Jun
22
Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo!
por Emilio Silvera ~
Clasificado en El Universo y los pensamientos ~
Comments (0)

Nuestra vecina galáctica la Pequeña Nube de Magallanes
Hoy dejaré una pincelada de la preciosa Galaxia Irregular que es la más pequeña de las dos que tienen el mismo nombre y que acompañan a nuestra Galaxia, La Vía Láctea; es también conocida como Nubecula Minor. Tiene unos 9 ooo años-luz de longitud y se encuentra a 190 000 años-luz, visible a simple vista como una mancha brumosa de unos 3º en Tucana. Su masa visible es menor que el 25% de nuestra Galaxia, y contiene relativamente más gas y menos polvo que la Gran Nube de Magallanes, aunque menos cúmulos y Nebulosas. Su estructura puede estar alargada en la dirección de la Tierra.

El cúmulo globular de estrellas 47 Tucanae. Maravillas como esta están presentes en la pequeña Nube de Magallanes. Este brillante cúmulo de estrellas es 47 Tucanae (NGC 104), en una imagen captada por el telescopio VISTA (Visible and Infrared Survey Telescope for Astronomy) de ESO, instalado en el Observatorio Paranal, en Chile. Este cúmulo se encuentra a unos 15.000 años luz de nosotros y contiene millones de estrellas, algunas de las cuales son bastante inusuales y exóticas. Esta imagen fue captada como parte del sondeo “Magellanic Cloud” de VISTA, un proyecto que sondea la región de las Nubes de Magallanes, dos pequeñas galaxias muy cercanas a nuestra Vía Láctea.
Si quieres leer el trabajho completo, pulsa encima del título que sigue:

El premio nobel 2004, Frank Wilczek como un gran creativo de la física, nunca decepciona. Este profesor, famoso por sus trabajos en cromodinámica cuántica (QCD), la teoría que explica el micromundo existente dentro de las llamadas partículas elementales, vuelve a poner las leyes de la Física patas arriba con su más reciente teoría, en la que presenta un sorprendente tipo de cristal –time crystal- que a diferencia de los cristales convencionales no ofrece regularidad en el espacio, sino en el tiempo. Sería una nueva organización de la materia en la que la estructura se repite periódicamente en el tiempo, a diferencia de la periodicidad espacial de los cristales convencionales
El trabajo completo pulsando el título siguiente:

Lo de no mirar atrás… ¡No me gusta! Si no lo hubiéramos hecho, ¿cómo habríamos aprendido lo que sabemos?
Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad. El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta de paradoja y, si no existe tal barrera, debería exisitir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajsar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.

¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez? Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales, pensaremos como nos enseño Einstein, a una mayor escala, en la utilidad de un y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.

Hay en todas las cosas un ritmo que es parte de nuestro Universo.
Nada pasa porque sí, todo tiene su causa, su principio y su final. No existe la Nada ni tampoco el Infinito, cuando surgió es porque había, y, ninguna cosa puso existir desde siempre hasta la Eternidad, todo nace y todo muere, es la Ley de nuestro Universo.

“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede ver ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”
De “Frases escogidas de Muad´Dib”, por la princesa Irulan.

hemos imaginado estar en otros niveles
Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí. Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias autoconsistentes. En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.

Siempre nos ha gustado imaginar
Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.

Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera , todo depende bajo el punto de vista desde en el que miremos las cosas.
“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”
Los hay que creen, que la vida, es única en la Tierra. Muchas personas, ya sean o no cristianas, luchan con la idea de si la Tierra es el único planeta habitado en este enorme universo, o no. Y, desde luego, la lógica y las probabilidades, nos dicen lo contrario.
Lo cierto es que, siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en las constantes son diferentes y la vida no puede existir?

No importa que no lo podamos ver, el simple hecho de que no veámos una estrella lejana, no significa que no esté ahí. Hay que comprender que sólo nuestro entorno más cercano está a nuestro alcance, visualizamos lo que nos rodea y, desde luego, siempre que sean objetos o panoramos macro, ese ontro mundo de lo infinitesimal, queda fuera de nuestro alcance como los cúmulos de galaxias situados a miles dee millones de años luz. Sin embargo, todo está ahí, todo se rige por las mismas leyes, y, como aquí en nuestro planeta, todo también, está sometido a las fuerzas de la Naturaleza y sus constantes. La conexión es real entre las cosas por mjuy separadas que e´stas se puedan encontrar las unas de las otras.

La constante de estructura fina (α), es muy importante para vida
En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!

Nuestro Universo es como han querido las constantes que sea
Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nosiva para la vida.
Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes). Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!

Un estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el llamada la constante cosmológica, originalmente propuesta por Einstein, sería la verdadera .

En nuestro planeta, como en otros, en cualquier charca caliente puede surgir la vida
Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano. Las tres formas de Universo que nos ponen los cosmólogos para que podamos elegir uno que será el que realmente se asemeja al nuestro. Abierto, plano y cerrado todo será en función de la Densidad Crítica que el Universo pueda tener.

Todo dependerá de cual sea el de la densidad de materia, es decir, de cuánta materia exista en el Universo
De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.
Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas… y ¡vida!

