miércoles, 29 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Materia! ¿En cuantas maravillas se puede plasmar?

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Alguna vez se me ocurrió pensar que la Vida, era el estado más elevado de la Materia evolucionada. El estado en el que se alcanza la consciencia y, de alguna manera, trasciende lo puramente material para crear ese “algo” indefinido, complejo e inconcreto que llamamos Mente, que sabemos utilizar y nos sirve de herramienta para ir comprendiendo el mundo que nos rodea y la Naturaleza pero, sin embargo, no podemos decir lo que es con una cierta propiedad de certeza y con respecto a ella, nos movemos en las brumosas aguas de la incomprensión más absoluta.

Cuando hablamos de evolución es difícil dejar a un lado a Charles Lyell y a Darwin. No debemos olvidar que el libro de Lyell convirtió el viaje de Darwin en un viaje a través del tiempo. Darwin empezó a leerlo casi inmediatamente, en su litera, mientras sufría el primero de los muchos mareos que le atormentarían durante los cinco años siguientes. El Beagle, un bergantín sólido y macizo, de 28 metros de largo por 7,5 de ancho, era en general confortable, pero su casco era redondeado y se balanceaba mucho. Darwin empezó a aplicar lo que él llamaba “la maravillosa superioridad de la manera de Lyell de abordar la geología” tan pronto como la expedición tocó tierra en las islas de Cabo Verde.

El H.M.S. Beagle. El HMS Beagle se hizo a la mar en 1832 con el fin de cartografiar con mayor detalle las costas sudamericanas. Estaba al mando el capitán Robert Fitzroy y entre sus tripulantes figuraba el joven naturalista Charles Darwin. Durante el viaje del Beagle, que duró cinco años, Darwin sufrió mucho de mareo. Aunque disfrutó de dos largos periodos en tierra, pasó muchos días enfermo, tendido en su litera y alimentándose sólo de uvas.

Construir una teoría de base empírica como explicación de Darwin de la evolución requiere, no sólo datos de observación, sino también una hipótesis organizadora. Darwin tomó su hipótesis, que el mundo es viejo y sigue cambiando hoy tanto como en el pasado, principalmente de Lyell. “El gran momento de los Principles -escribió- era que le cambiaba a uno todo el carácter de la propia mente, y cuando veía algo nunca visto por Lyell, uno seguía viendo en parte con sus ojos .” Más tarde Darwin admitió que “me siento como si mis libros proviniesen a medias del cerebro de sir Charles Lyell.”

Resultado de imagen de Las mutaciones por adaptación al medioImagen relacionadaImagen relacionada

La teoría de Darwin mantiene que los efectos ambientales conducen al éxito reproductivo diferencial en individuos y grupos de organismos. La selección natural tiende a promover la supervivencia de los más aptos. Esta teoría revolucionaria se publicó en 1859 en el famoso tratado El origen de las especies por medio de la selección natural. La contribución de Darwin no fue argüir simplemente que la vida había evolucionado – ni siquiera le gustaba usar la palabra “evolución”-, sino también identificar el mecanismo evolutivo por el cual surgen nuevas especies. Por eso tituló su libro El origen de las especies.”

Claro que hablar de la Mente está mucho más lejos de lo que nosotros podemos viajar. Un lugar remoto de maravillosos suscesos de incompresible formación y de cuyo origen, en realidad, nada sabemos a ciencia cierta.  Hemos logrado saber muchas cosas como, por ejemplo, la Edad de la Tierra, un lugar en el que se posibilitó el surgir de la vida y de los pensamientos. Francis Bacon decía:

“La antigüedad del Tiempo es la juventud del Mundo”

Por su parte, Denis Diderot elucubraba que:

“Lo que tomamos por historia de la Naturaleza sólo es la muy incompleta historia de un instante.”

 

De alguna manera, los dos llevaban razón, pues para nosotros los seres conscientes, de alguna manera,  el Tiempo comenzó con el mundo que nos vio nacer y, lo que para nosotros era toda la Historia, en realidad era sólo nuestra historia que, en el contexto del Universo resultaba ser menos de una fracción de segundo.

Resultado de imagen de La Tierra ignea primitiva

Una Tierra ignea en la que tuvieron que pasar 500 millones de años para que se pudiera enfriar y para que surgiera la posibilidad de aquellas primeras formas de vida que, necesitó de mucho, mucho, muchísimo tiempo para que pudiera alcanzar la consciencia de Ser. Muchas formas de vida y especies que se fueron extinguiendo, otras nuevas pudieron emerger y unas se adaptaron mejor que otras al medio ambiente que, al final del camino evolutivo del planeta y de los seres que lo habitaban, llegó al nivel actual en el que, nuestra especie prevalece sobre todas las demás (conocidas) en un reducido terrón rocoso inmerso en una inmensidad.

Imagen relacionadaImagen relacionada

En las estrellas se fusionan elementos sencillos en otros más complejos. Allí se formaron todos los componentes de los cuerpos de los seres vivos, y, nos queda por desvelar, ese último secreto que está en nosotros, lo que llamamos conciencia, la Mente… ¿Qué será?

Por otro lado, como el Universo es muy grande, las densidades medias son muy bajas y la materia se encuentra normalmente en estructuras muy simples, en forma de átomos y partículas individuales. La composición química del Universo y sus procesos son por ello también importantes para comprender su evolución, dando pie al uso más o menos extendido de astroquímica. Sin embargo, las moléculas complejas son relativamente raras y los organismos vivos muchísimo más. La parte Biológica del Universo que conocemos se reduce a nuestro propio planeta por lo que parece excesivo poder hablar de Astrobiología. ¿Por qué tenemos que preocuparnos por una parte tan ínfima del Universo? Ciertamente porque los seres humanos pertenecemos a esta extraña componente y, ya que no podemos reproducir en el laboratorio el paso de la química a la biología, es en el contexto del Universo -el gran Laboratorio- y su evolución en el que podemos analizar los límites y las condiciones necesarias para que emerja la vida en cualquier sitio, dando pleno sentido al uso del término como veremos a continuación.

La Astrobiología es una ciencia que ha surgido en la frontera entre varias disciplinas clásicas: la Astronomía, la Biología, la Física, la Química o la Geología. Su objetivo final es comprender cómo surgió la vida en nuestro Universo, cómo se distribuye y cuál es su evolución primitiva, es decir, cómo pudo establecerse en su entorno.

En otras palabras, trata de comprender el papel de la componente biológica del Universo, conectando la astrofísica y la astroquímica con la biología. Intenta para ello comprende el origen de la vida. : El paso de los procesos químicos prebióticos a los mecanismos bioquímicos y a la biología propiamente dicha.

