martes, 21 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Física? ¡Una maravilla! Nos dice cómo funciona la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Libro Partículas, Gerard ´t Hooft,Resultado de imagen de Libro Partículas, Gerard ´t Hooft,

En su Libro Partículas, Gerard ´t Hofft, Premio Nobel de Física, nos cuenta:
“En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).”

Cuando llegamos a los seres unicelulares, se ve que ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala. Tranquilamente se pueden mover y desplazar por encima de una superficie acuática. Los pluricelulares no pueden hacer tal cosa.

Resultado de imagen de La tensión superficial

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.

La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.

El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este de Van der Waals.

Los tamaños de los seres uniceculares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.

 

Hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo.

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Radiación de Cuerpo Negro

Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su , el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862.

La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro. Todo cuerpo emite energía en de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza, esto lo veremos más adelante.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Resultado de imagen de LOS ELECTRONES COMO UNA NUBE Y UNA ONDAResultado de imagen de cOMPORTAMIENTO DE LOS ELECTRONES COMO ONDA O COMO NUBE

Pero en los electrones todo es diferente. Su comportamiento parece estar envuelto en el misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de tal que con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

Si la mecánica cuántica tiene cosas extrañas y el espín es una de ellas. Y si uno piensa que la intuición le ayudará a comprender todo esto, pues no lo hará, o es poco probable que lo haga. Las partículas tienen un espín fundamental. Al igual que la carga eléctrica o la masa, el espín ayuda a definir que de partícula es cada una.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

La posición y el momento de una partícula nunca lo podremos saber con precisión ilimitada.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planckh, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

La mecánica cuántica es muy extraña a nuestro “sentido común”, sabemos que se desenvuelve en ese “universo” de lo muy pequeño, alejado de nuestra vida cotidiana en el macrocosmos tetradimensional que, no siempre coincide con lo que, en aquel otro ininitesimal acontece.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Es cierto que, existe otro universo dentro de nuestro del que, aún, nos queda mucho por aprender.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.”

Imagen relacionada

                                                 ¿Podría ser el Universo un Holograma?

También Gerard ’t Hooft es el autor de lo que han dado en llamar principio holográfico es una conjetura especulativa acerca de las teorías de la Gravedad Cuántica propuesta en 1993 por este autor,  y mejorada y promovida por Leonard Susskin en 1995. Postula que toda la información contenida en cierto volumen de un espacio  concreto se puede conocer a partir de la información codificable sobre la frontera de dicha región. Una importante consecuencia es que la cantidad máxima de información que puede contener una determinada región de espacio rodeada por una superficie diferenciable está limitada por el área total de dicha superficie.

Por ejemplo, se pueden modelar todos los eventos que ocurran en un cuarto o una habitación creando una teoría en la que sólo tome en cuenta lo que suceda en sus paredes. En el principio holográfico también se afirma que por cada cuatro Unidades de Planck  existe al menos un grado de libertad  (o una unidad constante de Bolttzmann k de máxima entropía). Esto se conoce como frontera de Bekenstein:

S\le\frac{A}{4}

 

 

donde S es la entropía y A es la unidad de mensura considerada. En unidades convencionales la fórmula anterior se escribe:

S\le \left( \frac{kc^3}{G\hbar} \right) \frac{A}{4} = k \frac{A}{4\ell_P^2}

 

donde:

Claro que esta… ¡Es otra Historia!

emilio silvera

Convivimos con ellas sin prestarles atención I

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

Existen inesperadas conexiones entre los cuerpos celestes y los patrones que rigen la Vida en el Planeta Tierra, No pocas de las secuencias que podemos observar, son la consecuencia directa de dichas conexiones, a las que, la mayoría de las veces, no le prestamos la menor atención.

Merece la pena examinar esos vínculos que, situados a niveles diferentes, pueden comenzar en puntos temporales subyacentes en el entorno terrestre y terminar con las respuestas  que los seres vivos, donde sólo los Huamnos), aprendieron a dar al reino astronómico el valor y la conexión que en todo ello tenían.

