://4.bp.blogspot.com/_wwA0vWqtLsY/S7NwSsAM0KI/AAAAAAAAAMA/MyOgjuhHkfg/s1600/Omega+Centauri.jpg

                                       El cúmulo globular Omega Cantauri con diez millones de estrellas

“La probabilidad de supervivencia para que un cúmulo de estrellas joven y masivo se mantenga intacto es muy baja, de alrededor del uno por ciento” dijo Johnson. “Fuerzas externas e internas tienden a separar estos objetos, ya sea formando cúmulos abiertos como las Pléyades o desintegrándolos completamente para formar parte del halo galáctico”.

Sin embargo, los astrónomos piensan que el objeto que observaron con ALMA, que contiene gas molecular equivalente a 50 millones de veces la masa del Sol, es lo suficientemente denso como para tener una buena probabilidad de ser uno de los afortunados en convertirse en cúmulo estelar.

Los cúmulos globulares evolucionan rápidamente, en sólo un millón de años, desde su estado embrionario carente de estrellas. Esto significa que el objeto descubierto por ALMA está pasando por una etapa muy especial de su vida, ofreciendo a los astrónomos una oportunidad única de estudiar un componente importante del Universo temprano.

Los datos de ALMA también indican que la nube del Petardo se encuentra bajo una presión extrema, aproximadamente 10 mil veces mayor que las típicas presiones interestelares, lo que apoya las teorías que señalan que para formar cúmulos globulares se requieren altas presiones.

Al explorar las galaxias Antena, Johnson y su equipo observaron las débiles emisiones de las moléculas de monóxido de carbono, lo que les permitió obtener imágenes y características de distintas nubes de gas y polvo. La falta de indicador térmico apreciable –revelador de la presencia de gas calentado por estrellas cercanas– confirma que este objeto recién descubierto aún se encuentra en su estado prístino, sin alteraciones.

Posteriores estudios con ALMA pueden revelar nuevos ejemplos de supercúmulos de protoestrellas en las galaxias Antena y en otras galaxias en colisión, aportando luces sobre los orígenes de estos antiguos objetos y su función en la evolución galáctica. (Fuente: OBSERVATORIO ALMA/DICYT)

emilio silvera

¿Cuántas galaxias tiene nuestro Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El universo observable tiene diez veces más galaxias de las que se pensaba

 

Resultado de imagen de Imagen de una porción del cielo conocida como GOODS South

Imagen de una porción del cielo conocida como GOODS South. Crédito: NASA, ESA, GOODS Team, y M. Giavialisco.

 

Hasta ahora los astrónomos estimaban que el Universo observable contenía entre 100 y 200 mil millones de galaxias, pero las últimas observaciones del Telescopio Espacial Hubble y otros instrumentos indican que al menos tiene diez veces más, es decir, unos dos billones (2 x 1012) de galaxias.

Mediante modelos matemáticos y una exhaustiva revisión de datos astrofísicos, un equipo internacional de investigadores liderado desde la Universidad de Nottingham (Reino Unido) ha deducido que alrededor del 90% de las galaxias son tan débiles o están tan lejos que todavía no las hemos visto.

“Es alucinante pensar que el 90% de las galaxias del Universo todavía no se haya estudiado; quién sabe qué propiedades interesantes nos encontraremos cuando las observemos con la próxima generación de telescopios”, explica Christopher Conselice, la investigadora principal del trabajo.

Resultado de imagen de Distribución de galaxias en el Universo

En las últimas décadas se vienen realizados diferentes cartografías digitales de la distribución de galaxias en el Universo, que en muchos aspectos están …

Hallan una galaxia oscura

Los análisis también revelan que las galaxias no se han distribuido de forma uniforme a lo largo de los más de 13.000 millones de años del Universo. De hecho, parece que hubo un factor de 10 galaxias más por unidad de volumen cuando el Universo tenía sólo unos pocos miles de millones de años de edad en comparación con la actualidad. La mayoría de esas galaxias fueron relativamente pequeñas y débiles, y muchas se fusionaron, lo que redujo drásticamente su número.

Esta disminución a lo largo del tiempo ayuda a resolver una antigua paradoja astronómica, conocida como paradoja de Olbers: ¿Por qué el cielo es oscuro por la noche? (Si se supone que en un Universo infinito en cada punto del cielo hay parte de una galaxia con sus estrellas y debería brillar.)

Resultado de imagen de Distribución de galaxias en el Universo

Si se observa la distribución de las galaxias en el universo, entonces se ve un cuadro sorprendente: Se ven estructuras reticulares a gran escala.

Resultado de imagen de Desplazamiento al rojo cuando las galaxias se alejan

Según los autores, la respuesta estaría en que la mayoría de estas galaxias son invisibles para el ojo humano, e incluso para los telescopios modernos, debido a una combinación de factores: desplazamiento al rojo de la luz, la naturaleza dinámica del Universo y la absorción de la luz por el polvo y gas intergaláctico. Todos estos factores se combinan para garantizar que el cielo nocturno siga siendo, en su mayor parte, oscuro.

