miércoles, 22 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Un rumor del saber del Mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del Saber    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de La memoriaResultado de imagen de La escrituraResultado de imagen de Los libros

Hubo que descubrir la historia antes de explorarla. Los mensajes del pasado se transmitían primero a través de las habilidades de la memoria, luego de la escritura y, finalmente, de modo explosivo, en los libros.

El insospechado tesoro de reliquias que guardaba la tierra se remontaba a la prehistoria. El pasado se convirtió en algo más que un almacén de mitos y leyendas o un catálogo de lo familiar.

Resultado de imagen de Las reliquias que guardaba la Tierra nos llevó a la prehistoria

Nuevos mundos terrestres y marinos, riquezas de continentes remotos, relatos de viajeros aventureros que nos traían otras formas de vida de pueblos ignotos y lejanos, abrieron perspectivas de progreso y novedad. La sociedad, la vida diaria del hombre en comunidad, se convirtió en un nuevo y cambiante escenarios de descubrimientos.

Resultado de imagen de Los descubrimientos de los sumeriosResultado de imagen de Los descubrimientos de los sumeriosResultado de imagen de Los descubrimientos de los sumeriosResultado de imagen de Los descubrimientos de los sumeriosResultado de imagen de Los descubrimientos de los sumeriosResultado de imagen de Los descubrimientos de los sumerios

Aquí, como sería imposible hacer un recorrido por el ámbito de todos los descubrimientos de la Humanidad, me circunscribo al ámbito de la física, y, hago un recorrido breve por el mundo del átomo que es el tema de hoy, sin embargo, sin dejar de mirar al hecho cierto de que, TODA LA HUMANIDAD ES UNA, y, desde luego, teniendo muy presente que, todo lo que conocemos es finito y lo que no conocemos infinito. Es bueno tener presente que intelectualmente nos encontramos en medio de un océano ilimitado de lo inexplicable. La tarea de cada generación es reclamar un poco más de terreno, añadir algo a la extensión y solidez de nuestras posesiones del saber.

Resultado de imagen de Comprender el Universo

Como decía Einstein: “El eterno misterio del mundo es su comprensibilidad.”

Ahora, amigos, hablemos del átomo.

De lo Grande a lo Pequeño

Imagen relacionada

Podríamos decir, sin temor a equivocarnos que el átomo y la vida son los dos obras más grandiosas de la Naturaleza.  El átomo lo conforma todo, desde una lombriz hasta una galaxia.

El 6 de Agosto de 1945 el mundo recibió estupefacto desde Hiroshima la noticia de que el hombre había desembarcado en el oscuro continente del átomo. Sus misterios habrían de obsesionar al siglo XX. Sin embargo, el “átomo” había sido más de dos mil años una de las más antiguas preocupaciones de los filósofos naturales. La palabra griega átomo significa unidad mínima de materia, que se suponía era indestructible. Ahora el átomo era un término de uso corriente, una amenaza y una promesa sin precedentes.

Resultado de imagen de El átomo de Leucipo y Demócrito

El primer filósofo atómico fue un griego legendario, Leucipo, que se cree vivió en el siglo V a.C., y, a Demócrito, su discípulo, que dio al atomismo su forma clásica como filosofía: “la parte invisible e indivisible de la materia”, se divertía tanto con la locura de los hombres que era conocido como “el filósofo risueño” o “el filósofo que ríe”. No obstante fue uno de los primeros en oponerse a la idea de la decadencia de la Humanidad a partir de una Edad de Oro mítica, y predicó sobre una base de progreso. Si todo el Universo estaba compuesto solamente por átomos y vacío, no sólo no era infinitamente complejo, sino que, de un modo u otro, era inteligible, y seguramente el poder del hombre no tenía límite.

