viernes, 14 de agosto del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




D-Branas, dimensiones extra… ¡Cómo somos!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

“¿Cuál es exactamente la geometría del universo? ¿Vivimos dentro de una especie de esfera de múltiples dimensiones o se trata más bien de un tejido espaciotemporal que se curva suavemente y sin llegar nunca a cerrarse sobre sí mismo? ¿O puede que incluso no se curve en absoluto y que en realidad habitemos en un universo plano? La cuestión, uno de los mayores interrogantes de la Cosmología, tiene para nosotros implicaciones muy concretas y que van mucho más allá de ser simples cuestiones teóricas. De hecho, la geometría del universo influye de forma decisiva en los objetos que observamos.

 

 

 

 

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de grandes estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas. Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias.

 

Howard Phillips Lovecraft

“El hombre que conoce la verdad está más allá del bien y del mal. El hombre que conoce la verdad ha comprendido que la ilusión es la realidad única y que la sustancia es la gran impostora”.

“Que no está muerto lo que duerme eternamente; y en el paso de los eones, aún la misma muerte está destinada a morir.”

“A mi parecer, no hay nada más misericordioso en el mundo que la incapacidad del cerebro humano de correlacionar todos sus contenidos. Vivimos en una plácida isla de ignorancia en medio de mares negros e infinitos, pero no fue concebido que debiéramos llegar muy lejos. Hasta el momento las ciencias, unas orientadas en su propia dirección, nos han causado poco daño; pero algún día, la reconstrucción de conocimientos dispersos nos dará a conocer tan terribles panorámicas de la realidad, y lo terrorífico del lugar que ocupamos en ella, que sólo podremos enloquecer como consecuencia de tal revelación, o huir de la mortífera luz hacia la paz y seguridad de una nueva era de tinieblas.”

“¿Quién conoce el fin? Lo que ha emergido puede hundirse y lo que se ha hundido puede emerger.”

 

 

http://3.bp.blogspot.com/_iOUWsYnNbmo/TFU_RqKxOEI/AAAAAAAAJY4/I4xDZWHN3bY/s1600/univer.jpg 

El Big Bang es una de las teorías astrofísicas que más ha dado que hablar, de ese hipotético suceso se han escrito miles de libros y artículos, entrevistas y conferencias y, al menos hasta el momento, parece que no hemos encontrado una teoría mejor para que pueda explicar de dónde surgió nuestro Universo. Sin embargo, nada es eterno y tampoco la teoría lo es, se han hecho estudios y se llevan a cabo proyectos que buscan otras explicaciones al origen de todo esto pero, nuestro intelecto no llega a poder profundizar tanto como para haber podido hallar una explicación mejor. Y, mientras tanto, seguimos imaginando. ¿Llegaremos algún día a comprender, como nos decía Lovecraft:

“… El hombre que conoce la verdad ha comprendido que la ilusión es la realidad única y que la sustancia es la gran impostora”.

¿Estaría en lo cierto?

 

 

[muertetermica12015585658%255B3%255D.jpg]

 

 

El físico y astrónomo inglés sir James Jeans  escribió sobre la muerte final del universo, que él denominó “muerte térmica”, a comienzos del siglo XX : “La segunda ley de la termodinámica predice que sólo puede haber un final para el universo, una “muerte térmica” en la que la temperatura es tan baja que hace la vida imposible”. Toda la energía tenderá a acabar en la forma más degradada, la energía térmica; en un de total equilibrio termodinámico  y a una temperatura cercana al cero absoluto, que impedirán cualquier posibilidad de extracción de energía útil. Será el desorden más absoluto (la máxima entropía) del que ya no se podrá extraer orden (baja entropía).

Si Dios creó el Universo, ¿Quién creó a Dios?

Un momento llegará, lejos, muy lejos aún en el futuro, en el que dejarán de formarse nuevas estrellas y nuevos mundos, las galaxias irán ralentizando su marcha y todo el Universo entero entrará en una zona temporal de lento caminar, no habrá energía para creae trabajo, la Entropía será la dueña de todo y, el final, la muerte térmica habrá llegado.