El artículo “The Evolution Of Galaxy Number Density At z < 8 And Its Implications” será publicado en The Astrophysical Journal.

Fuente: SINC

Seguimos avanzando… ¡A tientas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ciencia ABC

¿Todas las galaxias, en el centro de una esfera de agujeros negros?

Una nueva investigación sugiere que lo que llamamos materia oscura podrían ser, en realidad, agujeros negros primordiales

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente

A la izquierda, región de cielo en infrarrojos. A la derecha, la misma zona, con las estrellas y otras fuentes de infrarrojos oscurecidas, sigue brillando intensamente – NASA/JPL-Caltech/A. Kashlinsky (Goddard)

Resultado de imagen de Ya en 2005, Kashlinsky dirigió a un equipo de astrónomos, que usaron el telescopio espacial Spitzer para explorar el brillo del fondo cósmico en el rango del infrarrojo en una porción concreta de cielo

Todas las galaxias, incluída la nuestra, podrían estar completamente rodeadas por una enorme esfera de agujeros negros. Esa es la extraordinaria conclusión de un equipo de investigadores del Centro Espacial Goddard, de la NASA, que ha sugerido la posibilidad de que la misteriosa y hasta ahora esquiva materia oscura esté hecha, en realidad, de “agujeros negros primordiales“, esto es, formados durante el primer segundo tras el Big Bang.

Para Alexander Kashlinsky, director de la investigación, la idea es consistente con lo que observamos en el fondo cósmico, tanto en la longitud de onda del infrarrojo como en la de los rayos X, y puede explicar también las masas inesperadamente elevadas de los dos agujeros negros en proceso de fusión observadas el año pasado, durante la primera detección de ondas gravitacionales. El estudio se acaba de publicar en The Astrophysical Journal Letters.

“Este estudio -explica el investigador- constituye un gran esfuerzo para unir toda una serie de ideas y observaciones y ver lo bien que encajan. Y resulta que encajan sorprendentemente bien. Si esto es correcto, entonces todas las galaxias, incluyendo la nuestra, serían parte de una gran esfera de agujeros negros, cada uno de ellos de aproximadamente 30 masas solares”.

Resultado de imagen de telescopio espacial Spitzer

Ya en 2005, Kashlinsky dirigió a un equipo de astrónomos, que usaron el telescopio espacial Spitzer para explorar el brillo del fondo cósmico en el rango del infrarrojo en una porción concreta de cielo. Los científicos reportaron una irregularidad excesiva en ese brillo, y concluyeron que probablementese se debía a la suma de los brillos de las primeras fuentes de luz que iluminaron el Universo primitivo, hace más de 13.000 millones de años. Estudios posteriores confirmaron que este brillo del fondo cósmico de infrarrojos (CIB, por sus siglas en inglés) tiene la misma e inesperada estructura irregular también en otras partes del cielo.

Chandra X-ray Observatory.jpg

En 2013, otra investigación hizo lo mismo, pero esta vez observando el brillo del fóndo cósmico en el rango de los rayos X (CXB), utilizando el telescopio espacial Chandray en la misma porción de cielo en la que se había medido el brillo en el infrarrojo. Las primeras estrellas, que emiten la mayor parte de su radiación en el espectro visible y en el ultravioleta, no contribuyen en exceso al CXB.

El resultado fue que los brillos irregulares en el fondo cósmico coincidían muy bien tanto en los rayos X como en el infrarrojo. Y el único objeto conocido capaz de ser lo suficientemente luminoso en cualquier rango de energía es un agujero negro. Los investigadores, pues, concluyeron que los agujeros negros primordiales, los que se formaron durante el Big Bang, debieron de ser muy abundantes entre las primeras estrellas, tanto como para constituir al menos una de cada cinco de las fuentes que contribuyen al CIB.

No es materia oscura, sino agujeros negros

Resultado de imagen de No es la <a href=materia oscura, son los agujeros negros" />

Y aquí es donde entra en juego la materia oscura, cuya auténtica naturaleza sigue siendo uno de los problemas no resueltos más importantes de la astrofísica. Cinco veces más abundante que la materia ordinaria, de la que están hechas todas las galaxias, estrellas y planetas que podemos ver, la materia oscura no “brilla”, es decir, no emite radiación, en ninguna longitud de onda, por lo que resulta indetectable para cualquiera de nuestros instrumentos. Sabemos que está ahí, sin embargo, porque su fuerza gravitatoria obliga a la materia ordinaria (la que sí podemos ver) a moverse de formas que, sin la existencia de esa masa invisible, serían imposibles.

Hasta ahora los físicos han tratado de construir modelos teóricos que puedan explicar la materia oscura con una partícula exótica muy masiva, pero todas las pruebas llevadas a cabo para encontrar esa hipotética partícula han fracasado sin excepción.

