lunes, 10 de diciembre del 2018 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Aquella vida primigenia

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Hemos venido comentando sobre la vida en nuestro planeta, la evolución, nuestros orígenes y algunos dones que nos adornan como el del habla y, sin olvidar el crecimiento de nuestro cerebro que ha posibilitado que “naciera” la mente. Sin embargo, no nos hemos parado a pensar en algunos aspectos de la historia que nos llevarían a comprender cabalmente y que esa “historia de la vida” adquiera algún sentido, que la podamos comprender en todo su esplendor. Uno de esos aspectos, quizás el principal, sea la diversidad metabólica de los microorganismos procariotas, un aspecto clave para explorar la historia de “la vida primigenia”.

Resultado de imagen de LOs procariotas

En la actualidad se acepta que los procariotas fueron los precursores de los organismos eucariotas. Sin embargo hay grandes diferencias entre esos dos grupos celulares. Una de esas diferencias reside en la organización génica y en los mecanismos de sintetizar el ARN mensajero. Un trabajo publicado esta semana en PLoS Biology afirma que los eucariotas podrían proceder de cianobacterias termófilas ya que su organización génica recuerda rudimentariamente a la de los eucariotas

Resultado de imagen de LOs procariotas

Los organismos procariotas (bacterias y arqueas) y eucariotas (protistas, hongos, animales y plantas) comparten una bioquímica común, sin embargo difieren en un elevados número de procesos y de estructuras. A pesar de eso se considera a los procariotas como los precursores de la célula eucariota. A lo largo de los años se han ido recogiendo datos experimentales que avalan esta teoría y en este artículo se mostrarán los resultados presentados en una publicación que va en esa vía.

Conviene que nos familiaricemos ( y, asombremos) con las numerosas formas de metabolismos que utilizan los procariotas para vivir y que averigüemos donde encajan estos minúsculos organismos del árbol de la via antes de que podamos seguir escuchando las historias que paleontólogos nos puedan contar de sus andanzas a la búsqueda de fósiles que nos hablen de aquella vida en el pasado.

Al igual que los eucariotas, muchas bacterias respiran oxígeno. Pero otras bacterias utilizan para la respiración nitrato disuelto (NO3-) en lugar de Oxígeno, y aún otras usan iones sulfato (SO42-) u óxidos metálicos de hierro o maganeso. Unos pocos procariotas pueden incluso utilizar CO2, que hacen reaccionar con ácido acético en un proceso que genera gas natural, que el el metano (CH4) -del que no hace mucho, la NASA a detectado un gran foco en Marte-. Los organismos procariotas han desarrollado además toda suerte de reacciones de fermentación.

Las bacterias también exhiben variaciones sobre el tema de la fotosíntesis. Las cianobacterias, un grupo debacterias fotosintéticas teñidas de color verde-azulado por la clorofila y otros pigmentos, captan la luz del Sol y fijan CO2 de forma muy parecida a como lo hacen las algas y plantas terrestres eucariotas. Sin embargo, cuando en el medio hay sulfuro de hidrógeno (H2S, bien conocido por su característico olor a “huevos podridos”), muchas cianobacterias utilizan este gas en lugar del agua para obtener los electrones que requiere la fotosíntesis. Como productos secundarios se forman entonces azufre y sulfato, no oxígeno.

Cianobacterias

Las cianobacterias representan el grupo de células más primitivo. Son organismos extremadamente simples que pueden vivir como sencillas células, como finos filamentos, al igual que los que se muestran aquí, o como colonias simples. Las cianobacterias son capaces de resistir una amplia variedad de condiciones ambientales, desde hábitats de agua dulce o marina, hasta terrenos nevados y glaciares. Asimismo pueden sobrevivir y prosperar con temperaturas muy altas. Las cianobacterias actualmente están clasificadas dentro del reino Monera, no se consideran algas porque estructuralmente se parecen mas a las bacterias, pero es necesario colocarlas aquí ya que vendrían a ser el primer eslabón evolutivo en el reino vegetal.

