martes, 07 de julio del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La física de partículas y las interacciones fundamentales

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El hombre se ha preguntado durante largo tiempo, “¿de qué está hecho el mundo?” Demócrito de Abdera nos hablaba del “átomo” y Empédocles de “elemenmtos”, otros, se referían a la sustancia cósmica a la que llamaban Ylem, aquella “semilla” primera que daría lugar a la venida de la materia. ¿No será el Ylem, lo que hoy llaman materia oscura?

Leptones y Quarks: ¿Las partículas fundamentales? | Leptonix

Ahora sabemos que, no sólo nuestro mundo, sino todo el inmenso Universo, está hecho de pequeños objetos infinitesimales a las que hemos denominado partículas sub-atómicas y que forman varias familias. Unas son más elementales que otras y según, a qué familia pertenezcan, atienden o se rigen por una u otra fuerza elemental.

Resultado de imagen de Partículas subatómicas

“Esquema de principios de siglo XX para un átomo de helio, mostrando dos protones (en rojo), dos neutrones (en verde) y dos electrones.”

Son los constituyentes fundamentales de toda la materia del Universo (por lo menos de toda la materia conocida y que podemos detectar formando estrellas y mundos, galaxias o seres vivos). Hemos podido llegar a saber que, de esas briznas de materia se forman los núcleos que, rodeados de electrones conforman los átomos de la materia.

Cuáles son las partículas subatómicas que conforman el átomo? en ...

Los grupos de  átomos conforman las moléculas que son las unidades fundamentales de los compuestos químicos pero, comencemos por los núcleos atómicos:

Muchas son las veces que aquí mismo he podido explicar, que los quarks u y d se hallan en el interior de los nucleones y, por tanto, su habitat está en los núcleos atómicos donde se encuentran confinados y, en realidad, no intervienen directamente  en las propiedades de los núcleos. Sin embargo, no podemos olvidar que la fuerza nuclear fuerte está ahí reteniendo a los Quarks por medio de losGgluones y, eso hace que, el núcleo sea estable.

Particulas subatómicas

Los núcleos atómicos constituyen un tipo de materia que, aisladamente, de forma individual (si exceptuamos el protón), siempre están en ambientes muy energéticos, por ejemplo, en el interior de las estrellas. En nuestro entorno terráqueo, es raro encontrar núcleos aislados, sino parcial o totalmente confinados dentro de los átomos.

Sabemos que el número de especímenes atómicos es limitado, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya señalé en otros escritos que, el número de especies atómicas, naturales y artificiales, es de unos pocos miles, en cambio, el número de moléculas conocidas hasta ahora comprenden unos pocos millones de especímenes, aumentando continuamente el número de ellas gracias a la síntesis que se lleva a cabo en numerosos laboratorios repartidos por todo el mundo.

Qué son las moléculas? Icarito

Una molécula es una estructura, con individualidad propia, constituida por un conjunto de núcleos y sus  electrones. La molécula más sencilla es la de Hidrógeno que tiene dos electrones, hasta las más complejas como las de las proteínas, con muchos miles de ellos, existen toda una gama de varios millones. Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Molécula de agua - Wikipedia, la enciclopedia libreMOLECULAS DE CARBON by Miguel Angel Velez Palacio - issuu

                       Molécula de Agua

Determinacion de la formula de la molecula de oxigeno. Enlaces ...Nitrógeno - EcuRed

Modelo De La Química De La Molécula De Hidrógeno, Elementos ...Silano (SiH4) Molécula. Representación 3D. Los átomos Se ...Silicio

Desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares o atómicas. Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a los electrones más débilmente ligados. Concretando un poco más, se podría admitir que la citada información la aportan los orbitales atómicos, pues son precisamente estos orbitales los que introducen diferencias “geométricas” entre los diferentes electrones “corticales”.

Las partículas que forman la materia

Las partículas forman átomos, los átomos moléculas y las moléculas sustancias y cuerpos que están hechos por la diversa variedad de elementos que conforma la materia conocida y que, en definitiva, sólo son Quarks y Leptones-

Leptones y Quarks: ¿Las partículas fundamentales? | Leptonix

“Durante el paso del tiempo una de las mayores incógnitas de la humanidad es saber de qué estamos hechos. Muchas filosofías antiguas creían eran un conjunto de elementos como el agua, el aire, el fuego y la tierra por mencionar algunos. Hoy en día los físicos creen que estamos formados por doce partículas fundamentales los quarks y leptones.”

IFCA | Instituto de Física de Cantabria Producción de dos Bosones ...

Con los Quarks formados en tripletes se forman los protones y neutrones que son los nucleones situados en el núcleo de los átomos (Hadrones de la rama barionica), otros hadrones llamados mesones están hechos de un Quarks y un antiquark y sus funciones son otras.

Los quarks y leptones como partículas fundamentales (se cree)  no tienen infraestructura y no se puede descomponer en partículas más pequeñas. Estos interactúan a través de cuatro fuerzas para formar así el universo que lo conocemos hoy en día.

Interacciones fundamentales : Blog de Emilio Silvera V.

               Partículas mediadoras de la fuerza nuclear débil

Logran la primera imagen de una partícula de luz

La primera imagen que se logró de la partícula de luz: El Fotón, la partícula mediadora de todas las interacciones electromagnéticas del Universo.

Gluón - EcuRedGluón | Química | Fandom

Los Quarks están confinados dentro de los nucleones (Protones y Neutrones= retenidos por la partícula mediadora llamada Gluón (en la segunda imagen se ve la muestra).

El gravitón nexus de Stuart Marongwe - La Ciencia de la Mula Francis

 

El esquivo Gravitón (si existe), no ha podido ser encontrado, se cree que al ser la Gravedad la más débil de las cuatro fuerzas fundamentales  su partícula mediadora el Gravitón es de escala infinitesimal y difícil de detectar.

Estas doce partículas elementales a su vez están mediadas por los intercambios de otro tipo de partículas que pueden referirse como mediadores de fuerza, de estos se conocen cuatro tipos: el “gluón”, “fotón”, “gravitón” y “bosones débiles”. Aunque en realidad, el gravitón aún no ha sido confirmado experimentalmente , pero muchos físicos asumen que existe este mediador.

 

fuerzas-fundamentales-5

 

carga de color | Cuentos Cuánticoscarga de color | Cuentos Cuánticos

Como un núcleo y un electrón que se atraen entre sí debido a sus cargas eléctricas, los quarks se combinan entre sí por sus cargas de color . La fuerza que la mayoría de los físicos creen que los quarks son los bloques de construcción fundamentales que componen el universo, no se ha observado un quark aislado por sí mismo. Esto es debido a la naturaleza a fuerte es una fuerza que actúa entre cargas de color. Al igual que hay dos tipos de cargas eléctricas, hay tres tipos de cargas de color “rojo”, “azul” y “verde”, análogos a los colores primarios de la luz.