Resultado de imagen de Lucrecio (c. 95 a.C. –c. 55 a.C.) perpetuó en De rerum natura

Lucrecio (c. 95 a.C. –c. 55 a.C.) perpetuó en De rerum natura uno de los más importantes poemas latinos, al atomismo antiguo. Con la intención de liberar al pueblo del temor a los dioses, el poeta demostró que el mundo entero estaba constituido por vacío y átomos, los cuales se movían según sus leyes propias; que el alma moría con el cuerpo y que por consiguiente no había razón para temer a la muerte o a los poderes sobrenaturales.

Lucrecio decía que comprender la Naturaleza era el único modo de hallar la paz de espíritu, y, como era de esperar, los padres de la Iglesia que pregonaban la vida eterna, atacaron sin piedad a Lucrecia y este fue ignorado y olvidado durante toda la Edad Media que, como sabéis, fue la culpable de la paralización del saber de la Humanidad. Sin embargo, Lucrecia fue, una de las figuras más influyentes del Renacimiento.

            El círculo perfecto de Euclides

Así pues, en un principio el atomismo vino al mundo como sistema filosófico. Del mismo modo que la simetría pitagórica había proporcionado un marco a Copérnico, la geometría había seducido a Kepler y el círculo perfecto aristotélico hechizo a Harvey, así los “indestructibles” átomos de los filósofos atrajeron a los físicos y a los químicos. Francis Bacon observó que “la teoría de Demócrito referida a los átomos es, si no cierta, al menos aplicable con excelentes resultados al análisis de la Naturaleza”.

Resultado de imagen de Descartes (1596-1650) inventó su propia noción de partículas infinitamente pequeñas que se movían en un medio que llamó éter

Descartes (1596-1650) inventó su propia noción de partículas infinitamente pequeñas que se movían en un medio que llamó éter. Otro filósofo francés, Pierre Gassendi (1592-1655), pareció confirmar la teoría de Demócrito y presentó otra versión más del atomismo, que Robert Boyle (1627-1691) adaptó a la química demostrando que los “elementos clásicos –tierra, aire, fuego y agua- no eran en absoluto elementales.

Resultado de imagen de Las proféticas intuiciones de un matemático jesuita, R.G. Boscovich (1711-1787) trazaron los caminos para una nueva ciencia, la física atómica

                                                             Aquellas ideas nos trajeron hasta aquí

Las proféticas intuiciones de un matemático jesuita, R.G. Boscovich (1711-1787) trazaron los caminos para una nueva ciencia, la física atómica. Su atrevido concepto de “los puntos centrales” abandonaba la antigua idea de una variedad de átomos sólidos diferentes. Las partículas fundamentales de la materia, sugería Boscovich, eran todas idénticas, y las relaciones espaciales alrededor de esos puntos centrales constituían la materia… Boscovich que había llegado a estas conclusiones a partir de sus conocimientos de matemáticas y astronomía, anunció la íntima conexión entre la estructura del átomo y la del Universo, entre lo infinitesimal y lo infinito.

Resultado de imagen de Dalton y el átomo

El camino experimental hacia el átomo fue trazado por John Dalton (1766-1844). Era este un científico aficionado cuáquero y autodidacta que recogió un sugestivo concepto de Lavoisier (1743-1794). Considerado una de los fundadores de la química moderna, Lavoisier, cuando definió un “elemento” como una sustancia que no puede ser descompuesta en otras sustancias por medio de ningún método conocido, hizo del átomo un útil concepto de laboratorio y trajo la teoría atómica a la realidad.

Dalton había nacido en el seno de una familia de tejedores de Cumberland, localidad inglesa situada en la región de los lagos, y estuvo marcada toda su vida por su origen humilde. A los doce años ya se encontraba a cargo de la escuela cuáquera de su pueblo. Después, comenzó a ejercer la enseñanza en la vecina Kendal, y en la biblioteca del colegio encontró ejemplares de los Principia de Newton, de las Obras de la Historia Natural de Buffón, así como un telescopio reflectante de unos setenta centímetros y un microscopio doble. Dalton recibió allí la influencia de John Gough, un notable filósofo natural ciego que, de acuerdo a lo que Dalton escribió a un amigo, “entiende muy bien todas las diferentes ramas de las matemáticas…Conoce por el tacto, el sabor y el olor de casi todas las plantas que crecen a casi treinta kilómetros a la redonda”. También Wordsworth elogia a Gough en su Excursión. Dalton recibió del filósofo ciego una educación básica en latín, griego y francés, y fue introducido en las matemáticas, la astronomía y todas las ciencias “de la observación”. Siguiendo el ejemplo de Gough, Dalton comenzó a llevar un registro meteorológico diario, que continuó hasta el día de su muerte.

