jueves, 28 de julio del 2016 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Masa y la Energía ¿Qué son en realidad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “renormalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

La interacción débil, recordareis, fue inventada por E. Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

     Fabiola Gianotti, portavoz del experimento ATLAS, ofrece algunos avances:

“En nuestros datos observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”

 

El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.

El 4 de julio de 2012 se anunció el descubrimiento de un nuevo bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.

¿Por qué, a pesar de todas las noticias surgidas desde el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado?

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W-, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

Para cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar para que todo encaje con la teoría.

¡Ya veremos en que termina todo esto! Dicen que descubrieron el famoso Bosón pero… Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011— y que no ha podido disfrutar del Nóbel.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W- y Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental que ahora parece que va asomando la cabeza en el LHC.

Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, tal como lo están planteando los del CERN,  se puede llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs.  Y ahora, por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.

¡La confianza en nosotros mismos, no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.

¿Pasará igual con las cuerdas?

emilio silvera

Agradecido le quedo a León Lederman que con sus ideas ha nutrido el presente trabajo.

SIxIj48L3BhdGg+PHBhdGggZD0iTTE0LjczMywxLjY4NiBDNy41MTYsMS42ODYgMS42NjUsNy40OTUgMS42NjUsMTQuNjYyIEMxLjY2NSwyMC4xNTkgNS4xMDksMjQuODU0IDkuOTcsMjYuNzQ0IEM5Ljg1NiwyNS43MTggOS43NTMsMjQuMTQzIDEwLjAxNiwyMy4wMjIgQzEwLjI1MywyMi4wMSAxMS41NDgsMTYuNTcyIDExLjU0OCwxNi41NzIgQzExLjU0OCwxNi41NzIgMTEuMTU3LDE1Ljc5NSAxMS4xNTcsMTQuNjQ2IEMxMS4xNTcsMTIuODQyIDEyLjIxMSwxMS40OTUgMTMuNTIyLDExLjQ5NSBDMTQuNjM3LDExLjQ5NSAxNS4xNzUsMTIuMzI2IDE1LjE3NSwxMy4zMjMgQzE1LjE3NSwxNC40MzYgMTQuNDYyLDE2LjEgMTQuMDkzLDE3LjY0MyBDMTMuNzg1LDE4LjkzNSAxNC43NDUsMTkuOTg4IDE2LjAyOCwxOS45ODggQzE4LjM1MSwxOS45ODggMjAuMTM2LDE3LjU1NiAyMC4xMzYsMTQuMDQ2IEMyMC4xMzYsMTAuOTM5IDE3Ljg4OCw4Ljc2NyAxNC42NzgsOC43NjcgQzEwLjk1OSw4Ljc2NyA4Ljc3NywxMS41MzYgOC43NzcsMTQuMzk4IEM4Ljc3NywxNS41MTMgOS4yMSwxNi43MDkgOS43NDksMTcuMzU5IEM5Ljg1NiwxNy40ODggOS44NzIsMTcuNiA5Ljg0LDE3LjczMSBDOS43NDEsMTguMTQxIDkuNTIsMTkuMDIzIDkuNDc3LDE5LjIwMyBDOS40MiwxOS40NCA5LjI4OCwxOS40OTEgOS4wNCwxOS4zNzYgQzcuNDA4LDE4LjYyMiA2LjM4NywxNi4yNTIgNi4zODcsMTQuMzQ5IEM2LjM4NywxMC4yNTYgOS4zODMsNi40OTcgMTUuMDIyLDYuNDk3IEMxOS41NTUsNi40OTcgMjMuMDc4LDkuNzA1IDIzLjA3OCwxMy45OTEgQzIzLjA3OCwxOC40NjMgMjAuMjM5LDIyLjA2MiAxNi4yOTcsMjIuMDYyIEMxNC45NzMsMjIuMDYyIDEzLjcyOCwyMS4zNzkgMTMuMzAyLDIwLjU3MiBDMTMuMzAyLDIwLjU3MiAxMi42NDcsMjMuMDUgMTIuNDg4LDIzLjY1NyBDMTIuMTkzLDI0Ljc4NCAxMS4zOTYsMjYuMTk2IDEwLjg2MywyNy4wNTggQzEyLjA4NiwyNy40MzQgMTMuMzg2LDI3LjYzNyAxNC43MzMsMjcuNjM3IEMyMS45NSwyNy42MzcgMjcuODAxLDIxLjgyOCAyNy44MDEsMTQuNjYyIEMyNy44MDEsNy40OTUgMjEuOTUsMS42ODYgMTQuNzMzLDEuNjg2IiBmaWxsPSIjYmQwODFjIj48L3BhdGg+PC9nPjwvc3ZnPg==') no-repeat scroll 3px 50% / 14px 14px; position: absolute; opacity: 1; z-index: 8675309; display: none; cursor: pointer;">Guardar

La partícula que es materia y antimateria a la vez

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Un equipo de EEUU crea una exótica partícula cuya existencia se predijo hace más de 70 añose

Reportaje de Nuño Domínguez

 

Imagen de microscopio del material observado con las nuevas partículas observadas / Princeton
Ettore Majorana.jpg

En 1937, un joven y brillante físico italiano llamado Ettore Majorana predijo la existencia de una partícula aparentemente imposible. No tenía carga y, por tanto, podía comportarse a la vez como si estuviese hecha de materia y antimateria. Hacía solo unos años que Paul Dirac, otro joven y brillante físico británico, había explicado la teoría moderna de la antimateria. Esta venía a decir que por cada elemento de materia conocida podía haber un reverso con carga opuesta hecha de antimateria. Así, un electrón tendría su positrón y un protón, su antiprotón. Cuando ambos entraban en contacto se desintegraban de forma violenta dejando escapar un estallido de radiación. La excepción era esa exótica partícula predicha por Majorana. Desde entonces, nadie ha conseguido observarla en la naturaleza. Su falta de carga haría que estas partículas, llamadas fermiones de Majorana, no interactuaran con la materia convencional con lo que serían muy difíciles de detectar. Hoy se piensa que partículas similares podrían ser las que componen la esquiva materia oscura, esa sustancia que compone el 23% del universo sin que nadie aún haya conseguido observarla de forma directa. Un año después de hacer su propuesta, como si fuese uno de sus fermiones indetectables, Ettore Majorana desapareció sin dejar rastro mientras viajaba en un barco hacia Nápoles.

