domingo, 19 de septiembre del 2021 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La importancia del Carbono para la Vida y otros

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de GaiaResultado de imagen de Gaia

                  El concepto de Gaia, considera a la Tierra como un Ente Vivo que evoluciona y se recicla

Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las condiciones que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida como seguramente estará presente en muchos otros mundos en el que se den las circunstancias adecuadas, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en Marte o en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.

Anima Mundi (espíritu de la Tierra) e hipótesis de Gaia | Mundo Secreto  Amino1.5 la hipotesis de gaia

071 - La Hipótesis de Gaia - TERRA INCOGNITA - YouTubeHipótesis Gaia: hacia una ecología más espiritual -

“Este documento expone brevemente la hipótesis de Gaia de James Lovelock y Lynn Margulis, la cual afirma que el planeta Tierra en su totalidad, incluyendo seres vivos, océanos, rocas y atmósfera, funciona como un super-organismo que modifica activamente su composición interna para asegurar su supervivencia.”

Cuando Lovelock publicó la hipótesis de Gaia, provoco una sacudida en muchos científicos, sobre todo en aquellos con una mente más lógica que odiaban un concepto que sonaba tan místico. Les producía perplejidad, y lo más desconcertante de todo era que Lovelock era uno de ellos. Tenía fama de ser algo inconformista, pero sus credenciales científicas eran muy sólidas. Entre otros logros a Lovelock se le conocía por ser el científico que había diseñado los instrumentos de algunos de los experimentos para buscar vida que la nave estadounidense Viking había llevado a cabo en la superficie de Marte.

Descansa en paz, Phoenix Mars Lander - RTVE.esPhoenix (sonda) - Wikipedia, la enciclopedia libre

Phoenix Lander en Marte Fotografía de stock - AlamyEste concepto del artista retrata la NASA 2020 Mars Rover sobre la  superficie de Marte. La

Ni la NASA, tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Pero recapacitaron y comenzaron a enviar al planeta Marte, una serie de ingenios en forma de pequeñas naves robotizadas como la Mars Phoenix que comenzó encontrando hielo de agua diluyendo porciones de la tierra marciana en agua y debidamente tratada, hallaron la presencia de magnesio, sodio, potasio y cloruros.  Uno de los científicos responsables llegó a decir:

En busca de agua en MarteEl Curiosity halla agua abundante en la superficie de Marte

Agua líquida en Marte y otros 4 momentos clave en la búsqueda de vida en  ese planeta - BBC News MundoAgua en Marte: el líquido tiende a disminuir | Tendencias | Portafolio

“Hay más que evidencia de agua porque las sales están ahí. Además hemos encontrado los compuestos químicos necesarios para la vida como la conocemos. y, lo sorprendente de Marte es que no es un mundo extraño, sino que, en muchos aspectos es igual que la Tierra.”

Se están analizando los gases y los compuestos químicos del suelo y del hielo allí encontrados, y, todo ello, debidamente procesado nos dará una respuesta de lo que allí existe.

Resultado de imagen de El Carbono y la Vida en el UniversoQue compuestos químicos delatarían la existencia de vida en otro planeta? |  Actualidad | Investigación y Cienciacarbono | Cuerpos sanos, Molecula, Elementos

En cualquier mundo puede estar presente el CHON (Carbono, Hidrógeno, Oxígeno y Nitrógeno)

Lo que para mí está muy claro es que, los mecanismos del Universo son los mismos en cualquier región del cielo, y, las estrellas y los planetas surgen en todas partes de la misma manera. Y, si eso es así, sería lógico pensar que la vida podría estar en cualquier parte, y, además, con muchas probabilidades de que sea más o menos tal como la conocemos, ya que, la nuestra, basada en el Carbono y el Nitrógeno (siempre en presencia de agua), es la más natural dadas las características de estos elementos para unirse.

La historia de la vida en el Universo es otro ejemplo de complejidad superficial construida sobre cimientos de una profunda sencillez. Actualmente la prueba de que el universo tal como lo conocemos surgió a partir de un estado denso y caliente (Big Bang) hace unos 14.000 millones de años, es poco discutida.

Resultado de imagen de El Universo joven y el Hidrógeno y el Helio como bloques primordialesBIOMOLÉCULAS

Biomoléculas - YouTubeBIOMOLÉCULAS:¿Qué Son?, Características, Tipos, Función, Importancia

Con los elementos primordiales creados en las estrellas, miles de años más tarde, en los mundos situados en las zonas habitables de sus estrellas, se habrán podido conformar células replicantes que habrían dado comienzo a la aventura de la vida. En la Tierra, el único planeta con vida que conocemos (por el momento), las formas de vida y especies que han estado aquí y siguen estando ha sido de una rica variedad y de asombrosos metabolismos.

Imagen relacionada

Los bloques de construcción básicos que emergieron del Big Bang fueron el hidrógeno y el helio, casi exactamente en una proporción de 3:1. Todos los demás elementos químicos (excepto unos leves vestigios de unos pocos elementos muy ligeros, como el litio) han sido fabricados en el interior de las estrellas y dispersados por el espacio cuando estas se dilataron y expulsaron materiales, o, al final de sus vidas, agotado el combustible nuclear de fusión, explotaron como Supernovas regando grandes regiones con Nebulosas creadoras de nuevas estrellas y nuevos mundos.

Resultado de imagen de La fusión nuclear en el Sol

Una estrella como el Sol genera calor convirtiendo hidrógeno en helio dentro de su núcleo; en otras estrellas los procesos cruciales incluyen fusiones sucesivas de núcleos de helio. Dado que cada núcleo de helio es una unidad que contiene cuatro “nucleones” (dos protones y dos neutrones), y este elemento se denomina abreviadamente helio-4, esto significa que los elementos cuyos núcleos contienen un número de nucleones que es múltiplo de cuatro son relativamente comunes en el universo, excepto el berilio-8, que es inestable.

Resultado de imagen de Carbono 12 y Oxígeno 16

El carbono-12 es el más abundante de los dos isótopos estables del elemento Carbono, representando el 98,89% de todo el carbono terrestre. Está conformado por 6 protones, 6 neutrones y 6 electrones.

Adquiere particular importancia al usarse como patrón para el cálculo de la masa atómica de los distintos nucleidos existentes en la naturaleza; dado que la masa atómica del 12C es, por definición, 12 umas.