Gráfico: Sólo en el modelo de universo que se expande de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.
No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Universo.
Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de de partida especiales.

Próxima b es el último planeta descubierto que posiblemente albergue alguna clase de vida
Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el universo , cada una de las cuales contiene a su vez miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber, como en el nuestro formas de vida, algunas inteligentes.

Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press). Un equipo internacional han podido completar el mapa más preciso y completo hecho hasta el momento y, con este avance, se puede conocer el universo y sus contenidos con una mayor precisión.

Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estadio de evolucioón en el que nos encontramos, las estrellas tuvieron que más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bio-química de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.

Siatuada a 12.900 M de años-kuz, descubren la Galaxia lejana y, seguramente, de la primeras
Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.
emilio silvera
Jun
22
¿Universo Cíclico?
por Emilio Silvera ~
Clasificado en El Universo misterioso ~
Comments (1)


Su inexorable transcurrir lo cambia todo. El Tiempo nació con el Universo, y, después del comienzo del Tiempo, nada sería igual siempre, todos los objetos inertes o no, acusarían su paso asimilando a su inseparable compañera: ¡La Entropía! Pero, ¿Hubo un tiempo anterior a nuestro tiempo?
“La idea principal que está presente en todas nuestras investigaciones
y que acompaña a toda nuestra Observación,
el sonido que en el oído del estudioso de la Naturaleza
parece resonar continuamente en toda parte de su obra es:
¡Tiempo! ¡Tiempo! ¡Tiempo!”
George Scrope
Ellos creían que, como las Estaciones, el tiempo era cíclico
La concepción del Tiempo que predominaba en la antigua Grecia era cíclica, y tan cerrada como las esferas cristalinas en las que Aristóteles aprisionaba el espacio cósmico. Platón, Aristóteles, Pitágoras y los estoícos, todos ellos, sostenían la idea, heredada de una antigua creencia caldea, de que la historia del universo consistía en una serie de “grandes años”, cada uno de los cuales era de un ciclo de duración no especificada que terminaba cuando todos los planetas estaban en conjunción, provocando una catástrofe de cuyas cenizas empezaba el siguiente ciclo de nuevo.

El Universo era infinito y se renovaba cíclicamente a partir del Cáos destructor surgía el Nuevo
Se pensaba que este proceso tenía lugar desde siempre. Según el razonamiento de Aristóteles, con una lógica tan circular como el movimiento de las estrellas, sería paradójico pensar que el Tiempo ha tenido un comienzo en el tiempo, de modo que los ciclos cósmicos deben reproducirse continuamente.
La concepción cíclica del Tiempo no carecía de encantos. Expresaba un hastío del mundo y un elegante fatalismo del género que a menudo atrae a las personas con inclinaciones filosóficas, un tinte conservado en forma indeleble por el historiador Islámico Ahmad ibn Ábd al- Ghaffar, quien relató una parábola del eterno retorno.

Una y otra vez, en nuestro Universo, se repiten las mismas transiciones o cambios de fase que lo regeneran una y otra vez: Estrellas que al final de sus vidas explotan como supernovas, Dejando Nubes estelares gigantes de las que vuelven a surgir nuevas estrellas que, de nuevo, vuelven a brillar durante millones o miles de millones de años para empezar otro ciclo. Esa es, la verdadera dinámica del Universo: la Destrucción-Creación de la que se vale para luchar contra la Entropía. Es decir, ¿vida después de la muerte?

Claro que, en aquellos tiempos, el Universo cíclico era tomado literalmente y les sugería una especie de inmortalidad. Como Eudemo de Rodas, discípulo de Aristóteles, decía a sus propios discípulos: “Si creéis a los pitagóricos, todo retornará con el tiempo en el mismo orden numérico, y yo conversaré con vosotros con el bastón en la mano y vosotros os sentaréis como estáis sentados ahora, y lo mismo sucederá con toda otra cosa.” Por estas o por otras razones, el tiempo cíclico aún es popular hoy, y muchos cosmólogos defienden modelos del “universo oscilante”, en los que se supone que la expansión del universo en elgún momento se detendrá y será seguida por un colapso cósmico en los fuegos purificadores del siguiente big bang. Sin embargo, la Densidad Crítica observada, no avala tal pensamiento.

Con relativa frecuencia, un científico determinado, o un grupo de ellos, nos advierten que nos dirigimos irremisiblemente al colapso, mientras que otros, por el contrario, vislumbran un mundo feliz.
No parece, que ninguna de las dos opciones estén basadas en una realidad científica en la que podamos confiar. La primera, la del colapso, no viene apoyada por los datos obtenidos en las observaciones del Universo que, siendo múltiples y obtenidas por distintos medios y en distintas regiones del espacio interestelar cosmológico, parecen coincidir en el hecho cierto de que, la Densidad Crítica, es decir, la Densidad Media de materia requerida para que la Gravedad detenga la Expansión y se produzca el “colapso” del Universo, no es tan alta como para que eso sea posible. La Densidad crítica es de alrededor de 10-29 gramos por cm3, es decir, se ajusta al Modelo que tiene justamente la Densidad Crítica necesaria para que se esté expandiendo para siempre, es el Modelo de Einstein- De Sitter.Parece que nuestro Universo, se expandirá sin ninguna parada, sino que, por el contrario, cada vez lo hará más rápidamente hasta que, el frío del cero absoluto, lo haga un universo muerto, sin vida.