Hoy, un equipo de investigadores de EEUU publica un estudio en el que demuestran haber observado fermiones de Majorana. Tal y como predijo el físico, se trata de partículas que se comportan como si estuviesen hechas de materia y antimateria al mismo tiempo y que serían a la vez una partícula y su propia antipartícula.

Los Fermiones de Majorana son muy interesantes – no sólo porque su descubrimiento abre un capítulo nuevo y desconocido de la física fundamental, ..

El hallazgo no se ha hecho en un gran acelerador de partículas, como en el caso del bosón de Higgs, sino en un experimento controlado con materiales superconductores y observado con un microscopio de efecto túnel, que permite ver un material a nivel atómico. Los investigadores tomaron una finísima tira de hierro de un átomo de ancho y la enfriaron hasta rozar el cero absoluto (-273 grados). Fue entonces cuando, a cada extremo de la cadena, aparecieron los esquivos fermiones de Majorana.

“Hemos tomado una imagen directa del fermión de Majorana usando el microscopio de efecto túnel en lugar de detectar su existencia de forma indirecta”, explica a Materia Ali Yazdani, uno de los investigadores de Princeton autores del hallazgo. Sus resultados se publican hoy en la revista Science. En 2012, otro equipo europeo clamó haber observado los mismos fermiones. Pero su detección no era del todo directa y las señales observadas podían deberse a otras causas. Las nuevas pruebas “dan más más credibilidad” a la creación de partículas de Majorana, señala Llorenç Serra, del Instituto nstituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB).

Pero, ¿son estas partículas realmente fermiones como los predichos por el desaparecido Majorana? Es una cuestión que enciende a los físicos que trabajan con detectores como el LHC o en grandes sensores para cazar neutrinos. Estos experimentos pueden observar partículas fundamentales naturales, producidas de forma espontánea en el universo o de forma provocada haciendo chocar protones a velocidades cercanas a la de la luz. Por el contrario, las partículas generadas en experimentos como el de Princeton deben su comportamiento a los átomos que las rodean, en este caso de hierro y plomo. No son partículas elementales sino una variante inferior que los físicos denominan “cuasipartículas”. La gran pregunta ahora es si las propiedades que se observan en estas cuasipartículas se dan también en el mundo de las partículas elementales.

Por ejemplo se piensa que el neutrino, que apenas interactúa con la materia, podría ser a la vez partícula y antipartícula. Esto explicaría cómo pudo surgir un universo como el que conocemos, pero nadie, por ahora, lo ha conseguido demostrar. Otras posibles partículas de Majorana aún no confirmadas y también esenciales para entender el universo serían los neutralinos, que compondrían la materia oscura, otro de los grandes interrogantes de la física actual.

“El hecho de que la naturaleza produzca cuasipartículas de Majorana resulta cuando menos sugestivo de que las partículas elementales que pueden serlo, como el neutrino, también lo serán”, opina Juan José Gómez-Cadenas. Este físico del CSIC dirige un experimento en Canfranc con el que pretende ser el primero en detectar a ese esquivo neutrino que es partícula y su contrario. “Da la impresión de que, también aquí se cumple la regla que dice que la naturaleza siempre opta por que si una cosa es posible, entonces va y la implementa”, resalta.

Yazdani añade que “quizás la clave del estudio sea que demostrar un concepto de forma experimental y con precisión en un sistema te puede dar confianza de que quizás esa misma idea juegue un papel en otro sistema”. Y añade “Esta política de preguntarse ‘¿por qué no? es probablemente la que inspiró a Majorana y ha sido clave en muchos hallazgos científicos”.

Después de 76 años, el destino del propio Majorana sigue siendo un misterio.”

Hasta aquí el arículo de El Pais.

Ettore Majorana (1906-¿1938?) solo publicó 10 artículos científicos, el último de ellos póstumo. Sin embargo, muchos lo comparan con Newton, con Galileo y con los grandes genios del siglo XX. Durante su vida muy pocos se dieron cuenta de su genio, salvo quizás Enrico Fermi (1901-1954), Premio Nobel de Física en 1938 por su teoría de la interacción débil, quien le dirigió la tesis de grado en 1929, y Emilio G. Segré (1905-1989), Premio Nobel de Física en 1959 por el descubrimiento del antiprotón, que fue su profesor en 1928. ¿Por qué Majorana es un mito y está considerado uno de los físicos más importantes e influyentes del siglo XX? Hay un tipo de fermiones que recibe su nombre, los fermiones de Majorana, en pie de igualdad con los fermiones de Dirac. Obviamente, solo un gran genio puede poner su nombre al lado de los de Fermi y Dirac. ¿Realmente Majorana fue uno de los padres de la física del siglo XX?

Las Matemáticas

La historia se articula fundamentalmente entorno a la relación de Ettore Majorana (1906-1938), un joven genio de las matemáticas puras, con el físico Enrico Fermi (1901 – 1954). En su primer encuentro, Fermi entra en un aula donde este joven se encuentra solo, escribiendo en una pizarra (la escena puede verse aquí). “¿Has probado tú esa solución?”, le pregunta. Ettore se vuelve ligeramente para ver a su interlocutor, y al momento sigue escribiendo, respondiendo “Fue difícil al principio, pero sólo fueron cuentas”. Fermi se sonríe con sorna (¿sólo cuentas?), y le pregunta sobre el tiempo que le llevó resolverlo. “Es verdad que me ha llevado bastante. Estuve toda una noche”, responde el joven. Fermi, con un tono un poco más severo, responde: “A nosotros nos llevó una semana. Y éramos tres”. A continuación le pregunta por sus intereses como estudiante. Hace ingeniería, aunque afirma no apasionarle demasiado, y explica cómo ve las cosas:

En realidad me gustan las matemáticas, pero me fastidia que todo el mundo se aproveche de ellas. Físicos, ingenieros, generales de artillería… El esfuerzo de resolver un problema debería bastar por sí mismo – un cálculo perfecto debería ser inmediatamente destruido.

