domingo, 26 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nosotros y nuestra ignorancia

Autor por Emilio Silvera    ~    Archivo Clasificado en Divagando    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un remanente estelar es lo que queda cuando explosiona como Supernova una estrella masiva y, sus filamentos de plasma, forman imágenes imprevisibles que están conformadas por todos los elementos de la Tabla Periódica.

Sí, hay cosas malas y buenas  pero, todas deben ser conocidas para poder, en el primer caso aprovecharlas y en el segundo prevenirlas.

Pero demos un salto en el tiempo y viajémos hasta los albores del siglo XX cuando se hacía cada vez más ervidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de eneromes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más, sobre los átomos y las estrellas.

Lo cierto es que la curiosidad del Ser Humano fue siempre la impulsora de que pudiéramos ir avanzando en el saber del mundo, de la Naturaleza, del Universo mismo. Siempre hemos buscado el cómo el cuando y el por qué de las cosas que podíanmos observar a nuestro alrededor sin comprenderlas. Ya desde los tiempos primitivos, nuestros ancestros, de alguna manera rústica, hicieron y dieron los primeros pasos en Ciencia, cuando llegaron a manejar el fuego o construyeron la rueda.

Cuando nos ponemos a hablar de Ciencia en relación a su historia y los orígenes de la misma, la mayoría de las veces nos perdemos por vericuetos que nos llevan hasta callejones sin salida situados muy lejos en el tiempo y que no podemos ver con claridad. Así las cosas, nos vemos obligados a ser menos ambiciosos y mirar más cerca poder obtener algunos resultados más fiables de lo que pudo pasar en esos pueblos del mundo que, como Sumer, India, Egipto, China y más tarde Grecia, nos dejaron una buena colección de señales del saber que pudieron llegar hasta nuestros días. De todo eso hemos hablado aquí en diversos  trabajos presentados.

 

El mundo que nos rodea parece ser un lugar complicado. Aunque hay algunas verdades sencillas que parecen eternas (las manzanas caen siempre hacia el suelo y no hacia el cielo; el Sol se levanta por el este, nunca por el oeste), nuestras vidas, a pesar de las modernas tecnologías, están todavía, con demasiada frecuencia, a merced de los complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico tiene todavía más de arte adivinatorio que de ciencia; los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatorias; las fluctuaciones de la economía siguen ocasionando la bancarrota de muchos y la fortuna de unos pocos.

 
“Una inteligencia que conociese, en un momento determinado, todas las fuerzas que operan en la Naturaleza, así como las posiciones momentáneas de todas las cosas que constituyen el universo, sería capaz de condensar en una sola fórmula los movimientos de los cuerpos más grandes del mundo y los de los átomos más ligeros, siempre que su intelecto sea bastante  poderoso para someter a análisis todos los datos; para él nada sería incierto, el pasado y el futuro estarían presentes ante sus ojos.”

 

 

 

¿El destino final? Seguro no podemos estar de nada pero… ¡La muerte térmica, parece ser el final más probable! Lo cierto es que, ¡tampoco sabemos cuál será el final del Universo! Muchas son las versiones y, la muerte térmica… ¡Prevalece sobre todas las demás!

 

“Dentro de miles de millones de años a partir de la “muerte del Sol, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la  evolución solar es inexorable.  Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

 

 

 

 Lo que entonces pueda quedar…¿Qué importa ahora? ¿Será un comienzo?

Así se expresaba Carl Sagan al pensar en el futuro de nuestra Tierra cuando el Sol, agotado su combustible nuclear, llegara a su final.

Es bueno que el ser humano sepa el por qué de las cosas, que se interese por lo que ocurre a su alrededor, por su planeta que le acoge, por el lugar que ocupamos en el universo, por cómo empezó todo, cómo terminará y qué será del futuro de nuestra civilización y de la Humanidad en este universo que, como todo, algún día lejano del futuro el tiempo inexorable, llevará al final de sus días.

El fin del universo es irreversible, de ello hemos dejado amplio testimonio a lo largo de muchos trabajos, su final estará determinado por la Densidad Crítica, la cantidad de materia que contenga nuestro universo que será la que lo clasifique como universo plano, universo abierto, o universo cerrado. En uno de estos modelos de universos, el final será distinto…,  claro que para nosotros, la Humanidad, será indiferente el  modelo que pueda resultar; en ninguno de ellos podríamos sobrevivir cuando llegara ese momento límite del fin. La congelación y el frío del cero absoluto o la calcinación del fuego final a miles de millones de grados, acabarán con nosotros, si para entonces, estuviéramos aún por aqui (que no es probable).

