jueves, 03 de julio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡El Universo! ¿Sabría que íbamos a venir?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

TITÁN UN PEQUEÑO MUNDO CON LAGOS E METANO
Sí, a veces cruza por la Mente ese pensamiento de que, el Universo, sabía que íbamos a venir

Como se trata de una Ciencia que estudia la naturaleza Física del Universo y de los objetos contenidos en él, fundamentalmente estrellas, galaxias y la composición del espacio entre ellas, así como las consecuencias de las interacciones y transformaciones que en el Cosmos se producen, aquí dejamos una breve secuencia de hechos que, suceden sin cesar en el ámbito del Universo y, gracias a los cuales, existe la Tierra…y, nosotros.

 

evolución de los elementos timeline | Timetoast TimelinesVídeo: La evolución de la tabla periódica, año a año | Verne EL PAÍS

La evolución cósmica de los elementos nos lleva a la formación de los núcleos atómicos simples en el Big Bang y a una posterior fusión de estos núcleos ligeros para formar otros más pesados y complejos en en el interior de las estrellas, para finalizar el ciclo en las explosiones supernovas donde se plasman aquellos elementos finales de la Tabla Periódica, los más complejos y pesados.

 

Abundancia Cósmica de los Elementos : Blog de Emilio Silvera V.La química universal: el estudio de las moléculas en el espacio y su relación con la vidaLa abundancia Cósmica de los Elementos : Blog de Emilio Silvera V.

 

Una explosión de supernova es importante no solamente porque ahí es en donde se crean muchos elementos pesados, sino que gracias a esta misma explosión estos elementos se esparcen por el medio interestelar.

Hay procesos en el Universo que, si pudiera ser posible contemplarlos en directo, serían dignos del mayor asombro. Por ejemplo, a mí me maravilló comprender como se podía formar Carbono en las estrella y, de cómo éstas se valían del llamado “Efecto Triple Alfa” para conseguirlo.

Resultado de imagen de Efecto Triple Alfa"

La fusión en el centro de las estrella se logra cuando la densidad y temperatura son suficientemente altas. Existen varios ciclos de fusión que ocurren en diferentes fases de la vida de una estrella. Estos diferentes ciclos forman los diferentes elementos que conocemos. El primer ciclo de fusión es la fusión del Hidrógeno  hacia Helio. Esta es la fase en la que se encuentra nuestro Sol.

 

Ciclo CNO - Wikipedia, la enciclopedia libre

En las estrellas con temperaturas muy altas ocurren otros ciclos de fusiones (ciclos CNO ). A temperaturas aún más altas , el helio que se quema produce Carbono. Finalmente, a temperaturas extremadamente altas se forman los elementos más pesados como el Hierro.

Resultado de imagen de Cadena Protón-Protón

          Cadena Protón-Protón

Las reacciones internas que ocurren en las estrellas forman a los neutrinos que llegan a la Tierra. Al detectar estos neutrinos, los científicos pueden aprender sobre las fusiones internas en las estrellas. En el proceso de fusión nuclear denominado reacción Protón-Protón las partículas intervinientes son el protón(carga positiva), el neutrón (carga neutra), el positrón (carga positiva, antipartícula del electrón) y el neutrino.

 

Archivo:Keplers supernova.jpg

 

 En los remanentes de supernovas están presentes elementos pesados que, de otra manera, no podrían existir. En cuestión de segundos inmensas temperaturas los crea y son esparcidos por todo el Espacio circundante, y, millones de años más tarde, están formando parte de nuevos mundos.

 

Captan los primeros momentos tras la explosión de una supernova

Captan los primeros momentos tras la explosión de una estrella supermasiva

En las explosiones supernovas que viene a ser el aspecto más brillante de estos sucesos de transformación de la materia, literalmente, es que la explosión de la estrella genera suficiente energía para sintetizar una enorme variedad de átomos más pesados que el hierro que es el límite donde se paran en la producción de elementos estrellas medianas como nuestro Sol.

Pero, en las estrellas masivas y supermasivas gigantes, con decenas de masas solares, cuando el núcleo de hierro se contrae emite un solo sonido estruendoso, y este retumbar final del gong envía una onda sonara hacia arriba a través del gas que entran, el resultado es el choque más violento del Universo.

 

 

La imagen es un zoom del centro de la galaxia M82, una de las más cercanas galaxias con estrellas explosivas a una distancia de sólo 12 millones de años luz. La imagen de la izquierda, tomada con el Telescopio Espacial Hubble (HST), muestra el cuerpo de la galaxia en azul y el gas hidrógeno expulsado por las estrellas explosivas del centro en rojo.

Más arriba decíamos que aquí está el choque más violento del Universo. En un momento se forjan en la ardiente región de colisión toneladas de oro, plata, mercurio, hierro y plomo, yodo, estaño y cobre. La detonación arroja las capas exteriores de la estrella al espacio interestelar, y la nube, con su valioso cargamento, se expande, deambula durante largo tiempo y se mezcla con las nubes interestelares circundantes.

 

 

El más conocido remanente estelar, la Nebulosa del Cangrejo cuyos filamentos nos hablan de complejos materiales que la explosión primaria formó hace ya mucho tiempo, y, que actualmente, sirve de estudio para saber sobre los procesos estelares en este tipo de sucesos. No todos saben que en su interior alberga un pulsar que abajo podemos ver.

 

El pulsar de la nebulosa del cangrejo, imagen del Hubble

Antes dejamos una relación de materiales que pueden ser formados en las explosiones supernovas y, cuando se condensan estrellas nuevas a partir de esas nubes, sus planetas heredan los elementos forjados en estrellas anteriores y durante la explosión. La Tierra fue uno de esos planetas y éstos son los antepasados de los escudos de bronce y las espadas de acero con los que los hombres han luchado, y el oro y la plata por los que lucharon, y los clavos de hierro que los hombres del Capitan Cook negociaban por el afecto de las tahitianas.

 

           

          En esta región, las estrellas parecen Joyas

 

 

La muerte de una estrella supergigante, regenera el espacio interestelar de materiales complejos que, más tarde, forjan estrellas nuevas y mundos ricos en toda clase de elementos que, si tienen suerte de caer en la zona habitable, proporcionará a los seres que allí puedan surgir, los materiales y elementos necesarios para el desarrollo de sus ideas mediante la construcción de máquinas y tecnologías que, de otra manera, no sería posible. Incluso, sin estos materiales, ni esos seres podrían surgir a la vida.