No podemos olvidarnos de que en el transcurso de muchos eones, nuestro Universo podría morir.  Estamos obligados a buscar la manera (si existe), de escapar de ese destino fatal. Si el Universo, finalmente, se convierte en una singularidad que es una región donde (según las leyes de la relatividad general) la curvatura del espacio-tiempo se infinitamente grande, y el espacio-tiempo deja de existir, toda vez que, la singularidad es una región de gravedad de marea infinita, es decir, una región donde la gravedad ejerce un tirón infinito sobre todos los objetos a lo largo de algunas direcciones y una compresión infinita a lo largo de otras, o, el otro modelo más probable que el anterior según todos los indicios, será el de la “muerte térmica”, la Entropía será la dueña absoluta, nada se moverá en la reinante temperatura del cero absoluto.

Pero,  ¿que ocurriría en el primer caso del Big Crung, es decir, un final en un universo cerrado donde la densidad excede a ña Densidad Crítica?

Después de crear un horizonte de agujero negro a su alrededor, dicen las ecuaciones que describen fenómeno, la materia toda que compone nuestro Universo, continuará implosionando, inexorablemente, hasta alcanzar densidad infinita y volumen cero, creándose así la singularidad que estará fundida con el espacio-tiempo.

Si eso llegara a suceder, seguramente, de esa “nada” que se ha formado, más pronto o más tarde surgirá, mediante una enorme explosión, un nuevo Universo que, no sabemos si será igual, con las mismas fuerzas y las mismas leyes que el que tenemos.

Resultado de imagen de Otros universos

Tendremos que buscar la manera de ir a otros universos

Así que, si todo esto resulta ser así, y si es cierto que pueden existir otros universos, si para cuando todo eso llegue aún nuestra especie hubiera sobrevivido (que no es probable) a la evoluciòn lógica de la vida… ¿No sería una irresponsabilidad, el no hacer nada? Tratar de saber, de desvelar los secretos que el Universo esconde para poder, en su caso, escapar de este universo nuestro para instalarnos en algún otro que, como ahora este, nos de cobijo.

Tenemos que , cada uno en la medida de sus posibilidades, procurando avanzar hacía un futuro de profundos conocimientos que nos permitan, algún día lejano, muy lejano situado en eso que llamamos futuro, escapar de ese escenario de destrucción.

Imagen relacionada

Algunos creen firmemente que para entonces, nuestras mentes evoluciuonadas estarán unidas al universo mismo y, tendremos la manera de convertirnos en Seres inmortales, no necesitaremos cuerpo físico y tendremos la capacidad de viajar por éste y otros universos paralelos con total libertad…

Pero seámos realistas y si llega la muerte térmica, los átomos se paralizan, las estrellas dejan de brillar… ¿qué nos queda? Bueno, todo esto queda demasiado lejos en el Tiempo y, lo más seguros es… ¿Que para entonces, no estemos aquí!

Si por el contrario, el final del Universo, no es el Big Crunch, y resulta que estamos viviendo en un Universo plano con expansión eterna, tampoco parece que el panorama sea más alentador, sólo varía que, en lugar de terminar con una enorme bola de fuego a miles de millones de grados, el alejamiento paulatino de las galaxias por la expansión imparable del Universo, nos traerá el frío del cero absoluto, -273 ºC, con lo cual, de la misma manera, el final sería igual de triste nosotros: ¡La desaparición de la Humanidad! El Universo, sin estrellas que brillen sería en toda su extensión una terrible oscuridad, sin energía y sin vida. Claro, eso si es que la Humanidad, para entonces, anda aún por aquí. De hecho, es muy improbable que duremos tanto.

Como nos queda aún mucho tiempo para llegar a ese hipotético final, retomemos mejor, otras cuestiones futuras , más cercanas.

       Fluctuaciones de vacío, dimensiones extra, ¿un universo en la sombra?

¿Qué son las D-branas? ¿Por qué las requiere la teoría de cuerdas? La respuesta básica a la segunda pregunta es que dan sentido a las cuerdas abiertas que intervienen en la teoría I: cada uno de los dos extremos de una cuerda abierta debe residir en una D-brana. Así lo han deducido las matemáticas imaginadas por nuestras mentes.

Los dos extremos de la cuerda abierta residen en un subespacio (q+l)-dimensional de género tiempo llamado una D-brana, o D-q-brana que es una entidad esencialmente clásica (aunque posee propiedades de súpersimetría), que representa una solución de la teoría de la supergravedad 11 dimensional.

