viernes, 03 de julio del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Los grandes Números del Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en La Física y el Universo    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en su conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.

Arthur Stanley Eddington - Wikipedia, la enciclopedia libreArthur Stanley Eddington y la producción de energía de las estrellas

Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También  hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.

The man who made Einstein world-famous - BBC News

                        Eddintong con Einstein

Entre los números que Eddington consideraba de importancia primordial estaba al que ahora conocemos como número de Eddington, que es igual al número de protones en el universo visible. Eddington calculó (a mano) este número con enorme precisión en un crucero trasatlántico, sentado en cubierta, con libreta y lápiz en la mano, tras calcular concienzudamente durante un tiempo, finalizó escibiendo:

“Creo que el Universo hay:

15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296

de protones y el mismo número de electrones”.

 

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080.  Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente.

Durante la década de 1.920, cuando Eddington empezó su búsqueda para explicar las constantes de la naturaleza, no se conocían bien las fuerzas débil y fuerte. Las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la gravedad y las fuerzas electromagnéticas. Eddington las dispuso en tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y del electrón:

mpr/me ≈ 1840

La inversa de la constante de estructura fina

2πhc/e≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón,

e2/Gmpr me ≈ 1040

A estas añadió su número cosmológico, NEdd ≈ 1080. A estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafío de la ciencia teórica:

 “¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física que pueda demostrar que una o todas ellas podrían ser prescindibles? ¿Podrían haber sido diferentes de lo que realmente son?…  Surge la pregunta de si las razones anteriores pueden ser asignadas arbitrariamente o si son inevitables.  En el primer caso, sólo podemos aprender sus valores por medida; en el segundo caso es posible encontrarlos por la teoría…  Creo que ahora domina ampliamente la opinión de que las (cuatro anteriores) constantes… no son arbitrarias, sino que finalmente se les encontrará una explicación teórica; aunque también he oído expresar lo contrario.”

 

     Medida una y mil veces, α parece que no cambia a pesar de todo

Siguiendo con su especulación Eddington pensaba que el número de constantes inexplicadas era un indicio útil del hueco que había que cerrar antes de que se descubriese una teoría verdaderamente unificada de todas las fuerzas de la naturaleza.  En cuanto a si esta teoría final contenía una constante o ninguna, tendríamos que esperar y ver:

Las constantes de la Naturaleza : Blog de Emilio Silvera V.Ciencias Planetarias y Astrobiología : La constante de estructura ...

 “Nuestro conocimiento actual de 4 constantes en lugar de 1 indica meramente la cantidad de unificación de teoría que aún queda por conseguir. Quizá resulte que la constante que permanezca no sea arbitraria, pero de eso no tengo conocimiento.”

Eddington, como Max Planck, Einstein y Galileo, y Newton antes que ellos, era simplemente un adelantado a su tiempo; comprendía y veía cosas que sus coetáneos no podían percibir.

Hay una anécdota que se cuenta sobre esto y que ilustra la dificultad de muchos para reconciliar el trabajo de Eddington sobre las constantes fundamentales con sus monumentales contribuciones a la relatividad general y la astrofísica. La historia la contaba Sam Goudsmit referente a él mismo y al físico holandés Kramers:

  Samuel Abraham Goudsmit, George Uhlenbeck y Hendrik Kramers

“El gran Arthur Eddington dio una conferencia sobre su derivación de la constante de estructura fina a partir de una teoría fundamental. Goudsmit y Kramers estaban entre la audiencia.  Goudsmit entendió poco pero reconoció que era un absurdo inverosímil. Kramers entendió mucho y reconoció que era un completo absurdo. Tras la discusión, Goudsmit se acercó a su viejo amigo y mentor Kramers y le preguntó: ¿Todos los físicos se vuelven locos cuando se hacen mayores? Tengo miedo. Kramers respondió, “No Sam, no tienes que asustarte. Un genio como Eddington quizá puede volverse loco pero un tipo como tú sólo se hace cada vez más tonto”.

 

La historia es la ciencia de las cosas que no se repiten ...

               El filósofo-poeta , prosista y pensador

Aquí hablamos del Universo, de las Teorías que tratan de explicarlo, de la Mente humana que no hemos llegado a comprender, y, hemos llegado a la conclusión que, como dijo aquel pensador: “No sólo de pan vive el hombre”. Necesitamos sentir y crear para alcanzar la plenitud, para dar algún sentido a nuestras vidas.

   Aquí también están algunas de esas constantes

Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón crea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.

       Nuestro universo es como lo podemos observar gracias a esos números

El mayor misterio que rodea a los valores de las constantes de la naturaleza es sin duda la ubicuidad de algunos números enormes que aparecen en una variedad de consideraciones aparentemente inconexas. El número de Eddington es un ejemplo notable. El número total de protones que hay     dentro del alcance del universo observable esta próximo al número

1080

Si preguntamos ahora por la razón entre las intensidades de las fuerzas electromagnéticas y gravitatoria entre dos protones, la respuesta no depende de su separación, sino que es aproximadamente igual a

1040

En un misterio. Es bastante habitual que los números puros que incluyen las constantes de la naturaleza difieran de 1 en un factor del orden de 102, ¡pero 1040, y su cuadrado 1080, es rarísimo! Y esto no es todo. Si seguimos a Max Planck y calculamos en valor estimado para la “acción” del universo observable en unidades fundamentales de Planck para la acción, obtenemos.

10120

   Supernovas, Nebulosas, Estrellas… ¡Fuerzas y Constantes fundamentales!

La Constante Cosmológica: Uno de los mayores remordimientos de ...

Algunos llegan a afirmar que, el Universo es plano e indican que la “energía oscura” es probablemente la constante cosmológica de Einstein…¡Vivir para ver! El maestro llegó a decir que incluir la constante cosmológica en su ecuación había sido el mayor error de su vida y, sin embargo ahora… resulta que sí estaba en lo cierto. ¡Ya veremos!