En ese instante, después de volver a echar un vistazo a la pizarra, Fermi comienza a borrarla. “¿Qué hace?”, le pregunta Ettore. “Destruyo un cálculo perfecto”, responde. Entonces Fermi le ofrece un libro, y le pide que elija lo que quiera. Ettore abre por una página al azar, y se lo devuelve. “No es fácil”, responde, pero claro, para eso es el gran Enrico Fermi, no le queda más remedio que resolver el ejercicio en cuestión, que resulta ser una integral definida. La escribe. Es la siguiente:

Mientras Fermi escribe y llena la pizarra de cuentas, Ettore se sienta de espaldas a él sobre la tarima, y escribe en una pequeña libreta (del tamaño de los post-it, aproximadamente). Cuando la cámara muestra lo que ha escrito, mientras Fermi sigue llenando el encerado, vemos la integral, a continuación x = 2cosht, y directamente la expresión de una primitiva (ver la imagen):

y mentalmente, como en otros momentos de la película, pensativo, acaba escribiendo el resultado: 1,21. Ha terminado mucho antes que Fermi, que sigue llenando la pizarra. Sonríe.

 

Al poco, Fermi termina y exclama “¡Ya está hecho!” Y recuadra la solución, 1,21. Vemos la pizarra en la imagen, tal y como la haría cualquiera (cualquiera que sepa, por supuesto, que un cambio de variable posible para eliminar la raíz cuadrada es trigonométrico; recuérdense para deducir si necesitamos una razón circular o hiperbólica las identidades sen2x + cos2x = 1, o cosh2xsenh2x = 1). Fermi utiliza el teorema del cambio de variable, etc., etc. Entonces Ettore le lanza el cuadernillo para que compruebe cómo llegó a la misma solución en menor tiempo y necesitando menos espacio.

Si uno se toma la molestia de hacer el cálculo (es pesado, pero “non è difficile”, es un ejercicio de primero de ingeniería; perdón, de grado en ingeniería, aunque tal y como se han pensado estos nuevos estudios (que toman su nombre de una ciudad italiana, precisamente), probablemente ya no la haga nadie, y en el mejor de los casos, se la encomienden al ordenador), comprobará que el resultado de la primitiva (al menos el que me sale a mí) es:

que en realidad vale 1.205234942 (y esto último sí lo he hecho con el ordenador). Hay un error en el argumento de la arcotangente, y no sabemos quien es esa misteriosa γ, que por más vueltas que le he dado, no se me ha ocurrido. Pero desde luego, pensando en cómo el cine representa las matemáticas, nada que ver con la integral trivialona de la película española comentada el mes pasado.

Adelanto hacia la computación cuántica

Más allá de los misterios del cosmos, la investigación en este campo tiene otra posible aplicación en el terreno de la computación cuántica. Esta disciplina pretende generar ordenadores millones de veces más potentes que los actuales aprovechando las propiedades cuánticas de ciertas partículas. El hecho de que los fermiones generados sean duales, a la vez materia y antimateria, les da una sorprendente estabilidad respecto a su entorno, lo que podría ayudar a usarlos para componer bits cuánticos más manejables que los que actualmente se diseñan basados en electrones, según una nota de prensa difundida por Princeton. “Son unos experimentos muy sólidos, que dan más credibilidad a que la física de partículas Majorana aparece en los sistemas de materia condensada”, opina Llorenç Serra, que investiga los efectos cuánticos de ciertos materiales en el Instituto nstituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB). Serra coincide en que el tipo de materiales usados en este estudio, cadenas de hierro superconductoras, tienen potencial para mejorar la computación cuántica. “La gran ventaja que tienen”, dice, es que los fermiones de Majorana “están deslocalizados en los dos extremos del cable”. Esto, dice, “les hace robustos y un estado cuantico robusto frente a pérdidas de coherencia es imprescindible para un ordenador cuantico”.

Publica: emilio silvera

SIxIj48L3BhdGg+PHBhdGggZD0iTTE0LjczMywxLjY4NiBDNy41MTYsMS42ODYgMS42NjUsNy40OTUgMS42NjUsMTQuNjYyIEMxLjY2NSwyMC4xNTkgNS4xMDksMjQuODU0IDkuOTcsMjYuNzQ0IEM5Ljg1NiwyNS43MTggOS43NTMsMjQuMTQzIDEwLjAxNiwyMy4wMjIgQzEwLjI1MywyMi4wMSAxMS41NDgsMTYuNTcyIDExLjU0OCwxNi41NzIgQzExLjU0OCwxNi41NzIgMTEuMTU3LDE1Ljc5NSAxMS4xNTcsMTQuNjQ2IEMxMS4xNTcsMTIuODQyIDEyLjIxMSwxMS40OTUgMTMuNTIyLDExLjQ5NSBDMTQuNjM3LDExLjQ5NSAxNS4xNzUsMTIuMzI2IDE1LjE3NSwxMy4zMjMgQzE1LjE3NSwxNC40MzYgMTQuNDYyLDE2LjEgMTQuMDkzLDE3LjY0MyBDMTMuNzg1LDE4LjkzNSAxNC43NDUsMTkuOTg4IDE2LjAyOCwxOS45ODggQzE4LjM1MSwxOS45ODggMjAuMTM2LDE3LjU1NiAyMC4xMzYsMTQuMDQ2IEMyMC4xMzYsMTAuOTM5IDE3Ljg4OCw4Ljc2NyAxNC42NzgsOC43NjcgQzEwLjk1OSw4Ljc2NyA4Ljc3NywxMS41MzYgOC43NzcsMTQuMzk4IEM4Ljc3NywxNS41MTMgOS4yMSwxNi43MDkgOS43NDksMTcuMzU5IEM5Ljg1NiwxNy40ODggOS44NzIsMTcuNiA5Ljg0LDE3LjczMSBDOS43NDEsMTguMTQxIDkuNTIsMTkuMDIzIDkuNDc3LDE5LjIwMyBDOS40MiwxOS40NCA5LjI4OCwxOS40OTEgOS4wNCwxOS4zNzYgQzcuNDA4LDE4LjYyMiA2LjM4NywxNi4yNTIgNi4zODcsMTQuMzQ5IEM2LjM4NywxMC4yNTYgOS4zODMsNi40OTcgMTUuMDIyLDYuNDk3IEMxOS41NTUsNi40OTcgMjMuMDc4LDkuNzA1IDIzLjA3OCwxMy45OTEgQzIzLjA3OCwxOC40NjMgMjAuMjM5LDIyLjA2MiAxNi4yOTcsMjIuMDYyIEMxNC45NzMsMjIuMDYyIDEzLjcyOCwyMS4zNzkgMTMuMzAyLDIwLjU3MiBDMTMuMzAyLDIwLjU3MiAxMi42NDcsMjMuMDUgMTIuNDg4LDIzLjY1NyBDMTIuMTkzLDI0Ljc4NCAxMS4zOTYsMjYuMTk2IDEwLjg2MywyNy4wNTggQzEyLjA4NiwyNy40MzQgMTMuMzg2LDI3LjYzNyAxNC43MzMsMjcuNjM3IEMyMS45NSwyNy42MzcgMjcuODAxLDIxLjgyOCAyNy44MDEsMTQuNjYyIEMyNy44MDEsNy40OTUgMjEuOTUsMS42ODYgMTQuNzMzLDEuNjg2IiBmaWxsPSIjYmQwODFjIj48L3BhdGg+PC9nPjwvc3ZnPg==') no-repeat scroll 3px 50% / 14px 14px; position: absolute; opacity: 1; z-index: 8675309; display: none; cursor: pointer;">Guardar

