lunes, 03 de agosto del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Todo, en nuestro Universo… ¡Es Energía!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo: Todo Energía    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

En é inmensa, colorida y hermosa Nebulosa de Orion  se crean nuevas estrellas que, llenas de energía emiten radiaciones ultravioletas que ionizan toda la región que las circundan y hace que la Nebulosa resplandezca  como una inconmensurable isla de luces y colores que nos desata la imaginación sabiendo que nuevas estrellas y mundos surgen de todo ese conglomerado de gas y polvo que interacciona con las fuerzas de la Naturaleza presentes en todas partes.

Utilizando el telescopio MAGIC los científicos de Fermi-LAT fueron capaces de grabar la explosión de rayos gamma, la fuente de la cual se encuentra increíblemente lejos de nuestro planeta, la señal llegó a la Tierra ahora y esta fue enviada hace siete mil millones de años cuando el sistema solar no existía. Y el universo entero era la mitad de su edad actual de lo que es ahora.

El universo entero es energía. En sus formas diferentes la energía cambia continuamente y lo mismo  que brillen las estrellas del cielo, que los planetas giren, que los estables átomos formen moléculas y materia, que las plantas crezcan o que las civilizaciones evolucionen.

La ciencia del siglo XIX reconoció la universalidad de la energía y supo ver que la Humanidad sin energía que hiciera el  más duro, no evolucionarían en el bienestar social y el saber. De todas maneras, aún hoy día, a comienzos del siglo XXI, no tenemos un conocimiento unificado de todos los ámbitos y disciplinas, que relacionados de una u otra manera con la energía, nos presente una visión global y completa de este problema. Los estudios energéticos modernos se presentan fragmentados, divididos en disciplinas, y los científicos que trabajan en cada una de ellas están muy ocupados para leer el resultado obtenido en los otros estudios.

Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta por el movimiento de las placas tectónicas, rara vez están al día de los descubrimientos en las otras ramas de la energética moderna, donde se estudia  el esfuerzo de un corredor de élite hasta el vuelo de un colibrí.

Los ingenieros se preocupan por las plantas generadoras de electricidad y piensan poco en las constantes fundamentales de la energía o en los cambios que determinaron la evolución de las sociedades  de la llegada de la civilización de los combustibles fósiles.

Energía es todo, desde el Sol hasta un embarazo; desde el pan que comemos hasta un . Sin embargo, es difícil que un técnico pueda pensar en ello cuando está centrado en resolver el problema del momento.

          aquí está presente la energía

La progresión lógica se realiza siguiendo una secuencia progresiva  los flujos de energía planetarios a la vida de las plantas y los animales, siguiendo con la energía humana, la energía en el desarrollo de las sociedades preindustriales y modernas, y concluyendo con el transporte y los flujos de información, que son las dos características más importantes de la civilización de los combustibles fósiles.

Los que han leído algunos de mis trabajos saben que aquí podrán encontrarse con  y materias diversas, y aunque el tema central, como he reseñado por título, es la evolución por la energía, también podrán leer sobre la entropía, las fuerzas de la naturaleza, el átomo, o incluso, del Sol, los vientos, radiación solar o cualquier dato que, en realidad, pueda estar conectado con el concepto de energía.


El conocimiento, las peculiaridades y las complejidades de las diferentes formas de energías, así su almacenamiento y transformación, requiere que cuantifiquemos esas cualidades y procesos. Para ello debemos introducir cierto número de conceptos científicos y medidas, así como sus unidades correspondientes.

Al hablar sobre energía nos encontramos con el problema de que el uso en el habla común de muchos términos científicos está equivocado. Como dice Henk Tennekes, “hemos creado una terrible confusión con los conceptos físicos simples en la vida ordinaria”. Pocos de esos malentendidos son tan generales y molestos como los relacionados con los términos energíapotencia y fuerza.

Definimos fuerza  la intensidad con la que intentamos desplazar – empujar, tirar, levantar, golpear… – un objeto. Podemos ejercer una fuerza enorme sobre la roca que sobresale en una montaña incluso si ésta permanece inmóvil. Sin embargo, sólo realizamos trabajo cuando el objeto que empujamos se mueve en la dirección de la fuerza aplicada. De hecho, se define el  realizado como el producto de la fuerza aplicada por la distancia recorrida. La energía, como se define en los libros de texto, es “la capacidad de hacer trabajo”, y así, ésta se medirá con las mismas unidades que el trabajo.

Si medimos la fuerza en unidades denominadas newton (N), llamada así en honor de Isaac Newton, y la distancia en metros (m), el trabajo se mide en la malsonante unidad de newton-metro.  simplificar, los científicos llaman al newton-metro julio (J), en honor de James Prescot Joule (1.818 – 1.889), quien publicó el primer cálculo preciso de la equivalencia  trabajo y energía. El julio es la unidad estándar de trabajo y energía.

La potencia es simplemente la tasa de , es decir, un flujo de energía por unidad de tiempo. A un julio por segundo lo llamamos vatio (W) en honor de James Watt (1.736 – 1.819), inventor de la máquina de vapor mejorada y el hombre que estableció la primera unidad de potencia, que no fue el vatio sino el caballo de vapor (CV), una unidad aproximadamente igual a 750 W.

Seguimos con algunas tablas  documentarnos:

Almacenamiento de energía
Energía de Magnitud
Reservas mundiales de carbón 200.000 EJ
Reservas mundiales de masa vegetal 10.000 EJ
Calor latente de un tormenta 5 PJ
Carga de carbón de un camión de 100 t 2 TJ
Barril de petróleo crudo 6 GJ
Botella de vino de mesa blanco 3 MJ
Garbanzo pequeño 5 KJ
Mosca en la mesa de la cocina 9 mJ
Gota de agua de 2 mm en una hoja de árbol 4 μJ
Flujos de energía
Energía de Magnitud
Radiación solar 5.500.000 EJ
Fotosíntesis mundial neta 2.000 EJ
Producción mundial de combustibles fósiles 300 EJ
Huracán típico en el Caribe 38 EJ
La mayor explosión de bomba H en 1.961 240 PJ
Calor latente de un tormenta 5 PJ
Bomba de Hiroshima en 1.945 84 TJ
Metabolismo basal de un caballo grande 100 MJ
Ingesta diaria de un adulto 10 MJ
Pulsación de una tecla del ordenador 20 mJ
Salto de una pulga 100 nJ

 avanzar un poco más tenemos que pasar de empujar y tirar (lo que llamamos energía mecánica o energía cinética) a calentar (energía térmica). Definimos una unidad llamada caloría como la cantidad de calor necesario para elevar la temperatura de un gramo de agua  14’5 a 15’5 ºC. Usando esta unidad podemos comparar energías térmicas, pero una vez más, esta unidad no nos permite comparar todas las clases diferentes de energías.

Si nos preguntamos ¿qué es la energía?, esta pregunta no es fácil de contestar. Incluso uno de los más grandes físicos modernos resulta de poca ayuda: “es importante darse  de que en física, en realidad, no se sabe muy bien qué es la energía. No tenemos una idea de por qué la energía está formada por pequeños pulsos de una cantidad definida”, decía Richard Feynman en su libro Lectures on Physics.