Ya hemos visto que Eddington se inclinaba a relacionar el número de partículas del universo observable con alguna cantidad que incluyera la constante cosmológica. Esta cantidad ha tenido una historia muy tranquila desde esa época, re-emergiendo ocasionalmente cuando los cosmólogos teóricos necesitan encontrar una manera de acomodar nuevas observaciones incómodas.

El Hubble detecta la estrella más lejanaEl Hubble capta una rara supernova multiplicada por una «lupa» del ...

Recientemente se ha repetido este escenario. Nuevas observaciones de alcance y precisión sin precedentes, posibilitadas por el telescopio espacial Hubble trabajando en cooperación con telescopios sensibles en tierra, han detectado supernovas en galaxias muy lejanas. Su pauta de brillo y atenuación característica permite deducir su distancia a partir de su brillo aparente. Y, sorprendentemente, resulta que están alejándose de nosotros mucho más rápido de lo que cualquiera esperaba. La expansión del universo ha pasado de ser un estado de deceleración a uno de aceleración. Estas observaciones implican la existencia de una constante cosmológica positiva (Λ+). Si expresamos su valor numérico como número puro adimensional medido en unidades del cuadrado de la longitud de Planck, entonces obtenemos un número muy próximo a

10-120

Nunca se ha encontrado un número más pequeño en una investigación física real. Podemos decir que es el más grande de los pequeños números.

Hablar del Universo en todo su conjunto…, no es nada fácil. Podemos hablar de parcelas, de elementos por separado y también de sucesos, objetos y de la mecánica celeste de manera individualizada para tratar de comprenderlos mejor y, más tarde, juntarlos para tener una perspectiva de su conjunto que… No siempre podemos llegar a comprender. ¡Es tanto lo que esas constantes nos quieren decir! que comprenderlas y entenderlo todo…, nos llevará algún tiempo.

¿Qué vamos a hacer con todos estos grandes números? ¿Hay algo cósmicamente significativo en 1040 y sus cuadrados y cubos?

http://upload.wikimedia.org/wikipedia/commons/7/78/Hermann_Weyl_ETH-Bib_Portr_00890.jpg

                                                            Hermann Weyl

La aparición de algunos de estos grandes números ha sido una fuente de sorpresas desde que fue advertida por vez primera por Hermann Weyl en 1.919. Eddington había tratado de construir una teoría que hiciera comprensible su aparición, pero no logró convencer a un número significativo de cosmólogos de que estaba en la vía correcta. Pero sí convenció a la gente de que había algo que necesitaba explicación. De forma inesperada, fue precisamente uno de sus famosos vecinos de Cambridge quien escribió a la revista Nature la carta que consiguió avivar el interés por el problema con una idea que sigue siendo una posibilidad viable incluso hoy.

                                 Paul Dirac

Paul Dirac ocupó la cátedra lucaciana de matemáticas en Cambridge durante parte del tiempo en que Eddington estuvo viviendo en los observatorios. Las historias que se cuentan de Paul Dirac dejan muy claro que era un tipo con un carácter peculiar, y ejercía de matemático las 24 h. del día. Se pudo saber que su inesperada incursión en los grandes números fue escrita durante su viaje de novios (Luna de miel), en febrero de 1937.

Aunque no muy convencido de las explicaciones de Eddington, escribió que era muy poco probable que números adimensionales muy grandes, que toman valores como 1040 y 1080, sean accidentes independientes y no relacionados: debe existir alguna fórmula matemática no descubierta que liga las cantidades implicadas. Deben ser consecuencias más que coincidencias.

Esta es la hipótesis de los grandes números según Dirac:

“Dos cualesquiera de los números adimensionales muy grandes que ocurren en la naturaleza están conectados por una sencilla relación matemática, en la que los coeficientes son del orden de la unidad”.

 

La magia del número 137 – Blog de UnicoosCiencias Planetarias y Astrobiología : La constante de estructura ...

Alafa la Constante de estructura fina, el número puro y adimensional 137

El Nobel León Lederman (Director del CERN muchos años), decía que todos los físicos del mundo deberían tener en el lugar más destacado de sus casas, un marco con el número 137. El motivo de tan conveniente obligación, sería recordarles, cada vez que lo vieran, lo poco que sabemos.

Nos puede parecer mentira pero… Los verdaderos grandes números están en ¡La Mente!

Los grandes números de que se valía Dirac para formular esta atrevida hipótesis salían del trabajo de Eddington y eran tres:

N1 = (tamaño del universo observable) / (radio del electrón)

= ct (e2/mec2) ≈ 1040

N2 = Razón fuerza electromagnética-a-gravitatoria entre protón y electrón

= e2/Gme mp ≈ 1040

N = número de protones en el universo observable

= c3t/Gmp ≈ 1080

Aquí t es la edad actual del universo, me es la masa de un electrón, mp es la masa de un protón, G la constante de gravitación, c la velocidad de la luz y e la carga del electrón.

es el conjunto de todo lo que existe,lo que esta cerca y a ...Boletines - Marzo 2014 | BOLETIN ENCIENDE - CHISPAS DE LA CIENCIA ...

Constantes universales : Blog de Emilio Silvera V.

     El Universo es todo lo que existe: Materia, Tiempo y Espacio inmersos en un océano de fuerzas y constantes

Según la hipótesis de Dirac, los números N1, N2y raizN eran realmente iguales salvo pequeños factores numéricos del orden de la unidad. Con esto quería decir que debe haber leyes de la naturaleza que exijan fórmulas como N1 = N2, o incluso N1 = 2N2. Un número como 2 ó 3, no terriblemente diferente de 1 está permitido porque es mucho más pequeño que los grandes números implicados en la fórmula; esto es lo que él quería decir por “coeficientes….  del orden de la unidad”.