 

Para evitar eso se está trabajando hace décadas. Se buscan formas de superar dificultades que nos hacen presas fáciles de los elementos. La naturaleza indomable, sus leyes y sus fuerzas, hoy por hoy son barreras insuperables, para poder hacerlo, necesitamos saber.

El saber nos dará soluciones para conseguir más energías, viajar más rápido y con menos riesgos, vivir mejor y más tiempo, superar barreras hoy impensables como las del límite de Planck, la barrera de la luz (para poder viajar a las estrellas) y el saber también posibilitará, algún día, que nuestras generaciones futuras puedan colonizar otros mundos en sistemas solares de estrellas lejanas, viajar a otras galaxias, viajar a otro tiempo y, finalmente, viajar para escapar de nuestro destino, a otros universos.

http://farm3.static.flickr.com/2442/4168315983_aca8e27301.jpg

                          ¿Cómo serían esos otros universos?

Sí, lo sé, algunos de los que esto puedan leer pensarán que estoy fantaseando, pero la verdad es que no he hablado con más seriedad en mi vida, ya que, si no fuera como estoy diciendo, entonces, ¿ qué tantas calamidades, desvelos y sufrimientos? Creo que la Humanidad tiene que cumplir su destino, primero en las estrellas lejanas, en otros mundos dentro y fuera de nuestra galaxia, y después…, ¿quién sabe? Claro que, a todo esto, debemos contar con eso que denominamos TIEMPO.

Nos referimos al tiempo en múltiples ocasiones y para distintas situaciones y motivos, como al referirnos a la duración de las cosas sujetas a cambios, época durante la cual ocurrieron unos hechos, edad de los objetos, estación del año, el período de vida de alguien desde que crece hasta que deja de existir, ocasión o coyuntura de hacer algo, cada uno de los actos sucesivos en que dividimos la ejecución de un , y otros mil temas que requieren la referencia temporal.

Dicen que va unido al espacio. Pero, también que es relativo. Pero, también que es una abstracción y que no existe en realidad. Pero, todos queremos disponer de él. Pero, vemos los efectos de su transcurrir. Pero, sin tiempo no podemos hacer nada ni tener esperanzas de futuro. ¿Qué será, en realidad el Tiempo?

En física, el tiempo es la cuarta coordenada espacial en el continuo espacio-tiempo. En gramática es la categoría que indica el momento relativo en que se realiza o sucede la acción del verbo: pretérito, lo que ha sucedido; presente, lo que sucede en ese momento y futuro, lo que aún no ha sucedido. Nos referimos al tiempo meteorológico para explicar el estado del clima (hace mal tiempo; qué tiempo más bueno hace hoy, etc). En mecánica, el tiempo puede estar referido a las fases de un motor. También están los tiempos referidos a cada una de las partes de igual duración en que se divide el compás musical. En astronomía nos referimos al tiempo de aberración en relación al recorrido de un planeta hasta llegar a un observador terrestre. El tiempo está también en la de cálculo horario que empleamos en nuestra vida cotidiana para controlar nuestros actos y evitar el caos (¿qué haríamos sin horario de trenes, de comercio, bancos, oficinas, etc?).

            En ese espacio temporal que se nos da, alguna huella habremos dekado por el camino andado

El tiempo es tan importante en nuestras vidas que está presente siempre, de mil formas diferentes, desde que nacemos (cuando comienza “nuestro tiempo”), hasta que morimos (cuando “nuestro tiempo ha terminado”). El tiempo siempre está. Es algo que, simplemente, está ahí.

Sin embargo, a pesar de lo importante que es el TIEMPO, no he podido leer nunca una explicación satisfactoria sobre el mismo; una explicación que lo defina con sencillez y claridad sin restarle la importancia que tiene para todos y lo que en realidad es dentro del contexto – no ya de nuestras vidas, simples e insignificantes puntos en la inmensidad del universo – de la naturaleza cósmica de la que formamos .

