lunes, 02 de marzo del 2015 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El l fascinante “mundo” del saber

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  plasma-ese-estado-de-la-materia-del-que-estan-hechas-las-estrellas/" rel="prev">¡El Plasma!

 

 

 

 

 

¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?

Ha pasado mucho tiempo desde que Rutherford identificara la primera partícula nuclear (la partícula alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyeron para conseguir llegar al conocimiento del átomo y del núcleo actual; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los gluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.

Partículas

El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria.

El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.

Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto; si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cera del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.

Las partículas cósmicas primarias, cuando entran en nuestra atmósfera, llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez; en 1.968, otros núcleos como el del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.

Ahora bien, la siguiente partícula inédita (después del neutrón) se descubrió en los rayos cósmicos. A decir verdad, cierto físico teórico había predicho ya este descubrimiento. Paul Adrien Dirac había deducido, fundándose en un análisis matemático de las propiedades inherentes a las partículas subatómicas, que cada partícula debería tener su antipartícula (los científicos desean no sólo que la naturaleza sea simple, sino también simétrica). Así pues, debería haber un antielectrón, salvo por su carga que sería positiva y no negativa, idéntico al electrón; y un antiprotón, con carga negativa en vez de positiva.

En 1.930, cuando Dirac expuso su teoría, no llamó demasiado la atención en el mundo de la ciencia. Pero, fiel a la cita, dos años después apareció el antielectrón. Por entonces, el físico americano Carl David Anderson trabajaba con Millikan en un intento por averiguar si los rayos cósmicos eran radiación electromagnética o partículas. Por aquellas fechas, casi todo el mundo estaba dispuesto a aceptar las pruebas presentadas por Compton, según las cuales, se trataría de partículas cargadas; pero Millikan no acababa de darse por satisfecho con tal solución.

Anderson se propuso averiguar si los rayos cósmicos que penetraban en una cámara de ionización se curvaban bajo la acción de un potente campo magnético. Al objeto de frenar dichos rayos lo suficiente como para detectar la curvatura, si la había, puso en la cámara una barrera de plomo de 6’35 mm de espesor. Descubrió que, cuando cruzaba el plomo, la radiación cósmica trazaba una estela curva a través de la cámara; y descubrió algo más. A su paso por el plomo, los rayos cósmicos energéticos arrancaban partículas de los átomos de plomo. Una de esas partículas dejó una estela similar a la del electrón. ¡Allí estaba, pues, el antielectrón de Dirac! Anderson le dio el nombre de positrón. Tenemos aquí un ejemplo de radiación secundaria producida por rayos cósmicos. Pero aún había más, pues en 1.963 se descubrió que los positrones figuraban también entre las radiaciones primarias.

Abandonado a sus propios medios, el positrón es tan estable como el electrón (¿y por qué no habría de serlo si el idéntico al electrón, excepto en su carga eléctrica?). Además, su existencia puede ser indefinida. Ahora bien, en realidad no queda abandonado nunca a sus propios medios, ya que se mueve en un universo repleto de electrones. Apenas inicia su veloz carrera (cuya duración ronda la millonésima de segundo), se encuentra ya con uno.

Así, durante un momento relampagueante quedaron asociados el electrón y el positrón; ambas partículas girarán en torno a un centro de fuerza común. En 1.945, el físico americano Arthur Edwed Ruark sugirió que se diera el nombre de positronio a este sistema de dos partículas, y en 1.951, el físico americano de origen austriaco  Martin Deutsch consiguió detectarlo guiándose por los rayos gamma característicos del conjunto.

Pero no nos confundamos, aunque se forme un sistema positronio, su existencia durará, como máximo, una diezmillonésima de segundo. El encuentro del electrón-positrón provoca un aniquilamiento mutuo; sólo queda energía en forma de radiación gamma. Ocurre pues, tal como había sugerido Einstein: la materia puede convertirse en energía y viceversa. Por cierto, que Anderson consiguió detectar muy pronto el fenómeno inverso: desaparición súbita de rayos gamma para dar origen a una pareja electrón-positrón. Este fenómeno se llama producción en pareja. Anderson compartió con Hess el premio Nobel de Física de 1.936.

Poco después, los Joliot-Curie detectaron el positrón por otros medios, y al hacerlo así realizaron, de paso, un importante descubrimiento. Al bombardear los átomos de aluminio con partículas alfa, descubrieron que con tal sistema no sólo se obtenían protones, sino también positrones. Cuando suspendieron el bombardeo, el aluminio siguió emitiendo positrones, emisión que sólo con el tiempo se debilitó. Aparentemente habían creado, sin proponérselo, una nueva sustancia radiactiva. He aquí la interpretación de lo ocurrido según los Joliot-Curie: cuando un núcleo de aluminio absorbe una partícula alfa, la adición de los dos protones transforma el aluminio (número atómico 13) en fósforo (número atómico 15). Puesto que las partículas alfa contienen cuatro nucleones en total, el número masivo se eleva 4 unidades, es decir, del aluminio 27 al fósforo 31. Ahora bien, si al reaccionar se expulsa un protón de ese núcleo, la reducción en una unidad de sus números atómicos y masivos hará surgir otro elemento, o sea, el silicio 30.

Puesto que la partícula alfa es el núcleo del helio, y un protón es el núcleo del hidrógeno, podemos escribir la siguiente ecuación de esta reacción nuclear:

aluminio 27 + helio 4 = silicio 30 + hidrógeno 1

Nótese que los números másicos se equilibran:

27 + 4 = 30 + 1

Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico.

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1.932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1.934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.

Representación 3D animada de un deuterio. Hay que tener en cuenta que la órbita del electrón no es regular.

El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1.934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:

hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1

Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión  a 20’5º K.

Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre de ambas son las matemáticas. Las matemáticas componen ese lenguaje que explica lo que las palanbras no pueden.

emilio silvera

El “universo” de lo muy pequeño. ¡Resulta fasciante!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

                  ¿Os acordais? ¿Cuántos niños no habrán soñado con escenas como estas?