La estrella Polaris es visible a simple vista, muy cerca del norte magnético. El movimiento de inclinacion con el que gira la tierra hace aparecer la Esfera Celeste, encontrándonos a la Polaris en un punto alto a nuestro horizonte. Para encontrar la estrella polar es necesario primero encontrar la Osa Mayor que consistía en 7 estrellas en la galaxia formando un oso según la mitología griega. la importancia de ubicarlas es por que con visibles durante todo el año.

Estas respuestas (aunque a veces nos parezcan ancestrales), aún se manifiestan en nuestra organización social, y también subyacen a muchas de nuestras respuestas metafísicas y emocionales del Universo.

Hemos estado tentados a ver las estrellas como dioses, como demonios, como la mejor guía para la navez viajeras, como la profesía de la mala suerte, o, lo que es peor, como gobernantes de cada una de nuestras acciones.

CONCIENCIA CAMBIOS SOLARES

Descubrimos también que hemos sido tremendamente afortunados por el simple hecho de que, la forma de vida que representamos, vino a caer, por razones del Azar, dentro de un entorno celeste que influye significativamente en el alcance y dirección de cualquier investigación científica del Universo que, en nuestra pacífica Región, se hace totalmente posible al estar alejados de lugares turbulentos y emisiones de inmensas energías que impedidirían cualquier clase de observación y estudio fiable.

Si en nuestro entorno explotaran Supernovas y estuvieran presentes Agujeros Negros masivos… ¡Las cosas serían muy diferentes para nosotros, o, incluso, no serían!

Nuestros primeros pasos preconscientes, es decir, los de nuestros ancestros primitivos a lo largo del Sendero Evolutivo, se produjeron en un mundo de alternancia diaria de la noche y el día, una crecida y bajada mensual de las mareas y una variación anuela en las horas diurnas y en el clima. Todos estos cambios de escenarios dejaron su impronta sobre nosotros, los actores en el serial de la Vida.

Resultado de imagen de En el sendero evolutivoi de la Vida, unos pudieron adaptarse y otros no

Algunos seres vivos pudieron sobrevivir mejor porque variaciones fortuitas les dieron ritmos corporales que reflejaban con precisión el pulso de cambios ventajosos en el entorno que pudieron ser aprovechados por ellos, tamto en las plantas como en los animales de todo tipo. Unos pudieron adaptarse y otros no.

Esos otros, sintieron directa y vivamente en su propios metabolismos aquellos cambios que los ritmos celestes imponían y a los que ellos, no se pudieron adaptar, y, de esa manera, sus especies perecieron y dejaron de existir.

Resultado de imagen de Especies extinguidas

El mundo está lleno de Plantas y Animales que han crecido sensibles al ciclo de la noche y el día, el cielo estacional del calor del Sol y la variación mensual de las mareas. Las mareas oceánicas provocadas por las feses de la Luna influyeron en la evolución de los crustáceos y los anfibios.

La formación de regiones con grandes diferencias entre mareas vivas y muertas, con alternancia de períodos de inmersión y períodos secos, puede haber aninado la disfunción de la vida del mar a la tierra. Las condiciones cambiantes estimulan la evolución de un tipo de complejidadque lleva a la vida porque crea condiciones en las que la variación supone una diferencia en las perspectivas de supervivencia (adaptarse o morir).

Existen huellas claras de un período anual en los ciclos vitales de las plantas y de los demás seres vivos de que, han favorecido su adaptación evolutiva y han hecho posible la supervivencia  y crecimientos de las especies y sus “relojes” innatos que hace coincidir, en no pocos casos, el nacimiento de sus crías con momentos en los que la posibilidad de supervivencia es mayor, especialmente, en las regiones templadas, donde las estaciones cambian de manera más abruptas.