Resultado de imagen de Cianobacterias

Las Cianobacterias constituyen sólo uno de los cinco grupos distintos de bacterias fotosintéticas. En los otros grupos, el aporte de electrones por H2S, gas hidrógeno (H2) o moléculas orgánicas es obligado,  y nunca se produce oxígeno. Estas bacterias fotosintéticas captan la luz con bacterioclorofila en lusgar de la clrofila, más familiar,. Algunas utilizan los mismos procesos bioquímicos que las cianobacterias y las plantas verdes para fijae dióxido de carbono, pero otras usan vías metabólocas muy distintas, y un tercer grupo se sirve de una fuente de carbono orgánico en lugar de CO2.

Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada

Esta variedad de cianobacterias son componentes del plancton que realizan la fotosíntesis. Organismos unicelulares procariotas componentes del plancton de los ecosistemas acuáticos.

Las variaciones bacterianas sobre temas metabólicos de la respiración, la fermentación, la fotosíntesis son, pues, impresionantes, pero los organismos procarioticos han desarrollado todavía otro modo de crecer que es completamente desconocido en los eucariotas: la quimiosíntesis. Como los aorganismos fotosintéticos, los microbios quimiosintéticos toman el carbono del CO2, pero obtienen la energía de reacciones químicas y no de la radiación solar, lo que consiguen combinando oxígeno o nitrato (o, de forma menos frecuente, el sulfato, el hierro oxidizado o el maganeso) se combina con gas hidrógeno, metano o formas reducidas de hierro, sulfuro o nitrógeno de tal modo que la célula capta la energía desprendida por la reacción. Los procariotas metanogénicos resultan de particular interés para la ecología y la evolución; estas distintas células extraen energía de una reacción entre hidrógeno y dióxido de carbono en la que libera metano (estará ahí la procedencia del foco detectado en Marte).

Resultado de imagen de Valle Marineris

Bueno, no estaría nada mal que, la fuente de Metano detectada en el Planeta Marte se debiera a la presencia allí de importantes colonias de cianobacterias que extraen energía de una reacción entre hidrógeno y dióxido de carbono en la que libera metano que pudiera ser el foco allí detectado.

No somos conscientes de que:  “Las vías metabólicas de los Procariotas son las que sustentan los ciclos bioquímicos que hacen posible el mantener la Tierra en su condición de planeta habitable. Fijémonos, por ejemplo en el dióxido de carbono.

Los Volcanes aportan CO2 a los océanos y a la atmósfera, pero la fotosíntesis lo sustrae a un ritmo aún más rápido. Tan rápido, de hecho,  que los organismos fotosintéticos podrían desproveer de CO2 a la atmósfera actual en poco menos de una década. Naturalmente no ocurre así, y ello se debe sobre todo a que esencialmente la respiración realiza la reacción fotosintética en sentido inverso. Mientras que los organismos fotosintéticos hacen reaccionar CO2 con agua para producir azícares y oxígeno, los seres vivos que respiran (entre los que nos incluímos todos nosotros) hacen reaccionar azúcar con oxígeno y en el proceso liberamos agua y dióxido de carbono. Conjuntamente, la fotosíntesis y la respiración reciclan el carbono en la biosfera y sostiene así la vida y su ambiente a lo largo del tiempo.

                             Ciclo del Carbón

El carbón es un elemento. Forma parte de los oceanosairerocas, suelos y seres vivos. El carbón no permanece en un mismo lugar, ¡siempre está en movimiento!.