Todo lo grande está hecho de cosas pequeñas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Tiempo de Planck
La interpretación de las unidades naturales de Stoney y Planck no era en absoluto obvia para los físicos. Aparte de ocasionarles algunos quebraderos de cabeza para entender esos números tan endiabladamente pequeños.

El tiempo de Planck o cronón (término acuñado en 1926 por Robert Lévi) es una unidad de tiempo, considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el tiempo de Planck representa el instante de tiempo más pequeño en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:

 

 

<br />
t_P =<br />
\sqrt{\frac{\hbar G}{c^5}}<br />
\; \approx \quad<br />
5,39106(32) \cdot 10^{-44}<br />
segundos

donde:

\hbar es la constante de Planck reducida (conocida también como la constante de Dirac). 
G es la constante de Gravitación Universal;
c es la velocidad de la luz en el vacío.

Los números entre paréntesis muestran la desviación estándar.

En este ámbito hablamos de las cosas muy pequeñas, las que no se ven

Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck.  Está dado por , donde G es la constante gravitacional (6, 672 59 (85) x 10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2л = 1,054589 x 10-34 Julios segundo), c, es la velocidad de la luz (299.792.458 m/s).

El valor del tiempo del Planck es del orden de 10-44 segundos.  En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del Universo. Todo, desde Einstein, es relativo.  Depende de la pregunta que se formule y de quién nos de la respuesta.

                   ¿El Tiempo? Muchos Filósofos lo quisieron explicar pero… ¡No pudieraon!

Si preguntamos ¿Qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio 133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Baricéntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio, etc. etc.  Cada una de estas versiones del tiempo, tiene una respuesta diferente, ya que, no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo Universal.  Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta.

                                      … Y que el mismo tiempo suele borrar

En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas, los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es solo uno; ese que comenzó cuando nació el Universo y que finalizará cuando este llegue a su final.

Lo cierto es que, para las estrellas supermasivas, cuando llegan al final de su ciclo y deja de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella.  Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella), y, la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa.  Queda comprimida hasta tal nivel que llega un momento que desaparece,  para convertirse en un Agujero Negro, una singularidad, donde dejan de existir el “tiempo” y el espacio.  A su alrededor nace un horizonte de sucesos que, si se traspasa, se es engullido por la enorme gravedad del Agujero Negro.

       En la singularidad no se distorsiona, se para

El tiempo, de ésta manera, deja de existir en estas regiones del Universo que conocemos como singularidad.  El mismo Big Bang -dicen- surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y Agujeros Negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico.  Han sido detectados vacíos con menos de una décima de la densidad promedio del Universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala.  Estas regiones son a menudo esféricas.  El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea.  La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble.  Su densidad es de 1017 kg/m3, los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del Universo.

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del Universo.  Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

“Magia es cualquier tecnología suficientemente avanzada”

Arthur C. Clarke

 

Pero también es magia el hecho de que, en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver, estructuras complejas matemáticas que hacen posible que la Humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.

Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: La teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Gotinga en Alemania.  Aquello fue como abrir de golpe, todas las ventanas cerradas durante 2.000 años, de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante.  Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

Su ensayo de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios.  La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas.  La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias.  En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la Literatura en toda Europa.  Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del Universo y su evolución mediante su asombrosa teoría de la relatividad general Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del Universo.  El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico.  Era huraño, solitario y sufría crisis nerviosas.  De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis.

Riemann nació en 1.826 en Hannover, Alemania, segundo de los seis hijos de un pobre pastor luterano que trabajó y se esforzó como humilde predicador  para alimentar a su numerosa familia que, mal alimentada, tendrían una delicada salud que les llevaría a una temprana muerte.  La madre de Riemann también murió antes de que sus hijos hubieran crecido.

A edad muy temprana, Riemann mostraba ya los rasgos que le hicieron famoso: increíble capacidad de cálculo que era el contrapunto a su gran timidez y temor a expresarse en público.  Terriblemente apocado era objeto de bromas de otros niños, lo que le hizo recogerse aún más en un mundo matemático intensamente privado que le salvaba del mundo hostil exterior.

La Geometría de los espacios curvos de Riemann que dejó atrás a Euclides con sus lineas y puntos

Para complacer a su padre, Riemann se propuso hacerse estudiante de teología, obtener un puesto remunerado como pastor y ayudar a su familia.  En la escuela secundaria estudió la Biblia con intensidad, pero sus pensamientos volvían siempre a las matemáticas.  Aprendía tan rápidamente que siempre estaba por delante de los conocimientos de sus instructores, que encontraron imposible mantenerse a su altura.  Finalmente, el director de la escuela dio a Riemann un pesado libro para mantenerle ocupado.  El libro era la Teoría de números de Adrien-Marie Legendre, una voluminosa obra maestra de 859 páginas, el tratado más avanzado del mundo sobre el difícil tema de la teoría de números.  Riemann devoró el libro en seis días.