Esta hipótesis de igualdad entre grandes números no era en sí misma original de Dirac. Eddington y otros habían escrito antes relaciones muy semejantes, pero Eddington no había distinguido entre el número de partículas del universo observable, que se define como una esfera centrada en nosotros con un radio igual a la velocidad de la luz multiplicada por la edad actual del universo, o lo que es lo mismo:

PERCEPCIÓN ESPACIO TEMPORALCurvatura del espacio-tiempo - Wikipedia, la enciclopedia libre

Espacio-tiempo - Wikipedia, la enciclopedia libreAstrofísica y Física: Teoría de Einstein del espacio-tiempo curvado

La trayectoria del llamado Universo Observable (y del cual somos su centro al recorrer su geodésica en la geometría espacio-temporal) tiene la forma perimetral de una gota (forma de media lemniscata; cosa curiosa, lemniscata: figura curva ∞ usada como el símbolo de infinito ¿?) que al girarla 45 ° y desarrollar un cuerpo de revolución, se obtienen dos campos toroidales cual si fuesen imágenes antagónicas (una reflejada) de una fuente (surtidor – sumidero cada uno), correspondiendo uno al campo material y el otro al antimaterial.

poderes unidos - trayectoria del universo observable poderes unidos - trayectoria del universo observable_02

               Trayectoria del Universo observable.

Lo están ocupando en su totalidad, se retroalimentan a sí mismos en la Hipersingularidad (punto de contacto de los dos campos, principio y fin de ambos flujos donde reacciona la materia y la antimateria con la finalidad de mantener separados ambos universos con el adicional resultado de impulsar nuevamente a los fluidos universales de ambos campos a recorrer la finita trayectoria cerrada (geodésica) siendo el motor propulsor universal de dos volúmenes dinámicos, finitos pero continuos).

Universo observable: R = 300.000 × 13.500.000.000

La propuesta de Dirac provocó un revuelo entre un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, pero escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.

Atención! El Universo observable ahora es más pequeño | Muy ...

“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran Número [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.

Cuando hablamos del Universo, de inmediato, surgen las polémicas y los desacuerdos y las nuevas ideas y teorías modernas que quieren ir más allá de lo que “se sabe”, nunca han gustado en los centros de poder de la Ciencia que ven peligrar sus estatus con ideas para ellos “peregrinas” y que, en realidad, vienen a señalar nuevos posibles caminos para salir del atolladero o callejón sin salida en el que actualmente estamos inmersos: Mecánica cuántica y Relatividad que llevan cien años marcando la pauta en los “mundos” de  lo muy pequeño y de lo muy  grande sin que nada, las haya podido desplazar.

Ciencia a la última: Materia oscura y energia oscura (Adrián Gil y ...

Esto nos deja con un ridículo 4% para la materia Bariónica que emite luz

Mientras tanto, continuamos hablando de materia y energía oscura que delata la “oscuridad” presente en nuestras mentes, creamos modelos incompletos en el que no sabemos incluir a todas las fuerzas y en las que (para cuadrar las cuentas), hemos metido con calzador y un poco a la fuerza, parámetros que no hemos sabido explicar (como el Bosón de Higgs en el Modelo Estándar que…, a pesar de todo ¡No está muy claro que esté ahí!).  Sin embargo y a pesar de todo, el conocimiento avanza, el saber del mundo aumenta poco a poco y, aunque despacio, el conocimiento no deja de avanzar y, esperemos que las ideas surjan y la imaginación en la misma medida para que, algún día en el futuro, podamos decir que sabemos, aunque sea de manera aproximada, lo que el Universo es.

emilio silvera

La compleja Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en La Física y el Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Imagen de una Supernova en Observatorio infoResultado de imagen de Imagen de una Supernova en Observatorio infoResultado de imagen de Imagen de una Supernova en Observatorio infoResultado de imagen de Imagen de una Supernova en Observatorio info

En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:

H, He, (Li, Be, B) C, N, O… Fe

¿Apreciáis la maravilla? Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente.

Resultado de imagen de Formación de discos planetarios

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico.

Resultado de imagen de Redes cristalinas

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas.

Resultado de imagen de Los seres vivos inteligentes

Resultado de imagen de Los seres vivos inteligentes

Resultado de imagen de Los seres vivos inteligentes

¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte? Y, por otra parte, creernos que somos los únicos seres inteligentes del Universo… Parece un poco pretencioso.

Resultado de imagen de Mundo inorgánico

La principal diferencia entre los compuestos orgánicos y los inorgánicos es la presencia de un átomo de carbón.

Los compuestos orgánicos contienen un átomo de carbono y, usualmente, también tienen un átomo de hidrogeno para formar hidrocarbonos. Por su lado, casi ninguno de los compuestos inorgánicos contienen átomos de carbono y/o hidrógeno.

Resultado de imagen de El inmenso mundo molecular inorgánico

También en el Espacio Interestelar y en las Nebulosas encontramos moléculas necesarias para la vida

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Según decía en páginas anteriores, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones.

Resultado de imagen de La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla

Esta imagen equivaldría a considerar un metal como un átomo gigante en el que los niveles energéticos poseyeran una anchura finita.

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es , lo que significa que una molécula de hidrocarburo contiene átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

Resultado de imagen de El número de protones y neutrones determina al elementoResultado de imagen de El número de protones y neutrones determina al elemento

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

Hablemos un poco de moléculas.

Resultado de imagen de MoléculasResultado de imagen de MoléculasResultado de imagen de MoléculasResultado de imagen de Moléculas

El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

Resultado de imagen de molecula de hidrógeno

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.

Resultado de imagen de Molécula de Uranio

Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones.  Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.

Resultado de imagen de Átomos de Uranio

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales spdfgh. Este pequeño número nos proporciona una gran diversidad.

Resultado de imagen de hibridación atómica

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.

Resultado de imagen de Negantropía

La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas isoelectrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

Imagen relacionada

Imagen relacionada

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor.

emilio silvera

Espacio-tiempo curvo y los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en La Física y el Universo    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. Esta sencilla ecuación es la demostración irrebatible de la grandeza de la mente humana que, con unos pocos signos nos puede decir tánto. De las ecuaciones de campo de Einstein, se pudieron deducir muchas cosas, tales como que el espacio se curva en presencia de grandes masas, como mundos, estrellas y galaxias para configurar la geometría del espacio.