  • El carbón va de la atmósfera a las plantas. 
    En la atmósfera, el carbón se combina con el oxígeno en un gas llamado bióxido de carbono (CO2). Con ayuda del Sol, mediante el proceso conocido como fotosíntesis, el bióxido de carbono es extraído del aire y se convierte en alimento.
  • El carbón va de las plantas a los animales.
    Mediante las cadenas alimenticias, el carbón de las plantas va hacia los animales que se alimentan de ellas. Los animales que se alimentan de otros animales también obtienen el carbón a través de sus alimentos.
  • El carbón va de plantas y animales al suelo. .
    Cuando plantas y animales mueren, sus cuerpos, madera y hojas se descomponen en el suelo. Parte de la materia descompuesta queda enterrada y tras millones y millones de años, se convierte en combustible fósil.
  • El carbón va de seres vivos a la atmósfera.
    Cada vez que exhalas, estás liberando bióxido de carbono (CO2) hacia la atmósfera. Los animales y las plantas se deshacen del gas bióxido de carbono mediante el proceso conocido como respiración.
  • El carbón de los combustibles fósiles va a la atmósfera cuando el combustible es quemado.
    Cuando los seres humanos queman combustibles fósiles para dar energía a sus fábricas, plantas eléctricas, automóviles y camiones, la mayoría del carbón penetra la atmósfera rapidamente en forma gas bióxido de carbono. Cada año, cinco mil quinientos millones de toneladas de carbón son liberadas en forma de combustibles fósiles quemados. ¡Esto equivale al peso de100 millones de elefantes africanos!. De la gran cantidad de carbón que liberan los combustibles, 3.3 mil millones de toneladas penetran la atmósfera, y la mayoría del resto queda disuelta en el agua de mar.
  • El carbón se mueve de la atmósfera a los océanos. 
    Los océanos y otros cuerpos de agua absorben algo del carbón de la atmósfera. El carbón se disuelve en el agua. Los animales marinos usan al carbón para crear el material de sus esqueletos y caparazones.

Resultado de imagen de La respiración fotosintética

ANALISIS COMPARATIVO Y EVOLUTIVO DE LA RESPIRACIÓN Y FOTOSISTESIS

Resultado de imagen de La respiración fotosintética

Creación de oxígeno. Las cianobacterias son las antecesoras de los cloroplastos celulares de los vegetales. En la fotosíntesis, gracias a la energía aportada por la luz solar, se unen el dióxido de carbono y el agua para formar azúcares.  Como producto de desecho, se arroja oxígeno a la atmósfera.  En la respiración, por el contrario, se queman azúcares en las mitocondrias celulares, aportando la energía necesaria para las funciones vitales.  En esa combustión se consume oxígeno atmosférico y se arrojan, como productos de desecho, dióxido de carbono y agua.

No es difícil imaginar un ciclo del Carbono simple en el cual las cianobacterias fijen CO2 en forma de materia orgánica y suministren oxígeno al medio mientras que las bacterias no fotosintéticas hacen lo contrario, al respirar oxígeno y generar el CO2. Las plantas y las algas pueden realizar la misma función que las cianobacterias, y los protozoos, los hongos y los animales pueden sustituir a las bacterias respiradoras (en ese sentido los procariotas y los eucariotas son funcionalmente equivalentes). Pero dejemos que algunas células caigan hasta el fondo del océano y queden enterradas en sedimentos desprovistos de oxígeno. Aquí las limitaciones del metabolismo eucariota resultan evidentes, pues se necesitan reacciones que no consuman oxígeno (reacciones anaeróbicas) para poder completar el ciclo del carbono.

                                       Célula Eucariota

http://www.etitudela.com/profesores/rma/celula/images/celulaanimal.jpg

                                                           Arriba sus características más generales.

Son células más modernas, procedentes de procesos de simbiosis entre procariotas, con núcleo separado.Son más grandes, de entre 20 y 40 micras de media. Presentan, en su citoplasma, gran cantidad y variedad de orgánulos. Al agruparse forman tejidos. La célula eucariota presenta tres partes bien diferenciadas: Una Membrana celular que separa el medio externo del medio interno. Un Núcleo diferenciado separado por una doble membrana del Citoplasma, donde se encuentran los orgánulos celulares.