Física por detrás de las Cosas: Carga eléctrica

Ahora bien si conoces la teoría de los colores elementales de la luz , se puede recordar que la superposición de los tres colores elementales termina con el blanco. Esta es la razón por la cual un protón y un neutrón están formados por tres quarks. En un protón y un neutrón, un quark tiene un color rojo, otro tiene un color azul y la tercera uno tiene unie ha tenido éxito en aislar un quark, a este fenómeno se llama el confinamiento quark.

Obstinados navegantes en océanos de incertidumbre: SOBRE LA TABLA ...

“La tabla periódica de los elementos es una disposición de los elementos químicos en forma de tabla, ordenados por su número atómico (número de protones),2​ por su configuración de electrones y sus propiedades químicas. Este ordenamiento muestra tendencias periódicas, como elementos con comportamiento similar en la misma columna.

Mendeleev Photographische Gesellschaft 3.jpg

Dmitri Mendeléyev publicó en 1869 la primera versión de tabla periódica que fue ampliamente reconocida. La desarrolló para ilustrar tendencias periódicas en las propiedades de los elementos entonces conocidos, al ordenar los elementos basándose en sus propiedades químicas,7​ si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos.8​ Mendeléyev también pronosticó algunas propiedades de elementos entonces desconocidos que anticipó que ocuparían los lugares vacíos en su tabla. Posteriormente se demostró que la mayoría de sus predicciones eran correctas cuando se descubrieron los elementos en cuestión.”

Resultado de imagen de Elementos transuránidos
“Los elementos transuránicos (conocidos también como elementos transuránidos) son elementos químicos con número atómico mayor que 92, el número atómico del elemento uranio.”
Estos elementos son artificiales y no se encuentran en estado natural en la Naturaleza.  El nombre de trans-uránidos significa “más allá del uranio”.

“De los elementos con número atómico entre 1 hasta 92, todos a excepción de cuatro (43Tc61Pm85At, y 87Fr) se pueden detectar fácilmente en ciertas cantidades en la Tierra, teniendo una vida estable, o unos isótopos de vida media relativamente larga, o se generan como subproductos del uranio. Todos los elementos con gran número atómico tienen una probabilidad alta de haber sido generados de forma artificial, otros son extremadamente raros y por lo tanto han sido descubiertos mediante investigaciones científicas, y otros por el contrario no han existido anteriormente, como el plutonio y el neptunio, de los cuales ninguno tiene existencia natural sobre la tierra.

Características principales del plutonio

Todos ellos son radiactivos, con una vida media más corta que la edad de la Tierra, de esta forma es posible que estos elementos, estuvieran presentes en la formación de la tierra. Las trazas de neptunio y plutonio aparecen solo durante las pruebas de las bombas atómicas explotadas en la atmósfera. Tanto el Np como el Pu generados proceden de captura de neutrones en el uranio con dos reacciones posteriores de decaimiento beta.”

“La mayoría de los elementos generados de forma artificial se pueden obtener como elemento sintético vía reacciones nucleares o acelerador de partículas. La vida media de estos elementos suele decrecer con el número atómico.

“Algunos isótopos de los elementos níquel (Ni), cobre (Cu) y zinc (Zn). Como en la mayoría de las tablas de isótopos, los elementos se organizan de abajo hacia arriba según su número atómico creciente, y los isótopos de izquierda a derecha según su masa creciente. Color negro: isótopos estables; azul: isótopos emisores de partículas beta; rojo: isótopos emisores de partículas beta.”

Existen, no obstante excepciones, que incluyen el dubnio y algunos isótopos del curio. El químico Glenn T. Seaborg (Premio Nobel de Química) llegó a crear leyes empíricas capaces de predecir estas anomalías. Todas ellas se categorizan en lo que viene a denominarse como “isla de estabilidad”. Los elementos transuránicos no descubiertos todavía, o que no han sido denominados de forma oficial, emplearán la nomenclatura indicada por la IUPAC. A pesar de ello la denominación de algunos elementos transuránicos en el pasado y hoy en día son fuentes de controversia

Lista de los elementos transuránicos

Emilio silvera

Sí, cosas así nos llevan hacia el futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Historias de la ciencia: Isaac Newton (II) - La Ciencia de la Mula ...

Para no viajar muy atrás en el tiempo, fijaremos el punto de partida en 1687, fecha en que salió a la luz la Obra de Newton, su obra  Philosophiæ naturalis principia mathematica . El tiempo transcurrió hasta 1900, fecha en la que…

Física : Blog de Emilio Silvera V.

Planck publicó un artículo de ocho páginas con su idea del cuanto que sería la semilla que daría lugar al nacimiento de la mecánica cuántica. Aquella idea seminal cambió el mundo de la Física.

“El asunto se quedó ahí hasta que Einstein lo tomó en sus manos en 1905 y le aplicó sus métodos estadísticos. Esto le condujo a otro descubrimiento sorprendente, que interpretado con su inigualable creatividad e intuición física abrió un novedoso terreno a la física. Einstein aplicó su método al estudió de las fluctuaciones de la energía del campo electromagnético contenido en la cavidad estudiada por Planck, es decir, el campo que se vio precisado a cuantizar para alcanzar la descripción correcta del estado de equilibrio. Mostró que si se emplean en estos cálculos los resultados (erróneos) de la física clásica nada particularmente interesante ocurre. Pero que si se emplea la fórmula (extraña, pero correcta) de Planck para apegarse a los resultados experimentales, las fluctuaciones a muy bajas temperaturas (que es la región donde se observan los efectos cuánticos) adquirían precisamente la forma de las fluctuaciones que ocurren ¡en los gases ideales!”

“Analizando otros problemas, entre los que destaca el del efecto fotoeléctrico Einstein llegó a la conclusión de que cuando se analizan los procesos elementales de intercambio de energía entre la materia y el campo, siempre se verifica que el comportamiento del campo tiene aspectos discretos similares al de un gas. Estas observaciones le condujeron a proponer que la manera más simple y general de entender esto consiste en suponer que el campo electromagnético de muy bajas densidades manifiesta una estructura granular, como compuesto de “moléculas” independientes de radiación, cada una de ellas portadora de la energía mínima descubierta por Planck. Estos “paquetes” de radiación de energía definida (cuantos de radiación) corresponden a lo que hoy se denomina fotón.”

Einstein consideró a su artículo sobre los fotones (nombre que fue propuesto varios años después de su descubrimiento) como el único verdaderamente revolucionario de sus trabajos juveniles. Y, en efecto, el papel que jugó esta proposición en el desarrollo ulterior de la teoría cuántica resultó fundamental.