Naturalmente, en Astrobiología nos planteamos preguntas fundamentales, como la propia definición de lo que entendemos como Vida, cómo y cuándo pudo surgir en la Tierra, su existencia actual o en el pasado en otros lugares o si es un hecho fortuito o una consecuencia de las leyes de la Física. Algunas de estas cuestiones se las viene formulando la humanidad desde el principio de los tiempos, pero ahora por primera vez en la historia, los avances de las ciencias biológicas y de la exploración mediante tecnología espacial, es posible atacarlas desde un punto de vista puramente científico. Para ello, la Astrobiología centra su atención en estudiar cuáles son los procesos físicos, químicos y biológicos involucrados en la aparición de la vida y su adaptabilidad, todo ello en el contexto de la evolución y estructuración y auto-organización, del Universo.

Como cualquier otra ciencia, la Astro-biología está sujeta a la utilización del método científico y por tanto a la observación y experimentación junto con la discusión y confrontación abierta de las ideas, el intercambio de datos y el sometimiento de los resultados al arbitraje científico. La clave de la metodología de esta nueva ciencia está en la explotación de las sinergias que se encuentran en las fronteras entre las disciplinas básicas mencionadas anteriormente, una región poco definida, cuyos límites se fijan más por la terminología que por criterios epistemológicos. Un aspecto importante de la investigación en el campo de la Astro-biología es la herramienta fundamental que representa el concepto de complejidad. La vida es un proceso de emergencia del orden a partir del caos que puede entenderse en medios no aislados y, por tanto libres de la restricción de la segunda ley de la termodinámica, como un proceso complejo. En este sentido, la emergencia de patrones y regularidades en el Universo, ligados a procesos no lineales, y el papel de la auto-organización representan aspectos esenciales para comprender el fenómeno de la vida. Transiciones de estado, intercambios de información, comportamientos fuera de equilibrio, cambios de fase, eventos puntuales, estructuras autorreplicantes, o el propio crecimiento de la complejidad, cobran así pleno sentido en Astro-biología.

Imagen relacionada

En los lugares más insospechados hemos encontrado formas de vida de cincomprensible existencia

No conocemos más vida que la existente en la Tierra y ésta nos sirve de referencia para cualquier paso en la búsqueda de otras posibilidades. La astrobiología trata por ello de analizar la vida más primitiva que conocemos en nuestro planeta así como su comportamiento en los ambientes más extremos que encontremos para estudiar los límites de su supervivencia y adaptabilidad. Por otro lado, busca y analiza las condiciones necesarias para la aparición de entornos favorables a la vida, o habitables, en el Universo  mediante la aplicación de métodos astrofísicos y de astronomía planetaria. Naturalmente, si identificáramos sitios en nuestro sistema solar con condiciones de habitabilidad sería crucial la búsqueda de marcadores biológicos que nos indiquen la posible existencia de vida presente o pasada más allá de la distribución de la vida en el Universo o, en caso negativo, acotaríamos aún más los límites de la vida en él.

Encontrar un “punto azul pálido” o “segunda Tierra” dentro de una zona habitable que contenga agua y condiciones ambientales que puedan sustentar vida, constituye el Santo Grial de la ciencia. Cuántas veces nos habremos preguntado:  ¿Estamos solos? Sin embargo, hace unos días, salió la noticia de que se ha encontrado una estrella orbitada por seis planetas de los que tres de ellos, podrían estar habitados según las condiciones en ellos observadas de distancia a la estrella, atmósfera, y otras.

Diferentes condiciones ambientales pueden haber dado lugar a la vida e incluso permitido la supervivencia de algunos organismos vivos generados de forma casual, como experimento de la naturaleza. La Astrobiología trata de elucidar el papel de la evolución del Universo, y especialmente de cuerpos planetarios, en la aparición de la vida. En esta búsqueda de ambientes favorables para la vida, y su caracterización, en el Sistema solar,  la exploración espacial se muestra como una componente esencial de la Astrobiología. La experimentación en el laboratorio y la simulación mediante ordenadores o en cámaras para reproducir ambientes distintos son una herramienta que ha de ser complementada por la exploración directa a través de la observación astronómica, ligada al estudio de planetas extrasolares, o mediante la investigación in situ de mundos similares en cierta forma al nuestro, como el planeta Marte o algunos satélites de los planetas gigantes Júpiter y Saturno.

http://2.bp.blogspot.com/_94UpMX9zT2o/TBX2abCljiI/AAAAAAAAAS4/KQUYRRTYGA0/s1600/saturno.jpg

Viendo al planeta Saturno desde los mares de metano de Titán, nos tenemosque preguntar si por ahí cerca se estarán preparando las condicionespara una vida extrasolar futura,o, si acaso, está ya ahí presente. El pequeño mundo Titán reúne todas y cada una de las condiciones de aquella vieja Tierra que existía en épocas pasadas en las que, nosotros, no habíamos hecho aún acto de presencia en el planeta.

La componente instrumental y espacial convierte a la Astrobiología en un ejemplo excelente de la conexión entre ciencia y tecnología. Los objetivos científicos de la Astrobiología, hemos visto, que requieren un tratamiento trans-disciplinar, conectando áreas como la física y la astronomía con la química y la biología. Esta metodología permite explotar sinergias y transferir conocimiento de unos campos a otros para beneficio del avance científico. Pero además, la Astrobiología está íntimamente ligada a la exploración espacial que requiere el desarrollo de instrumentación avanzada. Se necesitan tecnologías específicas como la robótica o los biosensores habilitadas para su empleo en condiciones espaciales y entornos hostiles muy diferentes al del laboratorio. Naturalmente la Astrobiología emplea estos desarrollos también para transferir conocimiento y tecnologías a otros campos de investigación científica y en particular, cuando es posible, incluso al sector productivo.

Centrándonos en el ser humano, los restos fósiles más antiguos confirman que durante la Era Cuaternaria, la Humanidad poseía fuertes restos morfológicos de las especies animales de las que pudo derivar. También se han encontrado fósiles de simios que situados hacia atrás en el tiempo, se acercaban, cada vez más, en su morfología, a las formas humanas.

Sin embargo, aún el más antiguo de los hombres fósiles, hubo de poseer una capacidad  cerebral mucho mayor que la de los simios actuales. Por tal motivo incluso los más acérrimos partidiarios de la evolución rechazaron pronto que el hombre descendiera del directamente del mono: La conclusión científica común hoy día es que ambos, hombre y chimpancé, tuvieron un ancestro común que no era ni Homo ni Pan y que se perdió por completo no habiendo podido hallar su rastro. El eslabón perdido lo llaman.

Otra cuestión que también ha sido muy debatida es aquella que nos hablaba de que la Humanidad descendía de una sola pareja, lo que nos llevaría al hecho de que la Humanidad surgió de una sola vez, derivando de aquella primitiva pareja por multiplicación como nos cuenta el Génesis. Sin embargo, la Ciencia adopta la postura de que fueron muchas parejas repartidas por todo el mundo, las que dieron lugar a la Humanidad que surgió en diversos lugares.

Si el lugar o lugares, época y forma del nacimiento de la primera raza, o razas, humanas continúa siendo -y mucho más el de la vida- y será con toda probabilidad, siempre, el mayor misterio para la Ciencia que, en los últimos años y con mayores ayudas tecnológicas ha intentado saber lo que la vida es sin conseguirlo. Nos aproximamos, esbozamos escenarios plausibles y reconstruimos lo que pudo ser… Pero, lo cierto es que, seguimos sin saber lo que es la vida y, mucho menos, podemos dar una explicación de la Conciencia, ese estado superior alcanzados por alguna forma de vida que, como la nuestra, han llegado a generar ideas, pensamientos y sentimientos.