Cuando hablo de lo muy pequeño, puedo llegar a entender muy bien lo que es, lo que son, “licencias literarias” el papel de nada se queja y el lápiz puede escribir lo que quiera y piense el que lo sostiene, según le dicte su imaginación. Claro que, cuando comparamos ese mundo de ilusiones e imaginación con el mundo real, todo el edificio se viene abajo. ¡Lástima!

Todos los niños pequños juegan con pequeños muñecos que son soldados, guerreros o seres de otras galaxias con poderes mágicos y, ellos, en su inocente mundo sin maldad, los dirigen con sus manitas gordezuelas al desarrollo de luchas y aventuras sin fin. Jonathan Swift, nos deleitó con aquellas aventuras de Gulliver, un aventurero que llegó a las tierras de Lilliput: Allí, todo era muy pequeño, la naturaleza, las plantas, los habitantes del lugar y sus casas y palacios, embarcaciones y todos los animales.

Gulliver era allí un gigante de proporciones inmensas: Incluso llegó a extinguir un fuego con una simple chorrada (es decir, hizo pipí) y acabó de inmediato con el (para ellos) enorme fuego.

http://4umi.com/image/book/swift/gulliver-pindar-lilliput-troops.jpg

Su tamaño podía, sin dificultad alguna, decidir el resultado de una guerra entre aquellos pequeñísimos seres que, ante un gigante como él, no tenían defensa alguna y, sus armas, resultaban ridículas para poder causarle algún daño. Dormido lo tuvieron que coger para poder atarlo.

Durante otro viaje, las fuerzas ignotas del destino llevaron a Gulliver a un pais llamado  Brobdingnag, donde la gente y todos los seres animados e inanimados eran mucho más grandes que él. Allí era un enano, mimado por una niña pequeña llamada Glumdalclitch. Al final, Gulliver es recogido en una jaula por un águila que lo deja caer en el mar de donde lo rescataron unos marineros a los que, al contarles esas historias, pusieron incrédulas caras de asombro.

Claro que, cuando nos trasladamos al mundo real, las cosas no suelen ser de esa manera. Poco importa lo fascinantes que las historias de este tipo nos puedan resultar. Las cosas no funcionan de esa manera. Todos sabemos, por ejemplo que la llama de una vela pequeña y la de una vela grande, son aproximadamente del mismo tamaño. ¿De qué tamaño serían las llamas de las velas de Lilliput? Y, desde luego, si pensamos un poco, más cuestiones nos surgen: ¿Cómo serían las gotas de lluvia en Lilliput y en Brobdingnag?, ¿eran las leyes físicas para el agua diferentes allí que en nuestro propio mundo? Y, finalmente, los físicos se preguntarían: ¿De qué tamaño eran los átomos en esos lugares?, ¿qué clase de reacciones químicas podrían tener lugar con los átomos del cuerpo de Gulliver?

Claro que, con esas preguntas esas historias fallan. La verdadera razón por la que los mundos de Los Viajes de Gulliver no pueden existir es que las leyes de la Naturaleza no permanecen exactamente iguales cuando se cambian las escalas. A veces, esto es evidente en las películas de desastres, donde quizá se ha construído una maqueta a escala para simular una gran ola o un rascacielos en llamas.

El ojo experto puede, sin problemas, distinguir entre la maqueta y la realidad. Los mejores resultados se obtienen cuando el factor de escala para el tiempo se elige igual a la raíz cuadrada de la escala espacial. Así, si el rascacielos de turno se construye a escala 1:9, hay que rodar la película a un 1/3 de su velocidad real. Pero incluso así, como antes señalo, el ojo entrenado distingue la diferencia entre lo que sucede en la película y lo que se observaría en el mundo real.

En resumen, las leyes que gobiernan el mundo físico tienen dos características importantes: muchas leyes de la Naturaleza permanecen inalterables, no se alteran cuando cambia la escala, pero hay otros fenómenos, tales como una vela encendida o las gotas de agua, que no cambian del mismo modo. La implicación final es que el mundo de los objetos muy pequeños será completamente diferente del mundo ordinario.

Justamente en el mundo de los seres vivos la escala crea importantes diferencias. En muchos aspectos, la anatomía de un ratón se podría considerar (más o menos y, guardando las distancias) como una copia de la de un elefante, pero mientras que un ratón puede trepar por una pared de piedra prácticamente vertical sin mucha dificultad (incluso se puede caer desde una altura varias veces mayor que su tamaño sin hacerse gran daño), un elefante sería incapaz de realizar tal hazaña. Así llegamos a comprender que la Gravedad, se deja sentir en menor grado a medida que los objetos disminuyen de tamaño.

Cuando llegamos a los seres unicelulares, se ve que para ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de gravedad. Basta observar que la tensión superficial es la fuerza que da forma a una gota de agua y comparar el tamaño de esa gota con los seres unicelulares, muchísimo menores, para que sea evidente que la tensión superficial es muy importante a esta escala.

20070423121309-uk6i7lpn.jpg

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos fuerza de Van der Vaalls. esta fuerza tiene un alcance muy corto. para ser más precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente proporcional a 1/r7. Esto significa  que si se reduce la distancia entre dos átomos a la mitad, la fuerza de Van der Vaalls con la que se atraen uno a otro se hace 2 x 2 x 2 x 2 x 2 x 2 x 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza.

Ahora tendríamos que hablar algo de la mecánica cuántica y, en ese ámbito, las reglas de la mecánica cuántica funcionan tan bien que resultaría realmente difícil refutarlas.

Acordaos de los trucos ingeniosos descubiertos por Werner Hesinberg, Paul Dirac, o, Schrödinger que vinieron a mejorar y completar  las reglas generales. Sin embargo, algunos de aquellos pioneros (Einstein y el mismo Schrödinger), sin embargo, presentaron serias objeciones a dicha interpretación de la naturaleza de lo muy pequeño.

Podríamos formular una simple pregunta que pondría en un brete a más de uno: ¿Dónde está realmente el electrón, en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad? Si prestamos atención a Bohr, no tiene ningún sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores serían las únicas realidades a las que deberíamos prestar atención y de las que podemos hablar.