Está claro que hablar de todo esto, nos ecige mucho más tiempo y espacio, toda vez que, el “universo” de las cianobacterias y demás congéneres que, con nosotros ocupan el planeta Tierra, tiene tanta importancia en el devenir de la vida que, un pequeño resumen de algunas de sus características simplemente nos aclaran algún que otro extremo aislado pero que, al menos, trata de que seámos conscientes de que, sin ellas, nosotros difícilmente podríamos estar aquí, ya que, entre cosas cosas, son las responsables directas de que el planeta tenga el sistema ecológico necesario para sustentar la vida.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de supernova superluminosa big bang

       La explosión cósmica colosal ocurrió solo 3,3 mil millones de años después del Big Bang.
Simulación en alta resolución de una galaxia que alberga una súpernova súperluminosa en el universo primitivo. Se cree que a partir de sucesos como esos, el Universo evolucionó hasta llegar a lo que hoy conocemos. Las primeras estrellas muy masivas, incluso algunas sobrepasaban las 150 masas solares, eran destruidas por su propia radiación y se formaban inmensas nebulosas de las que volvían a surgir nuevas estrellas más estables hasta que, todo se fue acoplando de manera paulatina hacia una normalidad que ahora podemos contemplar a nuestro alrededor.

Resultado de imagen de supernova superluminosa big bang

 

         Sin movernos del planeta Tierra, hemos llegado a saber dónde estamos y cómo es, el Universo

Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que las moléculas  de la vida pudieran ser fabricadas en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos llegado a saber, la densidad del universo es hoy de poco más que 1 átomo por mde espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con seres de otros mundos. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres visitantes y podrán (como nosotros), alcanzar una fase tecnológica avanzada.

La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo: es decir,  de lo muy grande y, de lo muy pequeño.

Otras veces hemos hablado aquí de las Constantes Fundamentales  y de las que más conocemos y oímos mencionar: La carga del electrón (e), la velocidad de la luz (c), la Constante de Planck (h), la Constante Gravitacional (G), otras, como la constante magnética (μo), la masa en reposo del electrón (me), o, la Constante de estructura Fina (1/137) denotada como α = 2π e2 / hc y cuyo resultado es 137…El número puro y adimensional.

Resultado de imagen de La estructura de los átomos

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, α, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Resultado de imagen de El mundo molecular

Resultado de imagen de El mundo molecular

Sistemas flexibles donde no hay rompimiento de enlaces. Si cambiáramos las cosas, el mundo molecular se vendría abajo y todo sería diferente. Nada puede conformarse en sólidas estructuras sin la solidez de los átomos para formar moléculas y estas poder formar cuerpos

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Resultado de imagen de Si cambiamos la fuerza nuclear fuerte

Si en lugar de a versión β, jugamos a cambiar la intensidad de la fuerza nuclear fuerte αF, junto con la de α, entonces, a menos que  α> 0,3 a½, los elementos como el carbono no existirían. No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.

Gráfico: Zona habitable donde la complejidad que sustenta la vida puede existir si se permite que los valores que sustentan b y a varíen independientemente. En la zona inferior derecha no puede haber estrellas. En la superior derecha están ausentes los átomos no relativistas. En la superior izquierda los electrones están insuficientemente localizados para que existan moléculas auto reproductoras altamente ordenadas. Las estrechas “vías de tranvías” distingue la región necesaria para que la materia sea estable para evolucionar.

Bacteriofagos: la forma de vida más común de la Tierra

Múltiples formas de vida, tanto macro como microscópicas, están presentes en nuestro planeta, y, de la misma manera, lo estarán en otros que, estando en la zona habitable de su estrella, tengan condiciones similares o parecidas a las nuestras. La vida en el Universo, con las constantes que en él están presentes…¡es imparable!

Hemos comentado aquí otras veces que, los biólogos, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

Resultado de imagen de Cúmulos globularesImagen relacionada

Los cúmulos globulares contienen principalmente estrellas de Población II, muchas de las cuales han evolucionado hasta convertirse en gigantes rojas.