Resultado de imagen de Dalton profesor de filosofía natural

Cuando los “disidentes” fundaron su colegio propio en Manchester, Dalton fue designado profesor de matemáticas y de filosofía natural. Halló una audiencia muy receptiva para sus experimentos en la Sociedad Literaria y Filosófica de Manchester, y presentó allí sus Hechos extraordinarios concernientes a la visión de los colores, que probablemente fue el primer trabajo sistemático sobre la imposibilidad de percibir los colores, o daltonismo, enfermedad que padecían tanto John Dalton como su hermano Jonathan. “He errado tantas veces el camino por aceptar los resultados de otros que he decidido escribir lo menos posible y solamente lo que pueda afirmar por mi propia experiencia”.

Dalton observó la aurora boreal, sugirió el probable origen de los vientos alisios, las causas de la formación de nubes y de la lluvia y, sin habérselo propuesto, introdujo mejoras en los pluviómetros, los barómetros, los termómetros y los higrómetros. Su interés por la atmósfera le proporcionó una visión de la química que lo condujo al átomo.

Resultado de imagen de Newton

Newton había confiado en que los cuerpos visibles más pequeños siguieran las leyes cuantitativas que gobernaban los cuerpos celestes de mayor tamaño. La química sería una recapitulación de la Astronomía. Pero, ¿Cómo podía el hombre observar y medir los movimientos y la atracción mutua de estas partículas invisibles? En los Principios Newton había conjeturado que los fenómenos de la Naturaleza no descritos en este libro podrían “depender todos de ciertas fuerzas por las cuales las partículas de los cuerpos, debido a causas hasta ahora desconocidas, se impulsan mutuamente unas hacia otras y se unen formando figuras regulares, o bien se repelen y se apartan unas de otras.”

Dalton se lanzó a la búsqueda  de “estas partículas primitivas” tratando de encontrar algún medio experimental que le permitiera incluirlas en un sistema cuantitativo. Puesto que los gases eran la forma de materia más fluida, más móvil, Dalton centró su estudio en la atmósfera, la mezcla de gases que componen el aire, el cual constituyó el punto de partida de toda su reflexión sobre los átomos.

Resultado de imagen de Los gases de Dalton

“¿Por qué el agua no admite un volumen similar de cada gas?”, preguntó Dalton a sus colegas de la Sociedad Literaria y Filosófica de Manchester en 1803. “Estoy casi seguro de que la circunstancia depende del peso y el número de las partículas últimas de los diversos gases; aquellos cuyas partículas son más ligeras y simples se absorben con más dificultad, y los demás con mayor facilidad, según vayan aumentando en peso y en complejidad.”

Dalton había descubierto que, contrariamente a la idea dominante, el aire no era un vasto disolvente químico único sino una mezcla de gases, cada uno de los cuales conservaban su identidad y actuaba de manera independiente. El producto de sus experimentos fue recogido en la trascendental TABLE: Of the Relative Weights of Ultimate Particles of Gaseous and Other Bodies (“Tabla de los pesos relativos de las partículas últimas de los cuerpos gaseosos y de otros cuerpos”).