Resultado de imagen de Buscan partículas de <a href=materia oscura" />

Según Kashlinsky, “estos estudios están proporcionando resultados cada vez más sensibles, reduciendo lentamente el abanico de parámetros donde las partículas de materia oscura se podrían ocultar. Pero el fracaso a la hora de encontrarlas ha llevado a un renovado interés por el estudio de lo bien que los agujeros negros primordiales -agujeros negros formados en primera fracción de segundo del universo- podrían funcionar como materia oscura”.

Los físicos creen que hay varias formas en que el universo temprano, muy caliente y en rápida expansión, pudo producir agujeros negros primordiales en la primera milésima de segundo tras el Big Bang. Y cuanto más tarde se pusiera en marcha este mecanismo, mayores serían los agujeros negros “fabricados” por el Universo recién nacido. Dado que la “ventana” para crear estos agujeros negros dura apenas una fracción de segundo, los agujeros negros primordiales, según los investigadores, deberían de estar todos dentro de un estrecho rango de masas.

Ondas gravitacionales, la primera pista

relatividad.org/bhole/detector-ondas-g.jpg" alt="Resultado de imagen de ondas gravitacionales ejemplos" />

El Observatorio LIGO (Laser Interferometer Gravitational-Wave Observatory), hace algún tiempo que detectó las ondas gravitacionales causadas por la fusión de dos agujeros negros a 1.300 millones de años luz de distancia. Fue la primera vez que se lograba detectar las ondas gravitacionales que había predicho Einstein hace un siglo, pero también fue la primera detección directa de un agujero negro en toda la historia de la Ciencia. La señal captada por los investigadores aportó información sobre las masas de los dos agujeros negros en proceso de fusión: 29 y 36 masas solares, respectivamente. Valores inesperadamente grandes y, sobre todo, sorprendentemente similares.

Imagen relacionada

“Según cuál sea el mecanismo que está actualdo -explica Kashlinsky- los agujeros negros primordiales podrían tener propiedades muy similares a las detectadas por LIGO. Si asumimos que ese es el caso, y que LIGO captó la fusión de dos agujeros negros nacidos en el universo temprano, entonces podemos estudiar las consecuencias que esto tiene en nuestra comprensión de cómo el cosmos, en última instancia, evolucionó”.

En su nuevo trabajo, Kashlinsky analiza lo que podría haber sucedido si la materia oscura realmente consiste en una gran población de agujeros negros similares a los detectados por LIGO. Esos agujeros negros, por ejemplo, distorsionaron la distribución de la masa en el universo temprano, añadiendo una pequeña fluctuación que tuvo consecuencias cientos de millones de años más tarde, cuando las primeras estrellas empezaron a formarse.

Resultado de imagen de La materia caliente del universo primordial

Durante los primeros 500 millones de años de existencia del Universo, la materia ordinaria estaba demasiado caliente como para unirse y formar las primeras estrellas. Pero la materia oscura no resultó afectada por la temperatura ya que, debido a su propia naturaleza, no depende de la radiación e interactúa fundamentalmente a través de la gravedad. Agregándose a causa de esta atracción gravitatoria, la materia oscura se agrupó primero en estructuras llamadas “mini halos”, lo que proporcionó una serie de “semillas gravitacionales” alrededor de las cuales la materia ordinaria pudo ir acumulándose. Así, el gas caliente (la materia ordinaria) se fue acumulando alredodor de los “mini halos”, dando lugar a “paquetes” de gas lo suficientemente densos como para colapsar sobre sí mismos y formar las primeras estrellas.

Kashlinsky observa que si efectivamente los agujeros negros son la materia oscurael proceso de formación estelar sucedería más rápidamente y se producirían con más facilidad las irregularidades en la luminosidad del fondo cosmico observadas en el rango de los infrarrojos por el telescopio Spitzer. Y esto sería así incluso si solo una pequeña parte de los “mini halos” estuviera produciendo estrellas.

Resultado de imagen de Halos de <a href=materia oscura" />

Por supuesto, los agujeros negros también capturarían una parte del gas caliente que era atraído lor los “mini halos”. Esa materia, se recalentaría según se fuera acercando a los agujeros negros y terminaría, también, por producir rayos X. Juntas, la luz infrarroja procedente de las primeras estrellas y los rayos X emitidos por la materia atraída por los agujeros negrosproducirían los mismos efectos que los científicos han observado en los brillos en CIB y el CXB.

De vez en cuando, además, alguno de estos agujeros negros primordiales pasaría lo suficientemente cerca de otro como para ser capturado por su gravedad y formar un sistema binario. Durante eones, los dos agujeros negros de esos sistemas binarios se orbitarían mutuamente, para terminar fundiéndose en uno solo, como el encontrado el año pasado por los detectores LIGO.

“Las futuras observaciones de LIGO -afirma Kashlinsky- nos dirán mucho más sobre la población de agujeros negros en el Universo, y no hará falta demasiado tiempo para saber si el escenario que propongo se sostiene o no”.