Resultado de imagen de los peces desoven después de enterrar la mitad de sus cuerpos en la arena

En la manera que hemos podido llegar a descubrir, de cómo desovan algunos y como tienen en cuenta el momento de la Luna nueva o Luna llena , y los peces desoven después de enterrar la mitad de sus cuerpos en la arena. De esta manera les da tiempo a que las mareas no puedan arrastrarlos para evitar su puesta.

Resultado de imagen de Los animales sienten el cambio de las Estaciones por una respuesta a la duración de la Luz diurnaResultado de imagen de Los animales sienten el cambio de las Estaciones por una respuesta a la duración de la Luz diurna

Los animales sienten el cambio de las Estaciones por una respuesta a la duración de la Luz diurna. Hay ejemplos notables de la precisión de esta sensibilidad, que optimiza la fertilidad de las hembras para que coincida con el equinoccio de primavera.

Parece que la actividad de apareo se desencadena cuando la duración de la Luz diurna alcanza un valor crítico. Los experimentos muestran que pueden haber dos fases:

- Amor a la Luz

- Amor en la Oscuridad

En la primera fase, cuando la luz cae en el cuerpo estimula el crecimiento y la actividad; en la segunda fase, estas cosas se inhiben. En días largos, más luz estimula las respuestas bioquímicas más fuertes.

Pero la situación no es siempre tan sencilla. Las criaturas pueden poner a cero sus relojes internos exponiéndolos a entornos artificiales.

El día y el Año son las más simples de nuestras de nuestras divisiones temporales. La longitud del día está determinada por el Tiempo que tarda la Tierra en dar una vuelta alrededor de su eje. El día sería mucho más largo si la Tierra rotara más lentamente, y las variaciones diurnas no existirían en absoluto si la Tierra no tuviera rotación. En este caso, los seres vivos estarían, divididos entre trtes poblaciones diferentes:

- Los que vivirían en el lado oscuro

- Los que vivirían en el lado luminoso

- Los que vivirían en la Zona Corpuscular intermedia

Está claro que hay un límite en lo que se refiere a que el día sea más corto o más largo, todo dependerá de los factores que en ello puedan intervenir. El día no podría ser mucho más corto porque hay un límite en la rápido que puede girar un cuerpo antes de que empiece a despedir a todos los objetos que estén sibre su superficie y, más tarde, a desintegrarse. De hecho, la longitud del día está alargándose muy lentamente, aproximadamente dos milésimas de segundo cada siglo, debido a la atracción de la Luna.

Seguramente, algunos de ustedes, al leer “…dos milésimas de segunda cada siglo…”, hayan podido pensar: Qué tontería, y, qué puedo eso influir en nada.

Lo cierto es que, durante los enormes períodos necesarios para un cambio Geológico o Biológico destacable, ese infinitesimal aumento adquiere una importancia vital.

El día habría sido 11 horas más corto hace ahora 2.000 millones de años, cuando vivían las antiguas bacterias fósiles conocidas y halladas en las rocas más antiguas de la Tierra en Warradona (Australia). Se han hallado pruebas directas de este cambio impresos en los seres vivos en algunas arrecifes de las Bahamas.

https://activatuocio.files.wordpress.com/2010/10/las-exumas-unas-de-las-islas-mas-atractivas-de-las-bahamas.jpg

En el coral se depositan bandas de crecimiento anual (similares a los anillos de los árboles), y contando cuantas bandas diarias hay en cada banda anual se puede determinar cuantos ciclos diarios había en un año. El crecimiento coral contemporáneo muestra unas trescientas sesenta y cinco bandas por cada año, aproximadamente lo que se esperaba, mientras que los corales de hace 350 millones de años, muestran unos cuatrocientos anillos diarios en cada banda anual, lo que nos indica que el día era entonces de sólo 21,9 horas.