Resultado de imagen de El Hidrógeno número uno

Tomando al Hidrógeno como número uno, Dalton detalló en esta obra veintiuna sustancias. Describió las invisibles “partículas últimas” como diminutas bolitas sólidas, similares a balas pero mucho más pequeñas, y propuso que se les aplicaran las leyes newtonianas de las fuerzas de atracción de la materia. Dalton se proponía lograr “una nueva perspectiva de los primeros principios de los elementos de los cuerpos y sus combinaciones”, que “sin duda…con el tiempo, producirá importantísimos cambios en el sistema de la química y la reducirá a una ciencia de gran simplicidad, inteligible hasta para los intelectos menos dotados”. Cuando Dalton mostró una “partícula de aire que descansa sobre cuatro partículas de agua como una ordenada pila de metralla” donde cada pequeño globo está en contacto con sus vecinos, proporcionó el modelo de esferas y radio de la química del siglo siguiente.

Imagen relacionada

Dalton inventó unas “señales arbitrarias como signos elegidos para representar los diversos elementos químicos o partículas últimas”, organizadas en una tabla de pesos atómicos que utilizaba en sus populares conferencias. Naturalmente, Dalton no fue el primero en emplear una escritura abreviada para representar las sustancias químicas, pues los alquimistas también tenían su código. Pero él fue probablemente el primero que utilizó este tipo de simbolismo en un sistema cuantitativo de “partículas últimas”. Dalton tomó como unidad el átomo de Hidrógeno, y a partir de él calculó el peso de las moléculas como la suma de los pesos de los átomos que la componían, creando así una sintaxis moderna para la química. Las abreviaturas actuales que utilizan la primera letra del nombre latino (por ejemplo H2O) fueron ideadas por el químico sueco Berzelius (1779-1848).

Resultado de imagen de Royal Society de Londres de Dalton

La teoría del átomo de Dalton no fue recibida en un principio con entusiasmo. El gran sir Humphry Davy desestimó inmediatamente sus ideas tachándolas de “más ingeniosas que importantes”. Pero las nociones de Dalton, desarrolladas en A New System of Chemical Philosophy (1808), eran tan convincentes que en 1826 le fue concedida la medalla real. Como Dalton no olvidó nunca su origen plebeyo, permaneció siempre apartado de la Royal Society de Londres, pero fue elegido miembro, sin su consentimiento, en 1822. Receloso del tono aristocrático y poco profesional de la Sociedad, él se encontraba más a gusto en Manchester, donde realizó la mayor parte de su obra, colaboró con Charles Babage y contribuyó a fundar la Asociación Británica para el Progreso de la Ciencia, cuyo objetivo era llevar la ciencia hasta el pueblo. Los newtonianos partidarios de la ortodoxia religiosa no creían que Dios hubiera hecho necesariamente sus invisibles “partículas últimas” invariables e indestructibles. Compartían con Isaac Newton la sospecha de que Dios había utilizado su poder “para variar las leyes de la Naturaleza y crear mundos diversos en distintos lugares del Universo”.

Resultado de imagen de El átomo indestructible de Dalton

El átomo indestructible de Dalton se convirtió en el fundamento de una naciente ciencia de la química, proporcionando los principios elementales, las leyes de composición constante y de proporciones múltiples y la combinación de elementos químicos en razón de su peso atómico. “El análisis y la síntesis química no van más allá de la separación de unas partículas de otras y su reunión”, insistió Dalton. “La creación o la destrucción de la materia no está al alcance de ningún agente químico. Sería lo mismo tratar de introducir un planeta nuevo en el Sistema Solar o aniquilar uno de los ya existentes que crear o destruir una partícula de Hidrógeno.” Dalton continuó usando las leyes de los cuerpos celestes visibles como indicios del Universo infinitesimal. El profético sir Humphry Davy, sin embargo, no se convencía, “no hay razón para suponer que ha sido descubierto un principio real indestructible”, afirmó escéptico.