Muchas veces me sorprende oír a muchos “científicos” que hablan con una seguridad de lo que dicen como si, de una verdad inamovible se tratara. Ellos (en realidad) creen que saben y, no llegan a darse cuenta de que están hablando de un Modelo que ha sido construído matemáticamente hablando, para poder explicar eso que, nosotros, los humanos, creemos que es la realidad del mundo. Sin embargo, más de una vez hemos tenido que cambiar esos modelos y rectificar esa “realidad” por otra que, resultó ser “más real”.

¡Sabemos tan poco!

emilio silvera

El Tiempo de Planck y otros

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Todos los objetos del Universo son el resulta de fuerzas antagónicas que, al ser iguales, se equilibran y consiguen la estabilidad. Las estrellas son el mejor ejemplo: La Gravedad trata de comprimir a la estrella que, mediante la fusión tiende a expandirse y, la lucha de esas dos fuerzas crea la estabilidad.

Estas estructuras, podemos decir que son entidades estables que existen en el Universo. Existen porque son malabarismos estables entre fuerzas competidoras de atracción y repulsión. Por ejemplo, en el caso de un planeta, como la Tierra, hay un equilibrio entre la fuerza atractiva de la Gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e (electrón), h (constante de Planck), G (constante de gravitación) y mp (masa del protón), c (la velocidad de la luz en el vacío). Pero, ¿que es el Tiempo de Planck.

Tiempo de Planck

10-43 s.

Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por  segundos, donde G es la constante gravitacional (6’672 59 (85) ×10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2π = 1’054589 × 10-34 Julios segundo) y c es la velocidad de la luz (299.792.458 m/s).

Es curioso que hemos podido llegar por diveros medios y experimentos hasta unos momentos después del Big Bang. Sin embargo, nunca pudimos ir más allá del Tiempo de Planck, parece existir una línea invisible que nos impide entrar en aquella fracción de segundo para poder saber lo que pasó. Ningún telescopio por muy potente que sea, ningún acelerador de partículas, nada, ha podido nunca traspasar ese límite.

El valor del tiempo del Planck es del orden de 10-43 segundos. En la cosmología del Big Bang, hasta un tiempo (Tp) después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del universo. Expresado en números corrientes que todos podamos entender, su valor es 0’000.000.000.000.000.000.000.000.000.000.000.000.000.000.1 de 1 segundo, que es el tiempo que necesita el fotón para recorrer la longitud de Planck, de 10-35 metrtos (veinte órdenes de magnitud menor que el tamaño de del protón de 10-15 metros). el límite de Planc es Lp = √(Għ/c3 ≈ 1’61624 x 10-35 m.

Todo, desde Einstein, es relativo. Depende de la pregunta que se formule y de quién nos de la respuesta.

El tiempo es la escalera con peldaños infinitos que nos llevan hasta el fin de la eternidad…

Si preguntamos ¿qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio-133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Baricéntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio, etc, etc. Cada una de estas versiones del tiempo tiene una respuesta diferente, ya que no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo universal. Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta.

Relos de Cesio cuyo funcionamiento se basa en la diferencia de energía entre dos estados del núcleo de Cesio-133 cuando se sitúa en un campo magnético. En un tipo, los átomos de cesio-133 son irradiados con radiación de radiofrecuencia, cuya frecuencia es elegida para corresponder a la diferencia de energía entre los dos estados. Es decir, nos valemos de un sistema complejo para determinar lo que el tiempo es basado en lo que de él nos indica la Naturaleza.

En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas; los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es sólo uno; ese que comenzó cuando nació el universo y que finalizará cuando éste llegue a su final.

Lo cierto es que para las estrellas supermasivas, cuando llegan al final de su ciclo y dejan de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella) y la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un agujero negro, una singularidad, donde dejan de existir el “tiempo” y el espacio. A su alrededor nace un horizonte de sucesos, que si se traspasa se es engullido por la enorme gravedad del agujero negro.

Según todos los indicios, la Física nosm dice que, al llegar a la singularidad de un agujero negro, no podremos encontrar ni tiempo ni espacio. Es una región que, estando en este mundo, es como si estuviera en otro al que sólo se podrá llegar a través de la teoría tan esperada de la gravedad cuántica. Aquí, en la Singularidad, la Relatividad de Einstein llega y hace mutis por el foro.

El tiempo, de esta manera, deja de existir en estas regiones del universo que conocemos como singularidad. El mismo Big Bang surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y agujeros negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son a menudo esféricas. El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

Muchos son los misterios que nos quedan por resolver y muchos también los objetos que, estando ahí, aún no han sido localizados. La vastedad del inmenso Universo, hace difícil saber la realidad de todo su contenido y, necesitaremos siglos de estudio y observación para poder acernos, aunque sea mínimamente, a sus secretos.

Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble. Su densidad es de 1017 Kg/m3; los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del universo.

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del universo. Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

Arthur C. Clarke nos decía: “Magia es cualquier tecnología suficientemente avanzada”

Pero también es magia el hecho de que en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver estructuras complejas matemáticas que hacen posible que la humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.

Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: la teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Göttingen en Alemania. Aquello fue como abrir de golpe todas las ventanas cerradas durante 2.000 años de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante. Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

 

                                               La nueva geometría de Riemann nos dijo como era la realidad del esapcio, del Universo

Su ensayo, de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios. La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas. La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias. En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la literatura en toda Europa. Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del universo y su evolución mediante su asombrosa teoría de la relatividad general. Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del universo. El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico. Era huraño, solitario y sufría crisis nerviosas. De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis. Al igual que aquel otro genio, Ramanujan, murio muy joven.

emilio silvera

El placer de Descubrir: Aventurarse por nuevos caminos.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La molécula de agua es polar en virtud principalmente de su geometria angular

“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin; pues todas las cosas son de la misma clase y la misma ”.