Resultado de imagen de El árbol de la evolución

¿Y el  Ser Humano? Geológicamente hablando es un brote tardía en el árbol de la Evolución. Todos los intentos de darle una gran antigüedad geológica han sido abandonados después de aplicar los nuevos métodos de investigación. Y así, al igual que los mamíferos se han desarrollado lentamente evolucionando a partir de formas no parecidas a ellos, el hombre ha surgido también evolutivamente a partir de formas no humanas.

Cuando hace doscientos años el primer gran sistemático, el sueco Linneo (1707-1778), estableció su “Sistema Natural”, creía poder diferenciar tantas especies como las que habían sido creadas en un principio. Claro que, su zoología era estática como el concepto del mundo en su época; su clasificación era horizontal y no miraba hacia el pasado. Linneo nunca llegaría a saber que miles de millones de especies surgidas en el planeta Tierra, habían desaparecido, se habían extinguidos y que sólo, el 1% de las especies que habían poblado en la Tierra, estaban vivas hoy.

Resultado de imagen de Linneo y la clasificación de los seres

Sólo cuando se empezó a conocer el mundo vivo de la Prehistoria pasó a primer plano también el problema de las relaciones de parentesco entre grupos aparentemente muy distintos y la necesidad de establecer una claficiación cronológica, es decir, vertical. Así, Linneo fue el primero en reconocer que el Ser Humano no ocupa, anatómica y zoológicamente, un lugar aislado en la Naturaleza, lugar que hasta entonces se había atribuido así mismo gustosamente y, él demostró que el hombre era solamente un miembro de un grupo mayor, al que dio el nombre de Primates. No vamos a hablar aquí ahora del género Homo que, en muchas otras ocasiones ha sido tratado ampliamente.

Cuando hablamos de la “vida” no podemos olvidarnos, de ninguna manera, de las formas más pequeñas que, de alguna manera, fueron nuestros precursores y los primeros que comenzaron la aventura de la Vida. De hecho, sin ellos nosotros no podríamos vivir y nuestros organismos necesitan de ellos para realizar muchas de sus funciones, algunos viven con nosotros en una especie de simbiosis de la que ambas partes se benefician, tal es el caso de las mitocondrías generadoras de energía en nuestro cerebro, por ejemplo.

Resultado de imagen de Las mitocondrías y la energía del cerebro

Ese “mundo” de los seres pequeños, está formado por bacterias y cianobacterias (algas azules). Pueden vivir en diversos lugares, tales como agua o aire y en el interior de los animales y plantas como parásitos. La mayoría de sus representantes son heterótrofas (no pueden producir su propio alimento), pero también hay algunas autótrofas (producen sin alimentos, por ejemplo a través de la fotosíntesis). Existen también bacterias aerobias es decir, que necesitan oxígeno para vivir, el requisito de anaerobios, que no pueden vivir en presencia de oxígeno, y anaerobios facultativos, que pueden vivir tanto en ambientes oxigenados como en ambientes no oxigenados. La forma física de las bacterias pueden ser de cuatro tipos: cocos, bacilos, vibriones y espirilos. Los cocos pueden unirse y formar colonias. Grupos de dos cocos forman diplococos, alineados forman estreptococos y en grupos forman una infección de estafilococos.

Por ser los seres vivientes más primitivos en la Tierra, son también los que están en mayor número. Por ejemplo, en un gramo de tierra fértil pueden haber cerca de 2,5 mil millones de bacterias, en hongos 400.000 y en algas y protozoos entre 30.000 y 50.000.

Con un microscopio electrónico podremos llegar muy lejos en el universo de lo muy pequeño.

La importancia de las bacterias

Las bacterias también tienen su importancia en el medio ambiente, así como cualquier ser vivo. Describamos algunos papeles fundamentales.

Resultado de imagen de Bacterias intestinales

Flora bacteriana necesaria en nuestro organismo

  • Descomposición: Actúan en el reciclaje de la materia, devolviendo al ambiente moléculas y elementos químicos para ser re-utilizados por otros seres vivos.
  • Fermentación: algunas bacterias se utilizan en las industrias para producir yogurt, queso, etc (lácteos).
  • Industria farmacéutica: para la fabricación de antibióticos y vitaminas.
  • Industria química: para la producción de alcoholes como el metanol, etanol, etc.
  • Genética: mediante la alteración de su ADN, podemos hacer productos de interés para los seres humanos, como la insulina.
  • Determinación de nitrógeno: permite eliminar el nitrógeno del aire y tirado en el suelo, que sirve como alimento para las plantas.
Resultado de imagen de las bacterias como plaga
                                            Se detectan y se combaten plagas de bacterias nosivas

Tendría que mencionar ahora la reproducción y sus distintas formas, que varían de modo continuo entre los casos extremos de la cría generalizada generada de golpe y los nacimientos espaciados de un único neonato. El primer caso maximiza la producción de individuos que maduran con rapidez, y estas especies son más oportunistas. La mayoría de las bacterias, así como muchas especies de insectos, pertenecen a este grupo de seres que se reproducen de forma oportunista e intensa. En condiciones adecuadas llegan a invertir una parte tan importante de su metabolismo en la reproducción que acaban convirtiéndose en plagas indeseables. En unos pocos días de verano, pequeños insectos como los áfidos, dedican el 80% de su metabolismo a reproducirse, en una estrategia que reduce de forma importante la vida de los progenitores y también las posibilidades de reproducción repetida. Los endoparásitos, sin embargo, son una desafortunada excepción a esta restricción: la tenia, debido al fácil suministro de energía que recibe, se reproduce copiosamente y puede sobrevivir más de quince años.

Resultado de imagen de Pulgones

                     Los pulgones que deben ser eliminados para conservar la lozanía de la planta

  • Áfidos (pulgones)
    • Causan daño al chupar fluidos
    • Pequeños, color verde o amarillo
    • Producen mielecilla (sustancia pegajosa)
Resultado de imagen de Trips
  • Trips
    • Se alimentan de flores y hojas
    • Daño causa pequeñas áreas descoloridas
Resultado de imagen de Ácaros (aranuelas)
  • Ácaros (arañuelas)
    • Dañan hojas
    • Difícil detectar a simple vista
    • Algunos producen seda y dejan telarañas
Resultado de imagen de mosca blanca
  • Mosca blanca
    • Causan deformaciones
    • Producen mielecilla
    • En el revés de hojas
Resultado de imagen de La cria de chimpancçe

En el otro extremo del rango reproductivo están las especies del tipo selección-k que se reproducen varias veces, espaciando los nacimientos y cada vez con crías poco numerosas, y que maduran lentamente. El resultado de esta forma de reproducción es una tasa baja de crecimiento y poca capacidad de colonización, que se compensa con la mayor longevidad, competitividad, adaptabilidad y frecuentemente por un comportamiento social altamente desarrollado.