Concretamente, en las primeras etapas de este proceso se produce carbono-12 y oxígeno-16, y resulta que el nitrógeno-14, aunque no contiene un número entero de núcleos de helio-4, se obtiene como subproducto de una serie de interacciones en las que participan núcleos de oxígeno y de carbono que operan en estrellas de masa un poco mayor que la de nuestro Sol.

Resultado de imagen de El Helio

Como consecuencia, estos son, con gran diferencia, los elementos más comunes, aparte del hidrógeno y del helio. Dado que éste último es un gas inerte (noble) que no reacciona químicamente, se deduce que los cuatro elementos reactivos más comunes en el universo son el Carbono, el Hidrógeno, el Oxígeno y el Nitrógeno, conocidos en el conjunto por el acrónimo CHON.

No es casualidad que los cuatro elementos químicos que participan con una aplastante mayoría en la composición de los seres vivos de la Tierra sean el carbono, el hidrógeno, el oxígeno y el nitrógeno.

carbono

En estado puro y dependiendo de cómo estén dispuestos sus átomos, este elemento puede formar tanto el mineral más duro que ocurre en la naturaleza, el diamante, como uno de los más blandos, el grafito. Organizados en hexágonos y formando láminas, los átomos de carbono dan lugar al grafeno, un material del que habréis oído hablar estos últimos años por sus “increíbles” propiedades.

Resultado de imagen de El Carbono y la Vida

              Estructuras basadas en el Carbono

El Carbono desarrolla el papel clave en el desarrollo de la vida, porque un solo átomo de este elemento es capaz de combinarse químicamente nada menos que con otros cuatro átomos al mismo tiempo (incluídos otros átomos de carbono, que pueden estar unidos a su vez  a más átomos de carbono, formando anillos y cadenas), de tal modo que este elemento tiene una química excepcionalmente rica. Así decimos con frecuencia que la vida en la Tierra está basada en el Carbono, el elemento más ductil y crucial en nuestra formación.

Importancia del carbono• Existen varios millones de compuestos  orgánicos conocidos, más de diez veces  el número de compu...

Claro que, tal comentario, no implica la negación de que pudieran existir otras clases de vida basadas en el Silicio o en cualquier otra combinación química, pero todas las pruebas que aporta la Astronomía sugieren que es mucho mayor la probabilidad de que la vida más allá de nuestras fronteras esté basada también en el CHON (Carbono, Hidrógeno, Oxígeno y Nitrógeno).

Trascendencia del carbono para la                 vida• Biología celular: Los organismos vivos (células)  están construido...

Es inadmisible lo poco que la gente común sabe del Universo al que pertenecen y también lo poco que se valora el trabajo de Astrónomos, Astrofísicos y Cosmólogos, ellos son los que realizan las pruebas y las comprobaciones que finalmente nos llevan al conocimiento que hoy tenemos del cielo y de los objetos que lo pueblan y de las fuerzas que allí actúan.

luna

La Nebulosa de la Quilla, una de las regiones de nacimiento de estrellas más grandes del universo: pilares de 3 años luz de altura que parecen abultados como las velas de un barco por la fuerza tirante de los astros que, literalmente, da a luz en su interior.

Gran parte de estas pruebas proceden del análisis espectroscópico del material que está presente en las Nebulosas, esas inmensas nubes de gas y polvo que se encuentran en el espacio como resultado de explosiones de supernovas o de otros fenómenos que en el Universo son de lo más frecuente. A partir de esas nubes se forman los sistemas planetarios como nuestro sistema solar, allí, nacen nuevas estrellas que contienen los mismos materiales expulsados por estrellas de generaciones anteriores.

En estas nubes hay muchos compuestos construidos en torno a átomos de carbono, y este elemento es tan importante para la vida que sus compuestos reciben en general el nombre de compuestos “orgánicos”. Entre los compuestos detectados en nubes interestelares hay sustancias muy sencillas, como metano y dióxido de carbono, pero también materiales orgánicos mucho más complejos, entre los que cabe citar el formaldehído, el alcohol etílico, e incluso al menos un aminoácido, la glicina. Lo que constituye un descubrimiento muy esclarecedor, porque es muy probable que toso los materiales existentes en las nubes interestelares hayan estado presentes en la nube a partir de la cual se formó nuestro Sistema Solar, hace unos cinco mil millones de años.

luna

En este cúmulo estelar llamado NGC 602, cerca de la Pequeña Nube de Magallanes, millones de estrellas jóvenes emiten radiación y energía en forma de ondas que erosionan el material que las rodea creando formaciones visualmente interesantes. El tamaño de lo que se ve en la foto abarca 200 años luz de lado a lado

A partir de estos datos, equipos científicos han llevado a cabo en la Tierra experimentos en los que unas materias primas, debidamente tratadas simulando las condiciones de densidad y energías de aquellas nubes interestelares (ahora en laboratorio), dieron como resultado el surgir expontáneo de tres aminoácidos (glicina, serina y alanina). Todos conocemos el experimento de Miller.

L-Leucina: La "reina" de los aminoácidos - Gym Factory RevistaQué son los aminoácidos?

En otro experimento utilizando otra mezcla de ingredientes ligeramente distinta, se producían no menos de dieciséis aminoácidos y otros compuestos orgánicos diversos en unas condiciones que eran las existentes en el espacio interestelar.

Para hacernos una idea, las proteínas de todos los seres vivos de la Tierra están compuestas por diversas combinaciones de tan sólo veinte aminoácidos. Todas las evidencias sugieren que este tipo de materia habría caído sobre los jóvenes planetas durante las primeras etapas de formación del sistema planetario, deposita por cometas que habría sido barridos por la influencia gravitatoria de unos palnetas que estaban aumentando de tamaño.

Formación de una estrella en la nebulosa Tarántula.

En idénticas condiciones de temperatura y presión que el universo de hace 4.600 millones de años, Experimentos llevados a cabo en el laboratorio, han logrado originar ribosa, la molécula que luego acabó convirtiéndose en ADN.

AMINOÁCIDOS. ¿QUE SON?

Como hemos podido deducir, una “sopa” de aminoácidos posee la capacidad de organizarse por sí sola, formando una red con todas las propiedades que ha de tener la vida. De esto se deduce que los aminoácidos que estuvieron formando durante largos períodos de tiempo en las profundidades del espacio (utilizando energías proporciona por la luz de las estrellas), serían transportados a la superficie de cualquier planeta joven, como la Tierra.