Verdeesperanza: _- Einstein. Por qué destacó como científico ...El año milagroso de Einstein | OpenMind

En 1905, aquel joven de la Oficina de Patentes de Berna (Suiza, sorprendió al mundo de la Física con su Teoría de la Relatividad Especial y sus sorprendentes postulados.

¿Es la luz una onda o una partícula? Einstein respondió

¿Es la luz una onda o una partícula?

Einstein respondió “ambas” y cambió la física para siempre

“Los cinco trabajos que Einstein escribió en 1905 y que publicó en la revista Annalen der Physik tratan sobre problemas relacionados con tres grandes ramas de la física de esa época: la mecánica clásica, el electromagnetismo y la termodinámica, dice Dennis Lehmkuhl, editor científico de Einstein Papers Project, del Instituto de Tecnología de California (Caltech), a BBC Mundo”

El efecto fotoeléctrico – Física cuántica en la red

Por el Efecto Fotoeléctrico, le dieropn el Nobel de Física de 1923

“Analizando otros problemas, entre los que destaca el del efecto fotoeléctrico, Einstein llegó a la conclusión de que cuando se analizan los procesos elementales de intercambio de energía entre la materia y el campo, siempre se verifica que el comportamiento del campo tiene aspectos discretos similares al de un gas. Estas observaciones le condujeron a proponer que la manera más simple y general de entender esto consiste en suponer que el campo electromagnético de muy bajas densidades manifiesta una estructura granular, como compuesto de “moléculas” independientes de radiación, cada una de ellas portadora de la energía mínima descubierta por Planck. Estos “paquetes” de radiación de energía definida (cuantos de radiación) corresponden a lo que hoy se denomina fotón. Es claro que cuando el número de fotones que actúan es suficientemente grande, percibimos el campo como ente continuo; pero tan pronto se reduce el número de fotones a unos cuantos, se manifiesta su estructura discreta.”

“La ecuación E=mc² de Albert Einstein le dio forma a todo el siglo XX”: Christophe Galfard, discípulo de Stephen Hawking

Faraday, Maxwell y lo irreversible de la Transformación Digital ...

Se produjeron muchos desarrollos importantes para nuestras imágenes de la Física Fundamental. Uno de los mayores cambios ocurrido en ese período fue la comprensión, básicamente mediante los trabajos de Faraday y Maxwell en el siglo XIX, de que cierta noción de campo físico, que permea en el espacio, debe cohexistir con la previamente aceptada “realidad newtoniana” de las partículas individuales que interaccionan por medio de fuerzas instantáneas.

Conforme a lo que arriba decimos se producen fenómenos y se ponen en marcha mecanismos que hacen posible que, la imagen que vemos, pueda ser posible gracias a la presencia de fuerzas que, aunque no las podamos ver, su presencia se hace patente por los resultados que en su diversidad, son los mecanismos que llevan el ritmo del Universo que nos acoge.

mxw1fisica

Más tarde, esta noción de “campo” se convirtió también en un ingrediente crucial de la teoría de la Gravedad en un espaciotiempo curvo a la que llegó Einstein en 1915. Lo que ahora denominamos campos clásicos son el Campo Electromagnético de Maxwell y el Campo Gravitatorio de Einstein.

http://www.iac.es/cosmoeduca/relatividad/imagenes/charla3imag/gravedadestira640.jpg

La presencia del campo gravitatorio de una masa afecta al tiempo y al espacio. La gravedad hace que dos relojes atrasen. Un reloj en la superficie de la Tierra atrasa con respecto a un reloj en la Luna, toda vez que el campo gravitatorio de la Tierra es más potente. De la misma manera, nos podríamos preguntar ¿por qué la gravedad actúa sobre el espacio y alarga el tamaño de los objetos (estirándolos). ¿Dónde podríamos crecer más, si viviéramos en la Tierra o en la Luna?

www.lasingularidad.com

La Singularidad, ese “punto” de una densidad “infinita” (ni la luz puede escapar de allí), donde dejan de exisitir el Espacio y el Tiempo.

Pero sigamos. Hoy día sabemos que hay mucho más en la Naturaleza del mundo físico que la sola física clásica. Ya en 1900 -como decimos antes- Max Planck había revelado los primeros indicios de la necesidad de una “teoría cuántica”, aunque se necesitó un cuarto de siglo más antes de que pudiera ofrecerse una teoría bien formulada y global.

La mecánica cuánticaPostulados básicos de la mecánica cuántica - Mi sitio

También debería quedar claro que, además de todos estos profundos cambios que se han producido en los fundamentos “newtonianos” de la física, ha habido otros desarrollos importantes, tanto previos a dichos cambios como coexistentes con algunos de ellos en forma de poderosos avances matemáticos, dentro de la propia teoría newtoniana.

Teoría de la relatividad especial - Wikipedia, la enciclopedia libreLa teoría de la relatividad especial, explicada de manera sencilla

En 1905 un desconocido Albert Einstein publicaría unos espectaculares estudios sobre la teoría de la relatividad, pero muy pocos científicos, entre ellos Planck, reconocerían inmediatamente la relevancia de esta nueva teoría científica. Tanta fue su importancia que incluso Planck contribuyo a ampliarla.

Pero igualmente, la hipótesis de Einstein sobre la ligereza del quantum (el fotón), basada en el descubrimiento de Philipp Lenard de 1902 sobre el efecto fotoeléctrico fue rechazada por Planck, al igual que la teoría de James Clerk Maxwell sobre la electrodinámica.

Solvay: ¿Cuántos puedes reconocer en la foto?] – Con vídeo ...

En 1910 Einstein desafía la explicación de la física clásica poniendo el ejemplo del comportamiento anómalo del calor específico en bajas temperaturas. Planck y Nernst decidieron organizar la primera Conferencia de Solvay, para clarificar las contradicciones que aparecían en la física. En esta reunión celebrada en Bruselas en 1911, Einstein consiguió convencer a Planck sobre sus investigaciones y sus dudas, lo que hizo forjar una gran amistad entre ambos científicos, y conseguir ser nombrado profesor de física en la universidad de Berlín mientras que Planck fue decano.

Translational motion.gif

“Simulación del movimiento browniano que realiza una partícula de polvo que colisiona con un gran conjunto de partículas de menor tamaño (moléculas de gas) las cuales se mueven con diferentes velocidades en direcciones aleatorias”

Otra área importante de avance sobre la que había que llamar la atención es la termodinámica (y su refinamiento conocido como mecánica estadística). Esta estudia el comportamiento de sistemas de un gran número de cuerpos, donde los detalles de los movimientos no se consideran importantes y el comportamiento del sistema se describe en términos de promedios de las magnitudes adecuadas. Esta fue una empresa iniciada entre mediados del XIX y principios del XX, y los nombres de Carnot Clausius, Maxwell, Boltzmann, Gibbs y Einstein son los protagonistas.