Aunque es cierto que no sabemos a ciencia cierta lo que es la vida, también lo es que, a lo largo de nuestra existencia y llevados por la ambición de saber y con el arma de la curiosidad siempre a cuestas, hemos podido desvelar secretos que la Naturaleza celosamente guardaba. Existen “claves” que son diagramas , trazados a escala, de cuatro moléculas (bases del nucleótido) cuya excepcional interrelación interna, inserta bajo la cremallera del ácido desoxirribonucleico (ADN), contiene el código de toda la vida en la Tierra. Se ha llegado a explicar con precisión cómo miles de características únicas, que varían de un individuo a otro, se tramsmiten intactas de generación en generación. Este descubrimiento fue el prtogreso más grande del siglo XX en el campo del conocimiento biológico.

                      Situación del ADN dentro de una célula

En el interior de cada célula de nuestro cuerpo tenemos cadenas de ADN increíblemente largas. Es la materia prima de los genes. Almacena, reproduce y transmite todas nuestras características personales y únicas, nuestra herencia genética. Estas cadenas de ADN contienen las plantillas codificadas de las proteínas, que son los ladrillos de nuestros cuerpos.

Resultado de imagen de Esta codificación es una serie de combinaciones de cuatro moléculas llamadas bases de los nucleótidos

Esta codificación es una serie de combinaciones de cuatro moléculas llamadas bases de los nucleótidos (y representadas por las letras A, G, C y T), que dan todas las instrucciones necesarias para fabricar nuestro cuerpo. Heredamos ADN de nuestros dos progenitores y, puesto que recibimos una mezcla única de ambos, la cadena de ADN de cada uno de nosotros es ligeramente distinta de la de los demás. Nuestro ADN es como una huella dactilar molecular.

Resultado de imagen de Durante la reproducción sexual humana, el ADN de los progenitores se copia y se transmite en proporciones igualesResultado de imagen de Durante la reproducción sexual humana, el ADN de los progenitores se copia y se transmite en proporciones iguales

Durante la reproducción sexual humana, el ADN de los progenitores se copia y se transmite en proporciones iguales. Es importante saber que, aunque casi todo el ADN de cada progenitor se separa durante la reproducción, en cada generación se barajan y se mezclan pequeños fragmentos de las dos aportaciones. Por mezcla no se entiende la distribución aleatoria y masiva, sino pequeños intercambios, duplicaciones y permutas entre el lote materno y el lote paterno de ADN. Este fenómeno se llama técnicamente “recombinación”. Afortunadamente para los fines de los investigadores genéticos, hay dos pequeñas porciones de nuestro ADN que no se recombinan. El ADN no recombinante es más fácil de rastrear, dado que su información no se altera durante su transmisión de una generación a otra. Las dos pequeñas porciones son el ADN mitocondrial (ADNmt) y la parte no recombinante del cromosoma Y (YNR).

Así que, el ADN mitocondrial es útil para el estudio evolutivo, en primer lugar, porque su variabilidad depende exclusivamente de las mutaciones, ya que no sufre el ya mencionado proceso de recombinación durante la concepción. En segundo lugar, permite un seguimiento de la línea materna evolutiva, pero solamente se podría estudiar en zonas que se saben estuvieron habitadas por mujeres, por lo que poría traer fallas, en caso de que la población femenina fuera mayor a la masculina. Aquellas regiones donde el ADN m. presnetan mayor variabilidad, significaran que allí se han producido mayores mutaciones en el tiempo, por tanto serán más antigua, rastreándose así nuestra posible zona de origen. El número de genes en el ADN mitocondrial es de 37, frente a los 20.000 – 25.000 genes del ADN cromosómico nuclear humano.

Así que, decir que recibimos el 50% de nuestro ADN de nuestro padre y el otro 50% de nuestra madre no es totalmente verdadero. Un pequeño fragmento de nuestro ADN se hereda sólo a través de la madre. Es al que antes nos referíamos como el ADN mitocondrial porque se trata de filamentos circulares individuales contenidos en pequeñas cápsulas tubulares llamadas mitocondrias que funcionan un poco como baterias en el interior del citoplasma celular.

Resultado de imagen de pequeñas cápsulas tubulares llamadas mitocondrias que funcionan un poco como baterias en el interior del citoplasma celular.

Algunos biólogos moleculares dicen que, cuando el mundo era joven, la mitocondria era un organismo autónomo con su propio ADN y poseía el secreto de generar muchísima energía. Invadió organismos unicelulares nucleados y allí sigue desde entonces, dividiéndose, como la levadura, por fusión binaria. Aunque los varones reciben y usan el ADN mitocondrial de la madre, no pueden transmitirlo a los hijos. El esperma tiene mitocondrias propias para propulsar el largo viaje desde la vagina hasta el óvulo, pero al entrar en éste, las mitocondrias masculinas se marchitan y se mueren.

Resultado de imagen de Así pues, cada cual hereda el ADNmt de la madre, que a su vez lo ha heredado intacto de su madre y ésta de la suyaResultado de imagen de Así pues, cada cual hereda el ADNmt de la madre, que a su vez lo ha heredado intacto de su madre y ésta de la suya

Así pues, cada cual hereda el ADNmt de la madre, que a su vez lo ha heredado intacto de su madre y ésta de la suya, hasta el infinito; de ahí que el nombre popular del ADNmt, “el gen EVA”. En última instancia, todas las personas que viven hoy en el mundo han heredado su ADN mitocondrial de una única antepasada que vivió hace casi 200.000 años. Este ADNmt nos proporciona un raro punto de estabilidad en las arenas movedizas de la transmisión del ADN. Sin embargo, si todos los cromosomas EVA del mundo actual fueran una reproducción exacta del primer gen Eva, todos serían idénticos. Sería algo prodigioso, pero significaría que el ADNmt tiene poco que decirnos sobre nuestra prehistoria. Saber que todas las mujeres descienden de una remota EVA común resulta emocionante, pero no nos ayuda a reconstruir la vida de cada una de sus hijas. Necesitamos un poco de variedad.

Imagen relacionada

Los genes pueden mutar (transformarse) de diferentes formas. La forma más sencilla de mutación implica un cambio en una base individual a lo largo de la secuencia de bases de un gen en particular–muy parecido a un error tipográfico en una palabra que ha sido mal escrita. En otros casos, se pueden agregar o eliminar una o más bases. Y algunas veces, grandes segmentos de una molécula de ADN se repiten, se eliminan o se traslocan accidentalmente.

Así, aparecen mutaciones puntuales del ADN. Al heredar el ADNmt de nuestra madre, a veces hay un cambio en una o más “letras” del código del ADNmt, aproximadamente una mutación cada mil generaciones. La nueva letra, llamada “mutación puntual”, se transmitirá desde entonces a todas las descendientes. Aunque otra mutación es un fenómeno raro dentro de una sóla línea familiar, la probabilidad total de las mutaciones aumenta de manera visible a causa de la cantidad de mujeres que tienen hijas. Así, en una generación, un millón de mujeres podrían tener más de mil hijas con una mutación personal e intransferible. Por este motivo, y salvo que hayamos tenido una antepasada común en los últimos 10.000 años, cada cual tiene un código que es ligeramente distinto del de los demás.