Las galaxias se alejaran las unas de las otras y la temperatura del Universo decaerá hasta el cero absoluto, allí, nada se mueve y la vida, no podría estar presente. ¿Tendremos que buscar otros caminos para preservar la especie? ¿Existen en realidad esos caminos? ¿Habrá Universos paralelos en los que poder refugiarnos? Tantas preguntas denotan nuestra enorme ignorancia. Claro que, el pensamiento principal al que debemos acudir en tales circunstancias es el de si, para entonces, estaríamos nosotros aquí.
Pero sigamos con el universo cíclico de los griegos. Pese a todos sus aspectos felices, la vieja doctrina de la historia infinita y cíclica tenía el pernicioso efecto de tender a desalentar los intentos de sondear la genuina extensión del pasado. Si la historia cósmica sonsistía en una serie interminable de repeticiones inunterrumpidas por destrucciones universales, entonces era imposible determinar cual era realmente la edad total del universo. Un pasado cíclico infinito es por definición inconmensurable, es un “tiempo fuera de la mente”, como solía decir Alejandro Magno. El tiempo cíclico tampoco dejaba mucho espacio para el concepto de evolución. La fructífera idea de que puede haber innovaciones genuínas en el mundo.

Es cierto, de andar arrastrando las manos por el suelo, hemos llegado a la mesa del Ordenador, o, como mas me gusta definir lo ocurrido realmente: Desde la copa de los árboles la evolución nos ha llevado al Espacio exterior, a las estrellas lejanas mediante los pensamientos complejos que hemos llegado a desarrollar.
Los griegos sabían que el mundo cambia y que algunos de sus cambios eran graduales. Al vivir como vivían con el mar a sus pies y las montañas a sus espaldas, se daban cuenta de que las olas erosionan la tierra y estaban familiarizados con el extraño hecho de que las conchas y fósiles de animales marinos pueden encontrarse en cimas montañosas muy por encima del nivel del mar. Al menos dos de los hallazgos esenciales de la ciencia moderna de la geología -que pueden formarse montañas a partir de lo que fue el lecho marino, y que pueden sufrir la erosión del viento y del agua- ya eran mencionadas en épocas tan tempranas como el siglo IV a. C.
Desde un punto de vista científico, la implicación más perniciosa del catastrofísmo fue que cortó el pasado del presente, como la astrofísica de Aristóteles había divorciado lo etéreo de lo mundano. Al relegar los principales cambios geológicos a poderosas fuerzas sobrenaturales que sólo se habían manifestado en la historia temprana de la Tierra, el catastrofismo excluyó la extrapolación a la historia de leyes científicas cosechadas del mundo actual. El geólogo escocés Charles Lyell escribió: “Nunca hubo un dogma más calculado para alentar la indolencia y embotar la curiosidad que este supuesto de la discordancia entre las causas anteriores y las actuales del cambio.” A Darwin, cuya lectura eran los escritos de Lyell, le inspiraron estas ideas.

Está claro que con el paso del Tiempo siempre viaja la Evolución, no sólo ya del Universo, sino de nuestras Mentes que pueden imaginar, razonar, inventar y descubrir como hacer cosas nuevas, como crear la tecnología que nos permite llegar hasta lugares imposibles en el ámbito de lo muy pequeño y de lo muy grande, y, no digamos del Arte y de las Ciencias.
Recordemos que el Libro de Lyell convirtió el viaje de Darwin, en el bergantín Beagle, en un viaje en el tiempo. Darwin comenzó a leerlo inmediatamente, en su litera, mientras sufría los primeros de los muchos mareos que le atormentarían durante los cinco años siguientes. Construir una teoría de base empírica como la que realizó Darwin de la evolución, requiere no solo datos de observación, sino también una hipótesis organizadora, y, esa hipótesis, fue olvidada por aquellos griegos del universo cíclico.

Los cielos de nuestros antepasados se cernían a baja altura sobre sus cabezas. Cuando los antiguos astrónomos sumerios, chinos o coreanos subían los escalones de sus anchos y bajos zigurats de piedra para estudiar las estrellas, tenían razón para suponer que de ese modo lograban una visión mejor, no, como diríamos hoy, porque así dejaban atrás un poco de polvo y de aire turbulento, sino porque se acercaban considerablemente a las estrellas.

Zigurats del arte sumerio, para ver las estrellas en un ámbito religioso
Los egipcios, por ejmplo, consideraban el cielo como una especie de toldo de tienda de campaña, apoyado en las montañas que señalaban los cuatro rincones de la Tierra, y como las montañas no eran muy altas, tampoco lo eran, presumiblemente, los cielos; las gigantescas constelaciones egipcias revoloteaban cerca de la Humanidad, tan próximas como una madre que se inclina para besar a su hijo dormido.
![]()
La Gran Pirámide y la Esfinge de Giza
El Sol griego estaba tan cerca que Ícaro tan sólo había alcanzado una altura de unos pocos miles de metros cuando el calor del astro fundió la cera de sus alas, arrojando al pobre muchacho al inhóspito Egeo. Tampoco las estrellas griegas estaban mucho más distantes; cuando Faetón perdió el control del Sol, viró hacia las estrellas tan repentinamente como un carro desviado que choca contra un poste indicador, y luego rebotó hacia la Tierra (tostando a los etíopes en su descenso).