Resultado de imagen de TermodinamicaIntroducción a la Termodinamica

Termodinámica.- Parte de la física que estudia las relaciones existentes entre los fenómenos dinámicos y los caloríficos. Trata de la transformación de la energía mecánica en calor y del calor en trabajo. También describe y relaciona las propiedades físicas de sistemas macroscópicos de materia y energía. La termodinámica estudia los sistemas que se encuentran en equilibrio. Esto significa que las propiedades del sistema—típicamente la presión, la temperatura, el volumen y la masa— son constantes.

Un concepto esencial de la termodinámica es el de sistema macroscópico, que se define como un conjunto de materia que se puede aislar espacialmente y que coexiste con un entorno infinito e imperturbable. El estado de un sistema macroscópico en equilibrio puede describirse mediante propiedades medibles como la temperatura, la presión o el volumen, que se conocen como variables termodinámicas. Es posible identificar y relacionar entre sí muchas otras variables (como la densidad, el calor específico, la compresibilidad o el coeficiente de expansión térmica), con lo que se obtiene una descripción más completa de un sistema y de su relación con el entorno. Cuando un sistema macroscópico pasa de un estado de equilibrio a otro, se dice que tiene lugar un proceso termodinámico. Las leyes o principios de la termodinámica, descubiertos en el siglo XIX a través de meticulosos experimentos, determinan la naturaleza y los límites de todos los procesos termodinámicos.

¿Cuales son los Principios de la Termodinámica?

Cuando dos sistemas están en equilibrio mutuo, comparten una determinada propiedad. Esta propiedad puede medirse, y se le puede asignar un valor numérico definido. Una consecuencia de ese hecho es el principio cero de la termodinámica, que afirma que si dos sistemas distintos están en equilibrio termodinámico con un tercero, también tienen que estar en equilibrio entre sí. Esta propiedad compartida en el equilibrio es la temperatura. Si uno de estos sistemas se pone en contacto con un entorno infinito situado a una determinada temperatura, el sistema acabará alcanzando el equilibrio termodinámico con su entorno, es decir, llegará a tener la misma temperatura que éste.

Calaméo - TERMODINAMICADefinición de Termodinámica » Concepto en Definición ABC

                 Primer Principio.-

La cantidad de calor entregado a un sistema es igual al trabajo realizado por el sistema más la variación de su energía interna. Cuando un sistema se pone en contacto con otro más frío que él, tiene lugar un proceso de igualación de las temperaturas de ambos. Para explicar este fenómeno, los científicos del siglo XVIII conjeturaron que una sustancia que estaba presente en mayor cantidad en el cuerpo de mayor temperatura fluía hacia el cuerpo de menor temperatura. El primer principio es una ley de conservación de la energía. Afirma que, como la energía no puede crearse ni destruirse —dejando a un lado las posteriores ramificaciones de la equivalencia entre masa y energía— la cantidad de energía transferida a un sistema en forma de calor más la cantidad de energía transferida en forma de trabajo sobre el sistema debe ser igual al aumento de la energía interna del sistema. A veces, el primer principio se enuncia como la imposibilidad de la existencia de un móvil perpetuo de primera especie.

Comunidad Biológica o Biocenosis - Ecosistemas

Flujo de la energía en los ecosistemas. En los ecosistemas se cumplen pues el primer y segundo principio de la termodinámica.

Segundo Principio.-

Segundo principio de la termodinámica (Presentación PowerPoint ...

El segundo dice que solamente se puede realizar un trabajo mediante el paso del calor de un cuerpo con mayor temperatura a uno que tiene menor temperatura. Al respecto, siempre se observa que el calor pasa espontáneamente de los cuerpos calientes a los fríos hasta quedar a la misma temperatura. La segunda ley afirma que la entropía, o sea, el desorden, de un sistema aislado nunca puede decrecer. Por tanto, cuando un sistema aislado alcanza una configuración de máxima entropía, ya no puede experimentar cambios: ha alcanzado el equilibrio. La naturaleza parece pues ‘preferir’ el desorden y el caos. Puede demostrarse que el segundo principio implica que, si no se realiza trabajo, es imposible transferir calor desde una región de temperatura más baja a una región de temperatura más alta. El segundo principio impone una condición adicional a los procesos termodinámicos. No basta con que se conserve la energía y cumplan así el primer principio. Una máquina que realizara trabajo violando el segundo principio se denomina “móvil perpetuo de segunda especie”, ya que podría obtener energía continuamente de un entorno frío para realizar trabajo en un entorno caliente sin coste alguno. A veces, el segundo principio se formula como una afirmación que descarta la existencia de un móvil perpetuo de segunda especie.

[espejo.jpg]

Tercer principio de termodinámica o principio onfalóscópico, (mirarse el ombligo): La televisión se retro-alimenta a sí misma. Se hace televisión para hablar sobre televisión.

Tercer Principio.-

Principios termodinámicos

El tercer principio de la termodinámica afirma que el cero absoluto no puede alcanzarse por ningún procedimiento que conste de un número finito de pasos. Es posible acercarse indefinidamente al cero absoluto, pero nunca se puede llegar a él.

Ciclos termodinámicos.-

Didáctica en termo: Primera Ley de la TermodinámicaCICLOS TERMODINÁMICOS

CICLO DE ABSORCION POR BROMURO DE LITIO | TEMARIOS FORMATIVOS ...CICLO DE CARNOT | FISICA FLUIDOS Y TERMODINAMICA

Todas las relaciones termodinámicas importantes empleadas en ingeniería se derivan del primer y segundo principios de la termodinámica. Resulta útil tratar los procesos termodinámicos basándose en ciclos: procesos que devuelven un sistema a su estado original después de una serie de fases, de manera que todas las variables termodinámicas relevantes vuelven a tomar sus valores originales. En un ciclo completo, la energía interna de un sistema no puede cambiar, puesto que sólo depende de dichas variables. Por tanto, el calor total neto transferido al sistema debe ser igual al trabajo total neto realizado por el sistema. Un motor térmico de eficiencia perfecta realizaría un ciclo ideal en el que todo el calor se convertiría en trabajo mecánico. El científico francés del siglo XIX Sadi Carnot, que concibió un ciclo termodinámico que constituye el ciclo básico de todos los motores térmicos, demostró que no puede existir ese motor perfecto. Cualquier motor térmico pierde parte del calor suministrado. El segundo principio de la termodinámica impone un límite superior a la eficiencia de un motor, límite que siempre es menor del 100%. La eficiencia límite se alcanza en lo que se conoce como ciclo de Carnot.