Algunos planetas pueden resultar demasiado calientes para que se desarrolle la vida, y otros demasiado fríos. Pero ciertos planetas como la propia Tierra (existentes a miles de millones), estarían justo a la temperatura adecuada. Allí, utilizando la expresión de Charles Darwin, en alguna “pequeña charca caliente” tendrían la oportunidad de organizarse en sistemas vivos.

Sopa primitiva: el origen de la vida

           Sopa primigenia de la que surgió la primera célula replicante precursora de la Vida

Claro que, por mi parte, como dijo aquel famoso Astrofísico inglés del que ahora no recuerdo el nombre: ” milagro no es que aparezca vida fuera de la Tierra, el verdadero milagro sería que no apareciera”.

Y, en cuanto a las condiciones para que haga posible la existencia de vida, conviene ser reservados y no emitir un juicio precipitado, ya que, todos sabemos de la existencia de vida en condiciones que se podrían comparar o denominar de infernales. Así que, estaremos a la espera de que, el Universo nos de una respuesta.

Veamos algunos conceptos: Nova.

http://eltamiz.com/images/nova_luminosa_roja.jpg

Antiguamente, a una estrella que aparecía de golpe donde no había nada, se le llamaba nova o ” estrella nueva “. Pero este nombre no es correcto, …


En realidad es una estrella que durante el periodo de sólo unos pocos días, se vuelve 103-10veces más brillantes de lo que era.  Ocurren 10 ó 15 sucesos de ese tipo cada año en la Vía Láctea.  Las novas se cree que son binarias próximas en las que, uno de sus componentes es usualmente una enana blanca y la otra una gigante roja.

La materia se transfiere de la gigante roja a la enana blanca, en cuya superficie se acumula, dando lugar a una explosión termonuclear, y, a veces se convierte en una estrella de neutrones al ver incrementada su masa.

Nucleones.

Resultado de imagen de Nucleones

Protones y neutrones, los constituyentes de los núcleos atómicos que, a su vez, están conformados por tripletes de Quarks. Un protón está hecho por 2 Quarks up y 1 Quark Down, mientras que un Neutrón está conformado por 2 Quarks Down y 1 Quark up. Son retenidos en el núcleo por los Bosones llamados Gluones que son transmisores de la fuerza nuclear fuerte.

Núcleo.

Resultado de imagen de Núcleo del átomo

Corazón central de un átomo que contiene la mayor parte de su masa.  Está positivamente cargado y constituido por uno o más nucleones (protones y neutrones).

La carga positiva del núcleo está determinada por el número de protones que contiene (número atómico) y en el átomo neutro está compensada por un número igual de electrones, que se mueven alrededor del núcleo y cuya carga eléctrica negativa anula o compensa a la positiva de los (electro) protones.

El núcleo más simple es el núcleo de hidrógeno, consistente en un único protón.  Todos los demás núcleos contienen además uno o más neutrones.

Los neutrones contribuyen a la masa atómica, pero no a la carga nuclear.

El núcleo más masivo que se encuentra en la Naturaleza es el Uranio-238, que contiene 92 protones y 146 neutrones.

Nucleosíntesis,  nucleogénesis.

Imagen relacionada

Fusión de nucleones para crear los núcleos de nuevos átomos más complejos.  La nucleosíntesis tiene lugar en las estrellas y, a un ritmo más acelerado, en las supernovas.

La nucleosíntesis primordial tuvo lugar muy poco después del Big Bang, cuando el Universo era extremadamente caliente y, ese proceso fue el responsable de la abundancia de elementos  ligeros, por todo el cosmos, como el Helio y el Hidrógeno que, en realidad es la materia primordial de nuestro Universo, a partir de estos elementos se obtienen todos los demás en los procesos estelares de fusión.

Omega.

Resultado de imagen de Omega negro como densidad de materia del Universo

Índice de densidad de materia del Universo, definida como la razón entre la actual densidad y la “Densidad crítica” requerida para “cerrar” el Universo y, con el tiempo, detener su expansión.

Para la materia oscura se dirá: “Omega Negro”.

Si Omega es mayor que 1, el Universo se detendrá finalmente y las galaxias recorrerán, a la inversa, el camino recorrido para colapsar en una gran Bola de fuego, el Big Crunch, estaríamos en un Universo cerrado.

Se dice que, un Universo con exactamente 1, la Densidad crítica ideal, estará alrededor de 10-29 g/cm3 de materia, lo que esta descrito por el modelo e Universo descrito por Einstein-de Setter.

En cualquier caso, sea cual fuere Omega, no parece muy atractivo el futuro de nuestro Universo que según todos los datos que tenemos acabará en el hielo o en el fuego y, en cualquier de estos casos.

¿Dónde nos meteremos?

Onda, función.

Resultado de imagen de Función de Onda

Función, denotada por Y (w,y,z), que es solución de la ecuación de Schrödinger en la mecánica cuántica.  La función de ondas es una expresión matemática que depende de las coordenadas de una partícula en el espacio.

Si la función de ondas (ecuación de Schrödinger) puede ser resuelta para una partícula en un sistema dado (por ejemplo, un electrón en un átomo), entonces, dependiendo de las colisiones en la frontera, la solución es un conjunto de soluciones, mejor de funciones de onda permitidas de la partícula (autofunciones), cada una correspondiente a un nivel de energía permitido.

El significado físico de la función de ondas es que el cuadrado de su valor absoluto en un punto, [Y]2, es proporcional a la probabilidad de encontrar la partícula en un pequeño elemento  de volumen, dxdydz, en torno a ese punto.  Para un electrón de un átomo, esto da lugar a la idea de orbitales atómicos moleculares.

elimino ecuación para no confundir al lector no versado.

donde Y es la función de ondas, Ñ2 es el operador Laplace, h es la constante de Planck, m es la masa de la partícula, E la energía total= y È la energía potencial.

Colaboración de Emilio Silvera.

Ondas.

Imagen relacionada

La velocidad de una estrella puede generar enormes onda

Propagación de la energía mediante una vibración coherente.

Está referido a la perturbación periódica en un medio o en el espacio.  En una onda viajera (u onda progresiva) la energía es transferida de un lugar a otro por las vibraciones. En el Espacio puede estar causada por el movimiento de las estrellas.

Resultado de imagen de Ondas en el Océano

En una onda que atraviesa la superficie del agua, por ejemplo, el agua sube y baja al pasar la onda, pero las partículas del agua en promedio no se mueven.  Este tipo de onda se denomina onda transversal, porque las perturbaciones están en ángulo recto con respecto a la dirección de propagación.  La superficie del agua se mueve hacia arriba y abajo mientras que la onda viaja a lo largo de la superficie del agua.

