jueves, 17 de enero del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Telescopio de Canadá detecta misteriosas señales de radio de una galaxia lejana

Telescopio de Canadá detecta misteriosas señales de radio de una galaxia lejana

Un telescopio de Canadá detecta unas extrañas y misteriosas señales de radio procedentes de una galaxia muy lejana

ASTRONOMÍA

NOTICIA
Fotografía de la galaxia M51,  EL MUNDO

 

Rastrean las misteriosas señales situadas en lejanas regiones del Universo

 

Los FRB son uno de los misterios más intrigantes de la astrofísica

La naturaleza y el origen de las explosiones de las ondas de radio es desconocida

Los FRB surgen por todo el cielo, y no están seguros de qué los causa

 

Un equipo de científicos liderado por Canadá ha hallado unas señales misteriosas que emanan de una galaxia muy lejana. La naturaleza precisa y el origen de las explosiones de las ondas de radio es desconocida, según revela la investigación publicada en la revista Nature.

Entre las 13 ráfagas de radio rápidas, conocidas como FRB, se ha hallado una señal de repetición muy inusual, proveniente de la misma fuente a unos 2.500 millones de años luz de distancia. Es decir, una segunda señal igual que otra anterior que se registró en 2012. Los científicos creen que las FRB proceden de poderosos fenómenos astrofísicos a miles de millones de años luz de distancia, pero el origen real sigue siendo un misterio.

Imagen relacionada

“¡Mira! Vemos FRB”, dijo Deborah Good, una astrónoma de la Universidad de British Columbia en Vancouver, Canadá, en una reunión de la American Astronomical Society en Seattle, el pasado 7 de enero.

Good informó sobre los primeros resultados del Experimento Canadiense de Cartografía de la Intensidad del Hidrógeno (CHIME), un telescopio que originalmente fue diseñado para explorar el Universo primitivo pero que resultó ser ideal para detectar FRB . Visto por primera vez en 2007, los FRB son uno de los misterios más intrigantes de la astrofísica. Aparecen por todo el cielo, y los astrónomos no están seguros de qué los causa.

Resultado de imagen de Los FRB surgen por todo el cielo

Tal señal sólo había sido registrada una vez antes, y por un telescopio diferente.“Hemos descubierto una segunda señal repetitiva y sus propiedades son muy similares a la primera”, dijo Shriharsh Tendulkar, de la Universidad McGill de Canadá. Apareció por primera vez en 2012 y parece originarse en una galaxia a unos 2.500 millones de años luz de la Tierra.

¿Una estrella de neutrones o una nave alienígena?

 

Resultado de imagen de Estrella de neutronesResultado de imagen de Sofisticada nave alienigena

 

 

Hay una serie de teorías sobre lo que podría estar causando estas señales de radio. La mayoritaria es que se trata de una estrella de neutrones con un campo magnético muy fuerte que gira muy rápidamente, o que se trata de dos estrellas de neutrones que se fusionan. Y, entre una minoría de observadores, que se trata de alguna forma de nave espacial alienígena.

De las más de 60 FRB observadas hasta la fecha, sólo se habían encontrado repeticiones de una sola fuente una vez, un descubrimiento realizado por el radiotelescopio de Arecibo en Puerto Rico en 2015, ahora ya son dos.

Resultado de imagen de radiotelescopio de Arecibo en Puerto RicoResultado de imagen de radiotelescopio de Arecibo en Puerto Rico

“Hasta ahora, solo se conocía una FRB repetida. Sabiendo que hay otra sugiere que podría haber más por ahí. Y con más repetidores y más fuentes disponibles para el estudio, podremos entender estos enigmas cósmicos -de dónde proceden y qué los causa-”, apunta Ingrid Stairs, miembro del equipo CHIME y astrofísica de la UBC.

Antes de que CHIME comenzara a recopilar datos, algunos científicos se preguntaban si el rango de frecuencias de radio con el que el telescopio había sido diseñado para detectar sería demasiado bajo para captar ráfagas de radio rápidas. La mayoría de las FRB detectadas anteriormente se habían encontrado en frecuencias cercanas a 1400 MHz, muy por encima del rango del telescopio canadiense de 400 MHz a 800 MHz.