Dalton no era más que un Colón. Los Vespucios aún no habían llegado, y cuando lo hicieron trajeron consigo algunas sorpresas muy agradables y conmociones aterradoras. Entretanto, y durante medio siglo, el sólido e indestructible átomo de Dalton fue muy útil para los químicos, y dio lugar a prácticas elaboraciones. Un científico francés, Gay-Lussac, demostró que cuando los átomos se combinaban no lo hacían necesariamente de dos en dos, como había indicado Dalton, sino que podían agruparse en asociaciones distintas de unidades enteras. Un químico italiano, Avogadro (1776-1856), demostró que volúmenes iguales de gases a la misma temperatura y presión contenían el mismo número de moléculas. Un químico ruso, Mendeleiev, propuso una sugestiva “Ley periódica” de los elementos. Si los elementos estaban dispuestos en orden según su creciente peso atómico entonces grupos de elementos de características similares se repetirían periódicamente.

Resultado de imagen de El estudio de la luz y la electricidad de Faraday

                      Faraday dando explicaciones de los fenómenos eléctricos y magnéticos

La disolución del indestructible átomo sólido provendría de dos fuentes, una conocida y la otra bastante nueva: el estudio de la luz y el descubrimiento de la electricidad. El propio Einstein describió este histórico movimiento como la decadencia de una perspectiva “mecánica” y el nacimiento de una perspectiva “de campo” del mundo físico, que le ayudó a encontrar su propio camino hacia la relatividad, hacia explicaciones y misterios nuevos.

Resultado de imagen de El estudio de la luz y la electricidad de Faraday

Albert Einstein tenía en la pared de su estudio un retrato de Michael Faraday (1791-1867), y ningún otro hubiera podido ser más apropiado, pues Faraday fue el pionero y el profeta de la gran revisión que hizo posible la obra de Einstein. El mundo ya no sería un escenario newtoniano de “fuerzas a distancias”, objetos mutuamente atraídos por la fuerza de la Gravedad inversamente proporcional al cuadrado de la distancia que hay entre ellos. El mundo material se convertiría en una tentadora escena de sutiles y omnipresentes “campos de fuerzas”. Esta idea era tan radical como la revolución newtoniana, e incluso más difícil de comprender para los legos en la materia.

Todo el trabajo de campo de Faraday fue aprovechado por Maxwell para expresarlo en sus famosas ecuaciones.

emilio silvera

¿Alcanzaremos la energía de Planck?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física y cosmología    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lo cierto es que la ciencia actual no puede explicar los rayos cósmicos de alta energía. Durante más de una década, los físicos japoneses han estado observando rayos cósmicos que no debieran existir. Los rayos cósmicos son partículas (en su mayoría protones, pero a veces también núcleos pesados completos) que viajan a través del universo a velocidades cercanas a la de la luz. Algunos rayos cósmicos detectados en la Tierra han sido producidos en eventos catastróficos tales como las supernovas, pero todavía no conocemos el origen de los rayos cósmicos de alta energía, que constituyen las partículas más energéticas de la naturaleza. Pero ese no es el verdadero misterio.

Los rayos cósmicos son partículas que llegan desde el espacio y bombardean constantemente a la Tierra desde todas las direcciones. La mayoría de estas partículas son núcleos de átomos o electrones. Algunas de ellas son más energéticas que cualquier otra partícula observada en la naturaleza. Los rayos cósmicos ultra-energéticos viajan a una velocidad cercana a la de la luz y tienen cientos de millones de veces más energía que las partículas producidas por cualquier acelerador en el mundo.

Presiona aquí y podrás ampliar esta imagen

Posibles fuentes emisoras de rayos cósmicos

No conocemos ninguna fuente en el Cosmos que pueda producir partículas con estas energías, ni siquiera en las más violentas explosiones de estrellas.

De donde provengan, las partículas de alta energía mantienen secretos respecto de la evolución y posiblemente el origen del universo, debido al enigma de su enorme energía millones de veces mayores de lo que cualquier acelerador terrestre de partículas puede producir.

Hasta la fecha, el rayo cósmico más energético detectado tenía una energía de 1020 electrón voltios (eV). Esta cifra supone una increíble energía diez millones de veces mayor de la que se habría producido en un acelerador de partículas. Dentro de este siglo, seguramente será difícil alcanzar, con nuestras máquinas energías aproximadas.