David Rose, para definir la energía, decía: “es un concepto abstracto inventado por los físicos en el siglo XIX para describir cuantitativamente una amplia variedad de fenómenos naturales”.

Definir la energía no ha sido nunca cosa fácil, dado que está presente en todo lo que podamos mirar desde una piedra que yace en las finas arenas del fondo de un río, la montaña que majestuosa nos mira desde su altanera e imponente figura, la simple visión de un hermoso árbol, y, sobre todo, energía para mí… ¡son las estrellas del espacio interestelar! que crean el material del que se forjan los mundos y surje la vida, la más elevada  del energía que está presente en nuestro Universo.

El conocimiento moderno de la energía incluye un  de descubrimientos fundamentales: la masa y la energía son equivalente; los diferentes tipos de energía están relacionados por muchas transformaciones; durante esas transformaciones, la energía no se destruye (primer principio de la termodinámica) y esta conservación de la energía está inexorablemente acompañada por una pérdida de utilidad (segundo principio de la termodinámica).

El primer descubrimiento, descrito en una carta de Einstein a un amigo suyo  una “idea atrevida, divertida y atractiva”, se resume en su ecuación m = E/c2, que en su versión más famosa se escribe como E = mc2; la ecuación más conocida de la física.

Resultado de imagen de El Universo entero es energía

Esa figura que arriba podemos contemplar, antes fue una estrella como nuestro Sol, y, se transformó, desplegando grandes energías en lo que ahora podemos admirar, una bonita enana blanca.

El segundo descubrimiento se demuestra continuamente en miles de trasformaciones energéticas que se producen en el universo. La energía gravitatoria mantiene las galaxias en movimiento, a la Tierra girando alrededor del Sol y confinada la atmósfera que hace nuestro planeta habitable. La transformación de la energía nuclear en el interior del Sol produce el continuo flujo de energía electromagnética, llamada radiación solar. Una pequeña  de esa energía llega al planeta Tierra que, a su vez, libera energía geotérmica. El calor producido en ambos procesos pone en movimiento la atmósfera, los océanos y las gigantescas placas tectónicas terrestres.

Una pequeña parte de la energía radiante del Sol se transforma, a través de la fotosíntesis, en reservas de energía química, que son utilizadas por muchas clases de bacterias y plantas. Los seres heterótrofos (organismos que van desde las bacterias, los protozoos y los hongos hasta los mamíferos), ingieren y reorganizan vegetales de las plantas en nuevos  químicos y los utilizan para crear energía mecánica (cinética).

Resultado de imagen de Piscina de energía geotérmica en el Parque Nacional Yellowstone en Wyoming EE.UU.Resultado de imagen de Piscina de energía geotérmica en el Parque Nacional Yellowstone en Wyoming EE.UU.

        Piscinas de energía geotérmica en el Parque Nacional Yellowstone en Wyoming EE.UU.

¿Qué decir de la atmósfera de la Tierra?


La atmósfera terrestre (troposfera y estratosfera) es tan delgada que, dibujando el planeta con un diámetro de 10 cm, tendría un espesor de unos 0’4 milímetros, equivalente al grosor de una línea de lápiz. Sin embargo,  delgada capa gaseosa posee una importancia crítica para mantener el balance energético de la Tierra.

El planeta es adecuado  el desarrollo de la vida debido a que su atmósfera el llamativamente diferente de la de sus vecinos más próximos. La atmósfera de Venus está compuesta en un 96 por ciento de CO2, con un 3’5 por ciento de nitrógeno y trazas de gases nobles. La atmósfera de Marte contiene un 95’3 por ciento de CO2, un 2’7 por ciento de nitrógeno, 1’6 por ciento de argón y  trazas de agua y O3. Una atmósfera parecida a la terrestre determinaría que en la superficie marciana la temperatura sería superior a los 200º C y la presión de  pocos MPa. En tales condiciones no podría existir vida compleja basada en el carbono con tejidos húmedos.

Hay pocas dudas de que la primera atmósfera de la Tierra contuviera abundante CO2 no está claro si su posterior desaparición se debió exclusivamente a procesos geoquímicos inorgánicos (sobre todo a la pérdida de ácido carbónico), o si los primeros organismos fueron importantes en la posterior conversión de CO2 en sedimentos de CaCO3. Parece claro, por el contrario, que la fotosíntesis llevada a cabo inicialmente por bacterias fue la responsable de la transformación de la atmósfera sin oxígeno en el Arcaico.

Resultado de imagen de La Biosfera se vio protegida contra la radiación ultravioleta que llegaba del espacio

  La Biosfera se vio protegida contra la radiación ultravioleta que llegaba del espacio por la capa de ozono

El aumento de oxígeno comenzó a acelerarse hace unos 2.100 millones de años y el actual nivel del 20 por ciento se alcanzó hace unos 300 millones de años. El aumento del oxígeno troposférico permitió la formación de ozono estratosférico, que protegió la biosfera de la energética radiación UV de longitudes de onda inferiores a 295 nm. Sin  protección no hubiera sido posible la evolución de plantas y animales más complejos, ya que si la radiación UV de frecuencias menores ya mata los gérmenes y quema la piel, la de frecuencias altas es letal para la mayoría de los organismos.

Las actividades humanas pueden modificar poco las proporciones de los constituyentes atmosféricos. La cantidad de nitrógeno que se utiliza  sintetizar amoniaco representa una fracción despreciable de las enormes reservas troposféricas y la desnitrificación finalmente recicle todo el gas. Incluso el consumo de todas las reservas conocidas de combustibles fósiles (un hecho imposible debido a los costos prohibitivos de la extracción de algunas de estas fuentes de energía, sumergidas en las fosas abisales a miles de kilómetros de profundidad) reduciría la concentración de O2 en  de un 2 por ciento.

Las emisiones locales y regionales de aire contaminado contienen muchos gases,  los riesgos de un cambio climático global sólo pueden venir de mayores emisiones de compuestos en trazas. Algunos de esos gases (sobre todo CO2, N2O y CH4), así como el vapor de agua, absorben fuertemente la radiación en el espectro IR. Consecuentemente, la radiación IR emitida por la superficie de la Tierra tiene longitudes de onda comprendidas en distintas ventanas intercaladas  bandas de absorción.

Las bandas de absorción más importantes del vapor de agua están comprendidas  2’5 y 3 μm y entre 5 y 7 μm, mientras que el CO2 tiene dos picos estrechos en 2’5 y 4 μm, y una banda más ancha cerca de los 15 μm. Como la radiación terrestre está completamente incluida en el espectro IR,  absorción tiene un gran efecto en el balance de la radiación de la Tierra.

 mantener la biosfera habitable hacen falta solamente concentraciones muy pequeñas de gases de “efecto invernadero”. El CO2 representa actualmente sólo unos 360 ppm* ( del 0’04%) de la atmósfera terrestre, y los demás gases en traza miden en ppb o ppt. Esta composición hace que la temperatura media en la superficie del planeta sea de unos 16º C, la cual, combinada con una presión superficial de 101 KPa, asegura que el agua permanezca líquida y que sea posible la fotosíntesis y el metabolismo heterótrofo. Hay que procurar (hablando coloquialmente) que Gaia no se enfade, ya que el aumento de las concentraciones de gases en traza elevaría gradualmente la temperatura media de la troposfera.