¿No os parece una maravilla? Comenzando con el Hidrógeno, Helio Berilio y Litio en el Big Bang, se continuó con el Carbono, Nitrógeno y Oxígeno en las estrellas de la secuencia principal, y, como más arriba explicaba, se continúa en las estrellas moribundas con el Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc…Uranio. ¡Que maravilla!

 

Origen y evolución del UniversoOrigen y evolución del Universo

Las estrellas tienen diferentes colores y tamaños. Al igual que las personas, muestran aspectos diferentes según sea la fase de la vida en la que se encuentren.

Pero, en el caso de las estrellas, la masa con la que nacen, determina su evolución posterior así como los elementos químicos que dejarán en el espacio tras su muerte.

En la imagen se muestran los elementos asociados a diferentes estados de la vida de una estrella. Todas las estrellas nacen cuando comienzan a fusionar hidrógeno para formar helio.

El Sol, que se encuentra en su fase principal, está sobre todo generando helio.

Cuando el Sol se encuentre en su fase final, será una gigante roja y generará los elementos señalados en rojo.

En las  supernovas se generan el resto de los elementos señalados en azul.

Telescopio Espacial Hubble: los "Pilares de la Creación" y otros 4 hallazgos del instrumento científico que revolucionó lo que sabemos sobre nuestro universo - BBC News MundoEl Universo! ¿Sabría que íbamos a venir? : Blog de Emilio Silvera V.

El Hubble ha captado en los cielos profundos las más extrañas y variadas imágenes de objetos que en el Cosmos puedan estar presentes, sin embargo, pocas tan bellas como las de nuestro planeta Tierra que, es tan rico y especial, gracias a esos procesos que antes hemos contado que ocurren en las estrellas, en las explosiones de supernovas y mediante la creación de esos materiales complejos entre los que se encuentran la química biológica para la vida.

 

 

 

Si a partir de las Nebulosas que se forman cuando las estrellas masivas llegan al final de sus vidas, pueden surgir planetas como la Tierra, y, si la Tierra contiene la riqueza de todos esos materiales forjados en las estrellas y en el corazón de esas inmensas explosiones, y, si el Universo está plagado de galaxias en las que, de manera periódica suceden esas explosiones, nos podríamos preguntar: ¿Cuántas “Tierras” podrán existir incluso en nuestra propia Galaxia? Y, ¿Cuántos seres pueden haberse formado a partir de esos materiales complejos forjados en las estrellas?

 

Entendiendo el nacimiento de las estrellas | National Geographic

¡Qué gran secreto tiene el Universo! ¿Cómo se las arregla para crear, las precisas condiciones que dan lugar al surgir de la Vida? Sabemos que las estrellas han estado “fabricando” los elementos complejos esenciales para la Vida, durante diez mil millones de años.

Emilio Silvera Vázquez

El Universo asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Es cierto que la mayoría de mundos serán imposibles para la Vida

También es cierto que otros muchos mundos no podrían albergar la vida ni en el extremo de las posibilidades conocidas por nosotros y que denominamos extremófila por estar presente en condiciones que nunca, antes de ser descubierta, pudimos imaginar que pudiera existir.

Existen regiones del Universo que son extremadamente peligrosas donde la radiación y las energías extremas están presentes y, ningún mundo que pudiera existir por sus alrededores tendría la posibilidad de albergar ninguna clase de vida.

 

La Astrobiología estudia eventos relacionados con el origen del universo, el origen de la vida y

Somos conscientes de que no podemos vivir aislados y desde siempre hemos tratado de saber qué ocurría más allá, en la lejanía de las estrellas donde algunos imaginativos pensaban que otras criaturas habitaban un sin fin de mundos que, como la Tierra, tendrían las condiciones necesarias para ello. Así, el Universo ofrecía todas las posibilidades a favor y en contra, su diversidad era tanta que mundos llenos de vida pululaban alrededor de estrellas situadas a decenas, cientos, miles o millones de años-luz de nosotros y, también, había mundos imposibles donde nada podía surgir a la vida.

El trabajo completo pulsa el título de arriba en azul.

 

 

 

La vida pudo surgir en la Tierra en antiguas islas, salpicadas en un enorme océano global

  La vida emergió hace ya unos cuatro mil millones de años

Muchos fenómenos maravillosos han emergido en el universo desde aquella época primera: agujeros negros monstruosos tan masivos como miles de millones de soles, que engullen estrellas y escupen chorros de gas; estrellas de neutrones que giran miles de veces por segundo y cuyo material está comprimido hasta una densidad de mil millones de toneladas por centímetro cúbico; partículas subatómicas tan esquivas que podrían atravesar una capa de plomo sólido de años-luz de espesor y que, sin embargo, no dejan ninguna traza discernible; ondas gravitatorias fantasmales producidas por la colisión de dos agujeros negros que finalizan su danza de gravedad fusionando sus terribles fuerzas de densidades “infinitas”. Pese a todo, y por sorprendentes que estas cosas nos puedan parecer, el fenómeno de la vida es más notable que todas ellas en conjunto.

 

Águila volando al ras del agua | Imagen Premium generada con IA

  ¿De dónde surgieron con su gracia y colorido, su agilidad de movimiento y su sentido de orientación?

En realidad, la Vida, no produjo ninguna alteración súbita o espectacular en la esfera cósmica. De hecho, y a juzgar por la vida en la Tierra, los cambios que han provocado han sido extraordinariamente graduales. De todas formas, una vez que la vida se inició, el universo nunca sería el mismo. De forma lenta pero segura, ha transformado el planeta Tierra. Y al ofrecer un camino a la consciencia, la inteligencia y  la tecnología, ella tiene la capacidad de cambiar el universo.

 

Boletines

Si miramos esa Nebulosa de la imagen, podemos pensar en qué materiales están ahí presentes sometidos a fuerzas de marea de estrellas jóvenes y de inusitadas energías de radiación ultravioleta que, junto con la fuerza de gravedad, conformar el lugar y hacen que se distorsionen los materiales en los que….

Pulsa el título en azul para seguir.

 

johannes plenio tSpmcoiN8 k unsplash

                                                 La imagen especular de la montaña en el lago es simetría

Todos sabemos que la materia en nuestro Universo adopta muchas formas distintas: Galaxias de estrellas y mundos que, en alguna ocasión, pueden incluso tener seres vivos y algunos han podido evolucionar hasta adquirir la consciencia. Sin embargo, no me quería referir a eso que es bien sabido por todos, sino que, trato de pararme un poco sobre una curiosa propiedad que la materia tiene en algunas ocasiones y que, la Naturaleza se empeña en repetir una y otra vez: ¡La Simetría!