Resultado de imagen de Ondas electromagnéticas

Las ondas electromagnéticas son de este tipo, con los campos eléctricos y, magnéticos variando de forma periódica en ángulo recto entre sí y a la dirección de propagación.

Resultado de imagen de Ondas de sonido

En las ondas de sonido, el aire es alternativamente comprimido y rarificado por desplazamiento en la dirección de propagación.  Dichas ondas se llaman longitudinales.

Las principales características de una onda es su velocidad de propagación, su frecuencia, su longitud de onda y su amplitud.  La velocidad de propagación y la distancia cubierta por la onda en la unidad de tiempo.  La frecuencia es el número de perturbaciones completas (ciclos) en la unidad de tiempo, usualmente expresada en hertzios.  La longitud de onda es la distancia en metros entre puntos sucesivos de igual fase de onda es la distancia en metros entre puntos sucesivos de igual fase de onda.  La amplitud es la diferencia  máxima de la cantidad perturbada medida con referencia a su valor medio.

Resultado de imagen de Detectadas las ondas gravitacionales

Recuerdo cuando allá por el año 2009 publiqué: “Pronto oiremos que Kip S. Thorne ha detectado y medido las ondas gravitacionales de los Agujeros Negros.” Y, en el presente es noticias pasada.

Las ondas gravitacionales son aquellas que se propagan a través de un campo gravitacional. Cuando eso suceda, tendremos nuevos conocimientos sobre el Universo, ya que, el que ahora conocemos sólo está dado por las lecturas de las ondas electromagnéticas, no de las gravitatorias.

La predicción de que una masa acelerada radia ondas gravitacionales (y pierde energía) proviene de la teoría general de la relatividad. Por ejemplo cuando dos agujeros negros chocan y se fusionan.

Deutschland Max-Planck-Institut Gravitationswellen

El Experimento LIGO se afanó en localizar y medir estas ondas y, a la cabeza del proyecto, como he dicho, está el experto en agujeros negros, el físico y cosmólogo norteamericano, amigo de Stephen Hawking, kip S.Thorne, que está buscando las pulsaciones de estos monstruos del espacio, cuya energía infinita (según él), algún día podrá ser aprovechada por la humanidad cuando la tecnología lo permita.

Aunque podríamos continuar hablando sobre onda continua, onda cósmica, onda cuadrada, onda de choque, onda de espín (magnón), onda de tierra, onda estacionaria, onda ionosférica, onda portadora, onda sinuosidad, onda viajera, onda sísmica, onda submilimétrica, onda de ecuación, etc., sería salirse del objeto perseguido aquí.

Oort, nube de ; Constante de.

Imagen relacionada

La nube de Oort está referida a un halo aproximadamente esférico de núcleos cometarios  que rodea al Sol hasta quizás unas 100.000 UA (más de un tercio de la distancia a la estrella más próxima).  Su existencia fue propuesta en 1950 por J.H.Oort (1900-1992) astrónomo holandés, para explicar el hecho de que estén continuamente acercándose al Sol nuevos cometas con órbitas altamente elípticas y con todas las inclinaciones.

La nube Oort sigue siendo una propuesta teórica, ya que no podemos en la actualidad detectar cometas inertes a tan grandes distancias.  Se estima que la nube contiene unos 1012 cometas restantes de la formación del Sistema Solar.  Los miembros más distantes se hallan bastante poco ligados por la gravedad solar.

Puede existir una mayor concentración de cometas relativamente cerca de la eclíptica, a  10.000-20.000 UA del Sol, extendiéndose hacia adentro para unirse al Cinturón de Kuiper.  Los comentas de la Nube de Oort se ven afectados por la fuerza gravitatoria de los estrellas cercanas, siendo perturbadas ocasionalmente poniéndoles en órbitas que los llevan hacia el Sistema Solar interior.

La Nube de Oort

“Las constantes de Oort (descubiertas por Jan Oort ) y son parámetros derivados empíricamente que caracterizan las propiedades rotacionales locales de nuestra galaxia, la Vía Láctea.”

La constante de Oort está referida a dos parámetros definidos por J.H.Oort para describir las características más importantes de la rotación diferencial de nuestra Galaxia en la vecindad del Sol.  Son usualmente expresadas en unidades de kilómetros por segundo por kiloparsec.  Los dos parámetros están dados por los símbolos A y B.  Restando B de A se obtiene la velocidad angular del estándar local de repaso alrededor del centro de la Galaxia, que corresponde al periodo de unos 200 millones de años.

Órbita.

Resultado de imagen de Orbita

En astronomía es el camino a través del espacio de un cuerpo celeste alrededor de otro.  Para un cuerpo pequeño que se mueve en el campo gravitacional de otro, la órbita es una cónica.  La mayoría de esas órbitas son elípticas y la mayoría de las órbitas planetarias en el sistema solar son casi circulares.  La forma y tamaño de una órbita elíptica se determina por su excentricidad, e, y la longitud de su semieje mayor, a.

En física, la órbita esta referida al camino de un electrón al viajar alrededor del núcleo del átomo (ver orbitales).

emilio silvera

Estrellas masivas de vida más corta

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La región central de la nebulosa de la Tarántula en la Gran Nube de Magallanes. El cúmulo de estrellas R136 joven y denso se puede ver en la parte inferior derecha de la imagen

 

Nueve estrellas cien veces más masivas que el Sol han sido descubiertas por el Hubble

 

La región central de la nebulosa de la Tarántula en la Gran Nube de Magallanes. El cúmulo de estrellas R136 joven y denso se puede ver en la parte inferior derecha de la imagen - NASA, ESA, P Crowther (University of Sheffield)

La rica región alrededor de la nebulosa de la Tarántula en la Gran Nube de Magallanes

“Con su intenso brillo, situada a unos 160.000 años luz de distancia, la nebulosa de la Tarántula es el objeto más destacado de la Gran Nube de Magallanes, una galaxia satélite de nuestra Vía Láctea. Esta imagen, obtenida con el telescopio de rastreo del VLT, en el Observatorio Paranal de ESO, en Chile, muestra de forma muy detallada esta región y sus ricos alrededores. Revela un paisaje cósmico de cúmulos de estrellas, nubes de gas que brillan intensamente y los dispersos restos de explosiones de supernova.”