Marco Aurelio

 

Claro que él, quería significar que todo, desde el comienzo del mundo, ha sido igual, sigue unos patrones que se repiten una y otra vez a lo largo del transcurso de los tiempos: el día y la noche, las estaciones, el frío y el calor, el río muerto por la sequía o aquel que, cantarino y rumoroso ve correr sus aguas cristalinas hasta que desembocan en el océano. La Bondad y la maldad… Y, también, el Hombre y la Mujer. Así ha sido desde que podemos recordar y, así continuará siendo.

Para fugarnos de la tierra

un libro es el mejor bajel;

y se viaja mejor en el poema

que en más brioso corcel.

Whitman

 

 

 

“Todo presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro.”

Leibniz

 

Niels Bohr, citando a Gohete preguntaba: ¿Cuál es el camino? No hay ningún camino. Está claro el mensaje que tal pregunta y tal respuesta nos quiere hacer llegar, el camino, tendremos que hacerlo nosotros mediante la exploración hacia el futuro en el que está lo que deseamos encontrar. Hay que explorar y arriesgarse para tenemos que ir más allá de las regiones habituales y conocidas que nos tienen estancados siempre en el mismo lugar. ¡Arrisguémosno!

                             Homero nos contó como Ulises de Ítaca se arriesgó a oír el canto de las sirenas amarrado al palo de la vela mayor de su embarcación. Él no que´ria ser atraído por aquellas fuerzas malignas pero quería sentir los efectos de aquella llamada en lugar seguro. Eso nos lleva a pensar que hay un mensaje en el pasaje de Homero: Arriesgarse… ¡Sí! Pero con las precauciones necesarias. Así que, cuidado con los Robots, con los experimentos científicos de todo tipo, y, sobre todo, no debemos creer que lo sabemos todo. Tenemos que ser conscientes de que, el peligro nos acecha por todas partes.

Pero, no cabe duda alguna de que, el acto de exploración modifica la perspectiva del explorador; Ulises, Marco Polo y Colón habían cambiado cuando volvieron a sus lugares de partida . Lo mismo ha sucedido en la investigación científica de los extremos en las escalas, desde la grandiosa extensión del espacio cosmológico hasta el mundo minúsculo y enloquecido de las partículas subatómicas.

                                     Una bella galaxia espiral de cien mil años-luz de diámetro que podemos comparar con…¡Un átomo!

En ambos “universos” existe una descomunal diferencia en los extremos de las escalas. Sin embargo, la inmensa galaxia de arriba no sería posible sin la existencia de infinitesimal átomo de abajo. ¡Todo lo grande está hecho de cosas pequeñas!

Así que, cuando hacemos esos viajes, irremediablemente nos cambian, y, desde luego, desafían muchas de las concepciones científicas y filosóficas que, hasta ese momento, más valorábamos. Algunas tienen que ser desechadas, como el bagaje que se deja atrás en una larga travesía por el desierto. Otras tienen que ser modificadas y reconstruidas hasta quedar casi irreconocibles, ya que, lo que hemos podido ver en esos viajes, lo que hemos descubierto, nos han cambiado por completo el concepto y la perspectiva que del mundo teníamos, conocemos y sabemos.

La exploración del ámbito de las galaxias extendió el alcance de la visión humana en un factor de 1026 veces mayor que la escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un parroquianismo en un universo más vasto donde el espacio es curvo y el tiempo se hace flexible.

La exploración del dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a 10-15 de la escala humana, y también significó una revolución. fue la Física cuántica que, transformó todo lo que abordó.

La teoría cuántica nació en 1900, Max Planck comprendió que sólo podía explicar lo que llamaba la curva del cuerpo negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de energía es continua, y lo reemplazó por la hipotesis sin precedentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades.

1) Figura animada que representa un rayo de luz incidiendo sobre un cuerpo negro hasta su total absorción. 2) En la gráfica se representa la intensidad de la radiación emitida por el cuerpo negro en función de la longitud de onda a diferentes temperaturas. El máximo de la curva aumenta al ir hacia menores longitudes de onda (Ley de Wien). Se compara con el modelo clásico de Rayleigh-Jeans a altas temperaturas (5000 K) comprobándose la llamada catástrofe del ultravioleta

La constante de Planck es una constante física que desempeña un papel central en la teoría de la mecánica cuántica y recibe su nombre de su descubridor, Max Plancc, uno de los padres de dicha teoría. Denotada como h, es la constante que frecuentemente se define como el cuanto elemental de acción. Planck la denominaría precisamente «cuanto de acción»

Fue inicialmente propuesta como la constante de proporcionalidad entre la energía E de un fotón y la frecuencia f de su onda electromagnética asociada. Esta relación entre la energía y la frecuencia se denomina «relación de Planck»:

E = h.f \,.

Dado que la frecuencia f, la longitud de onda \<a href=lambda” />, y la velocidad de la luz c cumplen \<a href=lambda . f = c ” />, la relación de Planck se puede expresar como:

E = \frac{hc}{\<a href=lambda}.\,” />

Otra ecuación fundamental en la que interviene la constante de Planck es la que relaciona el momento lineal p de una partícula con la longitud de onda de De Broglie λ de la misma:

\<a href=lambda = \frac{h}{p}.” />

En aplicaciones donde la frecuencia viene expresada en términos de radianes por segundo o frecuencia angular, es útil incluir el factor 1/2 dentro de la constante de Planck. La constante resultante, «constante de Planck reducida» o «constante de Dirac», se expresa como ħ (“h barra“):

\hbar = \frac{h}{2 \pi}.

De esta forma la energía de un fotón con frecuencia angular \<a href=omega” />, donde \<a href=omega = 2 \pi . f” />, se podrá expresar como

E = \hbar \<a href=omega.” />

Por otro lado, la constante de Planck reducida es el cuanto del momento angular en mecánica cuántica.

Ley de Planck a diferentes temperaturas en función de la frecuencia para la radiación del cuerpo negro

Planck definió a “sus”0 cuantos en términos del “cuanto de acción”, simbolizado por la letra h que ahora, se ha convertido en el símbolo de una constante,  la constante de Planck, h.  Planck no era ningún revolucionario – a la edad de cuarenta y dos años era un viejo, juzgado por patrones de la ciencia matemática y, además, un pilar de la elevada cultura alemana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena de la física clásica a la que había dedicado la mayor parte de su carrera. “Cuanto mayores sean las dificultades -escribió-…tanto más importante será finalmente para la ampliación y profundización de nuestros conocimientos en la física.”