 

Imagen: Geralt

                            Si nuestras caras no fuesen simétricas… ¿Qué aspectos tendríamos?

En un sentido dinámico, la simetría podemos entenderla como lo que se repite, lo reiterativo, lo que tiende a ser igual. Es decir, los objetos que, por mantener la misma geometría, son representativos de otros objetos. En el Caos matemático encontramos concepción de la simetría en el mundo los fractales. Sin embargo, la simetría es mucho más. Hay distintas maneras de expresarla: “Conjunto de invariancias de un sistema”, podría ser una de ellas. Al aplicar una transformación de simetría sobre un sistema, el sistema queda inalterado, la simetría es estudiada matemáticamente usando teoría de grupos. Algunas de las simetrías son directamente físicas. Algunos ejemplos son las reflexiones y las rotaciones en las moléculas y las translaciones en las redes cristalinas.

 

Hemos hablado muchas veces en zoom de la famosa regla de los tercios y de cómo ésta puede ayudarte a componer tus fotografías para que el resultado sea mucho más atractivo a la vista. Pero ¿de dónde sale la regla de los tercios? ¿Es realmente una regla o más bien una orientación? ¿Hay reglas de composición que sean primas-hermanas de la Regla de los Tercios? ¿Qué diferencias se generan en una fotografía dependiendo de dónde se coloquen los sujetos? En este artículo intentaremos arrojar un poco de luz sobre todo esto. ¡Empezamos!

Sigue pulsando el título arriba.

 

 

La Huygens desciende sobre la superficie de Titán

¿Qué sabemos de Titán?

Titán es el satélite mayor de Saturno y la segunda de las mayores lunas del Sistema Solar, la cual sólo rivaliza en tamaño con Ganimedes -satélite de Júpiter-. Este mundo siempre ha resultado de enorme interés a los científicos pues se considera un “laboratorio de la vida”, un lugar que podría ser reflejo -desde el punto de vista biológico- de lo que era el planeta Tierra hace más de 3500 millones de años.

Titán es un mundo único en el Sistema Solar y muy enigmático: su superficie es una incógnita, pues su densa atmósfera formada fundamentalmente por nitrógeno nunca nos ha permitido observar sus rasgos superficiales. A todo ello se le suman una gran cantidad de incógnitas: la posibilidad de existencia de mares o lagos superficiales de hidrocarburos, de materia orgánica e incluso de vida.

 

Sinc

              Océanos de metano en Titán que son contemplados por Saturno

Todas las misiones que han estudiado con mayor o menor detalle este mundo -Pioneer 11 y sobre todo las Voyager 1 y 2- han obtenido datos de gran interés, aunque no han podido desentrañar muchos de los misterios que rodean a esta interesante luna. En 2004 comenzó la aproximación del orbitador Cassini al planeta Saturno y acto seguido su inserción orbital, lo que tuvo lugar en julio de 2006. Justo seis meses después, este orbitador dejó caer la sonda Huygens a través de la atmósfera de la luna Titán, hacia su superficie.

En este trabajo trataremos sobre el satélite Titán, realizando una revisión sobre los conocimientos acerca del mismo y las últimas hipótesis que los científicos tienen en mente, las cuales es fácil que den un vuelco cuando los técnicos de la misión Cassini-Huygens comience a estudiar con detalle este pequeño  mundo y todos los datos que han podido ser captados por nuestros ingenios.

 

File:Titan in natural color Cassini.jpg

                       Titán en color natural (sonda Cassini-Huygens 2005)

Titán es el mayor de los satélites de Saturno, siendo el único del Sistema Solar que posee una atmósfera importante. Según los datos disponibles su atmósfera podría estar compuesta principalmente de nitrógeno, pero hasta un 6% puede ser metano y compuestos complejos de hidrocarburos. En el año 2005, la sonda espacial Cassini-Huygens descendió en paracaídas por la atmósfera de Titán y aterrizó en su helada superficie para descubrir algunos de sus secretos.

¡Sigamos soñando con la realidad! En este presente que ya es futuro.

Sigue leyendo pulsando el título arriba.

Max Planck: Sobre DiosConstante de Planck - Wikipedia, la enciclopedia libre

La ley de Planck describe la radiación electromagnética emitida por un cuerpo negro en equilibrio térmico en una temperatura definida. Se trata de un resultado pionero de la física moderna y la teoría cuántica.

Para ser exactos, su valor es de 6.626×1034 julios por segundo, según el Sistema Internacional de Unidades. Asimismo, la constante de Planck también desempeñó un papel esencial en la formulación de otro de los grandes planteamientos de la cuántica, como el principio de incertidumbre de Heisenberg.

Lo cierto es que Planck, con aquel artículo de 8 páginas publicado en 1.900, sembró la semilla de lo que más tarde floreció como la me canica cuántica (esta es la primera verdad).

 

La Relatividad General: La teoría que curvó nuestra visión del universo  Imagina que el espacio y el tiempo son una tela flexible. Si colocas una  estrella sobre ella, la tela se deformaRelatividad General. La teoría más bella cumple cien años - RdL – Revista  de Libros
La otra verdad es la que se estructura en esa teoría que llamamos Relatividad General, que nos habla de agujeros negros y de los objetos más grandes del Universo, la que nos trajo una nueva Cosmología.
Durante años de investigación, los físicos han confirmado experimentalmente, con una exactitud casi inimaginable, la practica totalidad de las predicciones que hacen las dos teorías. Sin embargo, estos mismos instrumentos teóricos nos llevan a una conclusión inquietante: tal como se formulan actualmente, la relatividad general y la mecánica cuántica no pueden ser ambas ciertas a la vez.
Nos encontramos con que las dos teorías en las que se basan los enormes avances realizados por la física durante el último siglo (avances que han explicado la expansión de los cielos y la estructura fundamental de la materia) son mutuamente incompatibles. Cuando se juntan ambas teorías, aunque la formulación propuesta parezca lógica, aquello explota; la respuesta es un sinsentido que nos arroja un sin fin de infinitos a la cara.
Así que las dos teorías son ciertas pero incompatibles, una “vive” en el “universo” de lo muy pequeño, y, la otra, en el “universo” de lo muy grande. La incompatibilidad se refleja en el hecho de que la Gravedad no quiere estar presente en el Modelo Estándar, y, los físicos, buscan desesperadamente una teoría Cuántica de la Gravedad (que según todos los indicios)… ¿Subyace en la Teoría de cuerdas.
El Universo asombroso
La isla Vaadhoo, una playa que brilla en la oscuridad | HAZTE ECO
Multitud de estrellas se reflejan en  la playa
GIF night sky - GIF animado en GIFER
La noche estrellada
Cuando en la noche oscura y estrellada miramos hacia la esfera celeste que nos envuelve y podemos admirar la multitud de puntitos brillantes que, por causa de la atmósfera terrestre parecen titilar, como enviándonos mensajes que no sabemos descifrar, en realidad, esa imagen cotidiana no nos lleva hacia lo que realmente estamos viendo, hacia la grandeza que allí se oculta y, hacia los sucesos asombrosos que, en cualquiera de aquellas estrellas, por insignificante que pudiera ser, se están produciendo continuamente. Allí se están fusionando los elementos Hidrógeno en Helio y el Helio, con ayuda del Berilio y, como consecuencia del efecto Triple Alfa, en Carbono… ¡Además de muchos más procesos y transiciones!