Santo Tomás, cuando hablaba del Tiempo, decía cosas como éstas:

¿Que explique que es el Tiempo?

“Si nadie me lo pregunta, lo sé.
Pero si quiero explicárselo al que me lo pregunta, no lo sé.
Lo que sí digo sin vacilación es que sé que si nada pasase no habría tiempo pasado,
y si nada sucediese no habría tiempo futuro,
y si nada existiese no habría tiempo presente.
Pero aquellos dos tiempos,pasado y futuro,
¿cómo pueden ser, si el pasado ya no es él y el futuro todavía no es?
Y en cuanto al presente,
si fuese siempre presente y no pasase a ser, pasado
ya no sería tiempo, sino eternidad.
Si, pues, el presente para ser tiempo es necesario que pase a ser pasado,
¿cómo decimos que existe este, cuya causa o razón de ser está en dejar de ser,
de tal modo que no podemos decir con verdad que existe el tiempo en cuanto tiende a no ser?”
Lo cierto es que se nos escurre de entre los dedos y, cuando venimos a darnos cuenta… ¡Se esfumó!

Como nos ocurre con tantas otras cosas y conceptos, debemos saber, de una vez por todas qué es, en realidad el Tiempo. Creo que cuando sepamos comprender lo que el Tiempo es, la Humanidad habrá dado un paso tan importante en su caminar por el Mundo que, a partir de ese momento, lo podremos “ver” todo de otra manera, con otra perspectiva más amplia y que nos permitirá “ver” más lejos en la comprensión del Universo Universo mismo.

¡Saber lo que es el Tiempo! ¡Un dolor de cabeza!

emilio silvera

Desde el pasado pero, ¡siempre hacia el futuro!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ahora todos hablamos del LHC. Sin embargo, la historia de los aceleradores no comenzó con éste moderno y complejo conglomerado de sofisticadas estructuras que hacen posible que visitemos lugares muy lejanos en el corazón de la materia. Tendríamos que recordar al acelerador lineal también llamado LINAC (linear accelerator) es un tipo de acelerador que le proporciona a la partícula subatómica cargada pequeños incrementos de energía cuando pasa a través de una secuencia de campos eléctricos alternos.

Mientras que el generador de Van de Graaff proporciona energía a la partícula en una sola etapa, el acelerador lineal y el ciclotrón proporcionan energía a la partícula en pequeñas cantidades que se van sumando. El acelerador lineal, fue propuesto en 1924 por el físico sueco Gustaf Ising. El ingeniero noruego Rolf Wideröe construyó la primera máquina de esta clase, que aceleraba iones de potasio hasta una energía de 50.000 eV.

 

 

 

 

La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, SgrA) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros  supermasivos.

 

Veámos que nos cuenta: “Desde el pasado pero, ¡siempre hacia el futuro!”

[IMG]

                      Imagem cedida por Diamond Light Source

Acelerador de partículas construido en las instalaciones del Diamond Ligth Source en Oxfordshire (Inglaterra). Llamado la Fuente luminosa de diamante, el Diamond synchrotron comenzó a funcionar en enero de 2007. La luz que puede generar este artefacto es 100 mil millones de veces más brillante que un rayo X estándar médico.

Un acelerador de partículas (como todos sabemos) es, a grandes rasgos, una máquina que mediante campos electromagnéticos acelera partículas hasta que alcanzan velocidades inimaginables. Luego, por ejemplo, hacen chocar estas partículas y así se consigue saber de qué está formada la materia en sus partes más diminutas (mucho más diminutas que un átomo). Eso es lo que hace el LHC.

Sin embargo, en el caso de este acelerador, los científicos esperaban usar la luz del Diamond synchrotron para “leer” los textos antiguos que han sufrido el daño significativo. Porque los potentes rayos Xpermitirán hacerlo sin ni siquiera abrir el libro. El synchrotron emite un rayo X tan poderoso que, al incidir en una voluta, permite producir una imagen de 3-D del texto.

La técnica ya había sido aplicada satisfactoriamente en textos escritos con la tinta de hierro, que los escribanos comenzaron a usar en el siglo XII. Algunas de las tintas hechas con extractos vegetales y sales de hierro utilizadas en el Siglo XII deterioran el tipo de pergamino utilizado, imposibilitando la lectura de documentos valiosos. Simplemente he querido incluir esta introducción para que os hagais una idea de hasta donde puede llegar nuestro ingenio.