Sus palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una burbuja de , la física cuántica pronto se expandió practicamente a todo el ámbito de la física, y el cuanto de acción de Planck, h llegó a ser considerado una constante de la Naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.

           Dos buenos amigos, dos genios

Max Planck es uno de los científicos a los que más veces se le han reconocido sus méritos y, su , está por todas partes: La Constante de Planc, las Unidades de Planck, El cuanto de Planck, la Radiación de Planck, El Teimpo de Planck, la masa de Planck, la Energía de Plancik, la Longitud de Planck… ¡Todo merecido!

Confinados en nuestro pequeño mundo, una mota de polvo en la inmensidad de una Galaxia grandiosa que, a su vez, forma parte de un universo “infinito”, hemos podido darnos traza para poder saber, a pesar de las enormes distancias, sobre lo que existe en regiones remotas del Universo.  Un Universo formado por Supercúmulos de galaxias que formadas en grupos conforman la materia visible, y, dentro de cada una de esas galaxias, como si de universos se tratara, se reproducen todos los objetos y fenómenos que en el Universo son.

The Scale of the Universe 2 – HTwins.net

sigamos con la escala del Universo conocido y hagamos un pequeño esquema que lo refleje: El Universo Observable, la mayor escala que abarca más de 100 mil trillones de kilómetros (según nos cuenta Timothy Ferris:

Radio en metros                                                                   Objetos característicos

1026                                                                                                 Universo observable

1024                                                                                                 Supercúmulos de Galaxias

1023                                                                                                 Cúmulos de Galaxias

1022                                                                                                 Grupo de Galaxias (por ejemplo el Grupo Local)

1021                                                                                                  Galaxia La Vía Láctea

Nube Molecular gigante muy masiva, de gas y polvo compuesta fundamentalmente de moléculas con diámetro típico de 100 a.l. Tienen masa de diez millones de masas solares (moléculas de Hidrógeno (H2) el 73% en masa), átomos de Helio (He, 25%), partículas de polvo (1%), Hidrógeno atómico neutro (H I, del 1%) y, un rico coctel de moléculas interestelares. En nuestra galaxia existen al menos unas 3000 Nubes Moleculares Gigantes, estando las más masivas situadas cerca de la radiofuente Sagitario B en el centro Galáctico.

1018                                                                                                  Nebulosas Gigantes, Nubes Moleculares

1012                                                                                                                                                   Sistema Solar

1011                                                                                                  Atmósfera externa de las Gigantes rojas

   Aunque a una Unidad Astronómica de distancia (150 millones de Kilómetros de la Tierra), el Sol caliente el planeta y nos da la vida

109                                                                                                  El Sol

108                                                                                                  Planetas Gigantes Júpiter

107                                                                                                  Estrellas enanas,  planetas similares a la Tierra

105                                                                                                  Asteroides, núcleos de cometas

104                                                                                                  Estrellas de Neutrones

                                Los seres humanos son parte del Universo que queremos descubrir.

1                                                                                                      Seres Humanos

10-2                                                                                                Molécula de ADN (eje largo)

10-5                                                                                                Células vivas

                                                                                      Células vivas

10-9                                                                                                Molécula de ADN (eje corto)

10-10                                                                                              Átomos

10-14                                                                                             Núcleos de átomos pesados

10-15                                                                                             Protones y Neutrones

10-35                                                                                            Longitud de Planck: cuanto de espacio; radio de partículas sin dimensiones = la cuerda.

Es la escala de longitud a la que la descripción clásica de la Gravedad cesa de ser válida y debe ser tenida en la mecánica cuántica. Está dada por la ecuación de arriba, donde G es la constante gravitacional, ħ es la constante de Planck racionalizada y c es la velocidad de la luz. El valor de la longitud de Planck es del orden de 10-35 m (veinte órdenes de magnitud menorque el tamaño del protón 10-15 m).

Me llama la atención y me fascina la indeterminación que está inmersa en el mundo cuántico. La indeterminación cuántica no depende del aparato experimental empleado investigar el mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada compartirían con los más humildes físicos de la Tierra.

Por muy avanzados que pudieran estar, ellos también estarían supeditados al Principio de Incertidumbre o Indeterminación cuántica, y, como nosotros, cuando trataran de encontrar (sea cual fuese las matemáticas o sistemas que emplearan para hallarlo) el resultado de la constante de estructura fina, el resultado sería el mismo: 137, puro y adimensional.

Todo esto nos ha llevado a la más firme convicción definir la visión del mundo de la física que nos revelaba que no sólo la materia y la energía sino que también el conocimiento están cuantizados. Cuando un fotón choca con un átomo, haciendo saltar un electrón a una órbita más elevada, el electrón se mueve de la órbita inferior a la superior instantáneamente, sin tener que atravesar el espacio intermedio. Los mismos radios orbitales están cuantizados, y el electrón simplemente deja de existir en un punto para aparecer simultáneamente en otro. Este es el famoso “salto cuántico” que tanto desconcierta, y no es un mero problema filosófico, es una realidad que, de , no hemos llegado a comprender.

                                                     No, esto no es un salto cuántico. Simplemente le tocó la Lotería

Pero, ¿quién sabe? Quizás un día lejano aún en el tiempo, cuando descubramos el secreto que salto cuántico nos esconde, poderemos aprovechar la misma técnica que emplea la Naturaleza con los electrones hacer posible que se transporten de un lugar a otro sin tener que recorrer las distancias que separan ambos destinos.

                               Estaría bien poder trasladarse las estrellas por ese medio

Bueno, pongamos los pies en el suelo, volvamos a la realidad. La revolución cuántica ha sido penosa, pero podemos agradecerle que, nos haya librado de muchas ilusiones que afectaban a la visión clásica del mundo. Una de ellas era que el hombre es un ser aparte, separado de la naturaleza a la que en realidad, no es que esté supeditado, sino que es, ella. ¡Somos Naturaleza!