La conversión de bosques y praderas en campos de cultivo y la utilización de combustibles sólidos han hecho aumentar las emisiones de CO2, mientras que el creciente uso de fertilizantes nitrogenados, la  vez más numerosa cabaña vacuna y el aumento del cultivo de arroz emiten cantidades adicionales de N2O y CH4. Los fluorforocarbonados, además de sus destructivos efectos sobre el ozono troposférico, son gases con efecto invernadero muy potentes. Debido a la acción combinada de los gases invernaderos antropogénicos, el flujo medio de calor absorbido ha aumentado en 2’5 W/m2 en grandes áreas del hemisferio norte, pero no estamos seguros de hasta dónde llegará esta tendencia ni de su velocidad. Lo mejor sería no confiarse; mi padre, hombre no cultivado, decía a menudo que “más vale un por si acaso que un yo creí”.

La atmósfera también interviene en el balance energético del planeta redistribuyendo el calor sensible y el calor latente del agua con los vientos y las lluvias, y de una manera completamente diferente pero más espectacular, con los rayos. La mayoría de esas descargas de elevadísima concentración de energía se originan en los cumulonimbos, y tienen una enorme potencia (duplicar el tamaño de  implica aumentar la potencia del rayo treinta veces). Un rayo normal descarga entre 20 y 50 MJ, la mayor parte de esa energía en 10 μs, produciendo la impresionante potencia de 1-10 GW. La luz visible emitida representa solamente el 0’2-2% de la energía disipada, invirtiéndose el resto en calentar la atmósfera a su alrededor y en la energía acústica del trueno. La observación de satélites indica que por término medio se producen unos cien mil relámpagos por segundo.

Sabemos que la atmósfera es la envoltura gaseosa que rodea a un cuerpo astronómico. Varios planetas (incluyendo la Tierra) poseen atmósferas considerables debido a su intensa gravedad. Los movimientos de los gases en las atmósferas planetarias en respuesta al calentamiento, junto con las fuerzas rotacionales, generan sistemas meteorológicos. Los satélites planetarios Titán y Tritón también poseen atmósferas.

3d hacer de la tierra y la atmósfera, proviene de todos los mapas http://www.visibleearth.nasa.gov Foto de archivo - 4501292

¡Nuestra casa! De cuyas maravillas y su relación con el Sol, sería interesante y muy instructivo saber

Creo que la atmósfera es quizá el término más vago para identificar una  de un cuerpo celeste. Está referido a su envoltura superficial, generalmente de un planeta o estrella. Parece fácil decirlo, pero los gases no son como un líquido o un trozo de roca, en los que puede determinarse exactamente dónde está la superficie que los separa del entorno circundante de una manera precisa. Es imposible indicar el nivel exacto donde acaba la atmósfera y comienza el plasma interplanetario. De hecho, los gases apenas están sometidos a la fuerza de la gravedad; se “esfuman” hacia el espacio y abandonan continuamente el cuerpo celeste. En el caso de la Tierra, por estar cerca del Sol, determinar dónde termina la atmósfera terrestre y dónde empieza la solar es un problema al que sólo  responderse teóricamente, que dicho sea de paso, permite licencias literarias que prohíben las matemáticas.

emilio silvera

La Historia de la Vida… ¡Nadie la pudo contar!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Analizando la luz de las galaxias pequeñas y de brillo débil que orbitan a la Vía Láctea, un equipo de científicos cree haber descubierto la masa mínima para las galaxias en el universo: 10 millones de veces la masa del Sol. Esta masa podría ser el “bloque de construcción” más pequeño conocido de la sustancia misteriosa e invisible denominada “materia oscura”. Las estrellas que se forman dentro de estos bloques se agrupan y se convierten en galaxias.

            ¿Filametos de materia oscura? ¿Dónde?

Los científicos saben muy poco sobre las propiedades microscópicas de la materia oscura” aunque dicen que constituye aproximadamente las cinco sextas partes de toda la materia en el universo (bueno, al menos eso es lo que se cree antes de haberlo demostrado).

  

Son muchas las cosas que no sabemos y, de cada una de ellas, nosotros los humanos, creamos hipótesis y hacemos conjeturas, construimos modelos y, con los datos que hemos podido reunir, dejamos expuesta una teoría de lo que pudo ser. De esa manera hemos creado la “historia” de cómo se formó nuestro Sistema solar a partir de una explosión de supernova que creando una nebulosa sería el origen, hace algunos miles de millones de años, de todo el sistema planetario en el que está la Tierra y nos cobijamos nosotros.

A mayor escala y viajando mucho más lejos en el Tiempo, también hemos “recreado” el escenario que suponemos que pudo existir cuando “nació” el universo, cuando dio comienzo la existencia del Tiempo y apareció el Espacio, se creó la materia y comenzaron a formarse los objetos que hoy podemos contemplar por todo el inmenso Cosmos. De todo ello, de manera “misteriosa” (nadie sabe a ciencia cierta como fue), apareceron los primeros signos de vida, primero en forma de rústicas criaturas y más elaboradas después, cuando con el paso de los años, pudieron evolucionar.

En nuestra región, situada en el interior del brazo de Orión a unos 30.000 años-luz del centro galáctico, las cosas se pudieron suceder, más o menos, como nos dicen al margen de la imagen, con algunas dudas y algunas preguntas sin contestar, así pudieron suceder, a grandes rasgos las cosas. Sin embargo, no es ese el tema que el título nos señala, nos vamos a centrar en la “vida” esa explosión de imaginación que ha tenido el universo para que, al menos en nuestro caso, haya alguien que comente sobre él y también, sobre esa maravilla que representamos: Seres Conscientes en un universo de materia, de explosiones y cambios, de energías sin fin.

Lo cierto es que, el recuerdo de los miles de millones de años de la historia de la vida, no ha podido ser inscrito en la memoria de los seres que la representan, al igual que los últimos millones de años no están grabados en la memoria de los seres humanos, los primeros naturalistas que se sintieron intrigados por los fósiles que encontraban, no pudieron presentir de qué manera aquello que estaban sacando a la luz del día, acabaría por servir para reconstruir el pasado a través de los archivos sedimentarios de la tierra.

De nada sirvieron los razonamientos poéticos y religiosos que les habían preparado para lo contrario. La realidad nos hizo descubrir un mundo distinto, una cronología distinta y una historia distinta. Resulta fácil comprender, en qué medida, los primeros  descubrimientos paleontológicos les pudieron parecer (en aquellos tiempos), por tanto, maravillosos y también, desconcertantes, hasta que punto aquella extraordinaria diversidad de formas de vida desaparecidas, su frecuente extravagancia y rareza y el encadenamiento asombroso que parecían ir revelando poco a poco, les debieron fascinar, pero también confundir.