                                     Sí, aunque pequeñas, existen esas probabilidades de mutaciones de la genética

Claro que, también existe el “Gen Adán”. A semejanza del ADNmt de transmisión materna y que reside fuera del núcleo de la célula, dentro del núcleo hay un paquete de genes que sólo se transmite por línea masculina. Es el cromosoma Y, el cromosoma definidor de la masculinidad. Exceptuiando un pequeño segmento, el cromosoma Y no desempeña ningún papel en el promiscuo intercambio de ADN que se permiten otros cromososmas, esto significa que, al igual que el ADNmt, la parter no recombinable del cromosoma Y pasa intacta a cada generación y puede ser rastreado, siguiendo una linea ininterrumpida, hasta nuestro primer antepasado masculino.

Los cromosomas Y se utilizan desde hace menos tiempo que el ADNmt en la reconstrucción de árboles genéticos y existen problemas para estimar el alcance cronológico. Cuando se solucionen, el método YNR podría tener una resolución cronológica y geográfica mucho mayor que el ADNmt, tanto para el pasado reciente como para el remoto. Esto se debe sencillamente a que el YNR es mucho mayor que el ADNmt y en consecuencia tiene mayor viabilidad potencial.

Bueno, tanto este artículo, o, pasaje (de una parte de nosotros) como otro que llamé: Estamos señalados por muchos dones pero…¡El habla!, nos viene a confirmar que, la vida, no es sólo “la materia evolucionada”. ¡La Vida! es mucho más que todo eso y, seguramente, como nos dice el amigo Kike, sea una parte sustancial del Universo que, a través de su sabia Naturaleza, nos ha creado para poder contemplarse, como nos comentó Nelson que había dicho el sabio.

De todas las maneras y a pesar de tantas explicaciones… seguimos… ¡Sin saber lo que la vida es!

emilio silvera

Las cosas del Universo que tratamos de comprender

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro universo: los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contra), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

Las ondas gravitacionales ya han hablado y se han dejado capturar por LIGO pero, ¿que pasa con el esquivo gravitón? Acaso la fuerza de Gravedad es la única que no tiene su Bosón mensajero?

http://2.bp.blogspot.com/_w1kycNNBkOE/S_gaatwNuCI/AAAAAAAADNo/3MoIFAgTsDk/s1600/strange_spc_gravity_waves_02.jpg

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-tiempo que viaja a la velocidad de la luz transportada por los “gravitones”.

Resultado de imagen de Espuma cuántica

Si nos adentramos con un microscopio electrónico de barrido hasta lo más profundo de la materia, allí encontramos un mundo extraño, nos topamos con escenarios que nuestro sentido común rechazaría.

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transportan de este mundo material nuestro a otro fascinante donde residen las maravillas del universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal como lo conocemos, deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.

Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada
Imagen relacionada

Experimentos en el LHC que nos muestran la materia en su mínimo exponente (hasta el momento), se espera que cuando funcione a 100 TeV, quizás podamos llegar hasta las cuerdas vibrantes de esa misteriosa teoría.

Experimento sobre fluctuaciones del vacío

Experimento sobre fluctuaciones del vacío Crédito: Adaptado de C. RIEK ET AL., SCIENCE (2015)

“Gracias al principio de incertidumbre, el vacío bulle con pares de partículas-antipartículas que aparecen y desaparecen. Incluyen, entre muchos otros, los pares electrón-positrón y pares de fotones, que son sus propias antipartículas. Normalmente, esas partículas “virtuales” no pueden captarse directamente. Pero, como un fantasmal coro griego, ejercen sutiles influencias sobre el mundo “real”.”

Por ejemplo, los fotones virtuales que aparecen y desaparecen constantemente producen un campo eléctrico fluctuante.

        Diagrama de Feynman

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío; esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

Resultado de imagen de el vacío

En física, cuando hablamos de vacío, no nos referimos al del abismo. Es la ausencia de material, y, dicho vacío no existe, ni en el laboratorio lo hemos podido conseguir. En el espacio Interestelar

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor infinita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2 – 10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultraalto. No puedo dejar de referirme al vacío theta (vacío θ), que es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados. Esto significa que el vacío theta es análogo a una función de Bloch* en un cristal. Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido. El vacío theta es el punto de partida para comprender el estado de vacío de las teoría gauge fuertemente interaccionantes, como la cromodinámica cuántica.

                                              Ese otro “mundo” desconocido de las fluctuaciones de vacío

En astronomía, el vacío está referido a regiones del espacio con menos contenido de galaxias que el promedio, o ninguna galaxia. También solemos llamarlo vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son, a menudo (aunque no siempre), esféricas.

El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra a aproximadamente 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no sorprende a la comunidad de astrónomos y cosmólogos, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes. Claro que, según creo yo personalmente, ese vacío, finalmente, resultará que está demasiado lleno, hasta el punto de que su contenido nos manda mensajes que, aunque hemos captado, no sabemos descifrar. Cuando esté totalmente preparado para ello, os lo contaré; el mensaje permanece escondido fuera de nuestra vista.

La física cuántica tiene una cualidad espectral que destruye toda lógica. Una de sus más extrañas predicciones, que el vacío en realidad contiene una serie de partículas virtuales que entran y salen de la existencia, parece haber sido confirmada por un grupo de investigadores de la Universidad Tecnológica de Chalmers en Gotenburgo. De forma cuasidivina, este equipo ha logrado crear luz del vacío usando espejos en movimiento.

La física cuántica sostiene que existen estas partículas virtuales que desaparecen y reaparecen en la espuma cuántica, pero que pueden tener efectos tangibles. Por ejemplo: si dos espejos son colocados extremadamente cerca, los tipos de partículas virtuales, o fotones, que pueden existir entre ellos pueden estar limitados. Este límite significa que más fotones virtuales existen afuera de los espejos que entre ellos, creando una fuerza que junta las placas. Esto es lo que se conoce como ‘la fuerza de Casimir’, la cual en casos así es suficientemente fuerte para ser medida.

Resultado de imagen de Unidades de masa, longitud y Tiempo

Sabemos referirnos al producto o cociente de las unidades físicas básicas, elevadas a las potencias adecuadas, en una cantidad física derivada. Las cantidades físicas básicas de un sistema mecánico son habitualmente la masa (m), la longitud (l) y el tiempo (t). Utilizando estas dimensiones, la velocidad, que es una unidad física derivada, tendrá dimensiones l/t, y la aceleración tendrá dimensiones l/t2. Como la fuerza es el producto de una masa por una aceleración, la fuerza tiene dimensiones mlt-2. En electricidad, en unidades SI, la corriente, I, puede ser considerada como dimensionalmente independiente, y las dimensiones de las demás unidades eléctricas se pueden calcular a partir de las relaciones estándar. La carga, por ejemplo, se puede definir como el producto de la corriente por el tiempo; por tanto, tiene dimensión It. La diferencia de potencia está dad por la relación P = VI, donde P es la potencia. Como la potencia es la fuerza por la distancia entre el tiempo (mlt-2 × l × t-1 = ml2t-3), el voltaje V está dado por V = ml2t-3I-1. Así queda expresado lo que en física se entiende por dimensiones, referido al producto o cociente de las cantidades físicas básicas.