 

 

 

 

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distosiona el esapcio-tiempo. En estos lugares que, como océanos de gas y polvo iniozado por la radiación de las estrellas masivas más jóvenes, existen moléculas complejas que, en algún caso, son esenciales para la existencia de la vida.

 

La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski).  Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.

La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.

 

 

File:3D coordinate system.svg

En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad  nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.

En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

 

 

 

 

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un . (“¿Qué hay en un nombre? Lo que llamamos rosa, / con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-) - La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.

También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.

 

Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.

 

 

 

Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividadespecial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividadgeneral nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

 

 

 

 

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividadgeneral que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.

 

 

 

En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

 

 

 

http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

 

 

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

 

Resultado de imagen de Se sabe ahora que el radio de Schwarzschild es el radio del horizonte de sucesos de un agujero negro que no gira

 

Cuando ambas rotaciones tienen lugar en el mismo sentido (imagen inferior), la “última órbita estable” coincide con el “radio de Schwarzschild”.

 

Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…

Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad- debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.

 

 

Resultado de imagen de la singularidad del agujero negro

 

 

 

Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender  que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.

 

 

 

 

 

Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

 

 

 

 

 

Esta pretende ser la imagen de un extraño objeto masivo, un quásar  que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).

Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

 

 

Resultado de imagen de Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos,

 

 

Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

 

 

 

Supernova 1987 A

 

El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.

Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espaciotiempo y dibujar la geometría del universo.

 

 

 

 

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.

Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

 

 

 

 

 

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercewr aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

 

 

Resultado de imagen de La masa del agujero negro distorsiona el Espacio-tiempo

 

 

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividadgeneral deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.

Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negroencontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.

 

 

 

 

 

Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta  la extenuación:

 

 

“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado”  Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.

 

El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

 

 

 

File:Cassini-science-br.jpg

 

 

Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debidad resulta engañosa poreque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.

¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!

 

En el Universo todo es fruto de dos fuerzas contrapuestas:

 

 


 

 

Por ejemplo, las estrellas son estables por el hecho de que, la energía de fusión tiende a expandir la estrella y, la fuerza de Gravedad generada por su ingente masa, la hace contraerse. De esa manera, las dos fuerzas se contrarrestan y consiguen estabilizar a la estrella que vive miles de años. Cuando se agota el combustible nuclear de fusión, la estrella queda a merced de la Gravedad y se contrae (implosiona) bajo el peso de su propia masa, la gravedad la aplasta más y más hasta convertirla en una estrella de neutrones y un agujero negro si es una estrella masiva.

 

 

 

 

 

En el átomo, el equilibrio se alcanza como consecuencia de que, los protones (los nucleones que forman el núcleo), están cargados positivamente, y, los electrones que orbitan a su alrededor, están cargadas eléctricamente con cargas negativas equivalentes, con lo cual, el equilibrio queda servido y se alcanza la establidad.

 

 

Diagrama de Kruskal-Szekeres para un agujero negro. Las rectas azules son superficies de tiempo constante. Las curvas verdes son superficies de radio constante. -Las regiones I y II (sólo la parte blanca) son el exterior y el interior de un agujero negro. -La región III es una región exterior al agujero negro “paralela”. -La región IV (sólo la parte blanca) es un agujero blanco. Las zonas grises adyacentes a las regiones II y IV son las singularidades.

 

Resultado de imagen de Agujero blanco

 

El agujero Blñanco, al contrario del Agujero negro, en lugar de engullir materia la expulsaria

 

 

El agujero negro de Schwarzschild es descrito como una singularidad en la cual una geodésica puede sólo ingresar, tal tipo de agujero negro incluye dos tipos de horizonte: un horizonte “futuro” (es decir, una región de la cual no se puede salir una vez que se ha ingresado en ella, y en la cual el tiempo -con el espacio- son curvados hacia el futuro), y un horizonte “pasado”, el horizonte pasado tiene por definición la de una región donde es imposible la estancia y de la cual sólo se puede salir; el horizonte futuro entonces ya correspondería a un agujero blanco.

 

 

Así, nos encontramos con el hecho cierto de que, en el Universo, todo es equilibrio y estabilidad: el resultado de dos fuerzas contrapuestas.

Veamos otro ejemplo:

 

 

File:Lagrange points2.svg

 

 

Curvas de potencial en un sistema de dos cuerpos (aquí el Sol y la Tierra), mostrando los cinco puntos de Lagrange. Las flechas indican pendientes alrededor de los puntos L –acercándose o alejándose de ellos. Contra la intuición, los puntos L4 y L5son máximos.

 

 

Los puntos de Lagrange, también denominados puntos L o puntos de libración, son las cinco posiciones en un sistema orbital donde un objeto pequeño, sólo afectado por la gravedad,  puede estar teóricamente estacionario respecto a dos objetos más grandes, como es el caso de un satélite artificial con respecto a la Tierra y la Luna.  Los puntos de Lagrange marcan las posiciones donde la atracción gravitatoria combinada de las dos masas grandes proporciona la fuerza centrípeta necesaria para rotar sincrónicamente con la menor de ellas. Son análogos a las órbitas geosincrónicas que permiten a un objeto estar en una posición «fija» en el espacio en lugar de en una órbita en que su posición relativa cambia continuamente. Una definición más precisa pero técnica es que los puntos de Lagrange son las soluciones estacionarias del problema de los tres cuerpos.

 

 

File:L2 rendering.jpg

 

Diagrama del sistema Sol-Tierra, que muestra el punto L2, más alejado que la órbita lunar.

 

Resultado de imagen de James Web

 

 

El telescopio que vendrá a suplir al viejo Hubble. Un dato curioso sobre este telescopio es que no estará situado en la órbita terrestre, se situará en el punto de Lagranje L2.  Los puntos de Lagrange son las posiciones donde la gravedad del Sol y la Tierra se equilibran, de manera que un objeto puede permanecer estable, sin salir despedido hacia el espacio profundo. El James Webb se ha situado en esta posición es para aislarlo de la contaminación que existe en la órbita terrestre.