Las estrellas más viejas se nuestra Galaxia se encuentran en agrupaciones (cúmulos globulares) que están más o menos simétricamente distribuidas en torno al centro galáctico. La teoría de la evolución estelar, quedó aceptablemente establecida allá por los años 30, y nos proporciona las edades de estas estrellas que, según todos los indicios, parecen indicar que existen estrellas tan viejas como 13 Ga (trece mil millones de años). Así, la edad del Universo debe ser algo mayor como ha quedado establecida.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

Resultado de imagen de Moléculas orgánicas halladas en la Nebulosa de Orión

El isocianato de metilo (CH3NCO) podría desempeñar un importante papel prebiótico en la formación de péptidosque podrían tener un papel significativo en la evolución química de la Tierra primitiva. Se sabe que, a temperatura ambiente, el metil isocianato reacciona con agua y con muchas sustancias que contienen grupos N-H o grupos O-H [3], comunes en la fase gaseosa en Orión.

De cada una de las moléculas que arriba contemplamos podemos decir: El monóxido de carbono es utilizado frecuentemente para determinar la masa en las nebulosas moleculares, el hidrógeno molecular protonado es uno de los iones más abundantes del universo, el formaldehído es una molécula orgánica abundante en el sistema interestelar, el metano (principal componente del gas natural) ha sido detectado en la cola de los cometas y en la atmósfera de algunos planetas del sistema solar, en el medio interestelar la formamida ácida, puede cambiarse con el metileno para dar acetomida, el acetaldehído y sus isómeros alcohol vinílico y óxido de atileno han sido detectados en el espacio Interestelar, ácidos acéticos del vinagre han sido hallados en nebulosas, también en nebulosas moleculares se han detectado ácidos esenciales para la vida.

Resultado de imagen de Moléculas orgánicas halladas en NUbes molecularesResultado de imagen de Moléculas orgánicas halladas en NUbes moleculares

Resultado de imagen de Moléculas orgánicas halladas en NUbes molecularesResultado de imagen de Moléculas orgánicas halladas en NUbes molecularesResultado de imagen de Moléculas orgánicas halladas en NUbes moleculares

Particularmente interesantes son las moléculas orgánicas que se encuentran de manera generalizada en las nubes interestelares densas de nuestra Vía Láctea. Alcoholes, éteres, e incluso algún azúcar simple (como el glicoaldehído) poseen abundancias significativas en tales nubes. La detección de la glicina, un aminoácido simple, en el espacio interestelar se viene intentando desde hace varios años. Pero aunque se tienen indicios muy positivos sobre su presencia en el espacio -algunos meteoritos la tienen presente-, su detección todavía ha de ser confirmada de manera inequívoca. La posibilidad de que existan aminoácidos en el espacio puede tener consecuencias de gran importancia para nuestra comprensión del origen de la vida. Aminoácidos simples, como la glicina, son los ladrillos con los se construyen las cadenas de proteínas y éstas, a su vez, son los constituyentes del ADN.

Hasta ahora se viene considerando que las condiciones necesarias para el desarrollo de la vida son extremadamente exigentes y que en la Tierra se da una larga y complicada serie de circunstancias que ha permitido el desarrollo de la vida. Sin embargo, si se confirmase la detección de aminoácidos interestelares, tendríamos que concluir que los procesos físicos más fundamentales para originar vida son extremadamente comunes, lo que sugeriría que podría crearse vida de manera generalizada en el Universo.

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens) vemos que han sido sólo unos pocos cientos de miles de años, mucho menos que la edad del universo, trece mil setecientos millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años.

Todas las células están formadas por elementos químicos que al combinarse forman una amplia variedad de moléculas que a su vez forman agregados moleculares y éstos los diversos organelos celulares. Los elementos constitutivos de las biomoléculas más importantes son:
  • C: Carbono
  • H: Hidrógeno
  • O: Oxígeno
  • N: Nitrógeno
También son importantes los siguientes:
  • P: Fósforo
  • Fe: Hierro
  • S: Azufre
  • Ca: Calcio
  • I: Yodo
  • Na: Sodio
  • K: Potasio
  • Cl: Cloro
  • Mg: Magnesio
  • F: Flúor
  • Cu: Cobre
  • Zn: Zinc
Las biomoléculas pertenecen a cuatro grupos principales denominados:
  1. Glúcidos o Hidratos de Carbono
  2. Lípidos
  3. Proteínas
  4. Ácidos Nucleicos

El el gráfico de arriba  están resumidas sus funciones.