CICLO RANKINE | FISICA TERMODINAMICA

  • Gravitación
  • Luz
  • Atracción y repulsión eléctricas
  • Atracción y repulsión magnéticas
La unificación electromagnética - Revista MètodeEinstein y las Teoría de Campos Unificados

Pero sigamos con el objeto principal de este trabajo del que, como siempre me pasa, me he desviado a la termodinámica que ya se dio hace unos días. Aquí hablamos de los “campos clásicos” y, sobre las teorías físicas de campos de Maxwell y Einstein: la física “clásica” ¿Cómo pudieron hablar y describir a la perfección sucesos que el ojo no podía ver, y, simplemente con la imaginación, lo hicieron posible, hasta tal punto que, cuando hablamos de campos electromagnéticos o gravitatorios, en nuestras mentes se instalan las imágenes de unos y otros que podemos “ver” con toda precisión.

Electromagnetismo - Wikipedia, la enciclopedia libre

La teoría del electromagnetismo desempeña también un papel importante en la teoría cuántica, pues proporciona el “campo” arquetípico para el desarrollo posterios de la teoría cuántica de campos. Por el contrario, el enfoque cuántico apropiado del campo gravitatorio sigue siendo eninmático, escurridizo y controvertido y, abordar ahora aquí estas complejas cuestiones, seguramente daría lugar a explicaciones farragosas debido a mi ignorancia profunda en esos conocimientos y a la levedad de los que puedo poseer.

Electromagnetismo - Fisicalandia

Los campos de fuerza de Faraday han dado lugar a que, la imaginación se desboque y corriendo hacia el futuro, haya imaginado inmensas ciudades que, situadas en lugares imposibles, sostienen sin problema a sus habitantes que, resguardados por un “campo de fuerza” están al resguardo de cualquier peligro que del exterior les pueda venir.

Fundamentos de Física Moderna RELATIVIDAD ESPECIAL - ppt descargar

Por ahí arriba me refería al hecho de que ya en el siglo XIX se había iniciado un cambio profundo en los fundamentos en relación a fundamentos de  las revoluciones de la relatividad y la teoría cuántica en el siglo XX. El primer indicio de que sería necesario un cambio semejante se produjo con los maravillosos descubriumientos experimentales de Faraday hacia 1833, y de las representaciones de la realidad que encontró necesarias para acomodar dichos descubrimientos. Básicamente, el cambio fundamental consistió en considerar que las “partículas newtonianas” y las fuerzas” que actúan entre ellas no son los únicos habitantes de nuestro universo.

A partir de ahí había que tomar en serio la idea de un “campo” con una existencia propia incorpórea. Y, fue entonces cuando se produjo la providencial llegada de Maxwell que, al contrario de Faraday, él si entendía bien el complejo mundo de las matemáticas y, en 1864, formuló las ecuaciones que debe satisfacer este “campo” incorpóreo, y quien demostró que estos campos pueden transportar energía de un lugar a otro.

Fundamentos de Física Moderna RELATIVIDAD ESPECIAL - ppt descargar

                     ¿ Transmutando energía?

Las ecuaciones de Maxwell unificaban el comportamiento de los campos eléctricos, los campos magnéticos e incluso la luz, y hoy día son conocidas como las ecuaciones de Maxwell, las primeras entre las ecuaciones de campo relativistas. Desde la perspectiva del siglo XX se han hecho profundos cambios y se ha producido profundos avances en las técnicas matemáticas, las ecuaciones de Maxwell parecen tener una naturalidad y simplicidad concincentes que nos hacen preguntarnos cómo pudo considerarse alguna vez que el campo electromagnético pudiera obedecer a otras leyes.

1865. Las ecuaciones de Maxwell transforman el mundo | Ciencia ...

Pero semejante perspectiva ignora el hecho de que fueron las propias ecuaciones de Maxwell las que llevaron a muchos de estos desarrollos matemáticos. Fue la forma de estas ecuaciones la que indujo a Lorentz, Poincaré y Einstein a las transformaciones espaciotemporales de la relatividad especial, que, a su vez, condujeron a la concepción de Minkowaki del espaciotiempo.

¡La Mente Humana! ¿Hasta donde podrá llegar? ¿Qué limite tendrá impuesto? La respuesta es sencilla: ¡No hay límites! Y, aunque dicha afirmación la repita en muchos de mis escritos, y, aunque a algunos les parezca un sueño…, esa es,  la realidad.

emilio silvera

¡Increíble mecánica cuántica!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (16)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Representación aproximada del átomo de Helio, en el núcleo los protones están representados en rojo y los neutrones en azul. Si lo pudiéramos ver, el núcleo también es simétricamente esférico. En realidad, ese minúsculo granito másico formado por los nucleones (protones y neutrones, que a su vez están formados por quarks inmersos en una nube de gluones), es la verdadera materia, el resto, podríamos decir que son espacios vacíos en los que, los electrones cirdulan a increíbles velocidades formando un campo magnético que hace que el átomo nos parezca enteramente compacto.

Best Atomo GIFs | Gfycat

El núcleo central que contiene casi toda la masa del átomo y es rodeado por una nube de electrones que, con su carga eléctrica negativa, compensan la positiva de los protones dando estabilidad al átomo

Qué son las galaxias anillo?

“¿Es esta una galaxia o dos? Esta pregunta salió a la luz en 1950 cuando el astrónomo Arthur Hoag se topó con este inusual objeto extragaláctico. En el exterior hay un anillo dominado por brillantes estrellas azules, mientras que cerca del centro se encuentra una bola de estrellas mucho más rojas que probablemente sean mucho más antiguas. Entre los dos hay una brecha que parece casi completamente oscura. Se desconoce cómo se formó el Objeto de Hoag,”

Todos los objetos que podemos contemplar en el Universo, como la galaxia anillo de la imagen, están formados de pequeñas partículas sub-atómicas de tamaño  infinitesimal, los Quarks y los Leptones que son las partículas constituyentes de la materia. Los Quarks se juntan en tripletes (2 up y 1 down, conforman los protones, y, 2 down y 1 up  los neutrones) Los Quarks están confinados dentro de los hadrones (nucleones) por una “nube” de Gluones, los Bosones intermediarios de la fuerza nuclear fuerte..

Resaca Higgs

Todo esto queda bien explicado en el Midelo Estándar de la Física de Partículas que incluye tres de las cuatro fuerza. La fuerxza de la Gravedad no quiere juntarse con estas tres. En el gráfico de arriba podéis ver la representación de los Quarks, los Leptones y en vertical los Bosonbes intermediarios de las fuerzas.

Después de 35 años de intentos: Físicos resuelven el enigma del núcleo atómico

“Científicos confirman al fin que protones y neutrones no tienen la misma estructura dentro de un átomo que fuera de él”

En el centro del átomo pues, se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte.

Confirman la existencia de una partícula de cuatro neutrones ...

Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas sub-nucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Cuarta fase: El núcleo atómico - Teoría de Ruedas

Viajando a velocidades cercanas a la de la luz, dos partículas pueden chocar de forma violenta y, de ellas, surgen otras partículas más elementales de las que estan conformadas las primeras. Un protón está hecho de dos Quarks up y un Quark down, mientras que un neutrón, está hecho de dos Quarks down y un Quark up.

Physics & More: QCD & QED

Los Quarks están confinados por los Gluones que no les permite separarse (libertad asintótica). Es la fuerza nuclear fuerte que funciona como un muelle de acero: Su lo estiramos pone ás resistencia, así, cuando los Quarks se quieren separar la fuerza aumenta y los retiene.

Fuerzas fundamentales de la Naturaleza: Fuerza Nuclear FuerteFuerza Nuclear Débil | •Ciencia• Amino

                                                             Fuerza Fuerte y Fuerza Débil

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792,458 Km/s.

El núcleo del átomo? ¡Una maravilla de la Naturaleza! : Blog de ...Atomos | Explore Tumblr Posts and Blogs | Tumgir

Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas. En esta teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético. Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en cuenta una gran cantidad de “energía en reposo” de una partícula cualquiera, como se denota a continuación:

E = M x c2

Esto es, si la masa M se define por la ley de Newton F = M x a.

Qué es la antimateria y por qué no paras de escuchar hablar de ...Si los fotones no tienen masa, ¿dónde almacenan la energía ...

Como la velocidad de la luz es muy grande, esta ecuación sugiere que cada partícula debe almacenar una cantidad enorme de energía, y en parte esta predicción fue la que hizo que la teoría de la relatividad tuviese tanta importancia para la física (¡y para todo el mundo!). Para que la teoría de la relatividad también sea autoconsistente tiene que ser holista, esto es, que todas las cosas y todo el mundo obedezcan a las leyes de la relatividad. No son sólo los relojes los que se atrasan a grandes velocidades, sino que todos los procesos animados se comportan de la forma tan inusual que describe esta teoría cuando nos acercamos a la velocidad de la luz.

    La despedida                                         El recibimiento

El Hermano Astronáuta viajó a la velocidad de la luz y su Tiempo transcurrió más lento que el del gemelo que lo esperó en la Tierra.

El corazón humano es simplemente un reloj biológico y latirá a una velocidad menor cuando viaje en un vehículo espacial a velocidades cercanas a la de la luz. Este extraño fenómeno conduce a lo que se conoce como la “paradoja de los gemelos”, sugerida por Einstein, en la que dos gemelos idénticos tienen diferente edad cuando se reencuentran después de que uno haya permanecido en la Tierra mientras que el otro ha viajado a velocidades relativistas.

Por qué afirmó Einstein que E=mc2? | El Porqué de las Cosas ...La misma fuerza gravitatoria responsable de crear mareas en la ...

La fuerza gravitatoria crea las mareas, mantiene unidos los planetas alrefedor del Sol, las estrellas en las Galaxias, y, nuestros pies pegados al suelo del planeta para que podamos caminar.

Einstein comprendió rápidamente que las leyes de la gravedad también tendrían que ser modificadas para que cumplieran el principio relativista. Para poder aplicar el principio de la relatividad a la fuerza gravitatoria, el principio tuvo que ser extendido de la siguiente manera: no sólo debe ser imposible determinar la velocidad absoluta del laboratorio, sino que también es imposible distinguir los cambios de velocidad de los efectos de una fuerza gravitatoria.

     La fuerza de Gravedad incide en todos los objetos celestes, y, hasta la luz, se ve afectada cuando interacciona con cuerpos muy densos como se ha podido comprobar en multitud ee ocasiones. Ne encantaría saber como funciona en verdad la Gravedad, esa fuerza misteriosa que mantiene unidos los planetas alrededor del Sol y a nosotros sobre la superficie terrestre

Einstein comprendió que la consecuencia de esto era que la gravedad hace al espacio-tiempo lo que la humedad a una hoja de papel: deformar la superficie con desigualdades que no se pueden eliminar. Hoy en día se conocen muy bien las matemáticas de los espacios curvos, pero en el época de Einstein el uso de estas nociones matemáticas tan abstractas para formular leyes físicas era algo completamente nuevo, y le llevó varios años encontrar la herramienta matemática adecuada para formular su teoría general de la relatividad que describe cómo se curva el espacio en presencia de grandes masas como planetas y estrellas.

photoDivulgación - ¡Obedece, cuásar! - Cuásares rebeldes y anarquistas ...

Cuatro imágenes del mismo cuásar rodean una galaxia en un típico espejismo topológico

En vez de ser plano e infinito, el universo podría estar replegado en sí mismo y nuestra percepción distorsionada por rayos luminosos que se multiplican. Como en un espejismo. Algún día sabremos, como es, en realidad nuestro Universo.

Los científicos están a punto de demostrar que existe un universo ...

                                     La Teoría de un Universo espejo

Einstein tenía la idea en su mente desde 1907 (la relatividad especial la formuló en 1905), y se pasó 8 años buscando las matemáticas adecuadas para su formulación.

 g = \sum_{i,j=1}^n g_{ij} \ dx^i \otimes dx^j, \qquad \qquad [g_{ij}] = \begin{pmatrix} g_{11} & g_{12} & ... & g_{1n} \\ g_{21} & g_{22} & ... & g_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ g_{n1} & g_{n2} & ... & g_{nn} \end{pmatrix}

 

 

Eso permite hacer que el espacio tenga estructura de Variedad de Riemann y en él pueda definirse la llamada forma de volumen que es la n-forma  siguiente:

 

\eta_V = \frac{\sqrt{\det g}}{n!}\ dx^1\land dx^2 \land \dots \land dx^n

 

En esas condiciones el hipervolumen de una región Ω (con frontera suficientemente regular) viene definida por la integral:

 

HV(\Omega)= \int_\Omega \eta_V := \int_\Omega \left(\sqrt{\det g}\right)\ dx^1dx^2\dots dx^n

 

Pero dejemos la complejidad matemática y volvamos a la hisotoria que se cuenta con palabras sencillas.

 

 

 

Leyendo el material enviado por un amigo al que pidió ayuda (Marcel Grossman), Einstein quedó paralizado. Ante él, en la primera página de una conferencia dada ante el Sindicato de Carpinteros, 60 años antes por un tal Riemann, tenía la solución a sus desvelos: el tensor métrico de Riemann, que le permitiría utilizar una geometría espacial de los espacios curvos que explicaba su relatividad general.

 De la lección de Riemann se deduce que en espacios multidimensionales se crea el principio de que el espacio múltiple (de más dimensiones) unifica las leyes de la naturaleza encajándolas en el tensor métrico como piezas de un rompecabezas N-dimensional. Riemann anticipó otro desarrollo de la física; fue uno de los primeros en discutir espacios múltiples y conexos, o agujeros de gusano.