El estudio de FRB de baja frecuencia y la forma en que su radiación se dispersa en el camino a la Tierra, puede revelar más sobre el entorno en el que nacieron las explosiones.

Publica: emilio silvera

¡Aquellos primeros momentos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Todo en el Universo tiene un principio y un final y, el mismo universo tuvo que nacer y evolucionar para que hoy podamos contemplar, mediante nuestros sofisticados telescopios, un universo en expansión lleno de galaxias que contienen estrellas nuevas y viejas estrellas, muchas de ellas rodeadas de mundos que, aún no hemos podido determinar de qué criaturas estarán poblados muchos de ellos.

Resultado de imagen de Energía liberada por por hipernova
Antes de que la imagen de arriba fuese una realidad tuvieron que pasar millones de años. Hasta donde sabemos y el origen más aceptado para nuestro Universo es el de una inmensa explosión proveniente de una singularidad en la que la densidad y la energía eran “infinitas” y a partir de ahí, comenzó la gran aventura. Las primeras estrellas surgieron doscientos millones de años después del acontecimiento inicial y, explosiones de rayos gamma miles de millones de años más tarde, cuando las estrellas masivas llegaron al final de sus vidas
Resultado de imagen de Una visión fascinante del Universo
                     Antes de que se formaran los primeros planetas y estrellas pasaron muchas cosas

¡El Universo!

Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo,  no hay núcleos atómicos estables.  El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de rápidamente.

Resultado de imagen de Miríadas de neutrinos en el Universo primitivo

Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos.  Aunque en esa época el Universo era muy denso (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos.  Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias a pesar de la expansión de Hubble ¿Qué clase de materia estaba allí presente para generar la Gravedad que la retuvo y poder conformarlas?

Resultado de imagen de La sustancia cósmica del Universo primitivo

      Algunos postulan la existencia de una especie de redes cósmicas invisibles que generaban Grevedad

Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor   de la materia como sino existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase.  Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).

En menos de un siglo, el neutrino pasó de una partícula fantasma – propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad,  el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.

Resultado de imagen de Oleadas de Neutrinos

De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.

A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de  estructura que puede existir se hace cada vez más rudimentario.

Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones.  El Universo es un océano de quarks libres y otras partículas elementales.

Si nos tomamos el de contarlos, hallaremos que por cada mil millones de antiquarks existen mil millones y un quark. La asimetría es importante.  Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-antiquark formaran todos los átomos de materia del Universo del último día.  Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.

Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.

La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil.  hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de bosones w y z.

Estas partículas –las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil– son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles.  En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.

Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia.  Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido.   Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.

En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las cósmicas son aún menos conocidas.  Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes.  Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interacioban, producían calor y formaron las primeras estrellas.

Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.

Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé.  Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.

Del otro lado de esa puerta está la época de Plank, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos

Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.

emilio silvera

El peligro nos acecha

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Eta Carinae

La Nasa sorprende con una nueva foto de la estrella condenada.

¿Es la estrella Eta Carinae un riesgo para la vida en la Tierra?

 

Hace algún tiempo, en sus siempres magnificas cronícas del Cosmos, Rafael Bachiller nos habló de las explosiones que ha venido experimentando la estrella Eta Carinae.  Una estrella azul con una masa más de 100 veces mayor que la del Sol, situada a una distancia de 7.500 años-luz de nosotros. Eta Carinae ha sufrido múltiples episodios eruptivos, algunos de los cuales han sido observados desde la Tierra, y su futuro, como nos dice Rafael Bachiller, se prevé violento, pudiendo llegar a explotar como una supernova o como una hipernova para formar un agujero negro. Dada su distancia la Tierra, ¿podría alguno de estos escenarios suponer un riesgo para nuestro planeta?

 

La estrella Eta Carinae y la Nebulosa del Homúnculo. Fuente: NASA/ESA/HST

Eta Carina está constantemente en tensión y, para evitar su propia destrucciópn por medio de la propia radiación, se defiende expulsando material al espacio interestelar que la destensione.