En respuesta a la primera pregunta, una D-Brana es una estructura de genero tiempo, más arriba indico, 1+q dimensiones espaciotemporales. (Invocando una de las dualidades de la teoría M, alternativamente podemos considerar una D-Brana como una solución de las ecuaciones de alguna otra versión de la teoría M de cuerdas.)

Las D-branas aparecen en muchas discusiones modernas relacionadas con las cuerdas (por ejemplo, en la entropía de los agujeros negros).  Suelen tratarse como si fueran objetos clásicos que yacen dentro del espaciotiempo completo 1+9 (° 1+10) dimensiones.  La “D” viene de “Dirichlet”, por analogía con el tipo de problema de valor de frontera conocido como un problema de Dirichlet, en el que hay una frontera de género tiempo sobre la que se especifican (según Meter G. Lejeune Dirichlet, un eminente matemático francés que vivió entre 1805 y 1859.)

Con la introducción de tales “D-branas” varios teóricos han expresado una “filosofía de cuerdas” que parece representar un profundo cambio respecto a lo anterior.  En efecto, se afirma con cierta frecuencia que podríamos “vivir en” o esa D-brana, lo que significa que nuestro espaciotiempo percibido podría yacer realmente dentro de  una D-brana, de modo que la razón de que no se perciban ciertas “dimensiones extra” se explicaría por el hecho de que “nuestra” D-brana no se extiende a esas dimensiones extra.

La última posibilidad sería la postura más económica, por supuesto, de modo que “nuestra” D-brana (una D-3 brana) sería de 1+3 dimensiones.  Esto no elimina los grados de libertad en las dimensiones extra, los reduce drásticamente.  ¿Por qué es así? Nuestra perspectiva ahora es que somos “conscientes” de los grados de libertad que están implicados en el interior profundo del espacio de mayores dimensiones entre los D-branas, y es en esto donde se está dejando sentir la excesiva libertad funcional.

Solo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”.  Más que una imagen de “espacio cociente” que evoca la analogía de Kaluza-Klein original:

d-brana

El gráfico anterior representa un Modelo de manguera de un espaciotiempo de dimensiones más altas de tipo Kaluza-Klein, donde la longitud o mejor la dimensión a lo largo de la longitud de la manguera representa al u-espaciotiempo normal y la dimensión alrededor de la manguera representa la dimensión extra “pequeños” (quizá a escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.

Así, nuestro espaciotiempo observado aparece como un subespacio 4-dimensional del espacio real de dimensiones más altas. Con algo de imaginación, lo podemos visualizar en nuestra mente. Yo por más que me esfuerzo no consigo imaginar nuestro universo con más dimensiones de las que podemos constatar, mi intleecto no llega para poder llegar tan lejos.

Resultado de imagen de Supergeometría de las más altas dimensiones

¿Cuánta libertad funcional esperamos ahora? La situación es ahora algo parecida a la imagen geométrica que hemos adoptado en el gráfico para obtener una perspectiva más convencional con respecto a la “supergeometría”.  Puesto que ahora estamos interesados solo en el comportamiento en la D-brana (que suponemos que es geométricamente una (1+3)-superficie ordinaria), podemos imaginar que nuestra libertad funcional se ha convertido en una aceptable.  Sin embargo, incluso esto supone que la restricción de la dinámica en el 10-espacio (u 11-espacio) completo nos proporciona ecuaciones dinámicas dentro de “nuestra” D-brana 4-dimensional que son del tipo convencional, de modo que bastará los iniciales en una 3-superficie para determinar el comportamiento en todo el 4-espacio.

¡El problema no ha desaparecido todavía! Tal actitud las D-branas se ha utilizado para intentar resolver el “problema de la jerarquía”

Según cierta perspectiva de “gran unificación”, las constantes de acoplamiento de las interacciones fuerte, débil y electromagnética, tratadas constantes de acoplamiento móviles, deberían alcanzar exactamente el mismo valor a temperaturas suficientemente  grandes, aproximadamente 1028k, que habrían dado alrededor de 10.000 instantes de Planck después del big bang (»10-39s). Se ha visto que la súpersimetría es necesaria resolver que los tres valores coincidan exactamente.