A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero,  en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos aquí y que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.

Siguiendo con el hilo de los pensamientos con los que comenzamos este trabajjo, podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y la vida no sería posible en ellos. Aumentemos la constante de estructura fina y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente. El Universo es como es porque, sus leyes y constantes son las que son. Al menos eso, sí hemos podido llegar a saber sobre la presencia de la vida posibilitada por estos factores fundamentales.

Científicos españoles hallan las moléculas más complejas del Universo

Sabemos que moléculas complejas y biomoléculas están presentes en el espacio interestelar. Los científicos han descubierto alrededor de las nebulosas planetarias Tc-1 y M1-20  (situadas entre 600 y 2.500 años luz de la Tierra), por primera vez evidencias de fullerenos complejos, denominados «cebollas de carbono», las moléculas más complejas observadas hasta el momento en el espacio exterior. Un hallazgo que tiene importantes implicaciones a la hora de entender la física y química del Universo y del origen y composición de las bandas difusas interestelares (DIBs), uno de los fenómenos más enigmáticos de la astrofísica.

Ahora conocemos muchas cosas antes ignoradas y, parece,  que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, nos lleva a pensar que,  al menos en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre tiempo(bio-lógico) y tiempo(estrella) que son aproximadamente iguales; el t(bio) –tiempo biológico para la aparición de la vida, resultó ser algo más extenso, es decir, el neceario para que las estrellas pusieran fabricar, en sus hornos nucleares, los elemetos que darían lugar, mucho más tarde, a la formación de las moléculas de la vida.

Hasta donde sabemos, en nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas que llegaran a poder cristalizar los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono… Si miramos por ahí, encontraremos múltiples noticias como estas:

Telescopio Spitzer de la NASA ha detectado los pilares de la vida en el universo distante, aunque en un entorno violento. Ha posado su poderoso ojo infrarrojo en un débil objeto situado a una distancia de 3.200 millones de años luz (recuadro), Spitzer ha observado la presencia de agua y moléculas orgánicas en la galaxia IRAS F00183-7111.

Resultado de imagen de Mundos situados en la zona habitable de sus estrellasResultado de imagen de Mundos situados en la zona habitable de sus estrellasResultado de imagen de Mundos situados en la zona habitable de sus estrellasResultado de imagen de Mundos situados en la zona habitable de sus estrellasResultado de imagen de Mundos situados en la zona habitable de sus estrellas

Como podemos ver, amigos míos, la vida, como tantas veces vengo diciendo aquí, pulula por todo el Universo en la inmensa familia galáctica compuesta por más de ciento veinticinco mil millones y, de ese número descomunal, nos podríamos preguntar: ¿Cuántos mundos situados en las zonas habitables de sus estrellas habrá y, de entre todos esos innumerables mundos, cuántos albergaran la vida?

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida. Yo (como muchos otros), estoy convencido de que la vida es, de lo más nartural en el universo y estará presente en miles de millone de planetas que, como la Tierra, tienen las condiciones para ello. Una cosa no se aparta de mi mente, muchas de esas formas de vida, serán como las nuestras aquí en la Tierra y estarán también, basadas en el Carbono. Sin embargo, no niego que puedan existir otras formas de vida diferentes a las terrestres.

emilio silvera

¡Extraños objetos del Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Representación de un agujero negro que engulle materia (naranja) y libera energía (azul)

Representación de un agujero negro que engulle materia (naranja) y libera energía (azul) - NASA/JPL-Caltech

 

      Dicen haber descubierto un agujero negro capaz de hacer girar el espacio-tiempo.