Si hacemos un viaje al pasado, para tratar de contemplar la evolución terrestre desde su formación, podríamos contemplar cómo, la Tierra jóven podría haber tenido días de tan sólo 6 horas. Así pués, si la Luna no existiera nuestro día sería (probablemente) dee sólo un cuarto de su longitud actual. Esto también hubiera tenido consecuencias para el campo magnético de la Tierra. Con un día de sólo 6 horas, la rotación más rápida de partículas cargadas dentro del planeta produciría un campo terrestre tres veces más intenso que el actual.

¿Qué ocurrirá cuando cambie el campo magnético de la Tierra?

La sensibilidad magnética sería una adaptación más económica  para los seres vivos de un mundo semejante.Sin embargo, los efectos ambientales de más largo alcance de un día más corto serían seguidos de vientos más fuertes, mucho más fuertes que azotarían que azotarían la superficie en rotación del planeta.

El grado de erosión por el viento y las olas sería muy grande. Habría presión selectiva hacia árboles más pequeños y para que las plantas desarrollaran hojas más pequeñas y más fuertes que fueran menos susceptibles de ser arrancadas. Esto podría alterar el curso de la evolución  de la atmósfera terrestres al retrasar la conversión de su primitiva atmósfera de dióxido de Carbono en Oxígeno por acción de la Fotosíntesis.

El año está determinado por el Tiempo que tarda la Tierra en completar una órbita alrededor del Sol. Este período de Tiempo no es en modo alguno aleatorio. Las temperaturas y emisiones de energía de las estrellasd estables están fijadas por las intensidades invariantes de las fuerzas de la naturaleza.

En un planeta sólo puede haber una actividad Biológica si su temperatura superficial no es extrema. Demasiado calor y las moléculas se frien; demasiado frío, y se congelan; pero en medio, hay un rango de temperaturas en el que pueden multiplicarse y crecer en complejidad los seres vivos.

Existe un estrecho rango dentro del cual el agua puede mantenerse líquida y ese estado es el óptimo para la evolución expontánea de la vida. El agua ofrece un ambiente maravilloso para la evolución de la Química compleja porque aumenta tanto la movilidad como la acumulación de grandes concentraciones de moléculas que se pueden transformar en estructuras complejas.

Estas limitaciones a las temperaturasgarantizan a los seres vivos que su biología les exige estar situados en planetas que no estén demasiado cerca de su estrella madre, ni tampoco, demasiado lejos de su luz y su calor. Es lo que llamamos estar situados en la Zona habitable de una estrella para que, en los planetas allí situados, la vida pueda florecer.

Otra cuestión importe es que, esos planetas, tengan órbitas casi circulares, si queremos que dichos planetas permanezcan en esa Zona habitable, ya que, si la órbita es elíptica se saldría de ella y, la vida, tendría muchos problemas para poder mantenerse estable.

Resultado de imagen de Esta animación muestra algunas órbitas elípticas con diferentes excentricidades. Así mismo, muestra cómo está el Sol durante el foco de una elipse, y algo de la matemática que hay tras las órbitas elípticas. Animación de Randy Russell (miembro del equipo de Ventanas al Universo).Resultado de imagen de Esta animación muestra algunas órbitas elípticas con diferentes excentricidades. Así mismo, muestra cómo está el Sol durante el foco de una elipse, y algo de la matemática que hay tras las órbitas elípticas. Animación de Randy Russell (miembro del equipo de Ventanas al Universo).

Esta animación muestra algunas órbitas elípticas con diferentes excentricidades. Así mismo, muestra cómo está el Sol durante el foco de una elipse, y algo de la matemática que hay tras las órbitas elípticas. Animación de Randy Russell (miembro del equipo de Ventanas al Universo).

Las órbitas elípticas llevarían al planeta a puntos con diferentes distancias y temperaturas con lo cual, la vida tendría muchos problemas para poder resistir cambios tan drásticos que, por lo general, serían mortales para los seres vivos de aquel planeta.

La Tierra en su deambular alrededor del Sol, describe una órbita elíptica pero, poco pronunciada. Su máxima distancia del Sol es de 1,017 veces la distancia media, y su mínima distancia es sólo de 0,983 veces la distancia media que sería la de 1 UA.