Ícaro es hijo del arquitecto Dédalo constructor del laberinto de Creta, y de una esclava llamada Nñáucrate. Estaba retenido junto a su padre en la isla de Creta por el rey de la isla, llamado Minos.
Dédalo decidió escapar de la isla, pero dado que Minos controlaba la tierra y el mar, Dédalo se puso a trabajar para fabricar alas para él y su joven hijo Ícaro. Enlazó plumas entre sí uniendo con hilo las plumas centrales y con cera las laterales, y le dio al conjunto la suave curvatura de las alas de un pájaro. Ícaro a veces corría a recoger del suelo las plumas que el viento se había llevado o ablandaba la cera.
Cuando al fin terminó el trabajo, Dédalo batió sus alas y se halló subiendo y suspendido en el aire. Equipó entonces a su hijo de la misma manera, y le enseñó cómo volar. Cuando ambos estuvieron preparados para volar, Dédalo advirtió a Ícaro que no volase demasiado alto porque el calor del sol derretiría la cera, ni demasiado bajo porque la espuma del mar mojaría las alas y no podría volar.
Claro que, de ninguna manera podemos criticar las creencias de aquellos antecesores nuestros que, de alguna manera, nos prepararon el camino a seguir, y, de hecho, muchas de sus costumbres relacionadas con el cosmos y las estrellas que lo pueblan nos dejaron bellas anécdotas:

“Cuando se eleva el Gran Orión, pon a tus esclavos
A aventar el sagrado grano de Démeter
En la ventosa y desgastada era…
Luego da un repaso a tus esclavos; desunce tu yunta.
Pero cuando Orión y Sirio se desplacen
A la mitad del cielo, y Arturo acompaña
A la rosada Aurora, entonces Perseo, arranca
Las uvas arracimadas y lleva la cosecha a tu casa…
Cuando el gran Orión se sumerge el tiempo ha llegado
De arar, y, oportunamente, muere el viejo año.”

Los cazadores recolectores que precedieron a los agricultores también usaron el cielo como calendario. Todas aquellas civilizaciones antiguas miraban a los cielos y a las estrellas para saber, en cada momento, qué era lo que tenían que hacer. Hasta en sus viajes eran las estrellas sus guías.

El modelo geocéntrico.
El modelo geocentrico lo propuso aristoteles y este consiste en lo siguiente: la tierra esta inmovil y aparece en el centro del universo, esta rodeada por ocho esferas concentricas que transportan el sol, la luna, los planetas conocidos y las estrellas fijas; el universo es finito.
Ptolomeo revisó las ideas de Aristóteles y fue el que consagró el modelo geocéntrico que permitía predecir el movimiento aparente de los planetas.
La diminuta escala de esos primeros modelos del cosmos era el resultado del supuesto de que la Tierra está situada, inmóvil, en el centro del universo. Si la Tierra no se mueve, entonces deben hacerlo las estrellas: la esfera estrellada debe rotar en su eje una vez al día para llevar a tiempo las estrellas apiñadas sobre nuestras cabezas, y cuanto mayor sea la esfera, tanto más rápidamente debe rotar. Si tal cosmos fuese muy grande, la velocidad requerida para la esfera celeste sería irrazonablemente alta.
Cuando hizo acto de presencia en escena Aristarco, cuya cosmología heliocéntrica se adelantó a la de Copérnico en unos mil setecientos años, las cosas cambiaron para mejor y el concepto del universo tomó otros senderos más en consonancia con la realidad. Aristarco era oriundo de Samos, una isla boscasa cercana a la costa de Asia Menor, donde Pitágoras, tres siglos antes, había proclamado por primera vez que “todo es número”. Discípulo de Estrabón de lampsaco, Jefe de la escuela peripatética fundada por Aristóteles, Aristarco era un hábil geómetra que se sentía atraído por la tercera dimensión, y trazaba en su mente vastas figuras geométricas que no sólo se extendían por el cielo, sino también por las profundidades del espacio.

Él, antes que Copérnico, nos habló del Sistema solar auténtico (Aristarco de Samos)
Las adelantadas ideas de Aristarco nunca fueron reconocidas en su tiempo, y, tuvieron que pasar muchos siglos para que, Copérnico, hiciera suyas sus ideas y triunfara con la idea que antaño dejó Aristarco para las generaciones venideras. Así, el premio Nobel del reconocimiento popular, se lo llevó Copérnico por ideas de Aristarco.
Lástima que no se pueda seguir las teorías de Aristarco por haberse perdido el libro en el que proponía la teoría heliocéntrica. Sabemos de él por un informe escrito alrededor del 212 a.C. por el geómetra Arquímedes que, escribió un artículo titulado “El contador de Arena” y, muchas de sus teorías allí reseñadas, se basaron en las ideas de Aristarco de Samos.
El reportaje que aquí habeis podido leer, ha sido, en realidad, como el ir divagando sin rumbo de un lado a otro, y, al hablar de cuestiones dispersas, parece que, de nada hemos hablado. Sin embargo, ahí quedan las ideas y los hechos comentados que, de seguro, para algunos lectores habrán sido de interés.
emilio silvera
Jun
21
Biología cuántica: una ciencia que es y no es a la vez
por Emilio Silvera ~
Clasificado en ¿Biofísica? ~
Comments (0)
Reportaje de Prensa: En El Español.
Los científicos estudian si los seres vivos utilizan las extrañas propiedades de la física cuántica en sus procesos biológicos, pero aún no lo han decidido.