Resultado de imagen de Ilustraciones de nano robots

                                         (ilustración de un nano robot)

Si hablamos de nuevos inventos en los campos más diversos, nos podríamos sorprender de lo que se ha conseguido en los últimos años que, desde  una “mano robótica” capaz de realizar toda clase de movimientos, “El sexto sentido”, una interfaz gestual portable que permite la interacción entre los gestos y los movimientos naturales del cuerpo humano con una computadora,  o, un Implantes de retina, que devuelve la visión a pacientes con degeneración macular y ceguera mediante implantes microelectrónicos. Entre los últimos inventos dedestaca una variedad de plástico hecha con orina de cerdo y lentes de contacto biónicos. Se inventa un proceso capaz de cultivar parte de un corazón humano a partir de células madre, una máquina que puede imprimir una novela completa de 300 páginas en tan solo 3 minutos y por un costo ínfimo, una batería que funciona con cualquier solución azucarada y enzimas de digestión de glucosa capaz de extraer electrones que crean electricidad…

Imagen relacionada

Las nuevas tecnologías y los inventos que se están produciendo en el diglo XXI, harían abrir la boca por el asombro a los filósofos naturalistas del pasado que trataban de profundizar en el conocimiento de la Naturaleza. Ellos fueron los que pusieron las primeras piedras del Edificio que hoy, llamamos Ciencia.

Corazones e Hígados artificiales, el guante de braille para ciegos, o, yendo más allá…

Resultado de imagen de El diente telefónico

Un “Diente telefónico”. Se trata de un minúsculo implante que se coloca en el diente molar y que mediante un complejo sistema de señales y vibraciones permite recibir llamadas telefónicas. Tejido artificial nanotecnológico, Parche hormonal anticonceptivo, o, esa invención que hace posible que con una pequeña gota nos permite descubrir si en una bebida se ha vertido alguna de las llamadas “drogas del depredador” como las GHB o la Ketamina. Estas drogas suelen utilizarse por violadores y secuestradores pues facilitan dicho crimen al desinhibir a la víctima. El “Motor a nanoescala”, lo suficientemente pequeño como para viajar en la espalda de un virus. Un dispositivo que administra medicamentos a través de ondas sonoras que sustituyen las inyecciones, siendo igual de efectivas. Plástico inteligente capaz de modificar su estructura ante la exposición de determinadas longitudes de onda. Un dispositivo móvil creado por Aqua Sciences que permite beber agua del aire. ¿Os imaginais lo que supondrá eso en la travesía de un desierto? INSCENTINEL inventa un sistema de entrenamiento para que abejas sean capaces de detectar bombas y explosivos.

Como se descubrió la penicilina

         Las cosas no llegaron por arte de magia… ¡muchas ideas hicieron falta!

Ahora miramos a nuestro alrededor y todo lo que vemos que ocurre nos parece lo normal, que las cosas son así. Sin embargo, habría que pensar -por ejemplo, en el ámbito de la física de partículas- que, el diluvio de estructuras subnucleares que desencadenó “el acelerador”  de partículas, fue tan sorprende como los objetos celestes que descubrió el telescopio de Galileo. Lo mismo que pasó con la revolución galileana, con la venida de los aceleradores de partículas, la Humanidad adquirió unos conocimientos nuevos e insospechados acerca de cómo era el mundo, la naturaleza de la materia.

Que en este caso de los aceleradores se refería al “espacio interior” en lugar de al “espacio exterior” no los hacía menos profundos ni menos importantes. El descubrimiento de los microbios y del universo biológico invisible por Pasteur fue un descubrimiento similar y, ya puestos, haremos notar que pocos se acuerdan ya de Demócrito, aquel filósofo sontiente que, tomó prestado de los antiguos hindúes, la idea del á-tomo, la expresión “más pequeña de la materia” que era “indivisible”.

Ahora sabemos que Demócrito estaba equivocado y que el átomo, sí se puede dividir. Sin embargo, él señaló un camino y, junto a Empédocles, el que hablaba de “elementos” como agua, aire, fuego y tierra, para significar que eran los componentes, en la debida proporción de todo lo que existía…, junto a otros muchos, nos han traído hasta aquí. Así que, los inventos que antes se mencionaban, no han llegado porque sí, ha sido un largo camino, mucha curiosidad y mucho trabajo y, no lo olvidemos: ¡Observar, Imaginar y Experimentar!