El James Webb Space Telescope o JWST durante mucho tiempo ha sido promocionado como el reemplazo para el telescopio espacial Hubble. El telescopio está considerado como uno de los proyectos más ambiciosos de la ciencia espacial emprendido. A pesar del enorme desafío, el telescopio se está acercando a la terminación. El telescopio ha servido como un aula técnico sobre las complejidades involucrada con un proyecto tan complejo. También ha servido para desarrollar nuevas tecnologías que son utilizadas por los ciudadanos promedio en sus vidas cotidianas.

 

 

 

 

En nuestro Universo todo resulta ser el equilibrio de dos fuerzas contrapuestas que se igualan y se equilibran para alcanzar la estabilidad que es requerida para que todo exista en ese nivel de normalidad que hace de nuestro universo el que podemos observar y, los fenómenos que se producen, los cambios, siempre van encaminados a eso, a conseguir ese equilibrio que observamos.

 

 

 

 

Fuerzas positivas y negaticas hacen que el núcleo de los átomos sea estable y las galaxias están sujetas por la Gravedad que mantiene las estrellas juntas y que no dejan que la expansión las pueda deshacer. El el níucleo de los átomos están los protones cargados con fuerzas positivas que atraen el mismo número de electrones que orbitan a su alrededor, y, al estar cargados con fuerzas negativas que se equilibran con las de los protones, el átomo es muy estable.

Cuando hablamos de equilibrio lo estamos haciendo del estado en el que un sistema tiene su energía distribuida de la manera estadísticamente más probable, un estado del sistema en el que las fuerzas, influencia, reacciones, etc., se compensan las unas a las otras de manera que no se permiten cambios y prevalece la estabilidad.

 

 

Resultado de imagen de Equilibrio estático en tres dimensiones

 

 

Equilibrio estático en tres dimensiones

 

Un cuerpo se encuentra en equilibrio estático si las resultantes de todas las fuerzas y todos los pares que actúan en él son ambas cero; se si halla en reposo, estará ciertamente no acelerado. Un cuerpo de ese tipo en el reposo se encuentra en equilibrio estable si después de un ligero desplazamiento vuelve a su posición original. Existen diversas variantes que no merece la pena mencionar aquí para no hacer aburrido el trabajo.

 

 

 

 

 

También existe el equilibrio térmico y se dice que un cuerpo está en equilibrio térmico si no hay ningún intercambio de calor dentro de él o entre e´y sus alrededores. Un sistema se encuentra en equilibrio térmico cuando cuando una reacción y su inversa está teniendo lugar a la misma velocidad. Estos son ejemplos de equilibrios dinámicos, en los que la actividad en un sentido está compensada por la actividad en el sentido inverso. De nuevo el equilibrio o estabilidad creado por fuerzas contrapuestas.

 

 

 

 

 

La energía se equipara segín una teoría de propuesta por Ludwig Boltzmann y fundamentada teóricamente por James Clerk Maxwell, en virtud de la cual la energía de las moléculas de un gas en una muestra grande en equilibrio tçermico está dividida por igual entre todos los grados de libertad disponibles, siendo la energía media de cada grado de libertad kT/2, donde k es la constante de Boltzmann y T es la temperatura termodinámica. La proposición no es en general cierta si los efectos cuánticos son importantes, pero frecuentemente es una buena aproximación.

 

 

 

File:SymmetryOfLifeFormsOnEarth.jpg

 

El cuadro nos muestra una Ilustración de los distintos tipos de simetría en las formas orgánicas (Field Museum, Chicago).

 

Claro que si hablamos de simetrías, nos podríamos perder un un laberinto de clases y formas: esférica, cilíndrica, reflectiva, traslacional, helicoidal, de rotación, de ampliación, bilateral, radial… (muchas otras). Pero si nos referimos de manera simple a lo que es o entendemos por una simetria, nos estaremos refiriendo al conjunto de invariancias de un sistema.

 

 

 

 

 

Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado. La simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y rotaciones de las moléculas y las transformaciones de las redes cristalinas.

 

 

 

 

Las dos fuerzas contrapuestas en los seres vivos inteligentes de nuestro mundo, está precisamente en nosotros mismos: El hombre y la Mujer, juntos, forman un sólo ente de equilibrio perfecto que nos lleva al más alto nivel de simetría y belleza, y, tal equilibrio y conjunción, hace posible el milagro de la replicación.

 

 

Dibujo20130330 atrap result - cpt invariance - new limit

 

 

“La Trampa de Antihidrógeno (ATRAP) es un pequeño experimento en el CERN cuyo objetivo es comparar la antimateria con la materia, en concreto, átomos de antihidrógeno (formados por un antiprotón y un positrón, o antielectrón) con átomos de hidrógeno (formados por un protón y un electrón). Acaban de publicar la medida más precisa del momento magnético del antiprotón, 2,792847356(23) veces el magnetón nuclear, que coincide con el del protón en al mentos cinco partes por millón (0,0005%), una nueva medida (directa) de la invarianza CPT” (Francis (th)E mule Science’s News).

Existen simetrías más generales y abstractas como la invariancia CPT y las simetrías asociadas a las teorías gauge (tendríamos que mirar en simetrías rotas y supersimetría para ampliar el concepto en su más amplio espectro y concepción de lo que la simetría es. En el Universo, las simetrías están por todas partes: Estrellas, mundos, galaxias…

emilio silvera

Espacio-tiempo curvo y los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en La Física y el Universo    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. Esta sencilla ecuación es la demostración irrebatible de la grandeza de la mente humana que, con unos pocos signos nos puede decir tánto. De las ecuaciones de campo de Einstein, se pudieron deducir muchas cosas, tales como que el espacio se curva en presencia de grandes masas, como mundos, estrellas y galaxias para configurar la geometría del espacio.

 

 

 

 

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distosiona el esapcio-tiempo. En estos lugares que, como océanos de gas y polvo iniozado por la radiación de las estrellas masivas más jóvenes, existen moléculas complejas que, en algún caso, son esenciales para la existencia de la vida.