Imagen de una estructura de ADN molecular en el Museo de Ciencias de Oxford. Allispossible.org.uk (CC)
Circula por ahí un chiste sobre los ordenadores cuánticos, esas máquinas del futuro de las que se hablan maravillas: “Los ordenadores cuánticos son extremadamente potentes, y al mismo tiempo aún no funcionan”, cuenta a EL ESPAÑOL el físico Franco Nori, director del Grupo de Investigación en Materia Condensada Cuántica del Instituto RIKEN, en Japón. El chiste es una parodia del famoso experimento mental del gato de Schrödinger, que estaba vivo y muerto al mismo tiempo.

Y es que la física cuántica es así: paradójica, contraria a la intuición de los seres grandes como nosotros, que nos regimos por la lógica de la mecánica clásica y la relatividad einsteniana. En nuestra experiencia cotidiana, algo no puede aparecer al mismo tiempo en dos estados incompatibles entre sí. Las reglas de la cuántica sólo operan en lo extremadamente diminuto; e incluso a esa escala, no siempre funcionan. Pero sobre todo, aún no ha logrado tenderse el puente en el que los físicos cuánticos y los relativistas puedan darse la mano; no hay una teoría que ligue ambos ingredientes en una sola salsa.
Sin embargo, es evidente que las partículas subatómicas son la base de todo, así que podríamos decir, apunta Nori, que “todo en el universo es cuántico… porque todo está hecho de átomos”. Pero aclara: “Sin embargo, no describimos cómo se mueven los satélites o cómo fluye el agua utilizando mecánica cuántica, porque para esto no necesitamos la parte cuántica. Muchos átomos se pueden describir bien clásicamente”. De hecho, añade, “pocos fotones requieren un tratamiento de óptica cuántica; no se necesita”.
Y dado que lo ocurrido en los círculos cuánticos no deja rastro aparente en eso que los no-físicos llamarían el mundo real, ¿cómo podría tener alguna importancia para la vida? Debería quedar perfectamente zanjado que las enormes moléculas en las que se basan los procesos biológicos no pueden enterarse ni de lejos de lo que sucede al minúsculo nivel de los electrones de sus átomos, por mucho que dependan de ello. ¿O sí?
¿Qué es la vida?

En 1944 Erwin Schrödinger, el del gato, publicó un ensayo de divulgación titulado What is Life? (¿Qué es la vida?), basado en una serie de conferencias públicas que había pronunciado el año anterior en el Trinity College de Dublín. En su obra, Schrödinger ataba la relación entre química y biología, y por tanto entre física y biología, en una época en que aún no se conocía que la herencia genética residía en una sustancia ya conocida llamada ADN.
Aunque el austríaco no fue el primero en suponer que la información genética de los seres vivos debía de codificarse en enlaces químicos, sus ideas influyeron en la posterior investigación de la estructura del ADN por James Watson y Francis Crick. Pero Schrödinger hizo algo más: acuñó el término “teoría cuántica de la biología”, refiriéndose al hecho de que las mutaciones son saltos en la herencia, del mismo modo que la energía de las partículas salta de un valor discreto a otro (está cuantizada). “El mecanismo de la herencia está estrechamente relacionado con, o mejor dicho, está fundado sobre, la misma base de la teoría cuántica”, escribía el físico.
Con todo, Schrödinger se quedó corto: además de no extender su idea más allá de los genes, se centró únicamente en cómo la asimetría de las moléculas y sus múltiples formas podían servir para codificar toda la diversidad de la información genética. En cambio, negó expresamente que las transiciones en los átomos pudieran tener alguna influencia en la biología: “La indeterminación cuántica no juega ningún papel biológicamente relevante”, escribió.