Partículas - Superposición cuántica - Wattpad

La carga positiva de los protones es compensada por la negativa de los electrones

No está mal que en este punto recordemos la fuerza magnética y gravitatoria que nos puede ayudar a comprender mejor el comportamiento de las partículas subatómicas. El electromagnetismo, decíamos al principio, es la fuerza con la cual dos partículas cargadas eléctricamente se repelen (si sus cargas son iguales) o se atraen (si tienen cargas de signo opuesto).

La interacción magnética es la fuerza que experimenta una partícula eléctricamente cargada que se mueve a través de un campo magnético. Las partículas cargadas en movimiento generan un campo magnético como, por ejemplo, los electrones que fluyen a través de las espiras de una bobina.+

Un electrón y un protón se atraen de dos maneras, por un lado a causa de que el primero tiene carga eléctrica positiva y el segundo negativa, y ya se sabe que cargas contrarias se atraen. Por el otro, a causa de sus propias masas, como efecto de la fuerza de la gravedad. Se puede calcular que la atracción causada por las cargas eléctricas es aproximadamente “10 elevado a 40” veces mayor que la atracción gravitatoria.

Ligth Knight: Fuerza ElectromagnéticaHágase la luz” y se hizo... una onda electromagnética - El Bierzo ...

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

Interacciones fundamentales : Blog de Emilio Silvera V.

La fuerza de Gravedad y la electromagnética tienen alcance infinitos (Se debilitan con la distancia)

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

También antes hemos comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el nombre de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

        La curvatura del espacio-tiempo se produce por la gravedad que incide y está presente

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros (también el mismo Einstein aportó su granito de arena), nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

que interaccion mantiene las estructuras del universo unidas , si ...showarrecifes Instagram posts (photos and videos) - Instazu.com

Estrella - Wikipedia, la enciclopedia libreLa Física y el Universo : Blog de Emilio Silvera V.

Todo esto es posible por la Fuerza de la Gravedad que mantiene junto los elementos

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

 

El gravitón hace tiempo que se ríe de nosotros…y se esconde donde no lo podamos ver.

Hablamos de la partícula mediadora, el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

Una pizca de ciencia: entrelazamiento cuántico – DiarioPergamino ...Tecnologías Cuánticas 1: Transmisión de información cuántica ...

El Principio de IncertidumbreRelación de indeterminación de Heisenberg - Wikipedia, la ...

Pauli Exclusion PrinciplePrincipio de exclusión de Pauli – Mi aventura en 2º bach(ata)

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

Nos gustaría saber si existe algo más allá de los Quarks, esas infinitesimales partículas “elementales” que conforman protones y neutrones.

ISÓTOPOS Y RADIOACTIVIDAD

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

3d Rinden De La Estructura Del átomo De Nitrógeno Aislado Sobre ...Cuántos Electrones de Valencia Tiene el Carbono? - LifederTOmo De Nitrógeno. Estructura átomo De Nitrógeno. Vector ...Concepto de diagrama de átomo de uranio | Vector Premium

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadrones para mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10-15 metros.

2019 octubre 06 : Blog de Emilio Silvera V.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

Miden, por primera vez, la luz de todas las estrellas que han ...Misteriosas explosiones de luz en el Universo. - Seres extraños y ...

Descubren el agujero negro más pequeño del universoCuásares alcanzan 70% de la velocidad de la luz en el universo ...

MUSE revela un brillante anillo de luz en el universo distante ...La exposición Un universo de luz presenta diferentes aplicaciones ...

Toda la materia del Universo (la Bariónica), emite radiación, es decir, emite energía por medio de fotones, por medio de luz que impregna todos los acontecimientos de transiciones de fase de los objetos y de las fuerzas que conocemos en las que están presentes la emisión y absorción de fotones.

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

En física moderna, el fotón es la partícula elemental responsable de las manifestaciones cuánticas del fenómeno electromagnético. Es la partícula portadora de todas las formas de radiación electromagnética, incluyendo a los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas, y las ondas de radio.

Corrimiento al rojo : El color de la luz depende del observador ...

El fotón tiene una masa invariante cero,y viaja en el vacío con una velocidad constante c. Como todos los cuantos, el fotón presenta tanto propiedades corpusculares como ondulatorias (“dualidad onda-corpúsculo”). Se comporta como una onda en fenómenos como la refracción que tiene lugar en una lente, o en la cancelación por interferencia destructiva de ondas reflejadas; sin embargo, se comporta como una partícula cuando interacciona con la materia para transferir una cantidad fija de energía.

La luz, ese fenómeno natural que nos tiene guardadas muchas sorpresas. Está hecho de fotones, el cuanto de luz, y, le da respuesta al campo gravitatorio de un agujero negro que la engulle, y, si no tiene masa, ¿cómo ocurre eso? ¡sabemos tan poco! (de algunas cosas). Como antes decía, la luz es algo que aún no hemos llegado a comprender en toda su magnitud y, desde luego, esconde secretos que debemos desvelar si pretendemos conocer, de verdad, el Universo.

Representación esquemática de la forma en que el átomo de mercurio (Hg) emite fotones de luz. utravioleta, invisibles para el ojo humano y como el átomo de fósforo  (P)  los  convierte  en  fotones  de. luz blanca visible, tal como ocurre en el interior del tubo de una lámpara fluorescente.

Representación esquemática de la forma en que el átomo de mercurio (Hg) emite fotones de luz. utravioleta, invisibles para el ojo humano y como el átomo de fósforo (P) los convierte en fotones de luz blanca visible, tal como ocurre en el interior del tubo de una lámpara fluorescente.

Los físicos de partículas suelen encontrarse en sus vidas profesionales con el inconveniente de que aquello con lo que trabajan es tan sumamente pequeño que se vuelve indetectable tanto para el ojo humano como para los más avanzados sistemas de microscopía. Es cierto que en la actualidad se pueden conseguir imágenes en las que se distinguen átomos individuales cuando estos son lo suficientemente grandes, pero de ahí a poder visualizar un sólo protón, o un aún más pequeño electrón, hay un escalón insalvable para la técnica actual.

Bosón de Higgs - Wikipedia, la enciclopedia libreBosón de Higgs: qué es y por qué es tan importante

Termina el ciclo de colisiones entre protones en el LHC con otro ...El CERN presenta el sucesor del LHC | Actualidad | Investigación y ...

           Los experimentos en el LHC han dejado al descubierto muchos misterios

¿Cómo pueden, pues, los físicos saber que aquello con lo que trabajan no es un mero ente creado por su mente? ¿Cómo se pueden asegurar de que las partículas subatómicas existen en realidad? La respuesta es obvia: a través de su interacción con otras partículas o con otro sistema físico; y un ejemplo extraordinario de ello es el que se puede contemplar en una cámara de niebla.