 

 

Resultado de imagen de La teoría cuántica de campos en espacio-tiempo curvoResultado de imagen de La teoría cuántica de campos en espacio-tiempo curvo

 

Donde es la masa invariante de la partícula, es la velocidad relativa de la partícula, vorb es la respectiva velocidad orbital del observador de la partícula, Ges la constante gravitacional, M la masa que crea el campo gravitatorio, r es el radio del campo gravitatorio donde se encuentra el observadory c es la velocidad de la luz en el vacío.

 

 

Resultado de imagen de La teoría cuántica de campos en espacio-tiempo curvo

 

La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski).  Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.

La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.

File:3D coordinate system.svg

En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad  nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.

En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

 Resultado de imagen de Las rosas más bonitas del mundo

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un nombre. (¿Qué hay en un nombre? Lo que llamamos rosa, / con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-) - La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.

También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.

Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.

Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividadespecial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividadgeneral nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividadgeneral que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.

En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Resultado de imagen de El genoma

Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…

Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad- debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.

Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender  que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.

Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

 

 Esta pretende ser la imagen de un extraño objeto masivo, un quásar  que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).

Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

 Resultado de imagen de El hidrógeno es el elemento básico del Universo

Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

                          Supernova 1987 A

El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.

Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espaciotiempo y dibujar la geometría del universo.

Resultado de imagen de UN FENÓMENO DE GRAN VIOLENCIA GALÁCTICA

Abajo la Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA. En el Espacio suceden acontecimientos de grandes energías que, para nosotros, los habitantes de la Tierra, no tienen consecuencia por la lejanía a la que nos encontramos de regiones violentas. Hemos tenido la suerte de venir a “caer” a una zona relativamente tranquila que nos permite evolucionar.
Resultado de imagen de Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.

Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercewr aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

Una galaxia gemela de la Vía Láctea

      En presencia de uno de estos objetos, el Tiempo se ralentiza y el Espacio se curva sobre sí mismo

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividadgeneral deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.

Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negroencontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.

Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta  la extenuación:

“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado”  Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.

 

El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

File:Cassini-science-br.jpg

Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debidad resulta engañosa poreque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.

¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!

En el Universo todo es fruto de dos fuerzas contrapuestas:

Resultado de imagen de En el Universo todo es fruto de dos fuerzas contrapuestas:

Las dos fuerzas contrapuestas, al fin se equilibran y dan establidad

Por ejemplo, las estrellas son estables por el hecho de que, la energía de fusión tiende a expandir la estrella y, la fuerza de Gravedad generada por su ingente masa, la hace contraerse. De esa manera, las dos fuerzas se contrarrestan y consiguen estabilizar a la estrella que vive miles de años. Cuando se agota el combustible nuclear de fusión, la estrella queda a merced de la Gravedad y se contrae (implosiona) bajo el peso de su propia masa, la gravedad la aplasta más y más hasta convertirla en una estrella de neutrones y un agujero negro si es una estrlla masiva.

Imagen relacionada

En el átomo, el equilibrio se alcanza como consecuencia de que, los protones (los nucleones que forman el núcleo), están cargados positivamente, y, los electrones que orbitan a su alrededor, están cargadas eléctricamente con cargas negativas equivalentes, con lo cual, el equilibrio queda servido y se alcanza la establidad.

Diagrama de Kruskal-Szekeres para un agujero negro. Las rectas azules son superficies de tiempo constante. Las curvas verdes son superficies de radio constante. -Las regiones I y II (sólo la parte blanca) son el exterior y el interior de un agujero negro. -La región III es una región exterior al agujero negro “paralela”. -La región IV (sólo la parte blanca) es un agujero blanco. Las zonas grises adyacentes a las regiones II y IV son las singularidades.

¿Se transforman los agujeros negros en 'agujeros blancos'?

           El agujero Blanco, al contrario del Agujero negro, en lugar de engullir materia la expulsaria

El agujero negro de Schwarzschild es descrito como una singularidad en la cual una geodésica puede sólo ingresar, tal tipo de agujero negro incluye dos tipos de horizonte: un horizonte “futuro” (es decir, una región de la cual no se puede salir una vez que se ha ingresado en ella, y en la cual el tiempo -con el espacio- son curvados hacia el futuro), y un horizonte “pasado”, el horizonte pasado tiene por definición la de una región donde es imposible la estancia y de la cual sólo se puede salir; el horizonte futuro entonces ya correspondería a un agujero blanco.

Así, nos encontramos con el hecho cierto de que, en el Universo, todo es equilibrio y estabilidad: el resultado de dos fuerzas contrapuestas.

Siempre hemos querido saber sobre todo aquello que no podíamos comprender y luchamos por desvelar los secretos de la Naturaleza. Poco a poco, supimos de las estrellas y galaxias, de las distancias siderales y de los exóticos objetos que pueblan nuestro universo y, fuimos conscientes de que, nosotros, insignificantes seres habitantes de un insignificante planeta de entre cientos de miles de millones, podíamos “comprender” el inmenso Universo en el que todo es energía.

Resultado de imagen de La energía del Universo

Definir la energía no ha sido nunca cosa fácil, dado que está presente en todo lo que podamos mirar desde una piedra que yace en las finas arenas del fondo de un río, la montaña que majestuosa nos mira desde su altanera e imponente figura, la simple visión de un hermoso árbol, y, sobre todo, energía para mí… ¡son las estrellas del espacio interestelar! que crean el material del que se forjan los mundos y surje la vida, la más elevada  del energía que está presente en nuestro Universo.

El conocimiento moderno de la energía incluye un  de descubrimientos fundamentales: la masa y la energía son equivalente; los diferentes tipos de energía están relacionados por muchas transformaciones; durante esas transformaciones, la energía no se destruye (primer principio de la termodinámica) y esta conservación de la energía está inexorablemente acompañada por una pérdida de utilidad (segundo principio de la termodinámica).