A la biología cuántica aún le aguardaba una larga espera. Al menos, hasta 2007. Aquel año, un equipo de la Universidad de California en Berkeley dirigido por el físico Graham Fleming demostraba algo que otros científicos llevaban tiempo barruntando: la fotosíntesis, ese proceso cuasimágico por el que muchos organismos consiguen producir oxígeno a partir del dióxido de carbono, funciona gracias a la física cuántica.
Los investigadores aislaron los centros fotosintéticos de dos microbios, la bacteria verde del azufre Chlorobium tepidum y la bacteria púrpura Rhodobacter sphaeroides, y los bombardearon con pulsos láser para estudiar cómo la energía de los fotones se transfería desde los pigmentos que recogen la luz hasta el centro de reacción, donde se cuece esa química necesaria para la vida. Los mensajeros de esta transferencia son los electrones, que corren alimentados por esa poción mágica de la energía fotónica. Pero ¿cómo encuentran su camino entre el desorden molecular para evitar perderse y desperdiciar esa energía?
Fleming y su equipo descubrieron que lo hacen como ondas, no como partículas. De este modo, la onda se dispersa para encontrar el mejor camino sin tener que recorrerlos todos uno a uno. Y esta capacidad de estar en distintos lugares al mismo tiempo, o de tener dos estados incompatibles entre sí, es el privilegio de la física cuántica; por fin había nacido la biología cuántica.
Un caos húmedo y caliente

Géiser del Parque de Yellowstone.
Los análisis químicos y biológicos indican que hay un extraño ecosistema subglacial de bacterias autótrofas que metaboliza iones de azufre y hierro. Según la geomicrobióloga Jill Mikucki, en las muestras de agua existen como mínimo 17 tipos diferentes de microbios, que viven prácticamente sin oxígeno. Nunca antes se había observado en la naturaleza el proceso metabólico mediante el cual los microbios utilizan un sulfato como catalizador para respirar con iones férricos y metabolizar la materia orgánica microscópica atrapada con este compuesto químico.

Pero no tan aprisa. Fleming y su equipo llevaron a cabo sus experimentos en condiciones típicas de la física cuántica; por ejemplo, por debajo de los 100 grados bajo cero. Y está claro que las bacterias no suelen vivir a esas temperaturas. Para un físico, una célula es la peor de sus pesadillas: caliente, húmeda, ruidosa y desordenada. En tan miserables condiciones es imposible que ninguna tarea importante pueda confiarse a la extrema levedad de los fenómenos cuánticos. “Muchos científicos creen que estos fenómenos son tan frágiles que sólo aparecen en sistemas muy simples, compuestos por muy pocas partículas y donde el ruido molecular se congela a temperaturas cercanas al cero absoluto”, resume a EL ESPAÑOL el genetista molecular de la Universidad de Surrey (Reino Unido) Johnjoe McFadden.
O al menos eso parecía, hasta que en 2010 dosestudios demostraron que lo dicho para la fotosíntesis en el frío glacial era válido también a temperatura ambiente. Pero, de hecho, éste no es el único sistema biológico en el que la física cuántica puede marcar las reglas, ni siquiera el primero en el que sospechó algo semejante: durante décadas, los biofísicos intuyeron que las enzimas, esos mediadores que convencen a las moléculas para que reaccionen, funcionan según un conocido mecanismo cuántico llamado efecto túnel que permite a una partícula, en este caso un protón, pasar de un estado a otro sin saltar la barrera de energía que los separa, excavando un túnel. En 1989 se mostró por primera vez el efecto túnel en las enzimas.


Con todo esto, parece que la biología cuántica debería ser ya un miembro de pleno derecho del club de las disciplinas científicas. Y sin embargo, ni sus propios patrocinadores se atreven a ir tan lejos. Regresando al chiste del comienzo, Nori aplica a la biología cuántica esa misma doble condición del gato vivo y muerto: “Es a la vez un campo excitante para estudiarlo con precaución en el futuro, y también en el que muchas cuestiones importantes aún no están demostradas”.
“Muchos científicos aún no están convencidos de que estos efectos requieran la mecánica cuántica para explicarse”, apunta a EL ESPAÑOL el físico de la Universidad de Surrey Jim Al-Khalili, coautor junto con McFadden del libro Life on the Edge: The Coming of Age of Quantum Biology (Bantam Press, 2014). El obstáculo esencial es esa diferencia de pulcritud entre los experimentos cuánticos y el aparente caos de una célula viva, que suscita el escepticismo de no pocos expertos. Para el físico de la Universidad de Viena Markus Arndt, este es “un rasgo de la ciencia de la vida, no tan limpia como los laboratorios de física o los tubos de ensayo de la química”. “¿Pueden estas acciones sobrevivir en las escalas macroscópicas de tiempo y tamaño de los medios biológicos? Esta cuestión todavía está abierta”, comenta Arndt a este diario.
La brújula de las aves

La escala temporal que menciona Arndt es uno de los factores que levantan las cejas de los físicos. Un posible ejemplo de biología cuántica muy de actualidad es el sistema que guía a las aves migratorias, basado en el fenómeno de entrelazamiento cuántico. Según estudios en el petirrojo europeo, la luz dispara en la retina un par de electrones gemelos que responden al magnetismo terrestre, como la aguja de una brújula. Un estudio reciente ha prestado nuevo crédito a esta hipótesis. Pero un problema es que este entrelazamiento duraría unos pocos microsegundos. Para los físicos, esto es una eternidad jamás lograda ni de lejos en un laboratorio, y no digamos a una temperatura a la que el petirrojo no se convierta en un fósil congelado.
Sin embargo, el nuevo estudio no es experimental, sino una simulación por ordenador. “Todavía necesitamos pruebas experimentales de que la teoría es correcta”, dice Al-Khalili. El obstáculo principal al que se enfrenta la biología cuántica es la dificultad de llevar sus predicciones al laboratorio. “Los experimentos adecuados para evaluar estas cuestiones son complicados y difíciles de interpretar”, señala Nori. Otra pega es que los científicos aún se resisten a creer que estos mecanismos cuánticos en la biología tengan realmente un significado evolutivo; es decir, que existan porque los seres vivos han encontrado en la cuántica una ventaja aprovechable. “¿Por qué la naturaleza habría seleccionado estas superposiciones cuánticas? ¿Qué propósito tienen?”, se pregunta Nori.