Nebulosa de la Flama - Wikipedia, la enciclopedia libreNebulosa de la flama

La Nebulosa de la Flama

La nebulosa de la flama es una nebulosa que aparenta estar en llamas. No se encuentra en el Sistema Solar, está a una distancia cercana a la constelación más oriental del cinturón de Orión Alnitak. También la podemos reconocer por su denominación NGC 2024 en el Nuevo Catálogo General, en el que se nombra una serie de objetos del inmenso espacio, confeccionado por John Louis Emil Dreyer. Este catálogo se actualizó en el año 1888, tras el realizado anteriormente por John Herschel.

 

El observatorio espacial Herschel se apaga definitivamente | Ciencia |  elmundo.es

 

El Observatorio Espacial Herschel ha descubierto un filamento gigante repleto de galaxias en las que brillan miles de millones de estrellas. El filamento conecta dos cúmulos de galaxias que, al colisionar con un tercer cúmulo, darán lugar a uno de los mayores supercúmulos de galaxias del universo.

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del Universo, de los mecanismos que lo rigen, de la materia y de la energía que está presente y, ¿por qué no? de la vida inteligente que en él ha llegado a evolucionar. En las estrellas se crean los elementos esenciales para la vida. Esos elementos esenciales para la vida están elaborándose en los hornos nucleares de las estrellas. Allí, mediante transiciones de fases a muy altas temperaturas, se hace posible la fusión que se produce venciendo la barrera de Coulomb, y a partir del simple Hidrógeno, hacer aparecer materia más compleja que más tarde, mediante procesos físico-químicos-biológicos, hacen posible el surgir de la vida bajo ciertas circunstancias y condiciones especiales de planetas y de la estrellas que teniendo las condiciones similares al Sol y la Tierra, lo hace inevitable.

El Sofista: Una piel de zorro, un unicornio y un árbol de Navidad

Una piel de zorro, un unicornio y un árbol de Navidad

¿Qué tienen en común un cono, una piel de un zorro y un árbol de Navidad? La respuesta es que todo eso se encuentra en la constelación del Unicornio (Monoceros)

Pero está claro, como digo, que todo el proceso estelar evolutivo nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas en las que se crean moléculas, se forman estrellas nuevas y mundos. La Tierra primigenia en particular, en cuyo medio ígneo, procesos dinámicos dieron lugar a la formación de las estructuras y de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

 

Vida en el universo - fronterad

 

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico. Partiendo de un Caos inicial se han ido acumulando los procesos necesarios para llegar a un orden que, es digno del asombro que nos producen los signos de vida que podemos contemplar por todas partes y, desde luego, tampoco podemos dejar de maravillarnos de que la Naturaleza, valiéndose de mil artimañas, haya podido conseguir la presencia de vida consciente en un mundo, y, muy probablemente, en muchos mundos de muchas galaxias en todo el Universo.

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

 

                        Microcristales de arcilla

Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc.; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. ¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

 

2023 abril 07 : Blog de Emilio Silvera V.

 

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Según decía en trabajos anteriores, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones.

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

 

Protones y neutrones 'enamorados' podrían determinar el futuro de las  estrellas

 

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

Los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

Resultado de imagen de Los átomos se juntan para formar moléculas

Resultado de imagen de Los átomos se juntan para formar moléculas

          Los átomos se juntan para formar moléculas

El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

 

España lidera la búsqueda mundial de moléculas interestelares | CienciaEspaña lidera la búsqueda mundial de moléculas interestelares | CienciaDescubren en el espacio interestelar moléculas clave para la formación de  estructuras básicas de la vida | Instituto de Astrofísica de Canarias • IAC

            Ya son muchas decenas de moléculas encontradas en las nubes interestelares

Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.

Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones.  Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

 

 

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales s, p, d, f, g, h. Este pequeño número nos proporciona una gran diversidad.

 

Hibridaciones sp3 sp2 sp excel | PPT

 

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas iso-electrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

 

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetra-valencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

 

Resultado de imagen de Átomo de CarbonoResultado de imagen de Átomo de Carbono

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. Si tengo que ser sincero, mi convicción está centrada en que, cualquier forma de vida que podamos encontrar en el Universo, estarán conformadas como las que tenemos y existieron en la Tierra, en el Carbono. Otro elemento no podría dar, tanto…¿juego?

Pero, si hablamos del Universo que es lo que todo lo abarca, en el que están presentes la materia y el espacio-tiempo, las fuerzas fundamentales que todo lo rige y las constantes universales que hace que nuestro universo sea de la manera que lo podemos contemplar y, sobre todo, que la vida esté presente en él. Si la carga del electrón, la masa del protón, o, la velocidad de la luz, variaran tan sólo una diezmilésima… ¡La Vida no sería posible!

 

 

En la imagen podemos contemplar  lo que se clasifica NGC 3603,  es un cúmulo abierto de estrellas en una vasta región estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 -luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.

 

Nebulosa NGC 3603, cúmulo de estrellas: Comprender nuestro Universo

 

NGC 3603 alberga miles de estrellas de todos los rangos, tamaños, composición y colores: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas  supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.

Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de otra una vez cada 3,77 días, es la estrella más masiva conocida en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Se estima que la masa máxima de una estrella es de unas 120 masas solares, siendo más masiva, su propia radiación las destruiría.