El primer descubrimiento, descrito en una carta de Einstein a un amigo suyo  una “idea atrevida, divertida y atractiva”, se resume en su ecuación m = E/c2, que en su versión más famosa se escribe como E = mc2; la ecuación más conocida de la física.

emilio silvera

Espacio-tiempo curvo y los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en La Física y el Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

 

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. Esta sencilla ecuación es la demostración irrebatible de la grandeza de la mente humana que, con unos pocos signos nos puede decir tánto. De las ecuaciones de campo de Einstein, se pudieron deducir muchas cosas, tales como que el espacio se curva en presencia de grandes masas, como mundos, estrellas y galaxias para configurar la geometría del espacio.

 

 

 

 

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distosiona el esapcio-tiempo. En estos lugares que, como océanos de gas y polvo iniozado por la radiación de las estrellas masivas más jóvenes, existen moléculas complejas que, en algún caso, son esenciales para la existencia de la vida.

 

La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski).  Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.

La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.

 

 

File:3D coordinate system.svg

 

 

En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundidad o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad  nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.

En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

 

 

 

 

 

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un . (“¿Qué hay en un nombre? Lo que llamamos rosa, / con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-) - La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.

También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.

Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.

 

 

 

 

Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

 

 

 

 

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einsteinutilizar la idea de geometría espaciotemporal para formular su teoría de la relatividad general que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacionaldisminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.

 

 

 

 

 

En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

 

 

 

http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

 

 

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

 

 

 

 

Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planckracionalizada…

Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad- debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.

Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender  que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.

 

 

 

 

Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidadque podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

 

 

 

 

 

Esta pretende ser la imagen de un extraño objeto masivo, un quásar  que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).

Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

 

 

Big Bang

 

Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

 

 

 

 

Supernova 1987 A

 

El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.

Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espaciotiempo y dibujar la geometría del universo.

 

 

Resultado de imagen de Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA

 

 

               Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.

Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividadgeneral y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negrosdescubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

 

 

 

 

 

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercewr aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

 

 

Resultado de imagen de El espacio se curva en presencia de grandes masas

 

 

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividad general deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.

Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.

 

 

 

 

Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta  la extenuación:

 

“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado”  Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.

 

 

Resultado de imagen de El puente de Einstein-Rosen conecta universos diferentes

 

 

El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

 

 

File:Cassini-science-br.jpg

 

 

Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debidad resulta engañosa poreque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.

¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!

 

En el Universo todo es fruto de dos fuerzas contrapuestas:

 


 

 

Por ejemplo, las estrellas son estables por el hecho de que, la energía de fusión tiende a expandir la estrella y, la fuerza de Gravedad generada por su ingente masa, la hace contraerse. De esa manera, las dos fuerzas se contrarrestan y consiguen estabilizar a la estrella que vive miles de años. Cuando se agota el combustible nuclear de fusión, la estrella queda a merced de la Gravedad y se contrae (implosiona) bajo el peso de su propia masa, la gravedad la aplasta más y más hasta convertirla en una estrella de neutrones y un agujero negro si es una estrella masiva.

 

 

 

 

 

En el átomo, el equilibrio se alcanza como consecuencia de que, los protones (los nucleones que forman el núcleo), están cargados positivamente, y, los electrones que orbitan a su alrededor, están cargadas eléctricamente con cargas negativas equivalentes, con lo cual, el equilibrio queda servido y se alcanza la establidad.

 

 

Diagrama de Kruskal-Szekeres para un agujero negro. Las rectas azules son superficies de tiempo constante. Las curvas verdes son superficies de radio constante. -Las regiones I y II (sólo la parte blanca) son el exterior y el interior de un agujero negro. -La región III es una región exterior al agujero negro “paralela”. -La región IV (sólo la parte blanca) es un agujero blanco. Las zonas grises adyacentes a las regiones II y IV son las singularidades.

 

 

 

Resultado de imagen de El agujero Blanco, al contrario del Agujero negro, en lugar de engullir materia la expulsaria

 

El agujero Blanco, al contrario del Agujero negro, en lugar de engullir materia la expulsaría

 

El agujero negro de Schwarzschild es descrito como una singularidad en la cual una geodésica puede sólo ingresar, tal tipo de agujero negro incluye dos tipos de horizonte: un horizonte “futuro” (es decir, una región de la cual no se puede salir una vez que se ha ingresado en ella, y en la cual el tiempo -con el espacio- son curvados hacia el futuro), y un horizonte “pasado”, el horizonte pasado tiene por definición la de una región donde es imposible la estancia y de la cual sólo se puede salir; el horizonte futuro entonces ya correspondería a un agujero blanco.

 

Así, nos encontramos con el hecho cierto de que, en el Universo, todo es equilibrio y estabilidad: el resultado de dos fuerzas contrapuestas.

Veamos otro ejemplo:

 

File:Lagrange points2.svg

 

 

Curvas de potencial en un sistema de dos cuerpos (aquí el Sol y la Tierra), mostrando los cinco puntos de Lagrange. Las flechas indican pendientes alrededor de los puntos L –acercándose o alejándose de ellos. Contra la intuición, los puntos L4 y L5son máximos.

Los puntos de Lagrange, también denominados puntos L o puntos de libración, son las cinco posiciones en un sistema orbital donde un objeto pequeño, sólo afectado por la gravedad,  puede estar teóricamente estacionario respecto a dos objetos más grandes, como es el caso de un satélite artificial con respecto a la Tierra y la Luna.  Los puntos de Lagrange marcan las posiciones donde la atracción gravitatoria combinada de las dos masas grandes proporciona la fuerza centrípeta necesaria para rotar sincrónicamente con la menor de ellas. Son análogos a las órbitas geosincrónicas que permiten a un objeto estar en una posición «fija» en el espacio en lugar de en una órbita en que su posición relativa cambia continuamente. Una definición más precisa pero técnica es que los puntos de Lagrange son las soluciones estacionarias del problema de los tres cuerpos.

 

 

File:L2 rendering.jpg

 

 

Diagrama del sistema Sol-Tierra, que muestra el punto L2, más alejado que la órbita lunar.