En la mecánica clásica la cantidad de acción, producto de energía por tiempo, puede expresarse de forma continua desde cero hasta infinito, pero la revolución que supuso el descubrimiento del llamado cuanto de acción fue, precisamente, que esta cantidad física sólo podía existir de forma estable en múltiplos enteros de esa mínima cantidad llamada h, o cuanto mínimo de acción de Planck .

Las consecuencias de la existencia del cuanto mínimo de acción fueron revolucionarios para la comprensión del vacío. Mientras la continuidad de la acción clásica suponía un vacío plano, estable y “realmente” vacío, la discontinuidad que supone el cuanto nos dibuja un vacío inestable, en continuo cambio y muy lejos de poder ser considerado plano en las distancias atómicas y menores. El vacío cuántico es de todo menos vacío, en él la energía nunca puede quedar estabilizada en valor cero, está fluctuando sobre ese valor, continuamente se están creando y aniquilando todo tipo de partículas, llamadas por eso virtuales, en las que el producto de su energía por el tiempo de su existencia efímera es menor que el cuanto de acción. Se llaman fluctuaciones cuánticas del vacío y son las responsables de que exista un campo que lo inunda todo llamado campo de punto cero.

Pero volvamos de nuevo a las fluctuaciones de vacío, que al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula.

Resultado de imagen de Ondas que fluctuan desde el vacío

Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio. El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo temporalmente de la energía fluctuacional tomada prestada de regiones “vecinas” del espacio, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones “vecinas”. Si hablamos de fluctuaciones electromagnéticas del vacío, las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la gravedad en el vacío, son gravitones virtuales.

De las llamadas fluctuaciones de vacío pueden surgir, partículas virtuales y quién sabe que cosas más… Hasta un nuevo Universo.

Estos son los misteriosos silbidos procedentes del espacio, grabados por la NASA

La NASA: “Aunque técnicamente el espacio es un vacío, este no está vacío ni es silencioso, afirma la agencia espacial estadounidense.”
“El espacio no está vacío ni es silencioso. Aunque técnicamente es un vacío, contiene partículas energéticas cargadas, gobernadas por campos magnéticos y eléctricos que pueden ser escuchadas. En regiones atadas con campos magnéticos, como el ambiente espacial que rodea nuestro planeta, las partículas son continuamente lanzadas hacia adelante y atrás por el movimiento de varias ondas electromagnéticas conocidas como ‘ondas de plasma’”

Imagen relacionada

Partículas efímeras que surgen del “vacío” producido por fluctuaciones

Claro que, en realidad, sabemos poco de esas regiones vecinas de las que tales fluctuaciones toman la energía. ¿Qué es lo que hay allí? ¿Está en esa región la tan buscada partícula de Higgs? Sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que los movimientos de degeneración claustrofóbicos son para los electrones. Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que uno trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible. Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de neutrones mantiene estable a la estrella de neutrones, que obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo la estrella.

No creo que esto sea el salto cuántico

De la misma forma, si tratamos de eliminar todas las oscilaciones electromagnéticas o gravitatorias de alguna región del espacio, nunca tendremos éxito. Las leyes de la mecánica cuántica insisten en que siempre quedarán algunas oscilaciones aleatorias impredecibles, es decir, algunas ondas electromagnéticas y gravitatorias aleatorias e impredecibles. Estas fluctuaciones del vacío no pueden ser frenadas eliminando su energía (aunque algunos estiman que, en promedio, no contienen energía en absoluto). Claro que, como antes decía, aún nadie ha podido medir de ninguna manera la cantidad real de energía que se escapa de ese supuesto “vacío”, como tampoco se ha medido la cantidad de fuerza gravitatoria que puede salir de ese mismo espacio “vacío”. Si la energía es masa y la masa produce gravedad, entonces ¿qué es lo que hay en ese mal llamado “espacio vacío”?

                                          No, el espacio no está vacío como alguna vez se pudo creer.

…el espacio no está vacío como creíamos, está lleno de una esencia viva que empezamos a entender. Está demostrado que nuestras experiencias internas influyen en el mundo a través del espacio. La nada no existe, si de “ella” surgió algo, es por había.

No podemos contestar de momento a esas preguntas, sin embargo, parece que no sería un disparate pensar en la existencia allí (en eso que llamamos vacío) de alguna clase de materia que, desde luego, al igual que la bariónica que sí podemos ver, genera energía y ondas gravitacionales que, de alguna manera que aún se nos oculta, escapa a nuestra vista y sólo podemos constatar sus efectos al medir las velocidades a las que se alejan las galaxias unas de otras: velocidad de expansión del universo, que no se corresponde en absoluto con la masa y la energía que podemos ver.

Resultado de imagen de El vacío que resulta estar lleno a rebosar

El vacío no existe, siempre hay. También resulta ser así en nuestras mentes. Sin embargo, en algunas hay más que en otras. No todos tenemos abundancia de ese ingrediente que llamamos capacidad intelectual

Estoy atando cabos sueltos, uniendo piezas y buscando algunas que están perdidas de tal manera que, por mucho que miremos, nunca podremos ver. El lugar de dichas piezas perdidas no está en nuestro horizonte y se esconde más allá de nuestra percepción sensorial. Se necesitará tiempo y evolución para que, nosotros, podamos “ver” esas dimensiones extra que, al parecer, hacen posible que todo alcance una simetría universal en la que, pacíficamente, convivan todas las fuerzas, todas las energías y, toda la materia.

Materia perdida

Se habla de la materia perdida. Situada a lo largo de la línea de observación de este AGN, a una distancia de alrededor de  millones de años luz de la Tierra, se encuentra una estructura conocida como Pared del Escultor. Esta estructura muy difusa se prolonga a lo largo de decenas de millones de años luz conteniendo en su interior miles de galaxias y también una reserva importante de gas difuso y caliente (WHIM) en el que podría hallarse la materia buscada.