Y, de esa manera, nuestra innata curiosidad, nos llevó a descubrir muchas clases de vida que existió en el pasado, incluso de seres monstruosamente grandes que extinguidos, sirvieron para que todos, antes sus descomunales restos, dejaran volar la imaginación y pudieran construir escenarios ya desaparecidos hacia millones de años. Claro que, todos aquellos descubrimientos, vinieron a ensanchar la mente de lo posible y la concepción de la historia de la vida en la Tierra y también, de manera paralela, hemos ido creando una historia más profunda, de unos 13.750.000 millones de años para la historia del propio universo. Pero, la historia que nos interesa, la de la vida, se remonta a unos 4.000 millones de años (al menos en nuestro planeta), que es el tiempo que tienen los fósiles más antiguo hallados en las rocas más viejas del planeta.

Ya el hombre de Neanderthal se interesaba por los fósiles.

El descubrimiento de edades anteriores a la aparición del hombre tuvo una enorme repercución, a finales del siglo XIX, mucho más allá de los círculos científicos, en buena parte porque reveló paisajes desaparecidos y poblados por criaturas extrañas, predominantemente mostruosas. Incluso en nuestros días los grandes vertebrados del pasado ejercen a menudo una especie de fascinación: ¿no se ha convertido acaso el mamut en el emblema de una cadena de supermercados y no resultan los nombres de muchos dinosaurios mucho más familiares, incluso para los niños, que los numerosos animales actuales?.

Esa familiaridad relativa con criaturas que hasta hace dos siglos, su existencia era inimaginable, es así mismo, un gran logro de la paleontología de los vertebrados sacados a la luz por la ciencia. Claro que, si hablamos de vida, no sólo de grandes animales se compone la gran relación que podríamos hacer de todas aquellas especies que poblaron nuestro planeta y de las que, el 99% están desaparecidas. Ahora, sólo el 1% de todas las especies vivientes siguen presentes y, las demás, por una u otra causa, quedaron extinguidas al no poder adaptarse, al ser eliminadas en las grandes extinciones… ¡y vaya usted a saber cómo!

Cuentan que, durante uno de sus viajes por el Mediterráneo, san Pablo, según la leyenda que circula, naufragó ante las costas de Malta. Habiendo logrado llegar a esa isla, fue mordido por una vibora. Encolerizado, maldijo entonces a todas las serpientes maltesas, por lo que sus lenguas bífidas se transformaron en piedra. Esas lenguas petrificadas, llamadas a veces “lenguas de san pablo”, son muy comunes en Malta; no son otra cosa que los dientes de los tiburones del período mioceno, cuyas formas evocan las lenguas bífidas de las serpientes.

El relato ilustra muy bien la fascinación que han ejercido desde tiempos inmemoriales ciertos fósiles sobre la imaginación humana y la forma en que pueden ser explicados los orígenes de esos objetos misteriosos, más allá de toda hipótesis científica, en los sistemas de pensamientos tradicionales. Sin embargo, jamás conoceremos las más antiguas de esas leyendas explicativas, ya que el interés por los fósiles se remonta a la prehistoria lejana, tal como nos lo demuestran los diversos descubrimientos arqueológicos.

En el transcurso de sus excavaciones en las cuevas de Arcy-sur-Cure,  en Borgoña, el célebre prehistoriador francés André Leroi Gourhan descubrió en un estrato correspondiente qal paleolítico medio una pequeña pero muy antigua “colección paleontológica” ; se trataba de un polípero y de un gasterópodo fósiles, y habían sido llevados a esa cueva por un hombre de Neardenthal. Hará más de 50.000 años posiblemente, que la atención de un “hombre fósil” se vio atraida por esos objetos curiosos, hasta el punto de que se los llevó consigo. No cabe duda de que nunca sabremos cuáles eran las interpretaciones que los hombres prehistóricos daban a los fósiles que recogían. En todo caso, ciertas conchas profundamente enterradas, le pudieron recordar a sus conchas actuales, y bien pudiera ser que se hubieran preguntado en aquel entonces qué hacían sobre las rocas unos animales que se encuentran habitualmente en el agua.

Es cierto que siempre, a lo largo de la Historia, hemos tenido pensadores y naturalistas. La Historia natural es un término cuya definición es problemática, en tanto que diversas disciplinas la abordan de manera diferente. Muchas de estas concepciones incluyen el estudio de las cosas vivientes (por ejemplo, la biología, incluyendo botánica, zoología y ecología); otras concepciones extienden el término al campo de la paleontología, la geografía y la bioquímica, así como a la geología, astronomía y la física. Lo cierto es que, al final del camino, todas esas disciplinas se encuentras, es decir, están de una u otra manera relacionadas. Todo en el Universo tiene una conexión que no siempre podemos ver o comprender.

Claro que, algunos pensadores griegos ya especularon con las viejas conchas fósiles que se hallaban dentro de las piedras y que eran el orgien de especulaciones “geológicas” de algunos que, como Jenófanes o Heródoto, quiénes habían comprendido la naturaleza auténtica de ciertas conchas fósiles y habían sacado conclusiones pertinentes, aquellos restos de organismos marinos, encontrados tierra adentro, demostraba que los mares, se extendían en otras épocas mucho más allá de sus límites actuales.

Lo cierto es que, hacer historia de la vida en nuestro planeta es imposible, sólo podemos ir atando cabos a medida que se encuentran huellas de ella en las viejas rocas, y, como la vida consciente tardó mucho más en llegar… ¡Carece de historia, toda vez que no existieron cronistas para escribirla! Así, nos vemos abocados a especular juntando todos los datos que hemos podido reunir y, de esas especulaciones, hemos formado un conjunto, si no plausible en su totalidad, sí aceptable mientras no encontremos más respuestas a la gran pregunta: ¿Cómo surgió la vida en la Tierra, y, es nuestro planeta el único lugar del Universo que la contiene?

Claro que, si creemos que la vida es ciudadana del universo sin fronteras, no debemos perder de vista la Panspermia, esas esporas viajeras que llegan a los mundos y en ellos, se posan y dejan pasar el tiempo para que, las condiciones locales, las radiaciones exteriores y propias del lugar, hagan su trabajo para que, con el tiempo suficiente por delante, puedan emerger y crecer hasta llegar a conformar seres con ideas y pensamientos.

Los animales unicelulares han descubierto el método más corto para comer las plantas. La muerte y el sexo han de crearse para que los organismos pluricelulares sean capaces de envejecer y dejar de funcionar como una cooperativa colonial de células. Los animales han descubierto como comerse a otros animales. Por encima de todo, ha evolucionado una especie inteligente, una especie tan lista que ha llegado a descubrir una vía para poder salir de la Tierra y llevar todo el proceso de la evolución hasta el extremo.