El telescopio espacial Hubble encuentra 'estrellas monstruo' | CNNR136 - Wikipedia, la enciclopedia libre

Gracias al telescopio espacial Hubble, un equipo de astrónomos de la Universidad de Sheffield en Reino Unido ha identificado nueve monstruosas estrellas con masas más de 100 veces mayores que la del Sol en el cúmulo estelar R136, en la Nebulosa de la Tarántula dentro de la Gran Nube de Magallanes, a unos 170.000 años luz de distancia de la Tierra. Se trata de la muestra más grande de estrellas muy masivas identificada hasta la fecha. Los resultados, que serán publicados en la revista Monthly Notices de la Royal Astronomical Society, plantean muchas preguntas sobre la formación de este tipo de gigantes.

Resultado de imagen de Estrellas masivas

La estrella j de Carena es tan masiva (100 veces más que el Sol) y luminosa (5 millones de veces la del Sol), que su vida llega casi al final a pesar de estar aún en la nebulosa en la que nació. (Crédito ESO-VLT).

 Las estrellas más masivas dejan la secuencia principal cuando aún no han salido de la nube de materia interestelar donde nacieron, ya que, su voracidad en fusionar elementos es enorme, sus temperaturas las hacen mucho más luminosas y, sus vidas son más cortas.

Estas estrellas, al ser tan grandes, tienen temperaturas mucho más altas, tanto en sus superficies como en sus núcleos, que las que ocurren en el Sol (cuya superficie está a 6000 K, mientras que una estrella de 15 MS tiene una temperatura superficial de 28 000 K.) Es por esto que las estrellas más masivas queman el hidrógeno del núcleo más rápido, haciéndolas más brillantes.

Estrellas en la secuencia principal – La Cola de RataDespués de la secuencia principales una estrella de tipo-G de la secuencia principal y clase by giancarlo  sanchez vargasÁlex Riveiro on Twitter: "Tras terminar la secuencia principal, las  estrellas de una masa similar al Sol, o inferior, entran en la fase de  gigante roja. Se producen cambios que afectan no

La secuencia principal es aquella curva en el diagrama que parece mostrar una relación de proporcionalidad entre la luminosidad y la temperatura. En la secuencia principal se encuentran las estrellas que están en la madurez de sus vidas, como le pasa al Sol.

Se dice que una estrella se encuentra en la secuencia principal cuando en su núcleo se llevan a cabo las reacciones nucleares que transforman hidrógeno en helio (en el Sol esto ocurre a razón de 4.654.600 toneladas por segundo), liberando así la energía que hace que la estrella brille. Al quemarse hidrógeno en helio se lleva a cabo una reacción exotérmica, es decir, una reacción que libera energía.

Influencia del Sol sobre la Tierra - ppt video online descargarPartes de las plantas que realizan la fotosíntesis - La fotosíntesis

CIENCIAS NATURALES: Sol,viento y agua como fuente de energiaLa Tierra sirve para probar una nueva técnica que busca vida en otros  planetas | HAZTE ECO

De esa cantidad de Hidrógeno sólo se transforma en Helio 4.650.000 toneladas y las 4.600 que se pierden por el camino, son eyectadas al Espacio Interestelar en forma de luz y calor, y, al planeta Tierra llega una diez millonésima parte que es suficiente para que se produzca la fotosíntesis y sea posible la Vida.

La Tierra está situada a 150 millones de Km del Sol (1 Unidad Astronómica), distancia suficiente para que la zona sea habitable y no tengamos una temperatura imposible para la vida y que el agua corra líquida por los arroyos.

Resultado de imagen de Betelgeuse y Rigel en la constelación de Orión

Cuando una estrella masiva termina su estancia en la secuencia principal se convierte en una estrella súper-gigante, y su evolución se vuelve mas rápida. Dos ejemplos de estrellas súper-gigantes son las estrellas de Betelgeuse y Rigel en la constelación de Orión. Betelgeuse es 1000 veces más grande que el Sol, y 20 veces más masiva. Rigel a su vez es 17 veces más masiva que el Sol.

El gigante Betelgeuse, más cerca de la Tierra de lo que se creía

El Universo nunca dejará de asombrarnos.

emilio silvera

¿Es igual el Universo en todas partes?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Unos pilotos de EE.UU. reconocieron que han visto ovnis: ¿qué hace el  Pentágono para investigar el fenómeno? - BBC News MundoCaso Roswell - Wikipedia, la enciclopedia libreUfología en Chile: Los mejores destinos para el avistamiento de OVNIS |  Chile TravelQué misterios se esconden tras los llamados Niños Índigo? 1/2 | El Tambor.es

La curiosidad siempre nos ha empujado a querer asomarnos al lugar del suceso, sin pensar en los posibles riesgos, los testigos del acontecimiento se acercan al lugar-

En libros de Ciencia Ficción, no pocas veces hemos leído sobre una nave extraterrestre que cae en la Tierra. La escena que describen era la que se podía esperar después de la caída de una nave en plena montaña. Los pocos testigos que por el lugar estaban, llamaron a las autoridades que enviaron, de inmediato, a personal especializado en este tipo de investigaciones.¡

CyDUn meteorito que solo rozó la Tierra pudo ser la causa del desastre de  Tunguska | Ciencia

“Mira, un trazo de la nave caída, ¿de qué materiales estará hecha? Nunca he visto algo así! ¿De dónde vendrán estos seres, de qué estará conformado su mundo? Esto preguntaba uno de los investigadores al otro que con él, recogía muestras de aquella extraña nave caída y que, según el seguimiento hecho en su acercamiento a la Tierra, venía de más allá de los confines del Sistema Solar y, quién sabe de dónde pudieron partir. Sin embargo, el material que recogían, debería ser el mismo que está repartido por todo el Universo.

Veamos los materiales más densos del Universo:

Rodio, rutenio, osmio, iridio… los metales preciosos más desconocidos -  OroinformaciónSímbolo de iridio - iridio en lengua española - elemento número 77 d… |  Tabla periodica de los elementos, Tabla periodica de los elementos  quimicos, Tabla periodica

El Iridio tiene una Densidad de 22.560 Kg/m3 . Es decir, es más denso que el núcleo terrestre que pesa 13.000 Kgs/m3.

Osmio. Tabla Periodica. Revista C2saber si ocupa lugar: ¿Cuál es el elemento más denso de la Tierra?

Osmio que tiene una Densidad de 22.570 Kgs/m3 . Es posiblemente el metal más denso del Universo y se utiliza en aleaciones con el Platino.