Como veréis, la ligera variación hace de la órbita “casi” un círculo perfecto y la variación anuela es aproximadamente de un 7% en el flujo de energía que la superficie de la Tierra recibe del Sol. La cercanía de la órbita de la Tierra a un círculo, tiene una importancia evidente.

La regularidad de la Tierra que viene dada por la intensidad de energía que nos envía el Sol, desde 150 millones de kilómetros, y, la intensidad está amortiguada por la rica y densa atmósfera terrestre, y, los seres vivos, tienen un escudo contra las radiaciones nosivas.

Dejémos aquí la primera parte.



En la segunda parte seguiremos hablando de la importancia que tiene la Luna para nosotros y explicaremos el por qué de las Estaciones en nuestro planeta.

La Fuente: “El Universo como Obra de Arte” JOHN D. BARROW.

¿Puede ser la materia inerte? ¡qué sabemos nosotros!

Autor por Emilio Silvera    ~    Archivo Clasificado en La materia tiene memoria    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Todo, en el Universo, está relacionado

Es curioso ver como todo está conectado de una u otra manera. La evolución del Cosmos está directamente relacionada con la evolución de nuestras mentes. La materia, en realidad, es sólo una, todo está hecho de quarks y leptones, también nosotros la materia pensante.

Se dice que los seres vivos surgieron a partir de la materia inerte (¿inerte?), no creo que en realidad sea así, la materia, en cada momento, ocupa el lugar que le corresponde en el espacio-tiempo, lo orgánico y lo inorgánico, en realidad está conectado, la materia, creo, tiene memoria, y, el hecho de que nosotros, los seres humanos, tengamos un cerebro lleno de sensores eléctricos que, ayudado por los sentidos, por el entorno y por las experiencias vividas está aprendiendo y desarrollándose, evolucionando, es debido a que, la materia, en nosotros también ha evolucionado de manera diferente.

Resultado de imagen de El núcleo de los átomos

Un núcleo, un átomo, una célula, una sustancia, un cuerpo, no es más que el desmenuzar todo lo que compone el Universo, ¡materia!

Todo lo grande está hecho de cosas pequeñas.

Resultado de imagen de Todo lo grande está hecho de cosas pequeñas

No importa lo grande que sea la galaxia, ella también está hecha de átomos

Una estrella, que también es materia, está formada por hidrógeno y helio sobre todo, y, las enormes temperaturas de millones de grados en su núcleo, hace que dicha materia simple esté en la forma que llamamos Plasma, un estado diferente al que normalmente vemos en nuestra vida cotidiana que es sólido, líquido o gaseoso. Pero además, hay otro estado de la materia del que no podemos decir nada, nuestra ignorancia nos ha llevado a denominarla “materia oscura”.

Resultado de imagen de La Mente, la Conciencia

Continuemos con ese misterio que llamamos “mente”, allí está la denominada Conciencia que, al menos que yo sepa, ningún filósofo ha podido explicar lo que es. La conciencia, nos diferencia del resto de los animales, nosotros tenemos “conciencia” de SER, nos preguntamos cosas, queremos saber, tenemos una curiosidad innata que nos lleva a profundizar en las cosas, en la Naturaleza que nos rodea para entender el por qué estamos aquí y hacia donde nos encaminamos.

Pensando en el recorrido de nuestra especie, podemos ver que, en realidad, en el tiempo cósmico, hace “tres días” que estamos aquí contados por el Tic Tac del Universo, y, sin embargo, hemos conseguido muchas cosas: Las matemáticas, el Lenguaje, la Física, la Astronomía y tantas cosas más que, nos hacen pensar.

Resultado de imagen de Los dinosaurios reinaron en la Tierra durante 150 M de años

Los Dinosaurios reinaron en el Planeta Tierra durante 150 millones de años, desaparecieron hace ahora unos 65 millones de años. Nosotros estamos aquí, como verdaderos hombres y mujeres, desde hace 2 millones de años, y, sin embargo, nos creemos los reyes de la Creación, cuando en realidad, somos unos jóvenes engreídos y ególatras que creen saber más de lo que en realidad saben.