 

Composite image of Supernova 1987A.jpg

 

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios.  Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.

Las observaciones de SN 1987A, hechas en los últimos 20 por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas. Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estudiando los remanentes de supernovas muy antiguas no se podían ver.

 

 

También el clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20.000 años (se estima).  ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A que más arriba hemos podido contemplar.

Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.

 

SN 1987A ring formation

 

El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene la presión de degeneración del gas de neutrones compensa el empuje  hacia adentro de la Gravedad. El proceso completo hasta que se la estrella de neutrones dura de un segundo.

 

               Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.

Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.

 

NGC 604, una región H II gigante en la galaxia del Triángulo.

Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alreddor de estas estrellas de neutrones y púlsares que se conviertan en magnetares.

Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes acerca del funcionamiento de los magnetares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condición. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnetares.

 El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y también una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencias de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.

 

Un nuevo tipo de enana blanca : Revista Pesquisa FapespEstrellas de neutrones | National Geographic

El puntito blanco del centro de la Nebulosa planetaria es la estrella enana blanca

 

Una Extraña Estrella de Neutrones Cerca de la Tierra

La supera en densidad la estrella de neutrones

La densidad de estas estrellas es increíblemente grande (8×1017 kg/m3), tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra. Es decir, que fácilmente la densidad de una E.N. pudiera ser de unas 500.000 veces la masa de la Tierra y tener un diámetro de sólo un par de decenas de kilómetros.   Los púlsares fueron descubiertos en 1970 y hasta solo se conece unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nustros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).

 

 

Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)

 Por ahora se conoce que de cada diez supernovas una se convierte en magnetar,  si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.

 

 

Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.

La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, nacerán nuevas estrellas y nuevos mundos.

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.

 

       El remanente estelar después de la explosión puede ser muy variado

Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!

 

foto

   ¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

 

Imagen relacionada

 

Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del trabajo me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.

Emilio Silvera Vázquez

¡El Universo! A veces pienso, ¡que sabe lo que hace!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen relacionada

Como se trata de una Ciencia que estudia la naturaleza Física del Universo y de los objetos contenidos en él (Astrofísica), fundamentalmente estrellas, galaxias y la composición del espacio entre ellas, así como las consecuencias de las interacciones y transformaciones que en el Cosmos se producen, aquí dejamos una breve secuencia de hechos que, suceden sin cesar en el ámbito del Universo y, gracias a los cuales, existe la Tierra…y, nosotros.

La evolución cósmica de los elementos nos lleva a la formación de los núcleos atómicos simples en el big bang y a una posterios fusión de estos núcleos ligeros para formar otros más pesados y complejos en en el interior de las estrellas, para finalizar el ciclo en las explosiones supernovas donde se plasman aquellos elementos finales de la Tabla Periódica, los más complejos y pesados.

Hay procesos en el Universo que, si pudiera ser posible contemplarlos en directo, serían dignos del mayor asombro. Por ejemplo, a mí me maravilló comprender como se podía formar Carbono en las estrella y, de cómo éstas se valían del llamado “Efecto Triple Alfa” para conseguirlo. Fue el físico Fred Hoyle el que desvceló tal maravcilla.

La fusión en el centro de las estrella se logra cuando la densidad y temperatura son suficientemente altas. Existen varios ciclos de fusión que ocurren en diferentes fases de la vida de una estrella. Estos diferentes ciclos forman los diferentes elementos que conocemos. El primer ciclo de fusión es la fusión del Hidrógeno  hacia Helio. Esta es la fase en la que se encuentra nuestro Sol.

En las estrellas con temperaturas muy altas ocurren otros ciclos de fusiones (ciclos CNO). A temperaturas aún más altas , el helio que se quema produce Carbono. Finalmente, a temperaturas extremadamente altas se forman los elementos más pesados como el Hierro.

Resultado de imagen de Resultado de imagen de Cadena protón-protón en las estrellas

Ciclo Protón-Protón

Esta serie de reacciones se conoce como cadena protón-protón y es la principal reacción que tiene lugar en nuestro Sol para convertir elementos sencillos en otros más complejos.

 

nuc70.png

 

La cadena protón-protón es una de las dos reacciones de fusión que se producen en las estrellas para convertir el hidrógeno en helio, el otro proceso conocido es el ciclo CNO. Las cadenas protón-protón son más importantes en estrellas del tamaño del Sol o menores. El balance global del proceso es el equivalente de unir cuatro nucleones y dos electrones para formar un núcleo de helio-4 (2 protones + 2 neutrones).

Primer paso (dos veces)

 Segundo paso (dos veces)

El ciclo Carbono Nitrógeno Oxígeno:

 

Ciclo CNO - Wikipedia, la enciclopedia libre

Las reacciones internas que ocurren en las estrellas forman a los neutrinos que llegan a la Tierra. Al detectar estos neutrinos, los científicos pueden aprender sobre las fusiones internas en las estrellas. En el proceso de fusión nuclear denominado reacción Protón-Protón las partículas intervinientes son el protón(carga positiva), el neutrón (carga neutra), el positrón (carga positiva, antipartícula del electrón) y el neutrino.

 

Archivo:Keplers supernova.jpg

 

En las explosiones supernovas que viene a ser el aspecto más brillante de estos sucesos de transformación de la materia, literalmente, es que la explosión de la estrella genera suficiente energía para sintetizar una enorme variedad de átomos más pesados que el hierro que es el límite donde se paran en la producción de elementos estrellas medianas como nuestro Sol.

Pero, en las estrellas masivas y super-masivas gigantes, con decenas de masas solares, cuando el núcleo de hierro se contrae emite un solo sonido estruendoso, y este retumbar final del gong envía una onda sonara hacia arriba a través del gas que entran, el resultado es el choque más violento del Universo.

 

 

La imagen es un zoom del centro de la galaxia M82, una de las más cercanas galaxias con estrellas explosivas a una distancia de sólo 12 millones de años luz. La imagen de la izquierda, tomada con el Telescopio Espacial Hubble (HST), muestra el cuerpo de la galaxia en azul y el gas hidrógeno expulsado por las estrellas explosivas del centro en rojo.

Más arriba decíamos que aquí está el choque más violento del Universo. En un momento se forjan en la ardiente región de colisión toneladas de oro, plata, mercurio, hierro y plomo, yodo, estaño y cobre. La detonación arroja las capas exteriores de la estrella al espacio interestelar, y la nube, con su valioso cargamento, se expande, deambula durante largo tiempo y se mezcla con las nubes interestelares circundantes.