Legendre: Sobre la teoría de los números

Cuando el director le preguntó: “¿Hasta dónde has leído?”, el joven Riemann respondió: “Este es un libro maravilloso. Ya me lo sé todo”.

Sin creerse realmente la afirmación de su pupilo, el director le planteó varios meses después cuestiones complejas sobre el contenido del libro, que Riemann respondió correctamente.

Con mil sacrificios, el padre de Riemann consiguió reunir los fondos necesarios para que, a los 19 años pudiera acudir a la Universidad de Gotinga, donde encontró a Carl Friedrich Gauss, el aclamado por todos “Príncipe de las Matemáticas”, uno de los mayores matemáticos de todos los tiempos.   Incluso hoy, si hacemos una selección por expertos para distinguir a los matemáticos más grandes de la Historia, aparecerá indudablemente Euclides, Arquímedes, Newton y Gauss.

                                                                             Hannover, Alemania

Los estudios de Riemann no fueron un camino de rosas precisamente.  Alemania sacudida por disturbios, manifestaciones y levantamientos, fue reclutado en el cuerpo de estudiantes para proteger al rey en el palacio real de Berlín y sus estudios quedaron interrumpidos.

En aquel ambiente el problema que captó el interés de Riemann, fue el colapso que, según el pensaba, suponía la geometría euclidiana, que mantiene que el espacio es tridimensional y “plano” (en el espacio plano, la distancia más corta entre dos puntos es la línea recta; lo que descarta la posibilidad de que el espacio pueda estar curvado, como en una esfera).

Para Riemann, la geometría de Euclides era particularmente estéril cuando se la comparaba con la rica diversidad del mundo.  En ninguna parte vería Riemann las figuras geométricas planas idealizadas por Euclides.  Las montañas, las olas del mar, las nubes y los torbellinos no son círculos, triángulos o cuadrados perfectos, sino objetos curvos que se doblan y retuercen en una diversidad infinita.  Riemann, ante aquella realidad se rebeló contra la aparente precisión matemática de la geometría griega, cuyos fundamentos., descubrió el, estaban basados en definitiva sobre las arenas movedizas del sentido común y la intuición, no sobre el terreno firme de la lógica y la realidad del mundo.

Euclides nos habló de la obviedad de que un punto no tiene dimensión.  Una línea tiene una dimensión: longitud.  Un plano tiene dos dimensiones: longitud y anchura.  Un sólido tiene tres dimensiones: longitud, anchura y altura.   Y allí se detiene.  Nada tiene cuatro dimensiones, incluso Aristóteles afirmó que la cuarta dimensión era imposible.  En Sobre el cielo, escribió: “La línea tiene magnitud en una dirección, el plano en dos direcciones, y el sólido en tres direcciones, y más allá de éstas no hay otra magnitud porque los tres son todas.”  Además, en el año 150 d. C. el astrónomo Ptolomeo de Alejandría fue más allá de Aristóteles y ofreció, en su libro sobre la distancia, la primera “demostración” ingeniosa de que la cuarta dimensión es imposible.

En realidad, lo único que Ptolomeo demostraba era que, era imposible visualizar la cuarta dimensión con nuestros cerebros tridimensionales (de hecho, hoy sabemos que muchos objetos matemáticos no pueden ser visualizados, aunque puede demostrarse que en realidad, existen).  Ptolomeo puede pasar a la Historia como el hombre que se opuso a dos grandes ideas en la ciencia: el sistema solar heliocéntrico y la cuarta dimensión.

La ruptura decisiva con la geometría euclidiana llegó cuando Gauss pidió a su discípulo Riemann que preparara una presentación oral sobre los “fundamentos de la geometría”.  Gauss estaba muy interesado en ver si su discípulo podía desarrollar una alternativa a la geometría de Euclides.

Riemann desarrolló su teoría de dimensiones más altas.

Parte real (rojo) y parte imaginaria (azul) de la línea crítica Re(s) = 1/2 de la función zeta de Riemann. Pueden verse los primeros ceros no triviales en Im(s) = ±14,135, ±21,022 y ±25,011. La hipótesis de Riemann, por su relación con la distribución de los números primos en el conjunto de los naturales, es uno de los problemas abiertos más importantes en la matemática contemporánea.

Finalmente, cuando hizo su presentación oral en 1.854, la recepción fue entusiasta.  Visto en retrospectiva, esta fue, sin discusión, una de las conferencias públicas más importantes en la historia de las matemáticas.  Rápidamente se entendió por toda Europa la noticia de que Riemann había roto definitivamente los límites de la geometría de Euclides que había regido las matemáticas durante los milenios.

Riemann creó el tensor métrico para que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresar a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la relación entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2.  El teorema de Pitágoras, por supuesto, es la base de toda la arquitectura; toda estructura construida en este planeta está basada en él.  Claro que, es una herramienta para utilizar en un mundo tridimensional.)

El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema para dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del espacio en presencia de grandes masas.  Precisamente, el tensor de Riemann, permitió a Einstein formular su teoría de la gravedad y, posteriormente lo utilizo Kaluza y Klein para su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de supergravedad, supersimetría y, finalmente las supercuerdas.