Cuando veo la importancia que se dan algunos, para mi interior pienso: como se puede ser tan banal, sin darse cuenta de lo poco que en realidad es y de lo frágil que es la vida, ¿cómo se puede perder el poco tiempo que estamos aquí de esa manera tan tonta?. Cualquiera de nosotros, en relación a la inmensidad del Universo, somos menos que un punto señalado con un lápiz en un folio en blanco.

Imagen relacionada

El Sol, nuestra estrella, tiene 4.500 millones de años de vida y, cada segundo, consume 4.654.000 toneladas de hidrógeno, de las que 4.650.000 Tn son fusionadas en helio, las 4.000 Tn restantes son lanzadas al espacio en forma de luz y calor y, la Tierra, recibe una pequeña parte de dicha energía calorífica y lumínica para así sustentar la vida, hacer posible la fotosíntesis de las plantas, etc.

Pero la vida del Sol no es ilimitada, cuando consuma todo su combustible nuclear, dentro de otros 4.500 millones de años, se convertirá en una Gigante roja, su órbita alcanzará Mercurio, Venus y es probable que la Tierra antes de explotar en Nova, pero antes de que eso suceda, las temperaturas serán tan elevadas que los mares y los océanos de la Tierra se habrán evaporados, la vida, tal como la conocemos, no será posible aquí. ¿Qué haremos para escapar a ese enorme problema?

Resultado de imagen de Otros mundos habitables

Para entonces, falta aún mucho tiempo, si no hemos fraguado nuestra propia destrucción, ya estaremos preparados para habitar otros mundos.

Es curioso oír a personas muy preparadas explicando que, la única vida inteligente del Universo está aquí, en la Tierra. En realidad, deberían decir que la única vida inteligente que conocemos está aquí en la Tierra pero, como los mecanismos del universo y las leyes que lo rigen es igual en todas partes, la vida, seguramente será algo cotidiano en la vastedad del inmenso Cosmos.

Si pensamos que sólo en nuestra Galaxia existen cien mil millones de estrellas y que, la mayoría de esas estrellas tienen su propio sistema solar con los planetas correspondientes, y que existen cien mil millones de galaxias, ¿cómo se puede pensar que sólo en la Tierra se ha formado la vida?

Resultado de imagen de Vida en otros mundos

El milagro sería que sólo la Tierra albergara la vida inteligente estando el Universo plagado de Sistemas Solares en los que, sin dudarlo, habrá miles de estrellas como el Sol y planetas a cientos de miles como la Tierra que, como el nuestro, estarán a una distancia adecuada, tendrán una atmósfera propicia y, reunirán todos los requisitos necesarios para que la vida floreciera como aquí en nuestro mundo.

El verdadero problema está en las distancias a que se encuentran unas estrellas de otras. Nuestra estrella más cercana Alfa de Centauri, está a 4,3 años-luz de nosotros, nuestras naves actuales podrían viajar a unos 50 o 60 mil Km/h, y, viajando a la velocidad de la luz, 299.792.458 m/s tardaríamos 4.3 años en llegar ¿cuánto tardaría una de nuestras Naves? Este mismo tema lo he abordado en artículos anteriores, pero es algo que me interesa y me preocupa, no veo interés suficiente en los que mandan para que, como sería su obligación, destinaran más medios y dinero en promover proyectos encaminados al futuro.

Imagen relacionada

Ese es el verdadero problema, y como el posible mundo habitado más cercano a nosotros podría estar a docenas o cientos de kilómetros de años-luz, y, por otra parte, está el tiempo, es difícil que coincidamos en el mismo tiempo con otras inteligencias que, seguramente habrán existido y extinguido antes de que nosotros apareciéramos. En fin es algo complicado.