Hassio - EcuRed▷ Hassio - Propiedades del Hassio

Densidad de 40.700 Kgs/m3 .  No es un elemento Natural

Núcleo solar - Wikipedia, la enciclopedia libre

El Núcleo del Sol tiene una Densidad de 150.000 Kgs/m3 . Es la densidad media del núcleo estelar. Sin embargo, a partir de aquí, las cosas parecen de Ciencia Fiscción.

Una estrella convertida en piedra

Densidad de una Enana Blanca es de 10.000.000.000 kg/m3. El satélite GAIA de la ESA, pudo comprobar por primera vez como se solidifica  (o cristaliza) una estrella como el Sol al final de su vida, cuando se convierte en Gigante roja primero y enana blanca después. La enana blanca es 66.000 veces más densa que el Sol. 

La nebulosa Ojo de Gato | KosmosLogos

 

El punto blanco del centro de la Nebulosa planetaria es la enana blanca que radia en ultravioleta e ioniza el material de la Nebulosa. A este final se llega debido al Principio de exclusión de Pauli.

“Los productos de las reacciones nucleares de fusión que tuvieron lugar durante las etapas previas en la vida de la estrella) junto a trazas de otros elementos químicos, como los isótopos 22Ne (neón), 25Mg (magnesio) y 54Fe (hierro). Las enanas blancas tienen una masa similar a la del Sol, pero un tamaño equiparable al de la Tierra. Su densidad alcanza valores formidables, del orden de una tonelada por centímetro cúbico.”
Qué pasaría si trajésemos un trozo de estrella de neutrones a la Tierra? –  Ciencia de Sofá
“Su densidad es tan alta que si llenáramos una botella de 1 litro con el material de su corteza y la trajéramos a la Tierra, esa botella pesaría tanto como 71 millones de ballenas azules. En cambio, una botella llena de osmio, el elemento más denso de la tabla periódica, «sólo» pesaría 22,3 kilos.”
“Una estrella de neutrones puede contener 500 000 veces la masa de la Tierra en una esfera de un diámetro de una decena de kilómetros.”
“Una estrella de neutrones típica tiene una masa entre 1,35 y 2,1 masas solares,123a​ con un radio correspondiente aproximado de 12 km.4b​ En cambio, el radio del Sol es de unas 60 000 veces esa cifra. Las estrellas de neutrones tienen densidades totales de 3,7×1017 a 5,9×1017 kg/m³ (de 2,6×1014 a 4,1×1014 veces la densidad del Sol),c​ comparable con la densidad aproximada de un núcleo atómico de 3×1017 kg/m³.5​ La densidad de una estrella de neutrones varía desde menos de 1×109 kg/m³ en la corteza, aumentando con la profundidad a más de 6×1017 u 8×1017 kg/m³ aún más adentro (más denso que un núcleo atómico).6​ Esta densidad equivale aproximadamente a la masa de un Boeing 747 comprimido en el tamaño de un pequeño grano de arena.”

Densidad de la Estrella de neutrones: 10^17 kg/m3

 

Diferentes muertes de una estrella | Estrellas

 

“!Una estrella de neutrones es un tipo de remanente estelar resultante del colapso gravitacional de una estrella supergigante masiva después de agotar el combustible en su núcleo y explotar como una supernova tipo II, tipo Ib o tipo Ic. Como su nombre indica, estas estrellas están compuestas principalmente de neutrones, más otro tipo de partículas tanto en su corteza sólida de hierro, como en su interior, que puede contener tanto protones y electrones, como piones y kaones. Las estrellas de neutrones son muy calientes y se apoyan en contra de un mayor colapso mediante presión de degeneración cuántica, debido al fenómeno descrito por el principio de exclusión de Pauli. Este principio establece que dos neutrones (o cualquier otra partícula fermiónica) no pueden ocupar el mismo espacio y estado cuántico simultáneamente.”
Experimentos revelan nuevas técnicas para estudiar el plasma de quarks-gluones  | Ciencia Kanija 2.0

Plasma de quarks: 10^19 kg/m3

 

“Seguimos con cosas increíbles. Y a partir de ahora son tan asombrosas que su presencia de forma natural no se ha observado. Empecemos esta nueva etapa con el conocido como “plasma de quarks”. Se trata de un estado de la materia que se cree que era la forma en la que se encontraba el Universo apenas unos milisegundos después del Big Bang.
Todo lo que daría lugar al Cosmos estaba contenido en este plasma asombrosamente denso. Su posible existencia en los orígenes del Universo se demostró cuando, en 2011, científicos del Gran Colisionador de Hadrones consiguieron crear la sustancia en cuestión haciendo colisionar (valga la redundancia) átomos de plomo entre ellos a la (casi) velocidad de la luz.”
{\displaystyle \rho _{P}={\frac {m_{P}}{l_{P}^{3}}}={\frac {c^{5}}{\hbar G^{2}}}}
“Llegamos a la densidad de Planck. La partícula de Planck es una hipotética partícula subatómica que se define como un agujero negro en miniatura. Y muy miniatura. Para entenderlo “fácilmente”, imaginemos esta partícula como un protón, pero 13 millones de cuatrillones de veces más pesada y varios trillones de veces más pequeña.”

Partícula de Planck: 10^96 kg/m3

 

Y como un agujero negro es un punto del espacio en el que la densidad es tan alta que genera una gravedad de la que ni siquiera la luz puede escapar, de ahí que digamos que una partícula de Planck es un “agujero negro en miniatura”.
Interstellar': la primera imagen real de un agujero negro confirma el rigor  científico de la película de Nolan
“El agujero negro es el objeto más denso del Universo. Y nunca nada le quitará este trono porque, básicamente, las leyes de la física impiden que haya algo más denso. Un agujero negro es una singularidad en el espacio, es decir, un punto de infinita masa sin volumen, por lo que, por matemáticas, la densidad es infinita. Y esto es lo que hace que genere una fuerza gravitacional tan alta que ni la luz puede escapar de su atracción. Más allá de esto, no sabemos (y seguramente nunca lo haremos) qué sucede en su interior. Todo son suposiciones.”
Aplicaciones y obtenciones de las aleaciones no ferrosasLas reacciones mas Extrañas - Ciencia y educación en Taringa!Aleaciones magnetocalóricas de tierras raras para dispositivos de  refrigeración - Mantenimiento IndustrialTumbaga cuff by Gogo Jewelry en 2020 | Aleaciones de oro, Brazalete,  Aleaciones
                          Es posible que se puedan realizar aleaciones que no conocemos

Sabiendo todo esto sobre los materiales que existen en nuestro Universo, también sabemos que lo único que puede diferir, es la forma en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra, llevando a cabo aleaciones con técnicas para nosotros desconocidas. Porque, en última instancia ¿es en verdad inerte la materia?