Para asombro de Einstein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854, que le había enviado su amigo Marcel Grossman, rápidamente se dio cuenta de que allí estaba la clave para resolver su problema.  Descubrió que podía incorporar todo el cuerpo del trabajo de Riemann en la reformulación de su principio.  Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de a relatividad general.  Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E=mc2.  La reinterpretación física de la famosa conferencia de Riemann se denomina ahora relatividad general, y las ecuaciones de campo de Einstein se sitúan entre las ideas más profundas de la historia de la ciencia.

emilio silvera

SIxIj48L3BhdGg+PHBhdGggZD0iTTE0LjczMywxLjY4NiBDNy41MTYsMS42ODYgMS42NjUsNy40OTUgMS42NjUsMTQuNjYyIEMxLjY2NSwyMC4xNTkgNS4xMDksMjQuODU0IDkuOTcsMjYuNzQ0IEM5Ljg1NiwyNS43MTggOS43NTMsMjQuMTQzIDEwLjAxNiwyMy4wMjIgQzEwLjI1MywyMi4wMSAxMS41NDgsMTYuNTcyIDExLjU0OCwxNi41NzIgQzExLjU0OCwxNi41NzIgMTEuMTU3LDE1Ljc5NSAxMS4xNTcsMTQuNjQ2IEMxMS4xNTcsMTIuODQyIDEyLjIxMSwxMS40OTUgMTMuNTIyLDExLjQ5NSBDMTQuNjM3LDExLjQ5NSAxNS4xNzUsMTIuMzI2IDE1LjE3NSwxMy4zMjMgQzE1LjE3NSwxNC40MzYgMTQuNDYyLDE2LjEgMTQuMDkzLDE3LjY0MyBDMTMuNzg1LDE4LjkzNSAxNC43NDUsMTkuOTg4IDE2LjAyOCwxOS45ODggQzE4LjM1MSwxOS45ODggMjAuMTM2LDE3LjU1NiAyMC4xMzYsMTQuMDQ2IEMyMC4xMzYsMTAuOTM5IDE3Ljg4OCw4Ljc2NyAxNC42NzgsOC43NjcgQzEwLjk1OSw4Ljc2NyA4Ljc3NywxMS41MzYgOC43NzcsMTQuMzk4IEM4Ljc3NywxNS41MTMgOS4yMSwxNi43MDkgOS43NDksMTcuMzU5IEM5Ljg1NiwxNy40ODggOS44NzIsMTcuNiA5Ljg0LDE3LjczMSBDOS43NDEsMTguMTQxIDkuNTIsMTkuMDIzIDkuNDc3LDE5LjIwMyBDOS40MiwxOS40NCA5LjI4OCwxOS40OTEgOS4wNCwxOS4zNzYgQzcuNDA4LDE4LjYyMiA2LjM4NywxNi4yNTIgNi4zODcsMTQuMzQ5IEM2LjM4NywxMC4yNTYgOS4zODMsNi40OTcgMTUuMDIyLDYuNDk3IEMxOS41NTUsNi40OTcgMjMuMDc4LDkuNzA1IDIzLjA3OCwxMy45OTEgQzIzLjA3OCwxOC40NjMgMjAuMjM5LDIyLjA2MiAxNi4yOTcsMjIuMDYyIEMxNC45NzMsMjIuMDYyIDEzLjcyOCwyMS4zNzkgMTMuMzAyLDIwLjU3MiBDMTMuMzAyLDIwLjU3MiAxMi42NDcsMjMuMDUgMTIuNDg4LDIzLjY1NyBDMTIuMTkzLDI0Ljc4NCAxMS4zOTYsMjYuMTk2IDEwLjg2MywyNy4wNTggQzEyLjA4NiwyNy40MzQgMTMuMzg2LDI3LjYzNyAxNC43MzMsMjcuNjM3IEMyMS45NSwyNy42MzcgMjcuODAxLDIxLjgyOCAyNy44MDEsMTQuNjYyIEMyNy44MDEsNy40OTUgMjEuOTUsMS42ODYgMTQuNzMzLDEuNjg2IiBmaWxsPSIjYmQwODFjIj48L3BhdGg+PC9nPjwvc3ZnPg==') no-repeat scroll 3px 50% / 14px 14px; position: absolute; opacity: 1; z-index: 8675309; display: none; cursor: pointer;">Guardar

¿El núcleo del átomo? ¡Una maravilla de la Naturaleza!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Symphony of Science – The Quantum World! (Subtitulado)

El contertulio José C Gómez me envía el enlace de arriba y, por lo simpático, os lo pongo aquí.
 

Aunque nos parezcan muy diferentes (que lo son), lo cierrto que es que, en lo esencial,  ambos estarían hechos de los mismos materiales, el hombre gris y la bella humana tienen vidas basadas en el Carbono.
¿Podemos ir más allá? ¿Podemos esperar semejanzas más concretas entre la vida extraterrestre y la vida tal como la conocemos? Creo que sí, que de la misma manera que existen planetas como la Tierra que tendrán paisajes parecidos a los que podemos contemplar en nuestro mundo, de igual forma, dichos planetas podrán albergar formas de vida que, habiéndo surgido en condiciones similares a las nuestras de Gravedad, Magnetismo, Radiación… Habrán seguido el mismo camino que tomamos nosotros y los otros seres que en la fauna terrestre nos acompañan.
La región de formación estelar S106
Es cierto que cuando vemos las cosas con cierta asiduidad y de forma permanente, esa cotidianidad nos hace perder la perspectiva y no pensamos en lo que realmente esas cosas pueden ser y, con las estrellas nos ocurre algo similar, ya que son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

 

                 Las partículas del núcleo atómico. Protón y neutrón.

 

En 1920 (Rutherford) descdubrió las partículas positivas que forman los átomos, los protones.

Rutherford descubrió que bombardear átomos de nitrógeno con partículas alfa ( y esto es bien sencillo ya que basta con poner la sustancia radiactiva en el aire cuyo 75 % es nitrógeno) se producían una nuevas partículas con estas características:
Su carga eléctrica es la misma que la de los electrones, pero positiva, y su masa es semejante a la del átomo de hidrógeno (recuerda que la masa de los electrones es 1836 menor que la del átomo de hidrógeno. LLamó a estas partículas positivas protones.

Por lo tanto en los núcleos de los átomos hay unas partículas positivas que se llaman protones. En el hidrógeno solo hay una partícula ya que recordemos su masa era casi la misma.

Se comprobó que el número de protones es una característica especial de cada elemento quí­mico, ya que todos los átomos del mismo elemento tienen el mismo número de protones. Se llama nú­mero atómico (Z) al número de protones que tienen los átomos de un elemento químico. A cada elemento químico le corresponde un número atómico desde 1 hasta 106.

Todavía tenemos que buscar otras partículas en el núcleo atómico. La masa de los protones de un núcleo es mucho menor que la masa del núcleo.