Imagen relacionada

No dejamos de observar, seguimos buscando esas respuestas a preguntas planteadas que nadie ha sabido contestar…

Estamos en un momento crucial de la física, las matemáticas y la cosmología, y debemos, para poder continuar avanzando, tomar conceptos nuevos que, a partir de los que ahora manejamos, nos permitan traspasar los muros que nos están cerrando el paso para llegar a las supercuerdas, a la materia oscura o a una teoría cuántica de la gravedad, que también está implícita en la teoría M. Estamos anclados; necesitamos nuevas y audaces ideas que puedan romper las cadenas virtuales que atan nuestras mentes a ideas del pasado. En su momento, esas ideas eran perfectas y cumplieron su misión. Sin embargo, ahora no nos dejan continuar y debemos preparar nuestras mentes para evolucionar hacia nuevos conceptos y ahondar en aquellos que, aun estando ahí presentes, no somos capaces de utilizar, como por ejemplo el hiperespacio, de tan enorme importancia en el futuro de la Humanidad. Cuando sepamos “ver” dimensiones más altas, todo será mucho más sencillo y encontraremos las respuestas a los problemas que hoy no sabemos resolver.

emilio silvera

¿Cómo se desarrolló la Teoría de la Relatividad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

A ella se pudo llegar gracias al desarrollo de una serie de pensamientos que comienza por Faraday y Maxwell y asentados en el principio de que todo suceso físico debe atribuirse a acciones cercanas, o, dicho en términos más matemáticos, en ecuaciones a derivadas parciales. Maxwell consiguió expresarlo así para el caso de los fenómenos electromagnéticos en cuerpos inmóviles, desarrollando la idea del efecto magnético de la corriente de desplazamiento en el vacío y proponiendo la identidad entre los campos “electromotores” producidos por inducción y los campos electrostáticos.

Con esta reconocida imagen nos podemos hacer una idea del campo magnético

La ampliación de la electrodinámica al caso de los cuerpos en movimiento fue una tarea que quedó para los sucesores de Maxwell. H. Hertz intentó resolver el problema asignado al espacio vacío (éter) unas propiedades físicas totalmente similares a las de la materia ponderable; en particular, el éter, al igual que la materia debería poseer determinada velocidad en cada punto. La inducción electromagnética o magneto-eléctrica debía estar determinada por la velocidad de variación del flujo eléctrico, o magnético, como en los cuerpos en reposo, siempre que estas variaciones de velocidad se produjeran con respecto a elementos de la superficie que se movieran con el cuerpo. Sin embargo, la teoría de Hertz contradecía el experimento fundamental de Fizeau sobre la propagación de la luz a través de fluidos en movimiento. La ampliación más inmediata de la teoría de Maxwell a los cuerpos en movimiento era incompatible con el experimento.

Resultado de imagen de la mat3eria moviendose por el éter

                La física oculta del éter

En ese punto la salvación llegó de la mano de H. A. Lorentz. Siendo partidario incondicional de la teoría atomista de la materia, Lorentz no podía concebir esta última como un emplazamiento de campos electromagnéticos continuos. En consecuencia, concibió estos campos como condiciones o estados del éter, que se consideraba continuo. Lorentz se imaginaba el éter como algo que en esencia era independiente de la materia, tanto mecánica como físicamente. El éter no debía participar del movimiento de la materia y sólo debía mantener una interacción con ella en tanto que la materia se concebía como conductora de cargas eléctricas ligadas a ella.

Núcleo Atómico

Bien sabido es de todos que el átomo es un conglomerado de cargas eléctricas que, siendo positivas (protones) y negativas (electrones), al ser equivalentes se anulan las unas a las otras y se logra la armonía y estabilidad requerida para que, el universo pueda formar las moléculas y, éstas, se agrupan para conformar la materia.

Resultado de imagen de átomos, moléculas y materia

El gran avance metodológico de la teoría de Lorentz residía en el hecho de que, gracias a ella, toda la electrodinámica de los cuerpos en reposo y en movimiento se podía reducir a las ecuaciones del espacio vacío de Maxwell. Esta teoría no sólo era superior a la de Hertz desde un punto de vista metodológico, sino que, además, gracias a ella, H. A. Lorentz consiguió dar una explicación asombrosamente acertada de los hechos experimentales.

Sólo hay un punto de importancia fundamental en el que la teoría no resulta satisfactoria. Parece ser que daba preferencia a un sistema de coordenadas que se encontrara en un determinado estado de movimiento (un sistema de coordenadas que estaba en reposo con respecto al éter luminífero) frente a todos los demás sistemas de coordenadas que se encontraran en movimiento con relación a éste. En este punto parecía que la teoría estaba en contradicción frontal con la mecánica clásica, en la cual todos los sistemas inerciales (que tienen un movimiento uniforme unos con respecto a otros) son equivalentes como sistemas de coordenadas (principio especial de la relatividad). En este sentido, todos los experimentos realizados en el ámbito de la electrodinámica (en particular el experimento de Michelson) ponía de manifiesto la equivalencia de todos los sistemas inerciales, es decir, apoyaban el principio especial de la relatividad.

Resultado de imagen de El experimento de MIchelson-Morley

Experimento Michelson-Morley Reposo con el éter luminífero Interferómetro de Michelson y Morley en reposo respecto al éter luminífero

El movimiento del éter siempre fue un misterio que muchos quisieron resolver y, para ello, se hicieron experimentos de todo tipo. El de Michelson-Morley vino a dejar claro el tema y sirvió a Einstein para descartar el éter de su teoría. Sin embargo, pasado el tiempo, ahora mismo, se está hablando de nuevo de la existencia de una especie de “éter” que impregna todo el espacio.

Así las cosas, la teoría especial de la relatividad surgió precisamente gracias a esta dificultad inicial, que en sí misma resultaba insoportable. La teoría nació como respuesta a la pregunta: ¿Realmente existe una contradicción entre el principio especial de la relatividad y las ecuaciones de campo de Maxwell para el espacio vacío? Aparentemente la respuesta tenía que ser afirmativa. Las mencionadas ecuaciones son va´lidas para un sistema de coordenadas K y se introduce un nuevo sistema de coordenadas K1 mediante las ecuaciones de transformación, aparentemente fáciles de justificar (aquí las obviaré) y que nos llevan a la transformación de Galileo y, entonces, las ecuaciones de campo de Maxwell ya no se cumplen para esas nuevas coordenadas.

 

Las coordenadas han sido muy útiles y de fructífero rendimiento

Pero siguiendo con en tema tenemos que decir que, muchas veces, las apariencias engañan. Mediante un análisis más profundo del significado físico del espacio y del tiempo se puede ver que la transformación de Galileo se basa en suposiciones arbitrarias, especialmente en la hipótesis de que la afirmación de la simultaneidad tiene un sentido independiente del estado de movimiento que tenga el sistema de coordenadas utilizado. Queda claro que las ecuaciones de campo en el vacío satisfacían el principio especial de la relatividad cuando se utilizaban las ecuaciones de la Transformación de Lorentz.

Es estas ecuaciones, x, y, z son las coordenadas medidas con una vara de medir que se encuentra en reposo con respecto al sistema de coordenadas (y aunque no las he querido reflejar aquí para no enredar), y en ellas, t representa el tiempo medido con un reloj que se encuentra en reposo y está debidamente ajustado.