En concreto, es la cuestión de por qué las interacciones gravitatorias son tan minúsculas comparadas con las demás fuerzas importantes de la naturaleza o, de manera equivalente, por qué es la masa de Planck tan enormemente mayor que las masas de las partículas elementales de la naturaleza (en un factor de aproximadamente 1020).  La aproximación de la D-brana a este problema parece requerir la existencia de más de una D-brana, una de las cuales es “grande” y la otra “pequeña”.  Hay un factor exponencial involucrado en cómo se estira la geometría una D-brana hasta la otra, y esto es considera una ayuda para abordar la discrepancia en 1040, más o menos, las intensidades de la fuerza gravitatoria y las otras fuerzas.

 

Es posible que en el Universo estén presentes dimensiones que no podemos percibir. Sin embargo, las estamos buscando.

Se puede decir que este tipo de imagen de espaciotiempo de dimensiones más altas, que se estira la frontera de una D-brana hasta la otra, es uno de los tipos de geometría sugeridos por las teorías 11 dimensionales, tales como la teoría M, donde la undécima dimensión tiene la de un segmento abierto, y la geometría de cada frontera tiene la forma topológica (por ejemplo, MxV) de los 10 espacios considerados antes.  En otros modelos, la undécima dimensión es topológicamente S1.

¿Qué harán de todo esto los físicos con respecto al estatus de la teoría de cuerdas como una teoría física el futuro?

Resultado de imagen de Que es una D-Brana

Como hemos referido en otras ocasiones,  la mayoría de las versiones de la teoría de cuerdas implican dos tipos de cuerda: cuerdas abiertas con puntos finales desligados y cuerdas cerradas  que forman lazos cerrados. Explorando las consecuencias de la acción Nambu-Goto, queda claro que la energía fluir a lo largo de una cuerda, deslizándose hasta el punto final y desapareciendo. Esto plantea un problema: la conservación de la energía  establece que la energía no debe desaparecer del sistema. Por lo tanto, una teoría consistente de cuerdas debe incluir lugares en los cuales la energía pueda fluir cuando deja una cuerda; estos objetos se llaman D-branas. Cualquier versión de la teoría de cuerdas que permite cuerdas abiertas debe incorporar necesariamente D-branas, y todas las cuerdas abiertas debe tener sus puntos finales unidos a estas branas. Para un teórico de cuerdas, las D-branas son objetos físicos tan “reales” las cuerdas y no sólo entes matemáticos que reflejan un valor.

Se espera que todas las partículas elementales  sean estados vibratorios de las cuerdas cuánticas, y es natural preguntarse si las D-branas están hechas de alguna modo con las cuerdas mismas. En un sentido, esto resulta ser verdad: el espectro  de las partículas que las vibraciones de la cuerda permiten, encontramos un tipo conocido como taquión, que tiene algunas propiedades raras, como masa  imaginaria. Las D-branas se pueden imaginar como colecciones grandes de taquiones coherentes, de un modo parecido a los fotones  de un rayo láser.

Todo esto tiene implicaciones en la cosmología,  porque la teoría de cuerdas implica que el universo tienen más dimensiones que lo esperado (26 las teorías de cuerdas bosónicas  y 10 para las teorías de supercuerdas) tenemos que encontrar una razón por la cual las dimensiones adicionales no son evidentes. Una posibilidad sería que el universo visible es una D-brana muy grande que se extiende sobre tres dimensiones espaciales. Los objetos materiales, conformados de cuerdas abiertas, están ligados a la D-brana, y no pueden moverse “transversalmente” para explorar el universo fuera de la brana. Este panorama se llama una Cosmología de branas. La fuerza de la Gravedad no se debe a las cuerdas abiertas; los gravitones que llevan las fuerzas gravitacionales son estados vibratorios de cuerdas cerradas. Ya que las cuerdas cerradas no tienen porque estar unidas a D-branas, los efectos gravitacionales podrían depender de las dimensiones adicionales perpendiculares a la brana.

Los dos extremos de la cuerda abierta residen en un subespacio (q+l)- dimensional de género tiempo llamado una D-brana, o D-q-brana que es una entidad esencialmente clásica (aunque posee propiedades de súpersimetría=, que representa una solución de la teoría de la supergravedad 11 dimensional.