Está claro, como nos decía Immanuel Kant que:

La infinitud de la creación es suficientemente grande como para que un mundo, o una Vía Láctea de mundos, parezca, en comparación con ella, lo que una flor o un insecto en comparación con la Tierra.”

Algún día podríamos desaparecer en una especie de plasma como ese de la imagen y salir al “otro lado” que bien (¡Por qué no) podría ser otra galaxias lejana. Creo que la imaginación se nos ha dado para algo y, si todo lo que podemos imaginar se realizar, la conclusión lógica es que sólo necesitamos ¡Tiempo!

Sí, amigos míos, la Naturaleza vive en constante movimiento, y, nosotros, que formamos de ella…También. Tenemos que llegar a conocerla.

 

 

Existen muchos mundos con dos soles, ¿cómo será vivir en uno de ellos?

 

En tiempos y lugares totalmente inciertos,

Los átomos dejaron su camino celeste,

Y mediante abrazos fortuítos,

Engendraron todo lo que existe.

Maxwell

Doy las gracias a Timothy Ferris de cuyo libro, la Aventura del Universo, he podido obtener bellos pasajes que aquí, quedan incluídos.

emilio silvera

¡La Física! Esa gran disciplina científica

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios


Publicación Actual No. 16

Superfluidez en estrellas de neutrones Dany P. Page
Universidad Nacional Autónoma de México, Instituto de Astronomía
 

Estrellas de Neutrones

Las estrellas de neutrones son los objetos más densos observables en el Universo. Sólo son superadas por el interior de los hoyos negros, que no es observable. En colisiones relativistas de iones pesados, en RHIC o en el LHC, es posible alcanzar densidades superiores, pero con una enorme densidad de energía (cientos de GeV por nucleón), mientras que la materia en el interior de una estrella de neutrones es altamente degenerada.

En la Fig. 1 se presenta lo que, teóricamente, consideramos es la estructura de una estrella de neutrones. Con un radio de unos 10 km, el 98% de la masa se encuentra a densidades supra-nucleares en el núcleo de la estrella, mientras que una capa de aproximadamente un kilómetro de espesor, la corteza, está formada de núcleos atómicos. En la superficie tenemos una atmósfera, de unos cuantos centímetros de espesor, donde se forma el espectro térmico que podemos observar. A una densidad ρ ~ 104g cm-3 la materia está totalmente ionizada y cuando ρ ~ 106g cm-3 los electrones forman un gas de Fermi relativista. Dada la enorme energía en este gas de electrones, resulta energéticamente favorable fusionar parte de los electrones con protones, lo que resulta en núcleos cada vez mas ricos en neutrones conforme aumenta la densidad. Cuando ρ ~ 5×1011g cm-3, el número de neutrones es tal que no caben mas en los núcleos. Hemos alcanzado el punto de “goteo” de neutrones, donde además de los núcleos y el gas de electrones, tenemos un gas “libre” de neutrones. Al acercarse a la densidad nuclear, ρ0 ~ 2.8×1014g cm-3 los núcleos se fusionan y entramos al “núcleo” de la estrella (“core” en ingles). En la zona de transición es muy probable que encontremos núcleos no esféricos, muy alargados (“espaguetis”) y bidimensionales (“lasañas”), lo que comúnmente se llama la fase “pasta” (ver recuadro “A” en la Fig. 1). Dadas las altas presiones en la corteza ésta debe ser sólida, muy probablemente en forma cristalina (recuadro “B” en la Fig. 1).

Figura 1. Visión “artística” de una estrella de neutrones. (D. Page, en “Fronteras del Universo”, Ed. M. Peimbert, 2000, Fondo de Cultura Económica)

 

En el núcleo de la estrella, empezamos con un líquido cuántico de neutrones, protones y electrones. Las interacciones débiles, tipo β, como

 

 

permiten ajustar las densidades nn y np de nucleones. Debido a las diferencias de masas, la primera de estas reacciones ocurre espontáneamente en el vacío mientras que la segunda requiere de energía cinética en el estado inicial. En un medio denso las energías relevantes no son las masas, sino los potenciales químicos de las partículas, los cuales incluyen la masa, la energía cinética de Fermi y la energía potencial. Esta última requiere de un modelo de las interacciones fuertes a densidades supra-nucleares; el equilibrio energético y efecto de las reacciones β, determinan nn y np. El resultado es que a ρ = &rho0 los nucleones se distribuyen en una proporción de 5% de protones por 95% de neutrones, aunque la fracción de protones aumenta con la densidad. Nuevas partículas pueden aparecer a mayores densidades, como hiperones o condensados de mesones (π – o K -). El núcleo interior de la estrella, está marcada en oscuro en la Fig. 1, con un gran signo de interrogación, ya que existe la posibilidad de se alcance la densidad suficiente para inducir desconfinamento de los quarks. Refiero el lector a [1] para más detalles y referencias a los trabajos originales.

Neutrinos

 

Producidas en explosiones de supernovas, con temperaturas iniciales superiores a los 50 MeV ~ 50×1010 K, las estrellas de neutrones jóvenes se enfrían por emisión de neutrinos, hasta llegar a una edad de unos 100,000 años, a partir de lo cual la pérdida de energía por emisión de fotones térmicos en la superficie empieza a dominar. El proceso de emisión de neutrinos más eficiente es el descrito en la Eq. (1), llamado “Urca directo”, con una emisividad εDUrca ≈ 1027 (T/109 K)6 erg cm-3 s-1.Esto implica que un metro cúbico de materia podría producir una luminosidad (L = 3.8×1033 erg s-1) de neutrinos cuando T=109 K. Sin embargo, la reacción (1) tiene una fuerte limitante: la conservación del momento, la cual requiere un concentración de protones superior al 15%; por lo cual el proceso Urca directo está cinematicamente prohibido. Sin embargo, existen procesos como

 

que proporcionan el momento faltante, aquí el neutrón n’ es una partícula del medio. Nótese que el proceso (2), llamado “Urca modificado” por involucrar dos fermiones degenerados, comparado con el proceso (1) es mucho menos eficiente, εMUrca ≈ 1021 (T/109 K)8 erg cm-3 s-1, con una dependencia en la temperatura de la forma T8 en lugar de T6. El proceso (2) es el mecanismo estándar de enfriamiento y el proceso (1) soló actua a densidad altas, es decir en estrellas muy masivas.