 

 

El más conocido remanente estelar, la Nebulosa del Cangrejo cuyos filamentos nos hablan de complejos materiales que la explosión primaria formó hace ya mucho tiempo, y, que actualmente, sirve de estudio para saber sobre los procesos estelares en este tipo de sucesos.

 

El pulsar que mora dentro  de la nebulosa del cangrejo, en rojo del hubble.

 

Qué es una supernova? | Las científicas responden | Ciencia | EL PAÍS

“La nucleosíntesis de supernovas se refiere a la producción de nuevos elementos químicos dentro de las supernovas. Ocurre principalmente debido a la nucleosíntesis explosiva durante la combustión de oxígeno explosivo y la combustión de silicio.[1]​ Estas reacciones de fusión crean los elementos silicioazufrecloroargónpotasiocalcioescandiotitaniovanadiocromomanganesohierrocobalto y níquel. Como resultado de su expulsión desde supernovas individuales, la abundancia de estos elementos se incrementa en el medio interestelar. Los elementos más pesados que el níquel son creados principalmente por un proceso de captura de neutrones conocido como proceso-R. Sin embargo, se piensa que hay otros procesos responsables de algunas nucleosíntesis de elementos: principalmente, un proceso de captura de protones conocido como el proceso rp y un proceso de foto-disgregación conocido como el proceso p. De esta forma, al final se sintetizan los isótopos más ligeros (pobres en neutrones) de los elementos pesados.”

 

James Cook, el conquistador de las antípodas

Antes dejamos una relación de materiales que pueden ser formados en las explosiones supernovas y, cuando se condensan estrellas nuevas a partir de esas nubes, sus planetas heredan los elementos forjados en estrellas anteriores y durante la explosión. La Tierra fue uno de esos planetas y éstos son los antepasados de los escudos de bronce y las espadas de acero con los que los hombres han luchado, y el oro y la plata por los que lucharon, y los clavos de hierro que los hombres del Capitán Cook negociaban por el afecto de las tahitianas.

 

 

La muerte de una estrella super-gigante, regenera el espacio interestelar de materiales complejos que, más tarde, forjan estrellas nuevas y mundos ricos en toda clase de elementos que, si tienen suerte de caer en la zona habitable, proporcionará a los seres que allí puedan surgir, los materiales y elementos necesarios para el desarrollo de sus ideas mediante la construcción de máquinas y tecnologías que, de otra manera, no sería posible. Incluso, sin estos materiales, ni esos seres podrían surgir a la vida.

¿No os parece una maravilla? Comenzando con el Hidrógeno, Helio Berilio y Litio en el Big Bang, se continuó con el Carbono, Nitrógeno y Oxígeno en las estrellas de la secuencia principal, y, como más arriba explicaba, se continúa en las estrellas moribundas con el Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc…Uranio. ¡Qué maravilla!

 

 

El Hubble ha captado en los cielos profundos las más extrañas y variadas imágenes de objetos que en el Cosmos puedan estar presentes, sin embargo, pocas tan bellas como las de nuestro planeta Tierra que, es tan rico y especial, gracias a esos procesos que antes hemos contado que ocurren en las estrellas, en las explosiones de supernovas y mediante la creación de esos materiales complejos entre los que se encuentran la química biológica para la vida.

 

 

 

Si a partir de las Nebulosas que se forman cuando las estrellas masivas llegan al final de sus vidas, pueden surgir planetas como la Tierra, y, si la Tierra contiene la riqueza de todos esos materiales forjados en las estrellas y en el corazón de esas inmensas explosiones, y, si el Universo está plagado de galaxias en las que, de manera periódica suceden esas explosiones, nos podríamos preguntar: ¿Cuántas “Tierras” podrán existir incluso en nuestra propia Galaxia? Y, ¿Cuántos seres pueden haberse formado a partir de esos materiales complejos forjados en las estrellas?

¡Qué gran secreto tiene el Universo! ¿Cómo se las arregla para crear, las precisas condiciones que dan lugar al surgir de la Vida?

Emilio Silvera Vázquez

¡El Universo! A veces pienso que, ¡sabe lo que hace!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Como se trata de una Ciencia que estudia la naturaleza Física del Universo y de los objetos contenidos en él, fundamentalmente estrellas, galaxias y la composición del espacio entre ellas, así como las consecuencias de las interacciones y transformaciones que en el Cosmos se producen, aquí dejamos una breve secuencia de hechos que, suceden sin cesar en el ámbito del Universo y, gracias a los cuales, existe la Tierra…y, nosotros.

La evolución cósmica de los elementos nos lleva a la formación de los núcleos atómicos simples en el big bang y a una posterios fusión de estos núcleos ligeros para formar otros más pesados y complejos en en el interior de las estrellas, para finalizar el ciclo en las explosiones supernovas donde se plasman aquellos elementos finales de la Tabla Periódica, los más complejos y pesados.

Resultado de imagen de El efecto triple alfa

Hay procesos en el Universo que, si pudiera ser posible contemplarlos en directo, serían dignos del mayor asombro. Por ejemplo, a mí me maravilló comprender como se podía formar Carbono en las estrella y, de cómo éstas se valían del llamado “Efecto Triple Alfa” para conseguirlo.

La fusión en el centro de las estrella se logra cuando la densidad y temperatura son suficientemente altas. Existen varios ciclos de fusión que ocurren en diferentes fases de la vida de una estrella. Estos diferentes ciclos forman los diferentes elementos que conocemos. El primer ciclo de fusión es la fusión del Hidrógeno  hacia Helio. Esta es la fase en la que se encuentra nuestro Sol.

En las estrellas con temperaturas muy altas ocurren otros ciclos de fusiones (ciclos CNO ). A temperaturas aún más altas , el helio que se quema produce Carbono. Finalmente, a temperaturas extremadamente altas se forman los elementos más pesados como el Hierro.

 

Cadena protó-protó - Viquipèdia, l'enciclopèdia lliure

                        Cadena Protón-Protón

Las reacciones internas que ocurren en las estrellas forman a los neutrinos que llegan a la Tierra. Al detectar estos neutrinos, los científicos pueden aprender sobre las fusiones internas en las estrellas. En el proceso de fusión nuclear denominado reacción Protón-Protón las partículas intervinientes son el protón (carga positiva), el neutrón (carga neutra), el positrón (carga positiva, antipartícula del electrón) y el neutrino.