Imagen relacionada

Las teorías de dimensiones extra permiten transitar por otros caminos que, el mundo tetradimensional prohibe. No cabe duda de que la física ha desarrollado un “mundo” fantástico e imaginativo en el que existe un “universo” desconocido. Sin embargo, es una lástima que no podamos comprobar toda esa riqueza imaginativa a la que nos llevan las difíciles ecuaciones donde la topología es la reina del “baile” y, la complejidad su “compañera”.

De todas las maneras…

Más cerca del origen de la vida: meteoritos, cianuro y química de sistemas, por Carlos Briones

                           Muchas cosas han pasado que se formó la Tierra hasta llegar a nuestros días

“Nosotros, los humanos, llegamos muchísimo más tarde, cuando los materiales que formaron la Tierra estaban más fríos y se formaron los océanos, cuando había ya una atmósfera y, lo cierto es que, los materiales que hicieron posible nuestra presencia aquí, estaban en aquella nebulosa que se esparcía en el esapcio interestelar que hoy ocupa nuestro Sistema solar, una supernova hace miles de millones de años, fue el pistoletazo de salida. Después, el Tiempo, aliado con la materia y la fuerza de gravedad, hicieron posible que surgiera el Sol y, a su alrededor, los planetas y lunas de nuestro entorno, y, con la ayuda de lo que hemos llamado evolución y los ingredientes precisos de atmósfera, agua, radioactividad y otros parámetros necesarios, surgío aquella primera célula replicante que lo comenzó todo, es decir, la aventura de la Vida.”

La especulación sobre el origen del Universo es una vieja y destacada actividad humana. Vieja por el simple hecho de que la especie humana, no tiene ningún certificado de nacimiento y, tal desconocimiento de sus orígenes, les hace ser curiosos, deseosos de saber el por qué están aquí y pudo suceder su venida. Estamos obligados a investigar nuestros orígenes nosotros sólos, sin la ayuda de nadie, es el caso que, ningún ser inteligente nos puede contar lo que pasó y, siendo así, nos vemos abocados a tener que hurgar en el pasado y valernos de mil ingeniosos sistemas para tratar de saber. Así que, si investigamos sobre el mundo del que formamos , esas pesquisas terminarán por decirnos más, sobre nosotros mismos que sobre el universo que pretendemos describir. En realidad, todos esos pensamientos, que no pocas veces mezclan lo imaginario con la realidad, todo eso, en cierta medida, son proyecciones psicológicas, esquemas proyectados por nuestras mentes sobre el cielo, sombras danzantes de un fuego fatuo que no siempre nos transmite algún mensaje.

Nuestros ancestros miraban asombrados la puesta y la salida del Sol, la terrorífica oscuridad y la seguridad del día. Ellos no sabían el por qué de todos aqurellos cambios que se producían a su alrededor: el calor y el frío, la lluvia y el granizo, las nubes de la tormenta y los rayos… El Tiempo ha transcurrido inexorable y, ahora, hablamos de cuestiones tan complejas que, no siempre llegamos a comprender, imaginamos “mundos” de D-branas y creamos teorías que quieren explicar la naturaleza de las cosas. Sostenemos nuestros conocimientos actuales sobre dos poderosas teorías (la cuántica y la relativista) que, en realidad, son insuficientes para explicar todo lo que desconocemos, y, presentimos que hay mucho más.

¿Dónde encontrar lo que nos falta para conocer y despojarnos de este gran peso que sostenemos al que llamamos ignorancia?

emilio silvera

El Asteroide 1950 DA nos visitará en 2880

Autor por Emilio Silvera    ~    Archivo Clasificado en Meteoritos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La Nasa le pone fecha al choque de un asteroide con la Tierra

Después de haber ‘sobrevivido’ a varias predicciones sobre el supuesto fin del mundo, la vida en la Tierra vuelve a verse amenazada, esta vez por un asteroide de 1,1 kilómetros de diámetro.

La NASA alerta que un enorme asteroide se acerca peligrosamente a la Tierra

Todo sobre este tema

 

 

Se trata del asteroide 1950 AD, que ha sido observado por la Nasa durante más de medio siglo y que se encuentra en camino hacia la Tierra. El cuerpo celeste podría colisionar con nuestro planeta el 16 de marzo de 2880.