 

Resultado de imagen de En el sistema binario 4U 1630-47

 

 En el sistema binario 4U 1630-47 hay un agujero negro que gira casi a la máxima velocidad permitida por la Relatividad Especial y que retuerce todo lo que hay a su alrededor.

 

 

Un equipo internacional de investigadores, liderados por la Indian Space Research Organization (Isro) y la NASA, acaban de descubrir en el sistema binario 4U 1630-47 un agujero negro que gira casi al máximo de la velocidad permitida por la teoría de la Relatividad General de Einstein. De hecho, su rotación es tan rápida que el objeto estaría obligando a que el propio espacio circundante rote junto a él.

Según los científicos, que utilizaron el satélite indio AstroSat y el Observatorio de rayos X Chandra, de la NASA, y cuyo trabajo se publicará próximamente en Astrophysical Journal, estudiar a los agujeros negros con altas velocidades de giro resulta de la máxima importancia para poner a prueba nuestras teorías sobre el Universo, entre ellas la propia Relatividad.

Imagen relacionada

Todo comenzó en 2016, cuando el AstroSat descubrió un agujero negro en el sistema binario (dos objetos estelares orbitándose mutuamente) 4U 1630-47. Desde el primer momento, una serie de violentos estallidos en el rango de los rayos X llamaron poderosamente la atención de los investigadores. Poco después, el Observatorio Chandra confirmó los resultados y quedó claro que ese agujero negro en concreto no era como los demás.

Devoradores de materia

 

 

Imagen relacionada

La emisión de rayos X de un agujero negro se produce a medida que la materia circundante (en su mayor parte gas y polvo) se precipita y es «devorada» por él. Esas emisiones permitieron que los investigadores se dieran cuenta de que el agujero negro en cuestión, cuya masa es diez veces la de nuestro Sol, estaba girando sobre sí mismo a una velocidad de vértigo. La tasa de rotación de un agujero negro puede oscilar entre dos valores, 0 y 1. Y el agujero negro de 4U 1630-47 mostraba una tasa de giro de 0,9, lo que equivale casi a la velocidad de la luz.

Resultado de imagen de Los giros frenéticos de un agujero negro hace girar al espacio tiempo

Un dato que dejó a los investigadores con la boca abierta, ya que la teoría de Einstein implica que si un agujero negro es capaz de girar tan rápido, entonces será capaz de hacer que el espacio mismo gire junto a él.

Hasta el momento, de los veinte agujeros que se conocen en nuestra galaxia, solo ha sido posible medir la tasa de rotación de otros cuatro. Y el del sistema 4U 1630-47 es, sin duda, el más rápido de todos. Los científicos creen que, si lo que sabemos de los agujeros negros es correcto, la combinación de factores como la velocidad de rotación, la materia que entra en ellos y las altas temperaturas reinantes podrían ser la clave para entender cómo se forman las galaxias.

¿Cómo se sabe lo rápido que giran?

 

 

Resultado de imagen de Gifs de agujeros negros giratorios

 

 

La masa y la velocidad de rotación son las dos propiedades principales que caracterizan a un agujero negro. Pero mientras que la masa se puede calcular con facilidad, gracias a la gravedad que genera,averiguar la tasa de rotación es algo mucho más complicado.

En palabras de Mayukt Pahari, autor principal del estudio, «las mediciones de la velocidad de rotación son muy difíciles de realizar, y solo es posible llevarlas a cabo por medio de observaciones de rayos X de muy alta calidad de un sistema estelar binario, en el que el agujero negro está absorbiendo materia de su estrella compañera».

Resultado de imagen de Los giros frenéticos de un agujero negro hace girar al espacio tiempo

Si los cálculos son correctos, el agujero negro del sistema binario 4U 1630-47 podría ser la llave para averiguar cómo afectan al propio espacio estos extraordinarios objetos. Y desvelar, de paso, el desconocido proceso que llevó a la formación de las galaxias.