Los expertos no ven demasiado claro que las tecnologías actuales vayan a ofrecer respuestas “en muchos años o unas pocas décadas”, estima Arndt. Y menos en casos todavía más aventurados y difíciles de testar: en 1996, el biofísico del University College de Londres Luca Turin lanzó una idea que trataba de dar respuesta a un enigma clásico de la biología del olfato: ¿Cómo puede nuestra nariz, con un repertorio grande pero limitado de receptores olfativos, detectar más de un billón de olores? La audaz hipótesis de Turin es que los receptores son capaces de distinguir las vibraciones de las moléculas de olor mediante un mecanismo de efecto túnel, lo que ampliaría la gama olfativa. Sin embargo, la propuesta no ha ganado el aplauso general. “La mayoría de la literatura no apoya el modelo de Turin”, dice Arndt.
En resumen, y pese a lo que afirman McFadden y Al-Khalili en el título de su libro, realmente no parece que la biología cuántica esté pasando a la madurez, sino sufriendo aún un larguísimo parto. Y eso que sus aplicaciones podrían ser provechosas, más allá de responder a la pregunta de Schrödinger. Por ejemplo, dominar el efecto cuántico de la fotosíntesis permitiría diseñar células solares más eficientes. Los dos autores subrayan que la manipulación a nanoescala abriría la puerta a logros como la creación de nanorrobots que depositen un fármaco en la célula que lo necesita.

Y cómo no, también está el futuro de los ordenadores cuánticos: lo que hace el electrón en la fotosíntesis no es otra cosa que computar la mejor solución a un problema sin tener que realizar las operaciones una por una. La naturaleza ya sabe cómo hacerlo. Curiosamente, Arndt sugiere que los ordenadores cuánticos, a su vez, generarían modelos detallados que darían una respuesta definitiva a las incógnitas sobre biología cuántica.
Jun
20
¿Puede esta bacteria terraformar Marte?
por Emilio Silvera ~
Clasificado en a otros mundos ~
Comments (0)

Chroococcidiopsis thermalis – Archivo
Un equipo internacional de biólogos y químicos cree que sería posible utilizar estos organismos para «fabricar» una atmósfera respirable en el Planeta rojo
Hace más de 3.500 millones de años, las bacterias fueron las principales responsables de “fabricar” una atmósfera respirable en la Tierra. Ahora, un equipo internacional de biólogos y químicos cree que sería posible utilizar el mismo tipo de organismos para hacer lo propio con Marte, terraformándolo hasta convertirlo en un mundo similar al nuestro. El estudio se ha publicado en Science.
Los científicos, procedentes de varias universidades de Australia, Reino Unido, Francia e Italia, basan su “sugerencia” en el hallazgo de la extraordinaria habilidad de las Cyanobacterias, antes llamadas “algas verdiazules”, para llevar a cabo la fotosíntesis incluso en las condiciones de iluminación más bajas.
Las Cyanobacterias se cuentan entre los organismos más antiguos de la Tierra, y entre sus habilidades destaca la de haber sido capaces de convertir, a través de la fotosíntesis, la primitiva atmósfera terrestre rica en metano, amoniaco y otros gases de efecto invernadero en el delicado compuesto que actualmente es capaz de sostener todas las formas de vida de nuestro planeta.
Los procesos fotoquímicos utilizados por estos antiquísimos microorganismos son bastante similares a los de la auténtica legión de plantas multicelulares que se desarrollaron después, y gracias a los que la atmósfera terrestre mantiene más o menos intacta su composición actual. El proceso implica el uso de luz roja, y si la mayor parte de las plantas son de color verde es porque la clorofila no es capaz de absorber energía de esa franja del espectro lumínico y la refleja.
La luz, sin embargo, resulta de la máxima importancia para la fotosíntesis. Tanto, que ni plantas ni bacterias son capaces de crecer en ambientes demasiado oscuros. Los investigadores se centraron precisamente en este punto, para averiguar cuál es el “límite de oscuridad” que puede llegar a tener un entorno capaz de permitir el proceso y más allá del cual la fotosíntesis ya no sería posible.
Por eso, con el biólogo de la Universidad Nacional de Australia Elmars Krausz a la cabeza, los científicos pusieron a prueba la habilidad de una especie concreta de Cyanobacteria, Chroococcidiopsis thermalis, para llevar a cabo la fotosíntesis en condiciones de poca luz.
Los investigadores esperaban que la fotosíntesis se “apagaría” a una longitud de onda de la luz de 700 nanómetros, un límite ampliamente consensuado y conocido como “el límite rojo”.
Pero Krausz y su equipo se encontraron con algo que no esperaban:
Chroococcidiopsis thermalis superaba ampliamente ese límite, y seguía fotosintetizando en longitudes de onda de hasta 750 nanómetros. Un hallazgo que no solo representa una significativa extensión de la capacidad de hacer la fotosíntesis con poca luz, sino que también describe un sistema que es capaz de “funcionar” con una cantidad muy inferior de combustible biológico. En palabras de los investigadores, se trata de “un fotosistema de baja energía sin precedentes”.