El asteroide es una roca de 1,1 kilómetros de diámetro que viaja a una velocidad de 15 km por segundo respecto a la Tierra.

 

 

Resultado de imagen de Meteorito 1950 DA

Según los cálculos de la agencia espacial estadounidense, el 1950 DA  podría estrellarse en el Océano Atlántico a 60.000 km/h, causando una explosión equivalente a 44.800 megatoneladas de TNT.

El análisis y la investigación del 1950 DA hechos con radar y realizados por los científicos del Laboratorio de Propulsión de Jets (JPL) de la Nasa sugiere que la probabilidad de un impacto es de solo un 0,3%, aunque esto representa un riesgo un 50% mayor que un impacto de todos los demás asteroides “cercanos a la Tierra”.

 

 

Resultado de imagen de Meteorito 1950 DA

El asteroide 1950 DA fue descubierto el 23 de febrero de 1950, cuando fue observado durante 17 días, para luego desaparecer por medio siglo hasta que el 31 de diciembre de 2000 el asteroide volvió a ser divisado por los astrónomos.
Debido a su trayectoria, el 16 de marzo de 2880 y durante un corto periodo de 20 minutos, los especialistas creen que es posible que ocurra una colisión con la Tierra.

Las observaciones ópticas muestran que el asteroide rota una vez cada 2,1 horas, la segunda velocidad de rotación más rápida jamás observada en un asteroide de tales dimensiones.

 

 

Pero los científicos del JPL dicen que no hay motivo de preocupación. Los siglos de avances tecnológicos que tenemos de ventaja, antes del presunto choque en 2880, permitirán emplear un método tan sencillo como “espolvorear la superficie del asteroide con tiza o carbón, o cuentas de vidrio tal vez blancas, o el envío de una nave de vela solar que termine envolviendo al asteroide con su vela reflectora. Esto cambiaría la reflectividad del asteroide, permitiendo que la luz del sol haga el trabajo de empujar al asteroide fuera del camino hacia la Tierra”.

Ondas Gravitacionales… ¿Qué puede implicar su conocimiento?

Autor por Emilio Silvera    ~    Archivo Clasificado en Ondas gravitacionales    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ondas Gravitacionales: Implicaciones del descubrimiento para la ciencia y para la humanidad

 

Ondas gravitacionales

Simulación informática de ondas gravitacionales durante una colisión de dos agujeros negros. Crédito: MPI for Gravitational Physics/W.Benger-Zib.

 

Miles de personas en todo el mundo celebraron hace ya algún tiempo el anuncio de la primera detección directa de las ondas gravitacionales – ondulaciones en el tejido del espacio-tiempo cuya existencia fue propuesta por primera vez por Albert Einstein, en 1916.

Las ondas tienen su origen en dos agujeros negros en rotación mutua, cada vez a menor distancia, hasta que finalmente colisionaron. El recientemente renovado “Large Interferometer Gravitational Wave Observatory” (LIGO) capturó la señal el 14 de septiembre de 2015. No todos los descubrimientos científicos reciben tantísima atención, de modo que, ¿cuál es exactamente la clave de éste, y cuál es el futuro de LIGO ahora que ha detectado estas elusivas ondas?

En primer lugar, detectar la colisión de dos agujeros negros es excitante en sí mismo – nadie sabía con certeza si los agujeros negros podían unirse para crear nuevos agujeros negros aún más masivos, pero ahora existe una prueba física. Y también está la alegría de finalmente tener una prueba directa que se predijo hace 100 años, utilizando un instrumento propuesto cuatro décadas atrás.

Resultado de imagen de Colisión de dos agujeros negros

       Al final sólo queda uno mayor

Pero lo que es realmente monumental de la detección es que proporciona a la humanidad la capacidad de ver el universo de un modo totalmente nuevo, dicen los científicos. La capacidad de detectar directamente ondas gravitacionales – que se generan por la aceleración o desaceleración de objetos masivos en el espacio – se ha comparado con la posibilidad de que una persona sorda de repente pudiera ser capaz de oír. Un ámbito totalmente nuevo de información está ahora disponible.