Resultado de imagen de Energías alcanzadas en el interior de los agujeros negros

Aunque esta fantástica energía es todavía cien millones de veces menor que las energías necesarias para sondear la décima dimensión, se espera que energías producidas en el interior profundo de los agujeros negros en nuestra galaxia se acercaran a la energía de Planck.

Con grandes naves espaciales en órbita, deberíamos ser capaces (seremos) de sondear en lo más profundo de estas estructuras gigantescas de fuentes energéticas que, abundantemente, están repartidas a lo largo y ancho del Universo.

Según una teoría favorita, la mayor fuente de energía dentro de nuestra Galaxia (mucho más allá de cualquier cosa imaginable), está en el mismo corazón de la Vía Láctea, en el centro, a 30.000 – años – luz de nuestro Sistema Solar, y puede constar de millones de agujeros negros.

Imagen del centro de la Vía Láctea obtenido gracias al Observatorio de Rayos X Chandra

Imagen del centro de la Vía Láctea obtenido gracias al Observatorio de Rayos X ChandraNASA/CXC/MIT/F. BAGANOFF, R. SHCHERBAKOV ET AL.

 

 

 

“A 25.000 años luz de nuestro hogar en el extrarradio galáctico, el centro de la Vía Láctea bulle. Dominadas por un agujero negro monstruoso con cuatro millones de veces la masa del Sol, estrellas, enanas blancas y agujeros negros de menor tamaño se aprietan rodeadas de gas y polvo. O eso se suponía hasta ahora, porque la acumulación de objetos en la zona confundía a los astrónomos que tratan de averiguar lo que sucede en esa región clave de la galaxia.”

Resultado de imagen de El chandra de rayos XResultado de imagen de El chandra de rayos X

“El hallazgo lo realizaron después de analizar datos recogidos por el Observatorio Chandra de Rayos X. A partir de estos datos, los autores del trabajo creen que puede haber cientos de agujeros negros emparejados con otras estrellas a las que van robando materia, un proceso en el que se emiten rayos X y permite localizar el agujero negro. El número de agujeros negros aislados, casi imposibles de detectar, sería mucho mayor.”

Resultado de imagen de Imágenes del Blog de emilio silvera

En física nada se puede descartar, la inaccesibilidad de hoy a la energía de Planck se puede suplir por descubrimientos inesperados, poco a poco, nos lleve cada vez más cerca de ella, hasta que finalmente, tengamos el conocimiento y la tecnología necesarias para poder alcanzarla.

Resultado de imagen de la composicion de las estrellas

No olvidemos que, en el siglo XIX, algunos científicos declararon que la composición de las estrellas estaría siempre fuera del alcance del experimento, y, que la única manera que tendríamos de conocerlas sería la de mirar al cielo y verlas allí, inalcanzables como puntos de luz brillantes y lejanos en la oscuridad del vacío del cosmos. Sin embargo, podemos decir hoy, a comienzos del siglo XXI, año 2.006, que no solo podemos saber la composición de las estrellas, sino también como nacen y mueren, las distancias que los separan de nosotros y un sin fin de datos más.

Resultado de imagen de La luna GanímedesResultado de imagen de Europa (satélite)

                                                             Las lunas Ganimedes y Europa

Particularmente creo que el ser humano es capaz de realizar todo aquello en lo que piensa dentro de unos limites racionales. Podremos, en un futuro no muy lejano, alargar de manera considerable la media de vida. Podremos colonizar otros planetas y explotar recurso mineros en las lunas de nuestro sistema solar, los turistas irán al planeta Marte o a las lunas Ganimedes o Europa. Los transportes de hoy serán reliquias del pasado y nos trasladaremos mediante sistemas de transportes más limpios, rápidos y exentos de colisiones. Tendremos computadoras de cifrado cuántico que harán más seguras las comunicaciones y el intercambio de datos será realmente el de la velocidad de c, así en todos los campos del saber humano.