La pregunta puede parecer exagerada ya que 7500 años-luz es una distancia enorme; sin embargo, las explosiones de supernovas e hipernovas, con su explosión asociada de rayos gamma, son los fenómenos naturales conocidos que más energía liberan en el Universo. Una sola supernova puede ser más brillante que una galaxia entera durante unos días, y una explosión de rayos gamma puede desprender en pocos segundos la energía equivalente a la que nuestro Sol emitirá en toda su vida estelar de diez mil millones de años.

Resultado de imagen de Grandes extincionesResultado de imagen de Grandes extinciones

A lo largo de la historia de la vida en la Tierra, ha habido en nuestro planeta numerosos episodios de extinción de distintas proporciones, siendo algunos referidos como episodios de extinciones masivas ya que en ellos desaparecieron más de la mitad de las especies que entonces habitaban nuestro mundo. Si bien las causas que dieron origen a estos procesos de extinción son aún, en muchos casos, sujeto debate, en los últimos tiempos se ha empezado a pensar en la posibilidad de que algunos de ellos hayan podido ser propiciados por sucesos cósmicos tales como explosiones de supernovas o de rayos gamma cercanas a la Tierra.

Los efectos en la biosfera provocados por esta clase de explosiones tienen que ver con las consecuencias de la alteración de la química atmosférica debida a la exposición a la radiación gamma y a los rayos cósmicos emitidos en ellas. Estas radiaciones poseen la energía suficiente para romper las moléculas de oxígeno y nitrógeno gaseosos en el aire que respiramos, facilitando la formación de otras como el monóxido de nitrógeno o el dióxido de nitrógeno cuya presencia en altas concentraciones en la atmósfera tendría importantes repercusiones en la biosfera.

Galaxia UGC 9379 (a 360 millones de años-luz) antes y durante la explosión de la supernova SN 2013cu. Fuente: Sloan Digital Sky Survey (izda.), Palomar Observatory (dcha.)

Los efectos provocados por la presencia de estas moléculas son varios; pero, de ellos, el más importante tiene que ver con el papel que desempeñan como catalizadores en la destrucción de la capa de ozono. La presencia de ozono en la atmósfera es vital para la inmensa mayoría de organismos ya que bloquea la mayor parte de la radiación ultravioleta emitida por el Sol. Sin la presencia de ozono, este tipo de radiación llegaría casi en su totalidad a la superficie terrestre provocando un daño significativo en la práctica totalidad de los seres vivos expuestos, además de provocar un aumento en el número de mutaciones en la biota a nivel global que afectaría a su pauta evolutiva.

Resultado de imagen de tipos de rayos solares

A pesar de que la radiación ultravioleta es absorbida por unos metros de agua, los seres vivos de las profundidades marinas también se verían afectados en la medida en que dependen de una cadena alimenticia que comienza en la superficie con el fitoplancton, el cual se vería gravemente afectado por las altas dosis de radiación. El aumento de la radiación ultravioleta a partir de la destrucción del ozono resultaría, por tanto, en una alteración profunda de la biosfera que amenazaría la supervivencia de muchas especies y afectaría a los ritmos evolutivos de las poblaciones que sobrevivieran.

Resultado de imagen de Energía liberada por por hipernovaResultado de imagen de Energía liberada por por hipernova

La intensidad de los efectos descritos anteriormente dependería de la distancia a la que se produjera la explosión y de la energía liberada en la misma. En este sentido, una explosión de Eta Carinae en forma de supernova que no fuera acompañada de una explosión de rayos gamma no tendría una repercusión negativa en la Tierra ya que se estima que un fenómeno semejante debería tener lugar a una distancia de hasta unas cuantas decenas de años-luz para resultar en un pérdida de ozono que propiciara un aumento significativo en el flujo de radiación ultravioleta en la superficie de la Tierra de forma que fuera suficiente para aniquilar numerosas especies y para influir en el desarrollo evolutivo de otras muchas. Sin embargo, en el caso de acabar sus días como supernova con una explosión asociada de rayos gamma, esta radiación, incluso a pesar de ser emitida a 7500 años-luz, sí que tendría efectos notables en la Tierra de ser alcanzada.