 

Archivo:Keplers supernova.jpg

 

En las explosiones supernovas que viene a ser el aspecto más brillante de estos sucesos de transformación de la materia, literalmente, es que la explosión de la estrella genera suficiente energía para sintetizar una enorme variedad de átomos más pesados que el hierro que es el límite donde se paran en la producción de elementos estrellas medianas como nuestro Sol.

Pero, en las estrellas masivas y supermasivas gigantes, con decenas de masas solares, cuando el núcleo de hierro se contrae emite un solo sonido estruendoso, y este retumbar final del gong envía una onda sonara hacia arriba a través del gas que entran, el resultado es el choque más violento del Universo.

 

 

La imagen es un zoom del centro de la galaxia M82, una de las más cercanas galaxias con estrellas explosivas a una distancia de sólo 12 millones de años luz. La imagen de la izquierda, tomada con el Telescopio Espacial Hubble (HST), muestra el cuerpo de la galaxia en azul y el gas hidrógeno expulsado por las estrellas explosivas del centro en rojo.

Más arriba decíamos que aquí está el choque más violento del Universo. En un momento se forjan en la ardiente región de colisión toneladas de oro, plata, mercurio, hierro y plomo, yodo, estaño y cobre. La detonación arroja las capas exteriores de la estrella al espacio interestelar, y la nube, con su valioso cargamento, se expande, deambula durante largo tiempo y se mezcla con las nubes interestelares circundantes.

 

 

El más conocido remanente estelar, la Nebulosa del Cangrejo cuyos filamentos nos hablan de complejos materiales que la explosión primaria formó hace ya mucho tiempo, y, que actualmente, sirve de estudio para saber sobre los procesos estelares en este tipo de sucesos.

 

El pulsar de la nebulosa del cangrejo, en rojo del Hubble

Antes dejámos una relación de materiales que pueden ser formados en las explosiones supernovas y, cuando se condensan estrellas nuevas a partir de esas nubes, sus planetas heredan los elementos forjados en estrellas anteriores y durante la explosión. La Tierra fue uno de esos planetas y éstos son los antepasados de los escudos de bronce y las espadas de acero con los que los hombres han luchado, y el oro y la plata por los que lucharon, y los clavos de hierro que los hombres del Capitan Cook negociaban por el afecto de las tahitianas.

 

 

La muerte de una estrella supergigante, regenera el espacio interestelar de materiales complejos que, más tarde, forjan estrellas nuevas y mundos ricos en toda clase de elementos que, si tienen suerte de caer en la zona habitable, proporcionará a los seres que allí puedan surgir, los materiales y elementos necesarios para el desarrollo de sus ideas mediante la construcción de máquinas y tecnologías que, de otra manera, no sería posible. Incluso, sin estos materiales, ni esos seres podrían surgir a la vida.

¿No os parece una maravilla? Comenzando con el Hidrógeno, Helio Berilio y Litio en el Big Bang, se continuó con el Carbono, Nitrógeno y Oxígeno en las estrellas de la secuencia principal, y, como más arriba explicaba, se continúa en las estrellas moribundas con el Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc…Uranio.

¡Que maravilla!

 

 

El Hubble ha captado en los cielos profundos las más extrañas y variadas imágenes de objetos que en el Cosmos puedan estar presentes, sin embargo, pocas tan bellas como las de nuestro planeta Tierra que, es tan rico y especial, gracias a esos procesos que antes hemos contado que ocurren en las estrellas, en las explosiones de supernovas y mediante la creación de esos materiales complejos entre los que se encuentran la química biológica para la vida.

 

 

Si a partir de las Nebulosas que se forman cuando las estrellas masivas llegan al final de sus vidas, pueden surgir planetas como la Tierra, y, si la Tierra contiene la riqueza de todos esos materiales forjados en las estrellas y en el corazón de esas inmensas explosiones, y, si el Universo está plagado de galaxias en las que, de manera periódica suceden esas explosiones, nos podríamos preguntar: ¿Cuántas “Tierras” podrán existir incluso en nuestra propia Galaxia? Y, ¿Cuántos seres pueden haberse formado a partir de esos materiales complejos forjados en las estrellas?

 

Resultado de imagen de Bellas Nebulosas

¡Qué gran secreto tiene el Universo! ¿Cómo se las arregla para crear las precisas condiciones que dan lugar al surgir de la Vida? A veces me pregunto:

¿Sabía el Universo que íbamos avenir?

Emilio Silvera Vázquez

Saber donde estamos pero sintiendo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Once Upon A Time In The West (Ennio Morricone) cover - By Harmony Highway

Once Upon A Time In The West (Ennio Morricone) cover … – YouTube

May it Be – Lisa Kelly – YouTube

 

Chloe Agnew – Nella Fantasia – YouTube

 

No solo de pan vive el hombre y, de vez en cuando, nuestro espíritu requiere otras cosas que, para vivir en paz, le debemos suministrar. Un momento de aislamiento con nosotros mismos oyendo música, puede valer.

 

Resultado de imagen de André Rieu - Once Upon A Time In The West -TOSKANA

 

“André Rieu” Once Upon a Time in The West – YouTube

 

Resultado de imagen de La inmensidad del Universo está dentro de nosotros

La inmensidad del Universo está dentro de nosotros y sentimos, en nuestras mentes, las voces que nos llaman hacia nuestro destino en las estrellas. Allí, en las estrellas está nuestro origen y, hasta ellas queremos llegar.

 

 

Webb capta una visión etérea en la Pequeña Nube de Magallanes

NGC 346: en la Pequeña Nube de Magallanes

NGC 346 en la Pequeña Nube de Magallanes. Entre los cúmulos de SMC y la nebulosa NGC 346 hay una región de formación de estrellas de unos 200 años luz -fotografía arriba-, por el telescopio espacial Hubble. Explorando esta Nebulosa, los astrónomos han identificado una población de estrellas embrionarias concatenadas a través  de las sombrías, entrelazadas franjas de polvo, que se ven aquí, a la derecha.

 

       Nuestra vecina galáctica la Pequeña Nube de Magallanes

Hoy dejaré una pincelada de la preciosa Galaxia Irregular que es la más pequeña de las dos que tienen el mismo nombre y que acompañan a nuestra Galaxia, La Vía Láctea; es también conocida como Nubecula Minor. Tiene unos 9 ooo años-luz de longitud y se encuentra a 190 000 años-luz, visible a simple vista como una mancha brumosa de unos 3º en Tucana. Su masa visible es menor que el 25% de nuestra Galaxia, y contiene relativamente más gas y menos polvo que la Gran Nube de Magallanes, aunque menos cúmulos y Nebulosas. Su estructura puede estar alargada en la dirección de la Tierra.