Nos dimos cuenta y estaba claro que la búsqueda de la menor de las partículas requería que se expandiese la capacidad del ojo humano: primero lupas, después microscopios y, finalmente… ¡Aceleradores! que, utilizando energías inimaginables ( 14 TeV), nos llevaría hasta las entrañas de la materia que tratamos de conocer.

Todos estos experimentos en los aceleradores han posibilitado muchos de los avances que hoy día conocemos en los distintos campos del saber humano. Generalmente, cuando se habla de aceleradores de partículas, todos piensan en el Bosón de Higgs y cosas por el estilo. Sin embargo, las realidades prácticas de dichos ingenios van mucho más allá.

CERN

“La “gran ciencia” (big science) genera tecnología, tecnología punta, genera industria, mucha industria, genera riqueza. Los grandes aceleradores de partículas, como el LHC del CERN, son ejemplos perfectos de ello. La tecnología de aceleradores de partículas ha permitido desarrollar dispositivos de implantación iónica que se utilizan para la fabricación de mejores semiconductores, para la fabricación prótesis de rodilla más duraderas, para la fabricación de neumáticos menos contaminantes, para el desarrollo de nuevas terapias contra el cáncer. Esto último gracias a que lo último de lo último en superimanes superconductores está en los grandes aceleradores. Esta tecnología ha permitido desarrollar y permitirá mejorar los potentes imanes necesarios en el diagnóstico clínico (como en resonancia magnética nuclear) y para terapias contra el cáncer basadas en haces de protones. Nos lo cuenta Elizabeth Clements, en “Particle physics benefits: Adding it up,” Symmetry, dec. 2008″ (Francis (th)E mule Science’s News).

Beneficios de la investigación básica en Física de Partículas: La tecnología desarrollada en los aceleradores de partículas tiene beneficios indirectos para la Medicina, la Informática, la industria o el medio ambiente. Los imanes superconductores que se usan para acelerar las partículas han sido fundamentales para desarrollar técnicas de diagnóstico por imagen como la resonancia magnética. Los detectores usados para identificar las partículas son la base de los PET, la tomografía por emisión de positrones (antipartícula del electrón). Y muchos hospitales utilizan haces de partículas como terapia contra el cáncer.

 

Describe la propiedad de un núcleo atómico para girar sobre su eje como un trompo, transformándolo en un pequeño imán. Los núcleos atómicos de hidrógeno, …  La imagenología es la rama de la medicina que trata del diagnóstico morfológico empleando diferentes modalidades de visualización del cuerpo humano basado en imágenes obtenidas con radiaciones ionizantes u otras fuentes de energía,  así como procedimientos diagnósticos y terapéuticos. Los equipos de imagenología requieren instalaciones especiales, como obra civil, instalación eléctrica, jaulas de Faraday, clima controlado, entre otras para llegar en forma rápida y segura a la detección de muchas enfermedades.

 

Con velocidades 10.000 veces mayor que una conexión típica, “The Grid” podrá enviar un catálogo completo de información desde Gran Bretaña a Japón en menos de 2 segundos. Esta red, creada en el centro de física de partículas CERN, puede proveer el poder necesario para transmitir imágenes holográficas; permitir juegos en línea con cientos de miles de personas, y ofrecer una telefonía de alta definición en video al precio de una llamada local.

Resultado de imagen de la World Wide Web (WWW)

Resultado de imagen de la World Wide Web (WWW)

Así, la World Wide Web (WWW), el ‘lenguaje’ en el que se basa Internet, fue creado en el CERN para compartir información entre científicos ubicados alrededor del mundo, y las grandes cantidades de datos que se producen motivan el desarrollo de una red de computación global distribuida llamada GRID. Los haces de partículas producidos en aceleradores tipo sincrotrón o las fuentes de espalación de neutrones, instrumentos creados para comprobar la naturaleza de la materia, tienen aplicaciones industriales en la determinación de las propiedades de nuevos materiales, así como para caracterizar estructuras biológicas o nuevos fármacos. Otras aplicaciones de la Física de Partículas son la fabricación de paneles solares, esterilización de recipientes para alimentos o reutilización de residuos nucleares, entre otros muchos campos.