Resultado de imagen de Energía liberada por por hipernova

Se estima que una explosión de rayos gamma a menos de 10000 años-luz ya tendría, de hecho, efectos perjudiciales para la biosfera; pero una explosión a aproximadamente 6500 años-luz de distancia (casi el 87 % de la distancia que nos separa de Eta Carinae) tendría, sin embargo, efectos devastadores en nuestro planeta pues se piensa que a esa distancia podría hacer desaparecer hasta la mitad de la capa de ozono.

En nuestra Galaxia se conocen unas pocas estrellas masivas cuyo final podría resultar en una explosión de rayos gamma, y Eta Carinae no es solo una de ellas sino que es, además, la más cercana conocida. Es extremadamente difícil especificar cuándo podría darse la muerte de Eta Carinae y si se dará o no con una explosión de rayos gamma. Se sospecha, sin embargo, que su fin tendrá lugar pronto, tal vez en bastante menos tiempo que un millón de años. De morir en un proceso que desencadenase una explosión de rayos gamma, ¿estaríamos avocados a una catástrofe en la Tierra? Afortunadamente, podemos contestar con un no a esta pregunta ya que hay algo que nos salvaría en esta ocasión.

Composición artística de una explosión de rayos gamma. Fuente: NASA/Swift/Mary Pat Hrybyk-Keith and John Jones.

 

 

Resultado de imagen de Energía liberada por por hipernova

Cuando se da una explosión de rayos gamma en el proceso del colapso gravitatorio de una estrella masiva como Eta Carinae, la radiación así generada no se emite en todas direcciones sino en la forma de dos chorros estrechos con ángulos de apertura de pocos grados que se emiten en sentidos opuestos y en una dirección que es la que coincide con el eje polar de su progenitor. Afortunadamente, se sabe que el eje polar de Eta Carinae no apunta a nuestro sistema solar, sino que lo hace a una distancia angular de entre 47 y 67 grados de nosotros, por lo que, en principio, la Tierra no estaría bajo peligro. Afortunadamente, esto nos salvaría esta vez; pero pensemos que la Vía Láctea está poblada por más de cien mil millones de estrellas y que solo estamos familiarizados con algunas que habitan una pequeña porción de nuestro entorno.

La misteriosa señal que emite un agujero negro

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Un agujero negro engulle a una estrella cercana

Científicos investigan unas señales de rayos X en torno a un gigantesco agujero negro.

 

Libertad Digital / Agencias
Los datos aportan más información sobre la forma en que funcionan los agujeros negros | Robin Dienel/Carnegie Institution for Science

El 22 de noviembre de 2014, astrónomos detectaron un suceso raro en el Universo: un agujero negro supermasivo en el centro de una galaxia, a casi 300 millones de años luz de la Tierra, engullendo una estrella. El evento creó una enorme explosión de actividad de rayos X cerca del centro de la galaxia. Desde entonces, una gran cantidad de observatorios han centrado sus investigaciones en este suceso para tratar de aprender más sobre los agujeros negros.

Imagen relacionada

Investigadores del Instituto Tecnológico de Massachusetts (MIT, por sus siglas en inglés), en Estados Unidos, y en otros lugares han aportado nuevos datos: tras revisar las observaciones de varios telescopios, han descubierto señales de rayos X curiosamente intensas, estables y periódicas. Las señales emanan de un área muy cercana al horizonte de eventos del agujero negro, el punto a partir del cual el agujero negro engulle toda la materia a su alrededor, incluida la luz.

La señal parece iluminarse y desaparecer periódicamente cada 131 segundos y persiste durante al menos 450 días. Los científicos creen que la fuente de esta señal está orbitando el agujero negro justo fuera del horizonte de eventos, en la denominada Órbita Circular Estable Inferior, o ISCO, la órbita más pequeña en la que una partícula puede viajar con seguridad alrededor de un agujero negro sin caer en él.

Astrónomos detectan el momento en que un agujero negro engulle una estrella

Siguiendo esta hipótesis, los científicos han establecido que el agujero negro, de una masa un millón de veces mayor que la del sol, está girando a aproximadamente el 50 por ciento de la velocidad de la luz.