Me tengo que marchar, en próximos comentarios seguiré hablando de todo esto y dedicaré más tiempo a la Mente, a la Conciencia, al SER y, hablaremos de Metafísica, pero sobre todo, de Física, de la materia y de sus componentes y formas ¿Que serán ésos filamentos vibrantes que llaman cuerdas?, dicen que para comprobar su existencia necesitamos disponer de la Energía de Planck, cosa que, de momento, es imposible. Además, dicha Teoría, se desarrolla en 10 y 26 dimensiones, es apasionante. Próximamente profundizaré más en todo esto que no se puede despachar con simple comentario de pasada.

Resultado de imagen de El mundo futuro

Todo marcha demasiado rápido y, en unas pocas decenas de años, nuestro mundo y las sociedades humanas, a los habitantes de la Tierra de hoy, nos parecería estar en otro mundo

Me gustaría estar aquí en el año 2.117, pasado un siglo, cuando todas las incógnitas presentes estén resueltas y nuevos misterios sean el objeto de los científicos ¿Que estaremos buscando entonces? ¿Habrán sido contestadas las preguntas que ahora no tienen respuestas?

Bueno de momento ya tenemos ahí el Largue Hadrón Collider (LHC) del CERN en Ginebra en el que serán estudiadas colisiones de dos haces de protones a una energía en el centro de masas sin precedentes: 14 TeV.

Resultado de imagen de El LHC quiere ir más allá de los Quarks

         Queremos llegar más allá de los Quarks

Pronto podremos discutir sobre la materia que ahora consideramos inerte, pero que, en realidad, no lo es. La materia del Universo, en cada tiempo y lugar del espacio, ocupa el estado que en ese preciso instante tiene asignado. Pasado ese tiempo, entrará en un estado de fase diferente y su forma y composición (el número de protones y electrones y su número atómico, será distinto) se habrán transformado en algo distinto de lo que fue. Sin embargo, allí, encerrada, está su memoria con los datos de lo que fue. Ahora no sabemos discernir sobre este problema, sin embargo, todo está registrado, solo hay que saber buscarlo.

No tardando mucho, lo cotidiano será que ciudades espaciales estacionadas en el  “vacío espacial“, sean las precursoras de los despegues de las naves del futuro hacía otros mundos. Allí se construirán Comunidades científicas que, investigaran sobre las incidencias sobre los humanos de la ingravidez, y sobre otras mil cuestiones científicas que harán avanzar a la Humanidad hacia el Futuro.

Imagen relacionada

        ¿Serán posibles algún día, abrir las puertas, hacia las estrellas lejanas?

Si algún día, como firmemente creo, somos capaces de abrir esas puertas y conseguimos burlas el límite impuesto ahora por la velocidad de la Luz, ese día, la Humanidad habrá dado un paso de gigante para alcanzar su irremediable futuro: Las Estrellas.

Imagen relacionada

               Hay en todas las cosas un ritmo que es parte de nuestro Universo.

“Hay simetría, elegancia y gracia… esas cualidades a las que se acoge el verdadero artista. Uno puede encontrar ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto cresota o en el diseño de sus hojas. Intentamos copiar este ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo nos conduce hacia la muerte.”

Del Diario de la Princesa IRULAN.

Resultado de imagen de La princesa Irulan en el Blog de emilio silvera

Está claro que la belleza no es igual para todos, Un paisaje puede ser distinto y es cuestión de los ojos que lo miren. De la misma manera, a una misma pregunta se podrían dar mil respuestas distintas en función de quien sea el que hace la pregunta y de quien sea el que la contesta.

¡Qué cosas! Sin embargo, así es la realidad. Estamos supeditados al nivel de inteligencia del individuo que observa y del que pregunta qué es lo que ve el observador.

Hay veces (la mayoría) que no tenemos los datos suficientes para poder preguntar. Si no sabemos preguntar  ¿cómo podremos contestar? El camino a la solución de este problema es querer saber más y estar dispuestos a pagar el precio para ello.

emilio silvera