Tambien en el campo de la Astronomía, el LHC, nos puede ayudar a comprender cosas que ignoramos. Nos henmos preguntado sobre la existencia de estrellas de Quarks-Gluones, y, sobre el tema, algo nos ha dicho ya el Acelerador Europeo de Partículas que trata de llegar hasta “la materia oscura” y algunos otros enigmas que nos traen de cabeza.

No es extraño encontrarnos una mañana al echar una mirada a la prensa del día, con noticias como éstas:

Colisión de iones pesados registrada por el experimento ALICE. (Imagen: CERN.)

El acelerador europeo ha obtenido plasma de quarks-gluones, el primer estado de la materia tras el Big Bang.

“No todo son bosones de Higgs en las instalaciones del CERN. Aún hay muchas preguntas sobre el universo y sus partículas que se pueden responder a base de colisiones de alta energía. Y en eso, elLHC es el mejor. Un grupo de investigadores del consorcio europeo ha realizado nuevas mediciones de la que creen que es el primer tipo de materia que hubo durante los instantes iniciales del universo. El plasma de quarks-gluones.

Los quarks y los gluones son, respectivamente, los ladrillos y el cemento de la materia ordinaria. Durante los primeros momentos tras el Big Bang, sin embargo, no estaban unidos constituyendo partículas —como protones o neutrones— sino que se movían libremente en estado de plasma. A base de colisionar iones de plomo —que es un átomo muy pesado— a velocidades cercanas a las de la luz, el LHC pudo recrear durante pequeños lapsos de tiempo las que se creen fueron las condiciones de los primeros momentos del universo.

El plasma de quarks-gluones es extremo y efímero. Por eso los investigadores han tenido que analizar los resultados de más de mil millones de colisiones para obtener resultados significativos.”

Evento de colisión de 7 TeV visto por el detector LHCb. El experimento del LHCb en el LHC estará bien ubicado para explorar el misterio de la antimateria. Crédito: LHC, CERN. Ya sabéis que, durante muchos años, la ausencia de antimateria en el Universo ha atormentado a los físicos de partículas y a los cosmólogos: mientras que el Big Bang debería haber creado cantidades iguales de materia y antimateria, no observamos ninguna antimateria primordial hoy en día. ¿Dónde ha ido? Los experimentos del LHC tienen el potencial de dar a conocer los procesos naturales que podrían ser la clave para resolver esta paradoja.

Cada vez que la materia es creada a partir de energía pura, se genera la misma cantidad de partículas y antipartículas. Por el contrario, cuando la materia y la antimateria se encuentran, se aniquilan mutuamente y producen luz. La antimateria se produce habitualmente cuando los rayos cósmicos chocan contra la atmósfera de la Tierra, y la aniquilación de materia y antimateria se observa durante los experimentos de física en los aceleradores de partículas.

Equipos de físicos en todo el mundo siguen analizando datos. Aquellas primeras colisiones de protones a la alta energía prevista de 7 Teraelectronvoltios (TeV), una potencia jamás alcanzada en ningún acelerador antes, nos puede traer noticias largamente esperadas y desvelar misterios, contestar a preguntas planteadas y, en definitiva, decirnos cómo es la Naturaleza allí, donde el ojo humano no puede llegar pero, si la inteligencia.

Lo cierto es que, todos tenemos que convenir en el hecho cierto de que, el LHC es el mayor experimento físico de la historia de la Ciencia y que, de seguro, nos dará la oportunidad de comprender muchas cuestiones que antes se nos aparecían oscuras e indistinguibles entre la bruma de esa lejanía infinitesimal de la cuántica. Ahora, tenemos una herramienta capaz de llevarnos hasta aquellos primeros momentos en los que se construyó la historia del universo y, si podemos, de esta manera “estar allí”, veremos, con nuestros propios ojos lo que pasó y por qué pasó de esa manera.

Toda esta larga exposición de temas, de alguna manerta conectados, viene al caso para dejar claro que, aquellos detractores del LHC, no llevaban la razón y, sus protestas no tenían un contenido científico. El Acelerador de Partículas que llamamos abreviadamente LHC, nos ha dado y nos seguirá dando, muchos beneficios para toda la Humanidad.

emilio silvera