El primer autor del estudio, Dheeraj Pasham, dice que la mayoría de los agujeros negros supermasivos están inactivos. Solo ocasionalmente lanzan una explosión de actividad, como cuando las estrellas se acercan lo suficiente para que los agujeros negros las devoren. Por ello, estos datos son clave para conocer algo más sobre estos fenómenos.

Resultado de imagen de Un agujero negro orbitando una enana blanca

Según el escenario que maneja el equipo para explicar las señales, el agujero negro estaría siendo orbitado por una enana blanca. En algún momento, una segunda estrella pasó lo suficientemente cerca del sistema para que el agujero negro la destrozara, lo que generó una enorme cantidad de radiación de rayos X.

Cuando el agujero negro empujó este material hacia el interior, algunos de los escombros estelares permanecieron fuera, en la misma órbita que la enana blanca. Al entrar en contacto la estrella con este material, es probable que lo arrastrara consigo, lo que hizo que generara una intensa cantidad de rayos X perceptible por los telescopios cada vez que rodea el agujero negro, en intervalos regulares de 131 segundos.

¿El Origen del Universo? ¡Cómo puedo saberlo yo!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Sin embargo, seguimos sin saber qué fue lo que pasó antes del Tiempo de Planck y, si existen otros universos. Pero, no por ello dejamos de especular con lo que pudo ser. Modelos y Teorías que se construyen alrededor de lo observado, de los experimentos y sus resultados que nos van acercando a esa verdad que incansables buscamos.

“¿Dónde estabas tú cuando yo puse los cimientos de la Tierra? Dilo si tienes entendimiento. Claro que a esta pregunta, lo único que podríamos contestar sería: ¿Quién sabe realmente? La especulación sobre el origen del universo es una vieja actividad humana que está sin resolver, ya que, pretendemos saber algo que no sabemos si llegó a ocurrir, toda vez que incluso, podría ser, que el universo esté aquí desde siempre. Y, si llegó como algo nuevo, tampoco sabemos, a ciencia cierta, cómo y de dónde lo hizo. Pero nosotros, los humanos, no dejamos de especular con esta cuestión de compleja resolución y dejamos volar nuestra imaginación en forma de conjeturas y teorías que, no siempre son el fiel reflejo de lo que pudo pasar que, de momento, permanece en el más profundo anonimato.”

 

 

 

La Humanidad forma parte indisoluble, indistinguible del cosmos. Todo lo que somos surgió con el mismo universo y en el corazón de las estrellas. En palabras de Sagan, somos polvo de estrellas.

              ¿Os imagináis ir paseando por una playa y tener estas vistas?

Claro que, la Humanidad y el Universo están tan juntos, tan conectados que, sería imposible que no hablaran de él, y, sobre todo, que no tratataran de saber su comienzo (si es que lo hubo) y, hurgar en su dinámica para poder entender nuestra presencia aquí junto con las estrellas de las que procedemos y de las galaxias que son las villas del Universo que alojan a cientos de millones de mundos (algunos) habitados que, como la Tierra, tienen otras criaturas que tambien, ellas, inteligentes,  se preguntan por el principio y el final para poder conocer su origen y destino.

Alguna vez he imaginado que en un Universo anterior, después de muchos miles de millones de años, todo lo que había quedado era un inmenso agujero negro que, poco a poco, había crecido y se había engullido toda la materia hasta quedar completamente solitario. Tan inmensa enormidad, finalmente explotó eyectando todo lo que contenía y, tan inimaginable explosión, dio lugar al universo que ahora conocemos. Claro que, esta es una de tantas ideas que podríamos tener sobre el origen del Universo que, si lo pensamos detenidamente, no tiene que provenir, necesariamente, del Big Bang.

Algunos nos dicen que el Universo surgió de la “Nada” y, está claro que la Nada, como la Eternidad o lo infinito, no pueden existir y, si algo surgió, es porque había, con lo cual, la Nada queda invalidada. Pero, si hubo un suceso de creación, ¿que duda nos puede caber de que tuvo que haber una causa? Lo cierto es que, en las distintas teorías de la “creación” del universo, existen muchas reservas.