 

 

Resultado de imagen de El telescopio Espacial James Webb

 

La NASA conmemora con esta foto la colocación del Espejo del futuro Telescopio Espacial, James Webb

 

El telescopio que vendrá a suplir al viejo Hubble. Un dato curioso sobre este telescopio es que no estará situado en la órbita terrestre, se situará en el punto de Lagranje L2.  Los puntos de Lagrange son las posiciones donde la gravedad del Sol y la Tierra se equilibran, de manera que un objeto puede permanecer estable, sin salir despedido hacia el espacio profundo. El James Webb se ha situado en esta posición es para aislarlo de la contaminación que existe en la órbita terrestre.

El James Webb Space Telescope o JWST durante mucho tiempo ha sido promocionado como el reemplazo para el telescopio espacial Hubble. El telescopio está considerado como uno de los proyectos más ambiciosos de la ciencia espacial emprendido. A pesar del enorme desafío, el telescopio se está acercando a la terminación. El telescopio ha servido como un aula técnico sobre las complejidades involucrada con un proyecto tan complejo. También ha servido para desarrollar nuevas tecnologías que son utilizadas por los ciudadanos promedio en sus vidas cotidianas.

 

 

 

 

En nuestro Universo todo resulta ser el equilibrio de dos fuerzas contrapuestas que se igualan y se equilibran para alcanzar la estabilidad que es requerida para que todo exista en ese nivel de normalidad que hace de nuestro universo el que podemos observar y, los fenómenos que se producen, los cambios, siempre van encaminados a eso, a conseguir ese equilibrio que observamos.

 

 

 

 

Fuerzas positivas y negaticas hacen que el núcleo de los átomos sea estable y las galaxias están sujetas por la Gravedad que mantiene las estrellas juntas y que no dejan que la expansión las pueda deshacer. El el níucleo de los átomos están los protones cargados con fuerzas positivas que atraen el mismo número de electrones que orbitan a su alrededor, y, al estar cargados con fuerzas negativas que se equilibran con las de los protones, el átomo es muy estable.

Cuando hablamos de equilibrio lo estamos haciendo del estado en el que un sistema tiene su energía distribuida de la manera estadísticamente más probable, un estado del sistema en el que las fuerzas, influencia, reacciones, etc., se compensan las unas a las otras de manera que no se permiten cambios y prevalece la estabilidad.

 

Resultado de imagen de Equilibrio estático en tres dimensiones

 

 

 

Equilibrio estático en tres dimensiones

 

Un cuerpo se encuentra en equilibrio estático si las resultantes de todas las fuerzas y todos los pares que actúan en él son ambas cero; se si halla en reposo, estará ciertamente no acelerado. Un cuerpo de ese tipo en el reposo se encuentra en equilibrio estable si después de un ligero desplazamiento vuelve a su posición original. Existen diversas variantes que no merece la pena mencionar aquí para no hacer aburrido el trabajo.

 

 

 

 

 

También existe el equilibrio térmico y se dice que un cuerpo está en equilibrio térmico si no hay ningún intercambio de calor dentro de él o entre e´y sus alrededores. Un sistema se encuentra en equilibrio térmico cuando cuando una reacción y su inversa está teniendo lugar a la misma velocidad. Estos son ejemplos de equilibrios dinámicos, en los que la actividad en un sentido está compensada por la actividad en el sentido inverso. De nuevo el equilibrio o estabilidad creado por fuerzas contrapuestas.

 

 

 

La energía se equipara segín una teoría de propuesta por Ludwig Boltzmann y fundamentada teóricamente por James Clerk Maxwell, en virtud de la cual la energía de las moléculas de un gas en una muestra grande en equilibrio tçermico está dividida por igual entre todos los grados de libertad disponibles, siendo la energía media de cada grado de libertad kT/2, donde k es la constante de Boltzmann y T es la temperatura termodinámica. La proposición no es en general cierta si los efectos cuánticos son importantes, pero frecuentemente es una buena aproximación.

 

 

 

File:SymmetryOfLifeFormsOnEarth.jpg

 

El cuadro nos muestra una Ilustración de los distintos tipos de simetría en las formas orgánicas (Field Museum, Chicago).

 

Claro que si hablamos de simetrías, nos podríamos perder un un laberinto de clases y formas: esférica, cilíndrica, reflectiva, traslacional, helicoidal, de rotación, de ampliación, bilateral, radial… (muchas otras). Pero si nos referimos de manera simple a lo que es o entendemos por una simetria, nos estaremos refiriendo al conjunto de invariancias de un sistema.

 

 

 

 

Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado. La simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y rotaciones de las moléculas y las transformaciones de las redes cristalinas.

 

 

 

 

Las dos fuerzas contrapuestas en los seres vivos inteligentes de nuestro mundo, está precisamente en nosotros mismos: El hombre y la Mujer, juntos, forman un sólo ente de equilibrio perfecto que nos lleva al más alto nivel de simetría y belleza, y, tal equilibrio y conjunción, hace posible el milagro de la replicación.

 

 

Dibujo20130330 atrap result - cpt invariance - new limit

 

 

“La Trampa de Antihidrógeno (ATRAP) es un pequeño experimento en el CERN cuyo objetivo es comparar la antimateria con la materia, en concreto, átomos de antihidrógeno (formados por un antiprotón y un positrón, o antielectrón) con átomos de hidrógeno (formados por un protón y un electrón). Acaban de publicar la medida más precisa del momento magnético del antiprotón, 2,792847356(23) veces el magnetón nuclear, que coincide con el del protón en al mentos cinco partes por millón (0,0005%), una nueva medida (directa) de la invarianza CPT” (Francis (th)E mule Science’s News).

Existen simetrías más generales y abstractas como la invariancia CPT y las simetrías asociadas a las teorías gauge(tendríamos que mirar en simetrías rotas y supersimetría para ampliar el concepto en su más amplio espectro y concepción de lo que la simetría es. En el Universo, las simetrías están por todas partes: Estrellas, mundos, galaxias…

emilio silvera