 

Superfluidez y Superconductividad

 

La teoría BCS de superconductividad está basada en la formación de pares de Cooper y en la aparición de una brecha Δ(T) en elespectro de excitaciones, cuando la interacción entre fermiones es atractiva. La presencia de una brecha y consecuentemente la existencia de pares de Cooper en núcleos fue observada en 1958, poco tiempo después de la formulación de la teoría BCS y es un ingrediente esencial en los modelos de estructura nuclear. Para momentos p<1.5 fm-1 la interacción nuclear n-n o p-p es atractiva en el canal 1S0 (en notación espectroscópica: singlete de espín, momento angular orbital L=0 y J=L+S=0). Esto lleva a predecir que los neutrones deben de formar un superfluido en la corteza interna de una estrella de neutrones mientras que los protones, debido a su baja concentración, formarían un superconductor en el núcleo exterior. En el núcleo de la estrella el momento de Fermi de los neutrones es superior a 1.5 fm-1 y el canal 1S0 se vuelve repulsivo. Sin embargo la formación de pares de Cooper en triplete de espín, en el canal atractivo 3P2, es posible. A mas altas densidades es probable que los hiperones y/o los quarks formen superfluidos/superconductores. El interior de una estrella de neutrones es un paraíso para pares de Cooper, pero el calcular precisamente el tamaño de la brecha Δ(T), y el valor de Tc, es una pesadilla para el físico teórico. El caso del helio-3 es un ejemplo de ello y en el caso del apareamiento 3P2 de los neutrones a densidades supra-nucleares las predicciones para Δ van desde casi 0 hasta más de 5 MeV.

La presencia de una brecha Δ en el espectro de excitaciones implica que cuando T<<Tc estas son fuertemente suprimidas, aproximadamente por un factor de Boltzmann exp (-Δ(T)/T). En consecuencia, el calor específico Cv, así como todos los procesos de emisión de neutrinos en los cuales esta componente apareada participa, están exponencialmente suprimidos. Sin embargo, la transición de fase es de segundo orden, es decir continua. Cuando T ~ Tc, como es bien conocido en el caso de los superfluidos/superconductores terrestres, el calor específico Cv aumenta en un factor del orden 2.5. Otro aspecto del desarrollo progresivo del condensado es el constante rompimiento y formación de pares de Cooper, cuando T ~ Tc , y la posibilidad de que el condensado decaiga en un par neutrino – anti-neutrino:

 

donde <nn´> representa el condensado de pares de Cooper. Este “proceso de Cooper” puede ser mas eficiente que el Urca modificado (2) por mas de un orden de magnitud.

 

Enfriamiento y Superfluidez

Esta breve descripción permite esbozar el panorama de la evolución térmica de estrellas de neutrones: a partir de su nacimiento se enfrían por emisión de neutrinos y cuando alcanzan edades del orden de 105 años su evolución se determina por la emisión superficial de fotones.

La tasa de emisión de neutrinos es muy sensible a la composición de la materia a densidades supra-nucleares: cualquier cambio a la composición relativa de neutrones a protones resulta en emisividades de neutrinos altísimas y enfriamiento muy rápido. Tenemos un zoológico completo de modelos de materia ultra densa, casi todos prediciendo un enfriamiento rápido. Por otra parte, el enfriamiento rápido puede ser moderado por el apareamiento de las partículas, mientras la brecha, o la temperatura crítica, sea suficientemente grande. Nos encontramos con el problema de la casi imposibilidad de calcular con suficiente precisión el tamaños de las brechas relevantes y el hecho de que la emisión de neutrinos es controlada por estas brecha de manera exponencial. Las dos revisiones [2] y [3] presentan mas detalles sobre los mecanismos de enfriamiento.

Del lado observacional, tenemos una docena de estrellas de neutrones jóvenes con temperaturas estimadas. Sus altas temperaturas superficiales, entre 0.5 y 2×106 K, indican que ningún proceso Urca directo está actuando en ellas, al menos que esté fuertemente suprimido por apareamiento de las partículas que participen en el proceso. El “modelo mínimo” de enfriamiento [4] fue desarrollado con el fin de presentar un punto de referencia con el cual comparar estas observaciones e identificar posibles candidatas a estrellas conteniendo algún tipo de materia “exótica”. Este modelo excluye a priori cualquier forma de materia densa que resulte en enfriamiento rápido, es decir una alta concentración de protones, condensados de mesones, hiperones y quarks desconfinados. Sin embargo considera el efecto de la superconductividad / superfluidez de protones / neutrones, es decir el apareamiento, y el aumento en la emisión de neutrinos por el proceso de Cooper durante la transición de fase. Resulta que los procesos Urca modificados por si mismos no son suficientemente eficientes para explicar la evolución de las estrellas mas frías pero sí se pueden interpretar las observaciones tomando en cuenta el proceso de Cooper, bajo una condición: la temperatura crítica máxima, Tc, para el apareamiento 3P2 de los neutrones debe estar entre 1/2 y 2×109 K [5]. En este rango de valores de Tc el proceso de Cooper domina el enfriamiento a edades entre unos cientos hasta unas decenas de miles de años de edad.

En el caso contrario debemos suponer la presencia de algún tipo de materia extra para entender la evolución de estas estrellas de neutrones jóvenes. En conclusión, hasta hace poco tiempo nos encontrábamos en una situación que requería de alguna nueva pista para poder avanzar.