No obstante tales reservas, unos pocos científicos trataron de investigar la cuestion de cómo pudo haberse originado el universo, aunque admitiendo que sus esfuerzos quizás eran “prematuros”, como dijo Weinberg con suavidad. “En el mejor de los casos, contemplado con una mirada alentadora, el trabajo realizado hasta el momento, parece haber encendido una lámpara en la antesala de la génesis. Lo que allí quedó iluminado era muy extraño, pero era, en todo caso, estimulante. No cabía descubir algo familiar en las mismas fuentes de la creación.”

Hemos podido contemplar como en la Nebulosa del Águila nacen nuevas estrellas masivas. Sin embargo, no hemos llegado a poder saber, con certeza como surgió el Universo entero y de dónde y porqué lo hizo para conformar un vasto espacio-tiempo lleno de materia que evolucionaría hasta poder conformar las estrellas y los mundos en enormes galaxias, y, en esos mundos, pudieron surgir criaturas que, conscientes de SER, llegaron desde un nivel animal rudimentario, hasta los más sofisticados pensamientos que les hicieron preguntarse: ¿Quiénes somos, de dónde venimos, hacia dónde vamos? Y, esas preguntas, realizadas 14.000 millones de años después del comienzo del tiempo, y  junto a la pregunta del origen del Universo, todavía, no han podido ser contestadas. Nuestro intelecto evoluciona pero, sus límites son patentes.

                     Esta podría ser una protoestrella, es decir, la formación de una estrella

Una estrella que se forma en la Nebulosa comienza siendo protoestrellas y, cuando entra en la secuencia principal, brilla durante miles de millones de años dutante los cuales crea nuevos elementos a partir del más sencillo, el Hidrógeno. Los cambios de fase que se producen por fusión en el horno nuclear de las estrellas, son los que han permitido que existieran los materiales necesarios para la química de la vida que, al menos hasta donde sabemos, no apareció en nuestro planeta Tierra, hasta hace unos 4.o0o millones de años, y, desde entonces, ha estado evolucionando para que ahora, nosotros, podamos preguntas, por el origen del universo.

Los científicos han imaginado y han puesto sobre la mesa para su estudio, dos hipótesis, la llamada génesis del vacío, y la otra, génesis cuántica y ambas, parecían indicar mejor lo que el futuro cercano podía deparar al conocimiento humano sobre el origen del Universo.

La Génesis de vacío: El problema central de la cosmología es explicar como algo msurge de la nada. Por “algo” entendemos la totalidad de la materia y la energía, el espacio y el tiempo: el universo que habitamos. Pero la cuestión de lo que significa NADA es más sitíl. En la ciencia clásica, “nada” era un vacío, el espacio vacío que hay entre dos partículas de materia. Pero esta concepsión siempre planteaba problemas, como lo atestigua la prolongada indagación sobre si el espacio estana lleno de éter, y en todo caso no sobrevivió al advenimiento de la física cuántica.

Puede que todo surgiera a partir de esa densidad infinita. Allí comenzó el Tiempo y el nuevo universo se expandió, se crearon las partículas de materia, …

El vacío cuántico nunca es realmente vacío, sino que resoba de partículas “virtuales”. Las partículas virtuales pueden ser concebidas como la posibilidad esbozada por el principio de indeterminación de Heisenberg de que una partícula “real” llegue en un tiempo determinado a un lugar determinado. Como las siluetas que salen de pronto en un campo de tiro policial, representan no sólo lo que es sino también lo que podría ser. Desde el punto de vista de la física cuántica, toda partícula “real” está rodeada por una corona de partículas y antipartículas virtuales que borbotean del vacío, interaccionan unas con otras y luego desaparecen.

http://francisthemulenews.files.wordpress.com/2008/02/dibujo26ene2008a.jpg

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotonesvirtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

Si a cada instante, en cualquier lugar del universo, están surgiendo infinitas partículas y antipartículas que se aniquilan mútuamente y desaparecen de nuestro “mundo”, ¿ha dónde van? ¿de dónde surgen?. Hemos observado fuerzas familiares en las que dos electrones son  “mediados” por el intercambio de “fotones virtuales” que son los bosones intermediarios de la fuerza.

Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Es acaso esa región lo que llamamos el océano de Higgs donde se encontró el dichoso Bosón dador de masa? Sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son para los electrones.

Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutrones mantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.

Una cosa sí sabemos, las reglas que gobiernan la existencia de las partículas virtuales se hallan establecidas por el principio de incertidumbre y la ley de conservación de la materia y de la energía. También sabemos que el principio de exclusión de Pauli, que afecta sólo a los fermiones. hace posible que estos se degeneren cuando están demasiado juntos y, de esa manera, son posibles las estrellas enanas blancas y las de neutrones.

http://farm5.static.flickr.com/4025/4516869871_1cd24e4f97.jpg

En un nuevo estudio, un grupo de físicos ha propuesto que la gravedad podría disparar un efecto desbocado en las fluctuaciones cuánticas, provocando que crezcan tanto que la densidad de energía del vacío del campo cuántico podría predominar sobre la densidad de energía clásica. Este efecto de predominancia del vacío, el cual surge bajo ciertas condiciones específicas pero razonables, contrasta con la ampliamente sostenida creencia de que la influencia de la gravedad sobre los fenómenos cuánticos debería ser pequeña y subdominante.

Claro que, hablar aquí del vacío en relación al surgir del universo, está directamente asentado en la creencia de algunos postulados que dicen ser posible que, el universo, surgiera de una Fluctuación de vacío producida en otro universo paralelo y, desde entonces, funciona de manera autónoma como un nuevo universo de los muchos que son en el más complejo Metaverso.

Inmediatamente después de que la llamada espuma cuántica del espacio-tiempo permitiera la creación de nuestro Universo, apareció una inmensa fuerza de repulsión gravitatoria que fue la responsable de la explosiva expansión del Universo primigenio (inflación). Las fluctuaciones cuánticas del vacío, que normalmente se manifiestan sólo a escalas microscópicas, en el Universo inflacionario en expansión exponencial aumentaron rápidamente su longitud y amplitud para convertirse en fluctuaciones significativas a nivel cosmológico.

En el Modelo corriente del big bang que actualmente prevalece y que, de momento, todos hemos aceptado al ser el que más se acerca a las observaciones realizadas, el universo surgió a partir de una singularidad, es decir, un punto de infinita densidad y de inmensa energía que, explosionó y se expansionó para crear la materia, el espacio y el tiempo que, estarían gobernados por las cuatro leyes fundamentales de la naturaleza:

Fuerzas nucleares débil y fuerte, el electromagnetismo y la Gravedad. Todas ellas, estarían apoyadas por una serie de números que llamamos las constantes universales y que hacen posible que nuestro universo, sea tal como lo podemos contemplar. Sin embargo, existen algunas dudas de que, realmente, fuera esa la causa del nacimiento del Universo y, algunos postulan otras causas como transiciones de fase en un universo anterior y otras, que siendo más peregrinas, no podemos descartar.

La Tierra con la luna

Nosotros, estamos confinados en el planeta Tierra que es un mundo suficientemente preparado para acoger nuestras necesidades físicas, pero, de ninguna manera podrá nunca satisfacer nuestras otras necesidades de la Mente y del intelecto que produce imaginación y pensamientos y que, sin que nada la pueda frenar, cual rayo de luz eyectado desde una estrella masiva refulgente, nuestros pensamientos vuelan también, hacia el espacio infinito y con ellos, damos rienda suelta a nuestra más firme creencia de que, nuestros orígenes están en las estrellas y, hacia las estrellas queremos ir, allí, amigos míos, está nuestro destino.

El Universo es grande, inmenso, casi infinito pero, ¿y nosotros? Bueno, al ser una parte de él, al ser una creación de la Naturaleza, estamos formando parte de esta inmensidad y, precisamente, nos ha tocado desempeñar el papel de la parte que piensa, ¿tendrá eso algún significado?

Yo, no lo sé… Pero… ¿¡Quién sabe realmente!?

emilio silvera