ISÓTOPOS

 

Cada elemento químico se caracteriza por el número de protones de su núcleo, que se denomina número atómico (Z). Así, el hidrógeno ( 1H) tiene un protón, el carbono ( 6C) tiene 6 protones y el oxígeno ( 8O) tiene 8 protones en el núcleo.

El número de neutrones del núcleo puede variar. Casi siempre hay tantos o más neutrones que protones. La masa atómica (A) se obtiene sumando el número de protones y de neutrones de un núcleo determinado.

Un mismo elemento químico puede estar constituído por átomos diferentes, es decir, sus números atómicos son iguales, pero el número de neutrones es distinto. Estos átomos se denominan isótopos del elemento en cuestión. Isótopos significa “mismo lugar“, es decir, que como todos los isótopos de un elemento tienen el mismo número atómico, ocupan el mismo lugar en la Tabla Periódica.

isótopos del Hidrógeno

isótopos del Carbono

Desde 1918 estaba probado que existían los isótopos. Estos, eran átomos que tenían propiedades químicas iguales (parecían elementos iguales, por tanto), tenían el mismo número atómico, pero sus masas atómicas eran di­ferentes. En el núcleo debían existir partículas neutras que contribuyeran a la masa pero no tuvieran carga eléctrica.

Estas partículas neutras del núcleo se descubrieron en 1932 y se llamaron neutrones. Chadwick consiguió detectarlas y medir su masa. Un neutrón  tiene una masa ligeramente mayor que la del protón (exactamente 1,00014 veces). Los neutrones proporcionan las fuerzas de unión que estabilizan el núcleo atómico.
Representación aproximada del átomo de Helio,  en el núcleo los protones están representados en rojo y los neutrones en azul. En la realidad el núcleo también es simétricamente esférico.
Hasta aquí tenemos una idea de las partículas que forman el núcleo atómico y de otras propiedades que en él pueden estar presentes. Sin embargo, el núcleo atómico tiene que ser visto como el corazón central del átomo que contiene la mayor parte de su masa, exactamente, el 99,9%. Digamos que el núcleo más masivo que se encuentra en la Naturaleza es el del Uranio-238 que contiene 92 protones y  146 neutrones. El núcleo más simple es el del Hidrógeno que consiste en un único protón.
Resultado de imagen de Neutrones
Hasta aquí hemos dado un repaso sobre los componentes de los núcleos atómicos y algunas de sus particularidades para saber, sobre ellos y tener una idea más exacta de cómo fueron descubiertos y que son en realidad con sus cargas y sus masas. Sin embargo, podemos seguir explicandolo de manera sencilla pero con algo más de detalles.
El tamaño de un átomo

La curiosidad acerca del tamaño y masa del átomo atrajo a cientos de científicos durante un largo período en el que la falta de instrumentos y técnicas apropiadas impidió lograr respuestas satisfactorias. Con posterioridad se diseñaron numerosos experimentos ingeniosos para determinar el tamaño y peso de los diferentes átomos.

El átomo más ligero, el de hidrógeno, tiene un diámetro de aproximadamente 10-10 m (0,0000000001 m) y una masa alrededor de 1,7 x 10-27 kg (la fracción de un kilogramo representada por 17 precedido de 26 ceros y una coma decimal).

 

 

Empecemos por decir que los átomos son muy pequeños, tan pequeños que necesitaríamos una fila de unos diez millones para poder rellenar el espacio que ocupa un milímetro, es decir, los átomos son tan pequeños que los tamaños típicos son alrededor de 100 pm (diez mil millonésima parte de un metro). Una peculiaridad del átomo es que está casi vacío, su estructura conformada por el núcleo rodeado de electrones que orbitan a su alrededor lo hace un objeto singular.
Si el átomo tuviera 10 metros de diámetro el núcleo sería un puntito diminuto central de apenas un milímetro, y, sin embargo… ¡Cuanta complejidad contiene dentro tan minúsculo objeto! Tenemos que señalar que algunos núcleos pueden ser inestable y se desintegran emitiendo partículas Alfa, con carga positiva, mientras que otros emiten partículas Beta, con carga negativa. También pueden emitir radiación Gamma.
Pero dejémos tranquilas a las partículas Alfa y Beta de las que nos ocuparemos en otra oportunidad. El tema de este pequeño trabajo es el núcleo atómico y, a él, nos dedicaremos. Nunca podré dejar de asombrarme ante los hechos mágicos que la Naturaleza es capaz de realizar. En realidad, la Naturaleza se vale de estos pequeños objetos llamados átomos para que unidos sean los responsables de conformar toda la materia que existe (al menos la conocida) estén formando cualquier objeto, grande o pequeño que podamos ver en el Universo. Desde las estrellas y los mundos hasta las inmensas galaxias, todo está conformado por átomos.
Cuando hablamos del núcleo atómico, por lo general, nos referimos a que está hecho de protones y neutrones, dos partículas que pertenecen a la familia de los Hadrones en la rama de los Bariones donde están las partículas de materia. Cuando nos referimos a ellas situadas en el núcleo atómico, las solemos llamar nucleaones.
Pero veámos que hay ahí, dentro de los nucleones (protones y neutrones).
Monografias.com
Los hadrones (protones y neutrones), a su vez, están hechos por otras partículas más pequeñas que pertenecen a la familia de los Quarks. Tanto el protón como el Neutrón están conformados por tripletes de Quarks. El protón de 2 quarks up y un quark down, mientras que el nutrón está hecho por 2 quarks down y 1 quark up.
La familia Quark

 

Como no es el objeto del trabao, no hablaremos hoy de los Quarks, y, simplemente diremos que en la naturaleza no se encuentran quarks aislados. Estos siempre se encuentran en grupos, llamados Hadrones. de dos o tres quarks, conocidos como mesones y bariones respectivamente. Esto es una consecuencia directa del confinamiento de color.  En el año 2003 se encontró evidencia experimental de una nueva asociación de cinco quarks, los Pentaquarks, cuya evidencia, en principio controvertida , fue demostrada gracias al Colisionador de Partículas LHC en el pasado Julio de 2.015.

Pero sigamos con lo que nos ocupa y veámos que los Quarks están confinados dentro de los nucleones (protones y neutrones) donde la fuerza fuerte les retiene y nos los deja que se vayan alejando más de lo debido como se explica en el cuadro de arriba.