El Caso de Cas A

Casiopeia A es un remanente de supernova en la constelación de Casiopeia. Por su interés astronómico, la NASA decidió inaugurar el satélite de rayos X Chandra, su “primera luz”, con una imagen de este remanente en agosto del 1999 (ver Fig. 2). ¡En el centro de la imagen apareció la estrella de neutrones, “Cas A”, formada por la supernova! Con una edad de unos 330 años es la estrella de neutrones más joven conocida. Al analizar 10 años de observaciones del remanente, y de su estrella, Craig Heinke y Wynn Ho encontraron que Cas A se había enfriado en un 4% del año 2000 al 2009 [5] y que ¡su flujo se había reducido en un 20%! Esta evolución es inconmpatible con casi todas la predicciones teóricas.

Figura 2. El remanente de supernova Casiopeia A en rayos X: primera luz de Chandra, en agosto del 1999. El punto brillante en su centro es la estrella de neutrones, descubierta en esta observación. (Crédito: NASA/CXC/SAO)

 

 

La luminosidad térmica de fotones de la estrella es LX ≈ 1034 erg s-1 mientras que la tasa de enfriamiento observada, junto con una estimación del calor específico, requiere que la estrella esté perdiendo energía térmica a una tasa de 1038 erg s-1. ¿Cuál puede ser el agente de enfriamiento que supere al de fotones por 4 órdenes de magnitud? Sólo puede ser la emisión de neutrinos.

Aunque un comportamiento como el de Cas A es sorprendente, había sido descrito teóricamente con anterioridad (ver, e.g., la Fig. 6 en [5] o Fig. 8 en [2]). Después de afinar detalles, la interpretación resulto clara [7,8]: tras un lento enfriamiento previo, la temperatura interna T de Cas A alcanzó, en las últimas décadas, la temperatura crítica de superfluidez de los neutrones, Tc, lo cual disparó la fuerte emisión de neutrinos por el proceso Cooper. La figura 3 ilustra esto con tres modelos: a edades superiores a los 100 años, sin superfluidez (“Tc=0”), el enfriamiento es lento; al contrario, con una Tc demasiado alta (“Tc=109 K” ), el enfriamiento rápido ocurre demasiado temprano y posteriormente el enfriamiento es también lento; mientras que con Tc=5.5×108 K el enfriamiento rápido, pero transitorio, ajusta perfectamente las observaciones. Además de ser, posiblemente, la primera evidencia directa de la existencia de superfluidez a densidades supra-nucleares, esto nos proporciona una “medición” bastante robusta de la temperatura crítica Tc para los neutrones y los detalles del enfriamiento rápido implican también que los protones deben de ser superconductores con una temperatura crítica más alta. Si la interpretación resiste al tiempo, y el enfriamiento continua durante varias décadas como lo predice el modelo, estaríamos viendo en tiempo real una gran concentración de neutrones pasando por la transición de fase de superfluidez.

Figura 3. Tres modelos de enfriamiento, temperatura efectiva “al infinito” Te vs edad: ver texto para descripción. La estrella marca el valor observado de Cas A y el recuadro detalla el ajuste del modelo con las cinco observaciones de Chandra. (Adaptado de la Ref. [8])

 

El Futuro: ¿Exótico?

 

Lo bizarro de un superfluido estelar ha recibido mucha cobertura mediática (ver, e.g., [9]). Sin embargo, lo más importante de estos resultados es que podemos, por lo menos en el caso de Cas A, borrar la zona oscura y el signo “?” en el centro de la Fig. 1. Hace seis meses estábamos todavía caminando en medio de una jungla de modelos, pero sólo uno de ellos parece sobrevivir a la observación del enfriamiento de Cas A que podría ser la “Piedra de Rosetta” de la física de materia ultra-densa. Es ciertamente sólo media piedra: hay evidencias de estrellas que sufren emisión de neutrinos todavía mucho más intensa como son los casos de SAX J1808.4-3658 y 1H 1905+00. Estos dos objetos están en sistemas binarios con acreción transitoria: cuando termina una fase de acreción esperamos ver la superficie caliente de la estrella, estrellas de primera generación como Cas A. Al considerar densidades más altas, alcanzadas en estrellas más masivas, el signo “?” vuelve a aparecer. Sin embargo, el entender con un sorprendente lujo de detalle, la estructura y la evolución de una estrella “mínima” como Cas A, nos abre el camino para identificar más claramente objetos realmente “exóticos”.

Referencias:

[1] Page, D., & Reddy, S., “Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints”, Annu. Rev. Nucl. Part. Sci. 56, 327, (2006)

[2] Yakovlev, D. G., & Pethick, C. J., “Neutron Star Cooling”, Annu. Rev. Astronom. & Astrophys. 42, 169, (2004)

[3] Page, D., Geppert, U., & Weber, F., “The Cooling of Compact Stars”, Nucl. Phys. A 777, 497, (2006), numero especial sobre Nuclear Astrophysics.

[4] Page, D., Lattimer, J. M., Prakash, M., & Steiner, A. W., “Minimal Cooling of Neutron Stars: A New Paradigm”, Astrophys. J. Suppl. 155, 623, (2004).

[5] Page, D., Lattimer, J. M., Prakash, M., & Steiner, A. W., “Neutrino Emission from Cooper Pairs and Minimal Cooling of Neutron Stars”, Astrophys. J. 707, 1131, (2009)

[6] Heinke, C. O., & Ho, W. C. G., “Direct Observation of the Cooling of the Cassiopeia A Neutron Star”, Astrophys. J. Lett. 719, 167, (2010)

[7] Shternin, P. S., Yakovlev, D. G., Heinke, C. O., Ho, W. C. G., & Patnaude, D. J., “Cooling Neutron Star in the Cassiopeia-A Supernova Remnant: Evidence for Superfluidity in the Core”, Mon. Not. Roy. Astron. Soc.: Lett. 412, 108, (2011)

[8] Page, D., Prakash, M., Lattimer, J. M., & Steiner, A. W., “Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter”, Phys. Rev. Lett. 106, 081101, (2011)

[9] “Cassiopeia A: NASA’s Chandra Finds Superfluid in Neutron Star’s Core”: http://chandra.harvard.edu/photo/2011/casa/