Nunca nadie ha sabido explicar lo que es la Vida a pesar de que tambien siempre nos lo hemos preguntado. Cuál es su origen y cómo surgieron los seres vivos que conocemos y que tenemos a nuestro alrededor, así como aquellos que con el paso de tiempo no supieron adaptarse y se extinguieron. La especie humana, la única que en nuestro planeta alcanzó la plenitud de conciencia, siempre ha tratado de responder a esa pregunta: ¿Qué es la Vida? Pero siempre también, resultó un gran problema el poder responderla y las Ciencias Naturales nunca pudo confeccionar una respuesta plausible. Hemos podido llegar a saber que sin los materiales fabricados en las estrellas, la vida no sería posible en nuestro Universo. Así muchos, dicen que somos…

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo –nos preguntamos- la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la Ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.

Resultado de imagen de La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta

La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Sin embargo, la vida es distinta porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un pepel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida. A grandes rasgos entendemos cómo pueden haber evolucionado las moléculas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de forma tan compleja.

Resultado de imagen de La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta

Según todos los indicios, en los primeros años del planeta, los continentes que hoy conocemos estaban todos unidos formando la denominada Pangea. El movimiento de las placas tectónicas terrestres logró que estos se separaran y, con el transcurso de millones de años, llegaron a adquirir la moderna forma que hoy conocemos. En todo ese transcurrir y, mientras tanto, una serie de condiciones nuevas aparecieron para hacer posible el surgir de la vida.

Distribución de los continentes hace 260 millones durante el Pérmico. El supercontinente con forma de “C” es Pangea; dentro de la C se localizan los océanos Paleo-Tetis al norte y Tetis al sur; separando ambos océanos se sitúa el continente Cimmeria; cerrando la “C” al noreste se sitúan los microcontinentes de China del Norte y China del Sur; mientras que el resto del globo está ocupado por el océano Panthalassa.

Microfósiles de sedimentos marinos. “Microfósil” es un término descriptivo que se aplica al hablar de plantas o animales fosilizados cuyo tamaño es menor de aquel que puede llegar a ser analizado por el ojo humano. Normalmente se utilizan dos rasgos diagnósticos para diferenciar microfósiles de eucariotas y procariotas.

A partir de todos los fragmentos que la ciencia ha podido ir acumulando, ¿qué tipo de planeta podemos recomponer y qué porcesos tuvieron que darse para que, la vida, tal como la conocemos pudiera surgir? Sin temor a equivocarnos podemos afirmar que, cuando se formó el mar de Warrawoona la Tierra ya era un planeta biológico. Además, las mediciones de isótopos de carbono indican que ya podía haber comenzado la gran liberación ecológica de la fotosíntesis. No podemos tener la certeza si entre los microorganismos de aquel entonces había cianobacterias reproductoras de oxígeno, pero la presencia de cualquier tipo de organismo fotosintético en el océano de Warrawoona es de por sí muy informativa, pues nos permite colocar un punto de calibración en el árbol de la vida.

Image

Los estromatolitos forman parte del registro fósil y son los responsables del oxígeno de la Tierra

Son la evidencia de vida más antigua que se conoce en la Tierra. Las rocas ígneas más antiguas de la Tierra están en Groenlandia y tienen 3800 millones de años. Los estromatolitos más antiguos son de Warrawoona, Australia y tienen unos 3500 millones de años (Precámbricos – Arqueanos). La edad de la Tierra como planeta acrecionado se calcula en 4500 millones de años. La teoría dice que, dadas las condiciones en esa época, los primeros habitantes de la Tierra debieron ser organismos unicelulares, procariontes, y anaerobios. Por tanto, los estromatolitos forman parte del registro fósil más importante de la vida microbiológica temprana. Pero además, vida microscópica fototrófica.

En la nueva concepción de la evolución microbiana que simboliza el árbol, los organismos fotosintéticos aparecen relativamente tarde y se diversifican mucho después del origen de la vida y de la divergencia de los principales dominios de la biología. Si la materia orgánica de Warrawoona es producto de la fotosíntesis, hay que concluir que para entonces la evolución de la vida ya debía llevar en marcha un buen tiempo.

Las observaciones geológicas indican que hace tres mil quinientos millones de años la atmósfera de la Tierra contenía nitrógeno, dióxido de carbono y vapor de agua, pero muy poco oxígeno libre. La mayoría de las inferencias acerca de ambientes antiguos se realizan a partir de pistas sutiles que nos proporcionan la geoquímica; la signatura sedimentaria del oxígeno, sin embargo, es muy llamativa: bandas de color rojo vivo en rocas con silex ricos en hermatita (Fe2 O3), un mineral de óxido de hierro.

En la actualidad, nuestros conocimientos de la vida y ambientes arcaicos son a un tiempo frustrantes y emocionantes: frustrantes por las pocas certezas que tenemos y, sólo muchas hipótesis a partir de los datos dispersos que se van obteniendo, emocionante porque sabemos algo, por poco que esto pueda ser, es estimulante contar con un punto de partida que nos permita continuar en el estudio y la observación, seguir experimentando para que, algún día, sepamos a ciencia cierta, de donde pudo venir la vida.

Es verdad que las rocas más antiguas que podemos identificar nos indican la presencia de organismos complejos ¿qué clase de células vivían en aquellos tiempos aún más lejanos? En última instancia, ¡cuál será el verdadero origen de la vida?

Ademas de las cianobacterias, la microflora puede incluir algas (verdes y diatomeas), hongos, crustaceos, insectos, esporas, polen, rodofitas, fragmentos y sedimentos de todo tipo. La variedad biologica de cada comunidad estromatolitica dependerá de condiciones ambientales e hidrológicas: hipersalino, dulceacuicola, intermareales, submareales, fuertes corrientes, moderadas nulas, calidos, templado, altitud (afecta a la exposicion de la luz uv). En la superficie, es rugosa, porosa y cubierta por mucilago, filamentos, etc. Las particulas de carbonato van quedadonde atrapadas, hasta que la cementacion por crecimiento de cristales, forma una capa mas, de esta forma la estructura aumenta de tamaño.

La Tierra es el tercer planeta del Sistema Solar. Esta situación orbital y sus características de masa la convierten en un planeta privilegiado, con una temperatura media de unos 15º C, agua en forma líquida y una atmósfera densa que pudo evolucionar, con oxígeno y otros ingredientes, condiciones imprescindibles para el desarrollo de la vida.

La creencia general es que hace unos 4.600 millones de años la corteza de la Tierra comenzó a consolidarse y las erupciones de los volcanes empezaron a formar la atmósfera, el vapor de agua y los océanos. El progresivo enfriamiento del agua y de la atmósfera permitió el nacimiento de la vida, iniciada en el mar en forma de bacterias y algas, de las que derivamos todos los seres vivos que habitamos hoy nuestro planeta tras un largo proceso de evolución biólogica.

Aun los organismos más simples son máquinas moleculares extraordinariamente sofisticadas. Las primeras formas de vida tenían que ser muchísimo más sencillas. Necesitamos encontrar una familia de moléculas lo bastante simples como para formarse por procesos químicos y lo bastante complejas como para servir de cimiento a la evolución de las células vivas. Una molécula capaz de contener información y estructura suficientes como para replicarse a sí mismas y, al cabo, para dirigir la síntesis de otros componentes que puedan canalizar la replicación con una eficiencia cada vez mayor.