 

 

Ha habido dos momentos de grandes cambios en la Física occidental. El primero llegó con Galileo y Newton, que hicieron que la ciencia abandonara los antiguos ideales griegos de la razón pura, haciéndola rigurosa y dependiente de los datos experimentales y de la causalidad, rechazando conceptos tales como que la luz es una “cualidad”, e intentando cualificar cosas tales como luz y las fuerzas de la materia. Algunos, como Weinberg, siguen considerando a Newton como el científico más importante que ha existido.

 

 

Desde Ptolomeo con su modelo del universo de esferas cristalinas, hasta el más reciente modelo de los universos burbujas. Desde los modelos geocéntrico, estacionario, infinito, inflacionario… Siempre hemos tenido modelos de universos que nuestras mentes han creado según nos han ido dictando los siempre escasos conocimientos que del universo hemos tenido y, a medida que estos conocimientos fueron avanzando, el modelo se hizo mejor pero…,  no definitivo.

Precisamente por eso me choca ver y escuchar como pretendidos “expertos” en la materia, dicen que ellos conocen lo que es el Universo, o,  lo que pasó en los primeros tres minutos a partir del supuesto Big Bang. Hablan con desparpajo y “seguridad” de todo ello a la audiencia que, no siempre en posesión del conocimiento requerido para ello, es receptora de las palabras que pretenden ser esa verdad que, en realidad, nadie ha tenido nunca. Lo cierto es que, se están refiriendo a que tienen un modelo del Universo temprano, y que este modelo encaja con los resultados que hasta el momento han obtenido mediante observaciones y diversas comprobaciones.

 

            Tycho Brahe

Está claro que el modelo de universo de los sumerios, babilonios y otros pueblos antiguos, era muy diferente al que ya nos dibujó Copérnico, Tycho Brahe o el mismo Einstein. Los modelos han ido evolucionando y, de la misma manera, el modelo que hoy tenemos y que denominamos Big Bang, será mejorado a medida que nuevos descubrimientos y nuevos conocimientos incrementen nuestro saber del mundo y, para ello, creamos esos modelos que nos ayudan para poder alcanzar ese saber que incansables perseguimos.

 

Resultado de imagen de La singularidad que nos trajo el Universo

 

Puede que todo surgiera a partir de esa densidad infinita. Allí comenzó el Tiempo y el universo se expandió, se crearon las partículas de materia, que se juntaron para formar los núcleos que al verse arropados por los electrones con sus cargas negativas, venían a equilibrar las positivas de los protones y, de esa manera, se pudieron unir para formar moléculas y materia. Sustancia cósmica primero, estrellas y galaxias después, y, dentro de toda esa vorágine, miles de millones de años más tarde, llegaron a surgir en los mundos ¡la vida! Pensando en todo esto, a uno se le viene a la cabeza pensamientos del pasado, enseñanzas escolares y preguntas que no tienen respuestas.

 

Resultado de imagen de Mirar al pasado nos enseñaResultado de imagen de Mirar al pasado nos enseña

 

     Lo de no mirar atrás… ¡No me gusta! Si lo hubiéramos hecho , ¿Cómo habríamos aprendido lo que sabemos?

Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad. El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta de paradoja y, si no existe tal barrera, debería existir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.

 

Resultado de imagen de El Tiempo inexorable pasa

Nada ni nadie lo puede parar. Claro que, si podemos viajar a la velocidad de la luz…

 

¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez?  Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales,  pensaremos como nos enseño Einstein, a una mayor escala,  en la utilidad de un y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.

 

Resultado de imagen de La princesa Irulan

Hay en todas las cosas un ritmo que es parte de nuestro Universo.

 

“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede ver ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”

De “Frases escogidas de Muad´Dib”, por la Irulan.

 

Resultado de imagen de Imaginamos sobre cosas que no existen

                         Los pensamientos son libres y podemos imaginar…. cualquier cosa

Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí.  Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias auto-consistentes.  En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.

 

haiku einstein imaginacion todas partes

 

 

Siempre nos ha gustado imaginar

 

Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.

 

Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera , todo depende bajo el punto de vista desde en el que miremos las cosas.

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”

 

 

        Los hay que creen, que la vida, es única en la Tierra. De la misma forma nuestros sentidos actuales solo nos permiten percibir la parte física del Universo. A medida que vayamos evolucionando iremos accediendo a planos más sutiles de la Creación.

Lo cierto es que siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en las constantes son diferentes y la vida no puede existir?

En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!

 

Nuestro Universo es como es las constantes son las que son

 

Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nosiva para la vida.

Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes).  Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!

 

Dinámica de expansión II: Modelo Lambda-CDM | Constante Cosmológica y  Energía Oscura

 

 

Un estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el llamada la constante cosmológica, originalmente propuesta por Einstein, sería la verdadera .

 

Resultado de imagen de En cualquier charca caliente surgirá la vida     

En nuestro planeta, como en otros, en cualquier charca caliente surgir la vida

Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Crunch cataclísmico en el futuro lejano. Las tres formas de Universo que nos ponen los cosmólogos para que podamos elegir uno que será el que realmente se asemeja al nuestro. Abierto, plano y cerrado todo será en función de la Densidad Crítica que el Universo pueda tener-

 

 

Resultado de imagen de La Densidad Crítica

 

Todo dependerá de cual sea el de la densidad de materia presente en el Universo

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas…y ¡vida!

 

Gráfico: Sólo en el modelo de universo que se expande de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.

No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

 

Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Universo.

Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de de partida especiales.

 

Imagen relacionada

En cualquier mundo puede estar la vida presente

 

 

Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el Universo , cada una de las cuales contiene a su vez miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber, como en el nuestro formas de vida, algunas inteligentes.

 

Resultado de imagen de Han creado un mapa muy detallado del Universo cercano en 3D

 

Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press). Un equipo internacional han podido completar el mapa más preciso y completo hecho hasta el momento y, con este avance, se puede conocer el universo y sus contenidos con una mayor precisión.

 

Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estadio de evolución en el que nos encontramos, las estrellas tuvieron que más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bio-química de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.

 

Situada a 12.900 M de años-luz, descubren la Galaxia lejana y, seguramente, de la primeras

Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.

Emilio Silvera Vázquez