El límite rojo
Los biólogos descubrieron que la clave para esta capacidad hasta ahora desconocida radica en la presencia de una serie de clorofilas de longitud de onda larga que no habían sido detectadas previamente. Así, los científicos rastrearon los orígenes de estas clorofilas hasta el genoma de C. thermalis, y descubrieron que estaba ubicado en un conjunto de genes específicos que es común a muchas especies de Cyanobacterias, lo cual sugiere que la capacidad para superar el “límite rojo” podría ser algo común.
Para Krausz, esta recién descubierta capacidad resulta de lo más prometedora para el uso de Cyanobacterias como agentes de terraformación interplanetaria. De hecho, el establecimiento de colonias en otros mundos pondría en marcha una transformación atmosférica que, eventualmente, debería desembocar en unas condiciones favorables para la vida, incluso la de los seres humanos.

Por supuesto, si algunas de las vigentes teorías de la Astrobiología son correctas, las Cyanobacterias (u otras formas de vida similares) podrían existir ya en otros planetas, en cuyo caso su habilidad para sobrevivir en las condiciones más extremas de iluminación podría ser un nuevo indicativo para detectarlas.
“Todo esto puede sonar a ciencia ficción -explica Krausz- paro las agencias espaciales y las compañías privadas de todo el mundo tratan, de forma muy activa, de convertir este sueño en realidad en un futuro no demasiado lejano. En teoría, se podría aprovechar la fotosíntesis de este tipo de organismos para crear aire que los humanos puedan respirar en Marte”.
Para el biólogo, “estos organismos adaptados a una luz muy baja, como las Cyanobacterias que hemos estado estudiando, podrían crecer bajo las rocas y sobrevivir a las duras condiciones que reinan en el Planeta Rojo”.
Jun
19
Estructuras fundamentales del Universo
por Emilio Silvera ~
Clasificado en Estructuras fundamentales ~
Comments (0)

Estructuras Fundamentales de la Naturaleza
Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.
La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas y estas, a su vez, juntas en una inmensa proporción, forman los cuerpos que podemos ver a lo largo y lo ancho de todo el universo. Grandes estructuras y cúmulos y supercúmulos de galaxias que están hechos de la materia conocida como bariónica, es decir, de Quarks y Leptones.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo. Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y complejo como una ciudad, y con sus límites delineados por la pared celular. Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.
Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Sistema nervioso somático
Incluye grupos de neuronas que llevan información desde los órganos sensoriales (incluyendo toda la piel) hasta el sistema nervioso central (principalmente hasta el cordón espinal). A estos grupos de neuronas se les llama neuronas sensoriales o aferentes.
a) Las neuronas que recogen información directamente de los órganos sensoriales son neuronas especializadas con formas y sensibilidad particular. Por lo regular, estas neuronas tienen abundantes dendritas y axones cortos.

b) Por su parte, las neuronas que llevan información desde los órganos sensoriales hasta el sistema nervioso central suelen tener menos dendritas y axones largos. Grupos de estos axones forman lo que generalmente conocemos como nervios. Estos muestran un color blanco debido a la abundancia de capas de mielina, característico de los axones. A estos grupos de axones se les conoce como nervios sensoriales o aferentes.
Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros. Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

El enlace: Adenina con Timina o Guanina con Citosina, constituyendo dicha secuencia el código genético en el que se organiza el funcionamiento celular.
Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones.

El microscopio electrónico nos enseña cosas alucinantes. Arriba una nitocondria

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad.
Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.
Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

Hemos llegado hasta la consciencia de Ser, y, sabemos en qué lugar del Universo estamos
Nos cuesta asimilar que la evoluciòn de la materia se pudiera elevar (bajo un sin fin de parámetros y transmutaciones muy complejos), hasta alcanzar la consciencia y llegar a generar pensamientos. Parece como si el Universo hubiera sabido que nosotros (también otros seres similares e inteligentes en otros mundos del inmenso Cosmos), teníamos que venir y, para ello, creó sistemas idóneos para la vida como el planeta Tierra y muchos otros de su clase que ofrecen tal cobijo a criaturas vivas.

Los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo. En la imagen de arriba podemos ver como el Telescopio Espacial Hubble, poco a poco, ha podido ir avanzando hacia atrtás en el tiempo para enseñarnos las imágenes captadas cuando el Universo era muy joven. ¿Podremos algún día fabricar telescopios tan potentes que puedan captar imágenes del universo vecino?
Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.


Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que, la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.

Las entrañas de un protón
Siempre hemos querido saber lo que hay más allá de lo que el ojo ve
En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.
Estas y otras muchas maravillas son las que nos permitirán, en un futuro relativamente cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes.
emilio silvera
















Totales: 84.909.882
Conectados: 74






