ESTRUCTURA DE LA CELULA BACTERIANA

Unas moléculas, en fin, que pudieran iniciar una trayectoria evolutiva que permitiera a la vida emanciparse de los procesos físicos que le dieron nacimiento, sintetizando las moléculas necesarias para el crecimiento en lugar de incorporarlas de su entorno y captando energía química o solar para alimentar el funcionamiento de la célula.

El descubrimiento de las enzimas de ARN, o ribosomas, realizado de forma independiente y aproximadamente al mismo tiempo por el bioquímico de Yale Sidney Altman, tuvo un efecto catalítico sobre el pensamiento acerca del origen de la vida.

Los enzimas de ARN (llamadas “ribozimas” o “aptazimas”) son moléculas de ARN capaces de autorreplicarse a temperatura constante en ausencia de proteínas. Utilizan la llamada replicación cruzada, en la que dos enzimas se catalizan el uno al otro de forma mutua. Este proceso permite entender cómo surgió la vida, pero los biotecnólogos las usan para algo mucho más prosaico. Estos enzimas de ARN pueden ser utilizados para detectar una gran variedad de compuestos, incluyendo muchos relevantes en diagnóstico médico. El compuesto orgánico se liga al aptazima, que se replica exponencialmente, amplificando la concentración del compuesto hasta permitir que sea fácilmente detectado.

En palabras del filósofo de la biología Iris Fry, esta extraordinaria molécula se alzó como “el huevo y la gallina al mismo tiempo” en el rompecabezas del orgien de la vida. La vida, esa misteriosa complejidad que surgió a partir de la “materia inerte” que, bajo ciertas y complejas condiciones, dio lugar a que lo sencillo se conviertiera en complejo, a que lo inerte pudiera despertar hasta los pensamientos.

Sabemos que, en ciertas condiciones prebióticas, los aminoácidos se forman fácilmente, así quedó demostrado por Stanley Miller en su gamoso experimento. Como los ácidos nucléicos, pueden unirse para formar péptidos, las cadenas de aminoácidos que se pliegan para formar proteínas funcionales.

Hay teorías para todos los gustos, y, el afamado Freeman Dyson, un renombrado físico que ha pensado profundamente sobre el origen de la vida, sugiere que en realidad la vida comenzó en dos ocasiones, una por la vía del ARN y otra vez por vía de las proteínas. Las células con proteínas y ácidos nucleicos interactivos habrían surgido más tarde en función protobiológica.  Y, está claro que, la innovación por alianzas es uno de los principales temas de la evolución.

phylogenetic_tree-es.png

En el árbol de la vida, nosotros (“tan importantes”), sólo somos una pequeña ramita.

Hay muchos procesos que son de una importancia extrema en la vida de nuestro planeta y, dado que los organismos fotosintéticos (o quimiosinteéticos) no pueden fraccionar isótopos de carbono en más de unas treinta parte por 1.000, necesitamos invocar la participación de otros metabolismos para poder explicar los resultados de las mediciones que se han realizado. Los candidatos más probables son bacterias que se alimentan de metano en los sedimentos. Estas bacterias obtienen tanto el carbono como la energía del gas natural (CH4) y, al igual que los organismos fotosintéticos, son selectivos con los isótopos. A causa de su preferencia química por el 12CHfrente al 13CH4, los microbios que se alimentan de metano fraccionan los isótopos de carbono en unas veinte o vejnticinco partes por 1.000 en los ambientes donde el metano es abundante. ¿Habeis pensado en la posibilidad de que esos organismos fotosintéticos estén presentes en Titán? ¡El fetín está servido!

Los océanos de metano de titán podrían ser una buena fuente de vida

La fotosíntesis anoxigénica se da en los organismos que utiliza la energía de la luz del sol, dióxido de carbono (sustrato a reducir) y sulfuro de hidrógeno (en lugar del agua) como dador de electrones que se oxida, se fabrican glúcidos y se libera azufre a el medio acuoso donde habitan o se aloja en el interior de la bacteria.

Otra característica es que los organismos fotosinteticos anoxigénicos contienen bacterioclorofila, un tipo de clorofila exclusiva de los foto-organotrofos, usan longitudes de onda de luz que no son absorbidas por las plantas. Estas bacterias contienen también carotenoides, pigmentos encargados de la absorción de la energía de la luz y posterior transmisión a la bacterioclorofila. El color de estos pigmentos dan el nombre a estas bacterias: bacterias púrpuras del azufre y bacterias verdes del azufre. En las cianobacterias los pigmentos captadores de luz son las ficobilinas, por lo tanto se les nombra, bacterias azules.

Cualquiera de estas imágenes de arriba nos cuenta una larga y compleja historia de cómo se pudieron formar cada uno de los ahí representados, y, en cualquiera de sus fases, formas y colores, es toda una gran obra de la Ingenieria de la Naturaleza que, al fin y al cabo, es la única fuente de la que debemos beber para saciar nuestra sed de sabiduría y alejar la ignorancia que nos abruma.

No pocas veces he dejado aquí constancia de que, el Universo, en todas sus regiones, por muy alejadas que estén, se rige por unas leyes que están presentes en todas parte por igual, y, así lo confirman mil observaciones y mil proyectos que a tal efecto se han llevado a buen término. Por ejemplo, mediaciones precisas de isótopos de azufre en muestras de Marte traídas a la Tierra por meteoritos demuestran que muy pronto en la historia del planeta vecino el ciclo del azufre estaba dominado por procesos atmosféricos que producían un fraccionamiento independiente de la masa.

Valles en Marte. (ESA) La región de Valles Marineris, que tiene una longitud de 4.000 kilómetros y una anchura de 600 kilómetros, es el sistema de cañones más grande conocido en el sistema solar, con profundidades que llegan a los diez kilómetros.

Basándose en este descubrimiento del fraccionamiento independiente de la masa, se dirigió la atención sobre las rocas terrestres más antiguas. Para sorpresas de muchos geoquímicos, lo que se hayó fue que el yeso y la pirita de las sucesiones sedimentarias más antiguas de la Tierra  también como en Marte, han dejado constancias del fraccionamiento independiente de la masa de los isótopos de azufre. Al igual que en Marte, en la Tierra primitiva la química del azufre se encontraba al parecer influenciada por procesos fotoquímicos que sólo pueden producirse en una atmósfera pobre en oxígeno. La etapa del oxígeno comenzó en nuestra atmósfera a comienzos del eón Ptoterozoico. En suma, todos los caminos de la biogeoquímica llevan al mismo sitio, es decir, lo que pasa aquí pudo pasar allí y, al decir allí, quiero decir en cualquier planeta de cualquier galaxia. Las leyes fundamentales de la Naturaleza son, las mismas en todas partes. No existen sitios privilegiados.