Estamos inmersos en un avance exponencial, imparable.

Resultado de imagen de Imágenes del Blog de emilio silvera

Otro ejemplo de una idea “inverificable” la tenemos en la existencia del átomo. En el siglo XIX, la hipótesis atómica se reveló como el paso decisivo en la comprensión de las leyes de la química y la termodinámica. Sin embargo, muchos físicos se negaban a creer que los átomos existieran realmente, los aceptaban como un concepto o herramienta matemática para operar en su trabajo que, por accidente, daba la descripción correcta del mundo.

Hoy somos todavía incapaces de tomar imágenes directas del átomo debido al principio de incertidumbre de Heisemberg, aunque ahora existen métodos indirectos. En 1.905, Einstein proporcionó la evidencia más convincente, aunque indirecta, de la existencia de átomos cuando demostró que el movimiento browniano (es decir, el movimiento aleatorio de partículas de polvo suspendidas en un líquido) puede ser explicado como colisiones aleatorias entre las partículas y los átomos del líquido.

Resultado de imagen de el movimiento browniano (es decir, el movimiento aleatorio de partículas de polvo suspendidas en un líquidoResultado de imagen de el movimiento browniano (es decir, el movimiento aleatorio de partículas de polvo suspendidas en un líquido

“El movimiento browniano es el movimiento aleatorio que se observa en las partículas que se hallan en un medio fluido (líquido o gas), como resultado de choques contra las moléculas de dicho fluido.”

Por analogía, podríamos esperar la confirmación experimental de la física de la décima dimensión utilizando métodos indirectos que aún ni se han inventado o descubierto. En lugar de fotografiar el objeto que deseamos, quizá nos conformaríamos, de momento, con fotografiar la “sombra” del mismo.

También la existencia de los neutrinos, propuestos por Wolfgang Pauli en 1.930, para dar cuenta de la energía perdida en ciertos experimentos sobre radiactividad que parecían violar la conservación de la materia y la energía, también digo, era inverificable (en aquel momento). Pauli comprendió que los neutrinos serían casi imposibles de observar experimentalmente, porque interaccionarían muy débilmente y, por consiguiente muy raramente con la materia.

Resultado de imagen de Pauli y los neutrinos

La materia, toda la materia, si profundizamos en ella a niveles microscópicos, podremos comprobar el hecho de que, en un 90% está constituida de espacios vacíos y, siendo así, los neutrinos pueden atravesarla sin rozar siquiera sus átomos, de hecho, pueden atravesar la Tierra como si ni siquiera existiera y, al mismo tiempo, también nosotros somos atravesados continuamente por billones de neutrinos emitidos por el sol, incluso por la noche.

Pauli admitió:”He cometido el pecado más grave, he predicho la existencia de una partícula que nunca puede ser observada”.

Resultado de imagen de Producción de neutrinos en reactores nucleares

Comportamiento termodinámico de los neutrinos en la formación de la proto-estrella de neutrones.

Pero incluso Pauli, con todos sus enormes conocimientos, se equivocaba, y el neutrino ha sido comprobado mediante distintos métodos que no dejan dudas de su existencia. Incluso producimos regularmente haces de neutrinos en colisionadores de átomos, realizamos experimentos con los neutrinos emitidos por reactores nucleares y, detectamos su presencia en enormes depósitos de agua pesada colocados en profundas minas abandonadas en las entrañas de la Tierra.

Cuando una espectacular supernova se iluminó en el cielo del hemisferio sur en 1.987, los físicos registraron una ráfaga de neutrinos que atravesaron sus detectores situados, precisamente, en profundas minas.

{\displaystyle E_{p}={\sqrt {\frac {\hbar c^{5}}{G}}}\approx } 1.956 × 109 J {aprox }\approx  1.22 × 1019 GeV

Según parece, hasta que no seamos capaces de llegar a la energía de Planck, la Teoría de súpercuerdas no podrá ser verificada.

Emilio Silvera