Descubrieron una de las estrellas de neutrones más densas jamás detectada -  Infobae

¿Os podéis imaginar que pudiéramos manejar el material de la estrella de neutrones para hacer vehículos espaciales  indestructibles?

Sí, son muchas las cosas que nos quedan por aprender e incluso, el agua tan familiar en nuestras vidas esconde secretos que ahora se están desvelando, Algún día conoceremos la verdadera “personalidad” de éste líquido elemento y de la luz, y, entonces, seremos un poco más sabios,

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos. Los que están más allá del Uranio y que son artificiales, no se encuentran libres en el Universo.

Algunos son:

NUMERO ATÓMICO NOMBRE SÍMBOLO MASA ATÓMICA
92 uranio U 283,03
93 neptunio Np 237,048
94 plutonio Pu 244
95 amercio Am 243
96 curio Cm 247
97 berquelio Bk 247
98 californio Cf 252
99 Einstenio Es 254
100 fermio Fm 257
101 mendelevio Md 258
102 nobelio No 259
103 laurencio Lr 260
104 rutherfordio Rf 261
105 dubnio Db 262

Sin título

 

 

 La radiactividad - Catedra Enresa-UCO

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.

            ¡Parece que la materia está viva!

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).

JJ Thomson Biografía: El hombre que descubrió el electrón

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico:  no se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora para poder construir conjuntos tan bellos como el que abajo podemos admirar.

Primeras imágenes de átomos en movimiento en una moléculaMoléculas, átomos Y Partículas En Movimiento Ilustraciones Vectoriales,  Clip Art Vectorizado Libre De Derechos. Image 23297415.

         ¡No por pequeño, se es insignificante! La enorme complejidad del átomo lo hace importante

Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

Logran la primera imagen de una partícula de luzQué es Fotón? » Su Definición y Significado [2020]

        A la izquierda la imagen captada de un fotón, la otra imagen es una conjetura de como sería

El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

Fuerza de Gravedad - Concepto, descubrimiento y ejemplosFuerza Electromagnetica by Leider Morales II

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es o, su carga es o, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler,  es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

     Andamos a la caza del vacío, del gravitón, de las ondas gravitatorias…

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultraalto.

De ese “vacío” nos queda muchísimo por aprender. Al parecer, todos los indicios nos dicen que está abarrotado de cosas, y, si es así, no es lo que podemos llamar con propiedad vacío, ese extraño lugar es otra cosa, pero, ¿Qué cosa es?

Antes se denominaba éter fluminifero (creo) a toda esa inmensa región. Más tarde, nuevas teorías vino a desechar su existencia. Pasó el tiempo y llegaron nuevas ideas y nuevos modelos, y, se llegó a la conclusión de que el Universo entero estaba permeado por “algo” que algunos llamaron los océanos de Higgs. Ahí, se tiene la esperanza de encontrar al esquivo Bosón que le da la masa a las demás partículas, y, el LHC del CERN, es el encargado de la búsqueda para que el Modelo Estándard de la Física de Partículas se afiance más.

ALCANZAR LA VERDAD

Andamos un poco a ciega, la niebla de nuestra ignorancia nos hace caminar alargando la mano para evitar darnos un mamporro. Pero a pesar de todo, seguimos adelante y, es más la fuerza que nos empuja, la curiosidad que nos aliente que, los posibles peligros que tales aventuras puedan conllever.

Está claro que, dentro del Universo, existen “rincones” en los que no podemos sospechar las maravillas que esconden, ni nuestra avezada imaginación, puede hacerse una idea firme de lo que allí pueda existir. Incansables seguimos la búsqueda, a cada nuevo descubrimiento nuestro corazón se acelera, nuestra curiosidad aumenta, nuestras ganas de seguir avanzando van creciendo y, no pocas veces, el físico que, apasionado está inmerso en uno de esos trabajos de búsqueda e investigación, pasa las horas sin sentir el paso del tiempo, ni como ni duerme y su mente, sólo tiene puesto los sentidos en ese final soñado en el que, al fín, aparece el tesoro perseguido que, en la mayor parte de las veces, es una nueva partícula, un parámetro hasta ahora desconocido en los comportamientos de la materia, un nuevo principio, o, en definitiva, un nuevo descubrimiento que nos llevará un poco más lejos.

Encontrar nuevas respuestas no dará la opción de plantear nuevas preguntas.

emilio silvera

¡Los grandes Números del Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Física y química de las altas diluciones | Revista Médica de Homeopatía

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el Universo en su conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.

The Royal Observatory Greenwich - where east meets west: People: Arthur  Stanley EddingtonArthur S. Eddington and the Bending of Light – Science meets Faith

Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También  hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol.

Arthur Eddington, el hombre hizo famoso a Albert Einstein al demostrar la  Teoría de la Relatividad - BBC News MundoPhilosophy of Science Portal: Sir Arthur Stanley Eddington--poetic tributeEddington experiment - Wikipedia

En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espacio-tiempo a su alrededor.

Sir Arthur Eddington

Le fue reconocida su contribución a la Ciencia

Entre los números que Eddington consideraba de importancia primordial estaba al que ahora conocemos como número de Eddington, que es igual al número de protones en el universo visible. Eddington calculó (a mano) este número con enorme precisión en un crucero trasatlántico, sentado en cubierta, con libreta y lápiz en la mano, tras calcular concienzudamente durante un tiempo, finalizó escribiendo:

“Creo que el Universo hay:

 

15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296

de protones y el mismo número de electrones”.

 

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080.  Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente. A Eddington siempre le llamó la atención esos números invariantes que llamaron constantes de la Naturaleza y que tenían que ver con el electromagnetismo, la gravedad, la velocidad de la luz y otros fenómenos naturales invariantes. Por ejemplo:

Constante Estructura FinaUna enana blanca para estudiar la constante de estructura fina | Ciencia en  sí misma

La constante de estructura fina de  (símbolo \alpha) es la constante fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado.

La expresión que la define y el valor recomendado  es:

   \alpha =   \frac{e^2}{\hbar c \ 4 \pi \epsilon_0} =   7,297 352 568 \times 10^{-3} =   \frac{1}{137,035 999 11}.

donde:

  • e es la carga elemental.
  • \hbar = h/(2 \pi) es la constante racionalizada o reducida de Planck,
  • c es la velocidad de la luz en el vacío, y
  •  \epsilon_0 es la permitivdad del vacío.