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por estos aparatos “cámaras de niebla”. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida entre la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el nombre de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

Antes de seguir veamos las partículas elementales de vida superior a 10-20 segundos que eran conocidas en el año 1970.

Nombre Símbolo Masa (MeV) Carga Espín Vida media (s)
Fotón γ 0 0 1
Leptones (L = 1, B = 0)
Electrón e- 0’5109990 ½
Muón μ- 105’6584 ½ 2’1970 × 10-6
Tau τ
Neutrino electrónico νe ~ 0 0 ½ ~ ∞
Neutrino muónico νμ ~ 0 0 ½ ~ ∞
Neutrino tauónico ντ ~ 0 0 ½ ~ ∞
Mesones (L = 0, B = 0)
Pión + π+ 139’570 2’603 × 10-8
Pión – π- 139’570 2’603 × 10-8
Pión 0 π0 134’976 0’84 × 10-16
Kaón + k+ 493’68 1’237 × 10-8
Kaón – k- 493’68 1’237 × 10-8
Kaón largo kL 497’7 5’17 × 10-8
Kaón corto kS 497’7 0’893 × 10-10
Eta η 547’5 0 0 5’5 × 10-19
Bariones (L = 0, B = 1)
Protón p 938’2723 + ½
Neutrón n 939’5656 0 ½ 887
Lambda Λ 1.115’68 0 ½ 2’63 × 10-10
Sigma + Σ+ 1.189’4 + ½ 0’80 × 10-10
Sigma – Σ- 1.1974 ½ 7’4× 10-20
Sigma 0 Σ0 0 ½ 1’48 × 10-10
Ksi 0 Ξ0 1.314’9 0 ½ 2’9 × 10-10
Ksi – Ξ- 1.321’3 ½ 1’64 × 10-10
Omega – Ω- 1.672’4 0’82 × 10-10

¡Y hay muchas más…!
Recomendamos visitar la lista “oficial” en http://pdg.lbl.gov/

 

Para cada leptón y cada barión existe la correspondiente antipartícula, con exactamente las mismas propiedades a excepción de la carga que es la contraria. Por ejemplo, el antiprotón se simboliza con  y el electrón con e+. Los mesones neutros son su propia antipartícula, y el π+ es la antipartícula del π-, al igual que ocurre con k+ y k-. El símbolo de la partícula es el mismo que el de su antipartícula con una barra encima. Las masas y las vidas medias aquí reflejadas pueden estar corregidas en este momento, pero de todas formas son muy aproximadas.

Nunca me cansaré de mirar ésta maravilla que, no por pequeña, deja de ser de lo más importante del Universo. De hecho, todo lo que conocemos está conformado por estos infinitesimales objetos. Todo lo grande está hecho de cosas pequeñas.

Los símbolos que se pueden ver algunas veces, como s (extrañeza) e i (isoespín) están referidos a datos cuánticos que afectan a las partículas elementales en sus comportamientos.  En la física de partículas,  el isospín (espín isotópicoespín isobárico) es un número cuántico relacionado a la interacción fuerte y aplicado a las interacciones del neutrón y del protón. El isospín fue introducido por Werner Hesinmberg para explicar muchas simetrías.

6 rarezas del universo cuántico que te causarán asombro - VIX6 rarezas del universo cuántico que te causarán asombro - VIX

En el mundo de las partículas nada es seguro. El universo cuántico ...Mecnaica cuantica

Debo admitir que todo esto tiene que sonar algo misterioso. Es difícil explicar estos temas por medio de la simple palabra escrita sin emplear la claridad que transmiten las matemáticas, lo que, por otra parte, es un mundo secreto para el común de los mortales, y ese lenguaje es sólo conocido por algunos privilegiados que, mediante un sistema de ecuaciones pueden ver y entender de forma clara, sencilla y limpia, todas estas complejas cuestiones.

Obstinados navegantes en océanos de incertidumbre: MUNDO ANALÓGICO ...

Estamos huecos y vibramos. Los electrones van a toda prisa; parece que dan siete mil billones (7.000.000.000.000.000 = 7×1015) revoluciones por segundo. A esa increíble velocidad casi puede decirse que cada electrón está simultáneamente en todos los puntos de su órbita. Tienen que ir así de rápidos para generar la suficiente fuerza centrífuga que contrarreste la también fortísima fuerza de atracción eléctrica del núcleo (los protones tienen carga positiva, los electrones negativa).

Si hablamos del espín (o, con más precisión, el momento angular, que es aproximadamente la masa por el radio por la velocidad de rotación) se puede medir como un múltiplo de la constante de Planck, h, dividido por . Medido en esta unidad y de acuerdo con la mecánica cuántica, el espín de cualquier objeto tiene que ser o un entero o un entero más un medio. El espín total de cada tipo de partícula – aunque no la dirección del mismo – es fijo.

El electrón, por ejemplo, tiene espín ½. Esto lo descubrieron dos estudiantes holandeses, Samuel Gondsmit (1902 – 1978) y George Uhlenbeck (1900 – 1988), que escribieron sus tesis conjuntamente sobre este problema en 1972. Fue una idea audaz que partículas tan pequeñas como los electrones pudieran tener espín, y de hecho, bastante grande. Al principio, la idea fue recibida con escepticismo porque la “superficie del electrón” se tendría que mover con una velocidad 137 veces mayor que la de la luz, lo cual va en contra de la teoría de la relatividad general en la que está sentado que nada en el universo va más rápido que la luz, y por otra parte, contradice E=mc2, y el electrón pasada la velocidad de la luz tendría una masa infinita. Hoy día, sencillamente, tal observación es ignorada, toda vez que el electrón carece de superficie.

           ENTRE FERMIONES Y BOSONES

 

Lo que vemos arriba son nubes compuestas por dos isótopos de litio: la de la izquierda está formada a partir de bosones, mientras que la de la derecha está formada a partir de fermiones. A medida que baja la temperatura, los bosones se apilan unos sobre otros, pero los fermiones se mantienen separados, ya sabeis, el Principio de exclusión de Pauli.

Qué es el principio de exclusión de Pauli | El principito ...

Las nubes de átomos se muestran a tres temperaturas diferentes: 810, 510 y 240 nano-Kelvin. Un nano-Kelvin es una temperatura extremadamente fría – es una milmillonésima de grado sobre el cero absoluto, que es -460 grados Fahrenheit. Cuando la temperatura es más fría, uno puede ver que el gas de bosones, que se muestra a la izquierda, se funde en una nube compacta, mientras que el tamaño de los gases de fermiones se estabiliza a un tamaño específico.