                                                  Es difícil imaginarse hoy una Tierra sin oxígeno

Dos equipos independientes de investigadores descubrieron que el oxígeno gaseoso apareció en la atmósfera terrestre unos 100 millones de años antes del evento de la gran oxidación de hace 2400 millones de años. Es decir, cuando cambió la antigua atmósfera y el planeta se equipo con la que hoy conocemos.

El oxígeno es un gas muy reactivo, no existe de manera libre durante un largo período de tiempo, pues forma óxidos o reacciona con otras sustancias de manera rápida. Si está presente en la atmósfera es porque las plantas lo reponen continuamente. Antes de la invención de la fotosíntesis y durante muchos cientos de millones de años no había oxígeno libre en la Tierra.

En los estratos geológicos se pueden encontrar pruebas de la existencia de un momento en el que se produjo una gran oxidación mineral, prueba de que el oxígeno se encontraba ya libre en la atmósfera terrestre por primera vez y en gran cantidad. A este hecho se le ha denominado evento de gran oxidación, o GOE en sus siglas en inglés, y fue un hecho dramático en la historia de la Tierra. Este oxígeno permitió más tarde la aparición de vida animal compleja. Los geólogos creían que durante el GOE los niveles de oxígeno subieron rápidamente desde niveles prácticamente despreciables.

Las Bacterias: Amigas y Enemigas

                                      El mundo bacteriano es fascinante

Con estas bacterias es posible obtener dos tipos de celdas microbianas o baterías. Unas llamadas celdas de sedimento emplean el lodo donde habitan estos microorganismos; ahí, se produce energía simplemente conectando un electrodo en la parte donde, a cierta profundidad, no hay oxígeno, con otro electrodo que se encuentre en presencia de oxígeno.

¿Cómo respondió la vida a la revolución del oxígeno? Podemos imaginar, un “holocausto de oxígeno” que habría llevado a la muerte y la extinción a innumerables linajes de microorganismos anaeróbicos. Pero hace dos mil doscientos millones de años los ambientes anóxicos no desaparecieron; simplemente, quedaron relegados bajo una capa oxigenada de agua y sedimentos superficiales.

Aquello permitió a la Tierra dar cobijo a una diversidad biológica sin precedentes. Los microorganismos anaeróbicos mantuvieron un papel esencial en el funcionamiento de los ecosistemas, igual que en la actualidad.

Correr es un ejercicio aeróbico

En la primera fase de cualquier ejercicio aeróbico, el oxígeno se combina con la glucosa procedente del glucógeno. Al cabo de unos minutos, cuando el cuerpo nota que escasea el azúcar, empieza a descomponer las grasas. Entonces disminuye un poco el rendimiento, mientras el cuerpo se adapta al cambio de origen de su energía. Superado este punto, se vuelve a los niveles y sensaciones normales, pero se queman grasas en lugar de glucosa.

De otro lado, los organismos que utilizan, o al menos toleran el oxígeno se expandieron enormemente. La respiración aeróbica se convirtió en una de las formas principales de metabolismo en las bacterias, y las bacteria quimiosintéticas que obtienen energía de la reacción entre oxígeno e hidrógeno o iones metálicos se diversificaron a lo largo de la frontera entre ambientes ricos en oxígeno y ambientes pobres en oxígeno. Desde ese momento, la Tierra comenzó a convertirse en nuestro mundo.

Nuestro mundo, rico en agua líquida que cubre el 71% de la superficie del planeta, y, su atmósfera con un 78% (en volumen) de Nitrógeno, un 21 de Oxígeno y un 0,9 de Argón, además de dióxido de carbono, hidrógeno y otros gases en cantidades mucho menores que, permiten que nuestros organismos encuentren el medio indóneo para poder vivir. Otros muchos factores presentes en la Tierra contribuyen a que nuestra presencia aquí sea posible.

Las algas verdeazuladas también son llamadas bacterias verdeazuladas porque carecen de membrana nuclear como las bacterias. Sólo existe un equivalente del núcleo, el centroplasma, que está rodeado sin límite preciso por el cromatoplasma periférico coloreado. El hecho de que éstas se clasifiquen como algas en vez de bacterias es porque liberan oxígeno realizando una fotosíntesis similar a la de las plantas superiores. Ciertas formas tienen vida independiente, pero la mayoría se agrega en colonias o forma filamentos. Su color varía desde verdeazulado hasta rojo o púrpura dependiendo de la proporción de dos pigmentos fotosintéticos especiales: la ficocianina (azul) y la ficoeritrina (rojo), que ocultan el color verde de la clorofila.

Mientras que las plantas superiores presentan dos clases de clorofila llamadas A y B, las algas verdeazuladas contienen sólo la de tipo A, pero ésta no se encuentra en los cloroplastos, sino que se distribuye por toda la célula. Se reproducen por esporas o por fragmentación de los filamentos pluricelulares. Las algas verdeazuladas se encuentran en hábitats diversos de todo el mundo. Abundan en la corteza de los árboles, rocas y suelos húmedos donde realizan la fijación de nitrógeno. Algunas coexisten en simbiosis con hongos para formar líquenes. Cuando hace calor, algunas especies forman extensas y, a veces, tóxicas floraciones en la superficie de charcas y en las costas. En aguas tropicales poco profundas, las matas de algas llegan a constituir unas formaciones curvadas llamadas estromatolitos, cuyos fósiles se han encontrado en rocas formadas durante el precámbrico, hace más de 3.000 millones de años. Esto sugiere el papel tan importante que desempeñaron estos organismos cambiando la atmósfera primitiva, rica en dióxido de carbono, por la mezcla oxigenada que existe actualmente. Ciertas especies viven en la superficie de los estanques formando las “flores de agua”.

Sin descanso se habla de quer nosotros, con nuestro comportamiento estamos cambiando la atmósfera de la Tierra, que contaminamos y que, de seguir así, podemos acabar con la vida placentera en el planeta. Tal exageración queda anulada por la realidad de los hechos.

Gigantescas ciudades son una buena muestra de nuestra presencia aquí, y, ¿qué duda nos puede caber? Nuestro morfología nos ha convertido en el ser vivo dominante en el planeta. Sin embargo, no somos los que más hemos incidido en sus condiciones. Si se estudia la larga historia de la vida en la Tierra, podremos ver que una inmensa cantidad de especies han interactuado con la biosfera para modificar, en mayor o menor medida los ecosistemas del mundo. En realidad, la especie que cambió el planeta de manera radical, la que en verdad modificó la Tierra hasta traerla a lo que hoy es, creando una biosfera nueva a la que todas las especies se tuvieron que adaptar (también nosotros), esa especie que, aunque diminuta en su individualidad forma un gigantesco grupo, no son otras que las cianobacterias.

De esa manera, si el oxígeno trajo consigo un cambio revolucionario, las heroínas de la revolución fueron las cianobacterias. Fósiles extraordinarimente bien conservados en síles de Siberia de mil quinientos millones de años de edad demuestran que las bacterias verdeazuladas se diversificaron tempranamente y se han mantenido hasta la actualidad sin alterar de manera sustancial su forma. La capacidad de cambiar con rapidez, pero persistir indefinidamente, compendia la evolución bacteriana.