 

 

 

Cómo se produce la fuerza de la gravedad? - QuoraLigth Knight: Fuerza ElectromagnéticaFuerzas fundamentales

 

Durante la década de 1.920, cuando Eddington empezó su búsqueda para explicar las constantes de la naturaleza, no se conocían bien las fuerzas débil y fuerte. Las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la gravedad y las fuerzas electromagnéticas. Eddington las dispuso en tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y del electrón:

mpr/me ≈ 1840

La inversa de la constante de estructura fina

2πhc/e≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón,

e2/Gmpr me ≈ 1040

Estas constantes últimas que hacen posible la vida en nuestro universo

A estas añadió su número cosmológico, NEdd ≈ 1080. A estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafío de la ciencia teórica:

 “¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física que pueda demostrar que una o todas ellas podrían ser prescindibles? ¿Podrían haber sido diferentes de lo que realmente son?…  Surge la pregunta de si las razones anteriores pueden ser asignadas arbitrariamente o si son inevitables.  En el primer caso, sólo podemos aprender sus valores por medida; en el segundo caso es posible encontrarlos por la teoría…  Creo que ahora domina ampliamente la opinión de que las (cuatro anteriores) constantes… no son arbitrarias, sino que finalmente se les encontrará una explicación teórica; aunque también he oído expresar lo contrario.”

 

      Medida una y mil veces, α parece que no cambia a pesar de todo

Siguiendo con su especulación Eddington pensaba que el número de constantes inexplicadas era un indicio útil del hueco que había que cerrar antes de que se descubriese una teoría verdaderamente unificada de todas las fuerzas de la naturaleza.  En cuanto a si esta teoría final contenía una constante o ninguna, tendríamos que esperar y ver:

Explorer of stars and souls: Arthur Stanley Eddington – Physics World

 “Nuestro conocimiento actual de 4 constantes en lugar de 1 indica meramente la cantidad de unificación de la teoría que aún queda por conseguir. Quizá resulte que la constante que permanezca no sea arbitraria, pero de eso no tengo conocimiento.”

Max Planck, físico precursor de la mecánica cuántica. - LOFF.IT Biografía,  citas, frases.CIENCIA - La historia del hombre que robó el cerebro de Albert Einstein |  Listín DiarioGalileo Galilei - Catalunya VanguardistaIsaac Newton - Wikipedia, la enciclopedia libre

 

Eddington, como Max Planck, Einstein y Galileo, y Newton antes que ellos, era simplemente un adelantado a su tiempo; comprendía y veía cosas que sus coetáneos no podían percibir.

Hay una anécdota que se cuenta sobre esto y que ilustra la dificultad de muchos para reconciliar el trabajo de Eddington sobre las constantes fundamentales con sus monumentales contribuciones a la relatividad general y la astrofísica. La historia la contaba Sam Goudsmit referente a él mismo y al físico holandés Kramers:

Leiden Discoveries

                         Samuel Abraham Goudsmit, George Uhlenbeck y Hendrik Kramers

“El gran Arthur Eddington dio una conferencia sobre su derivación de la constante de estructura fina a partir de una teoría fundamental. Goudsmit y Kramers estaban entre la audiencia.  Goudsmit entendió poco pero reconoció que era un absurdo inverosímil. Kramers entendió mucho y reconoció que era un completo absurdo. Tras la discusión, Goudsmit se acercó a su viejo amigo y mentor Kramers y le preguntó: ¿Todos los físicos se vuelven locos cuando se hacen mayores? Tengo miedo. Kramers respondió, “No Sam, no tienes que asustarte. Un genio como Eddington quizá puede volverse loco pero un tipo como tú sólo se hace cada vez más tonto”.

 

“La historia es la ciencia de las cosas que no se repiten”.

Paul Valéry

         Aquí también están algunas de esas constantes

Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón crea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.

Cuál es la ecuación matemática más hermosa del mundo? - BBC News Mundo

La ecuación de Dirac sobre el electrón estéticamente es elegante y simple. Es una ecuación muy poderosa por lo que significa y su papel en la historia de la física del siglo XX.

La ecuación fue descubierta a finales de los años 20 por el físico Paul Dirac, y juntó dos de las ideas más importantes de la ciencia: la mecánica cuántica, que describe el comportamiento de objetos muy pequeños; y la teoría especial de Einstein de la relatividad, que describe el comportamiento de objetos en movimiento rápido.

Por lo tanto, la ecuación de Dirac describe cómo las partículas como electrones se comportan cuando viajan a casi la velocidad de la luz. Y también, dicha ecuación, predice la existencia de la anti-materia, el Positrón.

“El modelo atómico de Dirac-Jordan es la generalización relativista del operador hamiltoniano en la ecuación que describe la función de onda cuántica del electrón. A diferencia del modelo precedente, el de Schrodinger, no es necesario imponer el espín mediante el principio de exclusión de Pauli, ya que aparece de forma natural.

 Además, el modelo de Dirac-Jordan incorpora las correcciones relativistas, la interacción espín-órbita y el término de Darwin, que dan cuenta de la estructura fina de los niveles electrónicos del átomo.”

El universo rota?Semana Santa en cuarentena: haz un viaje al universo desde casaQué es Universo? » Su Definición y Significado [2020]Las últimas imágenes del universo de la NASA son tan espectaculares que  parecen falsas

                            Nuestro universo es como lo podemos observar gracias a esos números

El mayor misterio que rodea a los valores de las constantes de la naturaleza es sin duda la ubicuidad de algunos números enormes que aparecen en una variedad de consideraciones aparentemente inconexas. El número de Eddington es un ejemplo notable. El número total de protones que hay     dentro del alcance del Universo observable esta próximo al número

1080

Si preguntamos ahora por la razón entre las intensidades de las fuerzas electromagnéticas y gravitatoria entre dos protones, la respuesta no depende de su separación, sino que es aproximadamente igual a

1040

En un misterio. Es bastante habitual que los números puros que incluyen las constantes de la naturaleza difieran de 1 en un factor del orden de 102, ¡pero 1040, y su cuadrado 1080, es rarísimo! Y esto no es todo. Si seguimos a Max Planck y calculamos en valor estimado para la “acción” del Universo observable en unidades fundamentales de Planck para la acción, obtenemos.

10120