Dentro del nucleo se desatan las fuerzas de la Naturaleza, la que conocemos como fuerza nuclear fuerte, la más potente de las cuatro fuerzas fundamentales que, intermediada por otras partículas de la familia de los Bosones, los Gluones, no dejan que los Quarks se alejen y son retenidos allí, dentro de los nucleones donde tienen su función de conformar los hadrones másicos del núcleo que le aporta la materia al átomo.

Los Gluones, son las partículas intermediarias de la fuerza fuerte, y, de la misma manera, existen otros Bosones encargados de mediar en las otras fuerzas conocidas de la Naturaleza: El Fotón para los fenómenos electromagnéticos, el Gravitón (no encontrado aún) para la fuerza de Gravedad, y, los W+,  W- y Zº para la fuerza nuclear débil.

Lo cierto es que, el núcleo atómico está cargado positivamente y, tal carga, hace la llamada para que, un enjambre de electrones, con cargas negativas, vengan a rodear el núcleo atómico y, de esa manera, queda estabilidado el átomo, ese pequeño objeto que conforma todas las cosas hechas de materia.

Así, los electrones que rodea el núcleo, con su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). Y, sin embargo, la importancia del electrón es vital en el universo.

Repasando todo esto, no puedo dejar de recordar aquellas palabras que el físico Freeman Dyson escribió:

Cuando miramos en el universo e identificamos los muchos accidentes de la física y la astronomía que han colaborado en nuestro beneficio, casi parece que el universo debe haber sabido, en cierto sentido, que nosotros íbamos a venir“.

Fijaros en el hecho cierto de que, si la carga del electrón, o, la masa del protón, variaran aunque sólo fuese una diezmillonésima parte… ¡La vida no podría existir en el Universo! Estamos hechos de átomos y, con tal cambio, éstos nunca se habrían podido conformar.

emilio silvera.

Seguimos hacia el futuro que será

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ASTRONOMíA, CIENCIA, CINE, DIVULGACIóN

Kip Thorne: el astrofísico detrás de las teorías científicas de ‘Interstellar’

Por Zuberoa Marcos | 20-07-2016

 

Kip Thorne

Kip Thorne

 

Astrofísico. Creador de ‘Interstellar’ y Asesor en la Película Contac

 

 

“De todas las ideas concebidas por la mente humana -escribió Kip Thorne en la introducción de su libro Agujeros negros y tiempo curvo- desde los unicornios y las gárgolas a la bomba de hidrógeno, la más fantástica es, quizá, la del agujero negro”.

Thorne sabe bien de lo que habla porque es uno de los físicos más reputados del mundo, y porque ha pasado la casi totalidad de sus 76 años teorizando sobre estos misteriosos agujeros. Reconocido en el campo de la astrofísica por ser uno de los mayores expertos en la Teoría de la Relatividad General de Einstein, Thorne tiene una legión de fans fuera de los ambientes académicos, pero no se debe a su trabajo sobre la predicción de ondas gravitatorias (por más apasionante que pueda resultar). Las causas de su popularidad mundana provienen de su papel como responsable científico y productor ejecutivo de una de las mejores películas de ciencia ficción de los últimos años: Interestellar.

interestelar-agujero-de-gusano

Es un concepto hipotético, que consiste en un puente o atajo en el espacio tiempo que conecta dos puntos y permite el paso de la materia. Los agujeros de gusano son (por ahora), un concepto teórico, nadie ha encontrado uno ni se ha verificado su existencia en el universo, sin embargo, tampoco se puede negar que exista uno ( o algunos ) en algún lugar, esperando a ser descubierto.

Explicada por Thorne, la idea de los agujeros de gusano que jugaban un papel esencial en la obra de Cristopher Nolan resulta mucho más convincente que la posibilidad de toparse con un unicornio al doblar una esquina. Y eso que el propio científico tiene serias dudas acerca de la invención de una máquina que nos permita viajar en el tiempo. Eso no le impidió, sin embargo, implicarse en Interestellar hasta tal punto de que es capaz de discutir -y demostrar- una por una todas las teorías físicas que se proponen en la película. Así que mejor no llevarle la contraria, porque Thorne no es de los que acostumbra a perder sus apuestas. Su amigo Stephen Hawking, otra de las mentes más brillantes de nuestro tiempo, puede dar fe de ello: tuvo que regalarle una suscripción anual a la revista Penthouse como pago de una de sus apuestas científicas a mediados de los años setenta. La anécdota ilustra el sentido del humor que gasta.

Una máquina quitanieves circula por un área de montaña tras una nevada. - DIPUTACIÓN DE HUESCA

Thorne fue un niño imaginativo y un estudiante notable que soñaba con ser conductor de una máquina quitanieves. Nada más alejado de un físico teórico. Sin embargo, una charla sobre el Sistema Solar a la que acudió con su madre, cambió su forma de pensar. Quién necesita una máquina cuando tiene un cerebro que le puede llevar a cualquier parte. Lynda Obst, productora de Interestellar y vieja amiga de Thorne desde que Carl Sagan propició una cita a ciegas entre ambos, asegura que “la idea que Kip tiene de pasárselo en grande es sentarse en lo alto de una montaña con un lápiz en la mano”. Es lo que tiene ser poseedor de una imaginación portentosa. De hecho, Christopher Nolan, en una entrevista con Los Angeles Times, aseguró que al principio acogió la presencia de Thorne en el proyecto con cierto escepticismo, pensando que sería una suerte de “policía de la ciencia”. Sin embargo, un par de charlas le hicieron darse cuenta de que sus teorías científicas eran “más fascinantes que cualquier guión que yo pudiera escribir”.

Actualmente Thorne trabaja en una nueva idea para otra película que está pergeñando junto a sus compinches Stephen Hawking y Lynda Obst. Y, aunque no quiere dar muchos datos al respecto, seguro que de esas cabezas saldrá algo sorprendente. No puede ser de otra forma en alguien que no concibe pasar un sólo día “sin intentar comprender algo o inventar algo. Es la esencia de la vida”

Edición: JC Rodríguez Mata / D. Castañón
Texto: José L. Álvarez Cedena