Las cianobacterias comparten con algunas otras bacterias la habilidad de tomar el N2 del aire, donde es el gas más abundante, y reducirlo a amonio (NH4), una forma que todas las células pueden aprovechar. Los autótrofos que no pueden fijar el N2, tienen que tomar nitrato (NO3-), que es una sustancia escasa. Esto les ocurre por ejemplo a las plantas. Algunas cianobacteria son simbiontes de plantas acuáticas, como los helechos del género Azolla, a las que suministran nitrógeno. Dada su abundancia en distintos ambientes las cianobacterias son importantes para la circulación de nutrientes, incorporando nitrógeno a la cadena alimentaria, en la que participan como productores primarios o como descomponedores.

La resistencia general de las bacterias a la extinción es bien conocida, las bacterias que hayan sobrevivido al cepillo de dientes, a media tarde se habrán multiplicado hasta el extremo de recubrir nuevamente el interior de la boca. Además, las bacterias saben habérselas muy bien con medios cambiantes. El aire, por ejemplo, está lleno de bacterias; un plato de leche colocado en el alfeizar de la ventana no tarda en fermentar.

Nosotros tenemos un “convenio” de simbiosis con muchas bacterias que conviven con nuestra especie que sin ellas, no podría existir. ¿Os acordáis de aquel trabajo sobre las mitocondrias? El cuerpo humano, en seco, tiene un diez por ciento de bacterias.

emilio silvera

Cuando la Naturaleza se despereza… ¡Nosotros a temblar!

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Nasa

 

Incluso en una toma como si fuera un mapa, se puede observar que estas nubes tóxicas llegan más allá de Guatemala, porque afectan países como México, Belice, Honduras y El Salvador.

La devastadora erupción de un volcán siempre lleva consigo un sin fin de calamidades para la región afectada, en la que muchas criaturas, se ven despojadas de todo lo que tenían y, más grave aún… ¡De sus vidas!

Devastadores momentos por los que han tenido que pasar los vecinos de la región, y, algunos, han perdido hasta veinte miembros de sus familias.

Más de 46.000 personas se vieron afectadas por la caída de partículas de ceniza en varias comunidades.

Más de 46.000 personas se vieron afectadas por la caída de partículas de ceniza en varias comunidades. Inmensas extensiones de terreno se han visto inundadas por la ceniza caliente que arrasó a su paso todo aquello que tocaba… ¡También la Vida!

En Guatemala existen cuatro volcanes activos:

Pacaya

 

Uno de los volcanes más famosos del país no solo por su cercana ubicación a la ciudad capital de Guatemala, por su fácil ascenso, hace que varios turistas como nacionales deseen escalar este volcán para disfrutar de la aventura y de sus vistas ya que en su cima se puede observar los volcanes de Agua, Acatenango y de Fuego. El volcán de Pacaya se encuentra ubicado entre los departamentos de Guatemala y Escuintla, y goza de una altura de 2,550 metros, la cual ha variado durante los años ya que al ser un volcán activo y de actividad constante desde 1565, las diversas erupciones cambian su tamaño. Este volcán se caracteriza por arrojar ceniza, vapor de agua y piedras pequeñas cada vez que erupciona, es por esto que en 1775 en una de sus más grandes erupciones, oscureció por varios días a la ciudad de La Antigua Guatemala. Teniendo trascendencia sus erupciones hasta la actualidad, cuando por ejemplo en el año 2000 ya que debido a la ceniza se realizaron traslados y evacuaciones para los habitantes cercanos a las faldas del volcán.

 

 

erupcion del volcan de pacaya foto por hector lopez dynamics - Los 4 volcanes activos en Guatemala

 

Fuego

Con 3,763 metros de altura, este volcán se encuentra situado en el municipio de Alotenango en el departamento de Sacatepéquez y parte de Chimaltenango. Su nombre proviene del nombre kaqchikel Chi Gag que quiere decir “dónde está el fuego”. Este volcán puede escalarse, más de su lado sur su ascenso es de poca actividad ya que es muy peligroso, pero si se puede escalar por diferentes rutas para poder llegar a su cima cubierta de lava fría.  Este volcán como bien su nombre lo describe es uno de los volcanes más activos del país, ha erupcionado más de 60 veces desde el año 1524. Se caracteriza por sus erupciones violentas, ya que sus cenizas y arenas volcánicas han llegado hasta Honduras y El Salvador. Su última erupciones violenta fue en el año de 1999, donde sus cenizas llegaron a la tierra dejando casi 40 centímetros de espesor.

 

volcan de fuego en erupcion foto por josh fotografia - Los 4 volcanes activos en Guatemala

 

Santiaguito

 

Se distingue de los demás volcanes del país, ya que los demás son de tipo estratovolcán, es decir con un cráter centrar, pero el Santiaguito es una secuencia de cuatro domos de lava dacítica el domo Caliente, La Mitad, El Monje y El Brujo. Este volcán se formó del cráter que dejó el Volcán Santa María después de su gran erupción de 1902, ubicándose en el departamento de Quetzaltenango. Debido a su constante actividad no se le puede determinar la altura exacta, pero se encuentra alrededor de los 2,510 metros de altura. Su erupción es de tipo peleana, es decir que ocurre como una violenta explosión que pulverizan la lava y se acompaña de una nube ardiente formada de una mezcla de vapor de agua y cenizas. La explosión más violenta ocurrió en 1929, la cual dejó alrededor de 2500 fallecidos.

 

 

volcanes santiaguito y san maria foto de o enrique galvan gonzales - Los 4 volcanes activos en Guatemala

 

Tacaná

 

Considerado como un volcán activo, se encuentra ubicado en el departamento de San Marcos dentro de la línea divisoria con México, y es el segundo volcán más alto de Guatemala con 4,092 metros de altura. Su nombre es de origen Mam y su significado es “casa de fuego”, también es conocido como el volcán de Soconusco. Al gozar de gran altura este pico se caracteriza por cubrirse de nieve, y en sus laderas gozan de un bosque frondoso. Cada año en la época de Semana Santa, se celebra la Confraternidad Montañista del Sureste, reuniéndose en su cumbre. Entre sus erupciones más violentas fue la que ocurrió en 1986, dio origen a un pequeño cráter a su noroeste.

 

 

volcan tacana foto por juan bauer alonzo - Los 4 volcanes activos en Guatemala

LO mismo que Hawai y en otras zonas de la Tierra rica en actividad volcánica, los pobladores de esas regiones nunca podrán estar seguros, y, es muy difícil controlar las fuerzas de la Naturaleza.

Resultado de imagen de Imágenes del Volcán de Guatemala

A pesar de los peligros que conlleva, no dejamos de asentarnos en lugares expuestos al peligro.

Lo único que podemos hacer es sentir el suceso y pedir que los países del mundo ayuden a paliar la desgracia de muchas familias que se ven desalojados de sus casas, que han perdido a sus seres queridos y que no tienen nada para un nuevo comienzo.

emilio silvera