 

Lo grande y lo pequeño: Eso es la Teoría

Ahora bien, para que pueda cumplirse el principio especial de la relatividad, es necesario que todas las ecuaciones de la física conserven invariable su forma al pasar de un sistema inercial a otro, cuando utilizamos para este cambio la Transformación de Lorentz. En lenguaje matemático, diremos que todos los sistemas de ecuaciones que expresan leyes físicas deben ser covariantes con respecto a la Transformación de Lorentz. Por consiguiente, bajo un punto de vista metodológico, el principio especial de la relatividad es comparable al principio de Carnot, que afirma la imposibilidad del perpetuum mobile (movimiento perpetuo o continuo) de segunda especie, ya que, al igual que este último, establece una condición general que deben cumplir todas las leyes naturales.

Resultado de imagen de La transformación de Lorentz

De manera que la transformación de Einstein, que es la transformación de Lorentz queda como

Podría dejarlo aquí, pero vamos a complicarlo un poco. Introducimos una nueva coordenada espacial a partir de ct, el producto de una velocidad por el tiempo es el espacio y utilizamos la siguiente notación:

Con lo que la transformación de Lorentz queda de la forma más simétrica.

Resultado de imagen de La condición de covariancia de Lorentz vista por MInkouski

“El origen en el diagrama espacio-tiempo (ct, r) = (0, 0) representa el “ahora”. En la región de color amarillo que representa el “futuro” que le espera al observador predomina el componente temporal sobre el componente espacial, con lo cual s² siempre es mayor que cero (positivo) y por lo tanto es una región de intervalos tipo temporal. En la región de color ciano que representa el “pasado” que recorrió el observador también predomina el componente temporal sobre el componente espacial, con lo cual s² siempre es mayor que cero (positivo) y por lo tanto también es una región de intervalos tipo temporal (timelike). En las líneas que delimitan al cono de luz la componente temporal es igual a la componente espacial con lo cual s² = 0, y es aquí en donde tenemos a los intervalos tipo luminoso que involucran rayos de luz. Y fuera de todo esto tenemos a los intervalos en donde el componente espacial es mayor que el componente temporal con lo cual s² es menor que cero (negativo) siendo por lo tanto la región de intervalos tipo espacial.”

Para esta condición de covariancia encontró H. Minkowski una espresión especialmente bella y sugerente que revela un parentesco formal entre la geometría euclidea tridimensional y el continuo espacio-tiempo de la física.

Seguidamente tendría que exponer aquí un esquema con ecuaciones de la geometría euclidea tridimensional y otro (para comparar) de la teoría especial de la relatividad. Sin embargo, no queriendo complejidades que desvíen al lector de la historia esencial, diré que de ellas se deduce que el tiempo es equivalente a las coordenadas espaciales (dejando a un lado sus relaciones con la realidad), no por lo que respecta a su significado físico, sino por el papel que desempeña en las ecuaciones de la física. desde este punto de vista, la física es en cierto modo una geometría euclidea de cuatro dimensiones o, mejor dicho, un determinado tipo de estática en un continuo euclideo cuatridimensional.

http://smolinacalvo.files.wordpress.com/2011/04/250px-world_line-es-svg1.png

Cono de luz en un espacio-tiempo de Minkowski

El desarrollo de la teoría especial de la relatividad se desarrolló en dos pasos principales: la adaptación de la métrica espacio-temporal a la electrodinámica de Maxwell y una adaptación del resto de la físca a esa métrica espacio-temporal modificada. El primero de estos procesos de adaptación profujo la relativización de la simultaneidad, la influencia del mocimiento en varas de medir y relojes, una modificación de la cinemática y, en particular, un nuevo teorema de adiciín de las velocidades.

El segundo proceso de adaptación dio lugar a una modificación de las leyes newtonianas del movimiento para grandes velocidades, así como una aclaración sobre la naturaleza de la masa inercial cuya importancia es fundamental. Se descubrió que la inercia no es una propiedad fundamental de la materia, ni una magnitud irreducible, sino una propiedad de la energía. Si a un cuerpo se le suministra una energía E, su masa inercial aumenta en una cantidad E/c2, donde c es la velocidad de la luz en el vacío; a la inversa, un cuerpo de masa m debe ser considerado como una reserva de energía de magnitud mc2.

Resultado de imagen de La Gravedad de Einstein en el Espacio

Cuando se intentó establecer el vínculo entre las teorías de la gravitación y la teoría especial de la relatividad, no tardó en verse que esto no era posible de una manera natural. A propósito de ello a Einstein de le ocurrió que la fuerza de la gravedad posee una propiedad fundamental que la distingue de la fuerza electromagnética: todos los cuerpos caen en un campo gravitatorio con la misma aceleración, o -formulando lo mismo de otra manera- la masa inercial y gravitatoria de un cuerpo son numéricamente iguales.

 

                                  La vinculación gravitatoria de los cuerpos es bien patente y, en la Tierra y la Luna, tenemos la mejor prueba de ello.

Esta igualdad numérica de la masa inercial y gravitatoria nos hace sospechar que ambas sean esencialmente idénticas; pero ¿pueden las masas inerciales y gravitatorias ser realmente iguales? Esta pregunta nos lleva directamente a la teoría general de la relatividad. ¿No sería posible considerar que la Tierra no realiza un movimiento de rotación, si concibo la fuerza centrífuga, que actúa sobre los cuerpos que están en reposo con respecto a la Tierra, como un campo gravitatorio “real” (o como una parte del campo gravitatorio)? Si esta idea es viable, entonces está realmente demostrado que las masas inercial y gravitatoria son idénticas, ya que el mismo efecto que se considera como inercia desde el punto de vista de un sistema que “no toma parte en la rotación”, puede interpretarse como gravedad si se observa desde un sistema que comparte la rotación. Según Newton, esta interpretación es imposible, porque no se puede considerar según la ley de Newton que el campo centrífugo esté generado por masas, y porque un campo “real” del tipo de “campo de Coriolis” no está contemplado en la teoría newtoniana.

Pero, ¿sería posible sustituir la ley de campos de Newton por alguna otra compatible con el campo que puede existir con respecto a un sistema de coordenadas “en rotación”? El convencimiento de que las masas inercial y gravitatoria son idénticas inspiró a Einstein una confianza incondicional en la validez de esta interpretación y, una idea le llenó de esperanza: conocemos los campos “aparentes” que son válidos con respecto a cualquier sistema de coordenadas que se mueve arbitrariamente con relación a un sistema inercial; utilizando los campos (especiales) se podrá estudiar la ley que cunplen en general los campos gravitatorios. para ello habrá que tener en cuanta que, como generadoras de estos campos, serán determinantes las masas ponderables, o bien lo será la densidad de energía (una magnitud que posee el carácter transformador de un tensor), según el resultado fundamental de la teoría especial de la relatividad.

Resultado de imagen de Tensor métrico de Riemann

Tensor métrico de Riemann

A partir de aquí, tendríamos que entrar en el Tensor métrico de Riemann pero, ¡el tiempo! como pasa siempre, me lo impide así que, dejaremos para mejor ocasión el continuar con el tema que, como todo lo que concierne a Einstein, termina siendo fascinante porque, dentro de su complejidad, subyace una sencillez de ideas que, finalmente, terminan por conquistarnos.

emilio silvera