“Es como cuando Galileo apuntó por primera vez un telescopio hacia el cielo”, afirmó la miembro del equipo de LIGO Vassiliki (Vicky) Kalogera, profesora de física y astronomía en la Universidad de Northwestern, en Illinois. “Estamos abriendo los ojos – en este caso, nuestros oídos – a un nuevo conjunto de señales del universo que las tecnologías anteriores no nos permitían recibir, estudiar o analizar”.

Resultado de imagen de LIGO en el California Institute of Technology (Caltech)

“Hasta hoy, hemos sido sordos en cuanto a las ondas gravitacionales”, dijo David Reitze, Director Ejecutivo de LIGO en el California Institute of Technology (Caltech), durante la ceremonia del anuncio del descubrimiento en Washington, D.C. “A partir de ahora escucharemos más cosas, y sin duda oiremos cosas que esperábamos… pero también otras que jamás hubiéramos esperado”.

Con este nuevo sentido para percibir el universo, éstos son varios de los descubrimientos que los científicos esperan realizar.

Una nueva ventana al universo

LIGO es particularmente sensible a las ondas gravitacionales causadas por eventos cósmicos violentos, como la colisión de dos objetos masivos o la explosión de una estrella. El observatorio tiene el potencial de localizar estos objetos o eventos antes de que puedan hacerlo los telescopios que captan la luz, y en varios casos, las observaciones de ondas gravitacionales serían la única forma de encontrar y estudiar estos acontecimientos.

Que pasaria si dos agujeros negros chocasen 3

Por ejemplo, durante el reciente anuncio se informó que LIGO había identificado dos agujeros negros rodeándose mutuamente y posteriormente fusionándose en una energética colisión final. Como su nombre indica, los agujeros negros no emiten luz, o sea que son invisibles para los telescopios que observan y estudian la radiación electromagnética. Algunos agujeros negros son visibles para los telescopios basados en luz, por la radiación del material que los rodea, pero los astrónomos no han observado ejemplos de fusiones de agujeros negros con material visible a su alrededor.

Además, los agujeros negros detectados por LIGO tienen una masa 29 y 36 veces mayor que la del Sol respectivamente. Pero Reitze dijo que a medida que la sensibilidad de LIGO sigue aumentando, el instrumento podría detectar agujeros negros con una masa 100, 200 o incluso 500 veces superior a la del sol, y que están más lejos de la Tierra. “Podría haber un espectacular espacio para el descubrimiento una vez lleguemos a allí”, dijo.

Resultado de imagen de Telescopio de rayos X

              Observatorio de Rayos X Chandra

Los físicos saben que estudiar el cielo con distintas longitudes de onda revela nuevos datos acerca del cosmos. Durante muchos siglos, los astrónomos sólo podían trabajar con luz óptica. Pero en tiempos relativamente recientes, se construyeron instrumentos para estudiar el universo usando rayos X, ondas de radio, ondas ultravioleta y rayos gamma. Con cada uno, los científicos obtuvieron una nueva visión del universo.

Del mismo modo, las ondas gravitacionales tienen el potencial para mostrar cualidades totalmente nuevas de los objetos cósmicos, explicaron los miembros del equipo de LIGO.

[​IMG]

ASASSN-15lh fue descubierto el año pasado durante un sondeo automatizado de todo el cielo en busca de supernovas, estrellas en explosión que liberan enormes cantidades de energía y luz.

El punto luminoso fue detectado y clasificado como una supernova superluminosa, es decir, la explosión, al final de su vida, de una estrella “extremadamente” masiva.

“Si alguna vez tuviéramos la suerte de ver una supernova en nuestra propia galaxia, o quizás en una galaxia cercana, seríamos capaces de observar la dinámica real de lo que sucede en el interior de una supernova”, dijo el cofundador de LIGO Rainer Weiss del MIT, quien habló en la ceremonia del anuncio. Mientras la luz suele quedar escondida tras el polvo y el gas, “las ondas gravitacionales salen directamente [de la supernova], sin ningún impedimento”, explicó Weiss. “Es por esto que realmente se puede descubrir lo que sucede dentro de estos objetos”.

Imagen relacionada

Otros objetos exóticos que los científicos esperan estudiar con las ondas gravitacionales son las estrellas de neutrones, que son cadáveres de estrellas consumidas inimaginablemente densas. Una cucharada de café de la materia de una estrella de neutrones pesaría unos mil millones de toneladas en la Tierra. Los físicos no están seguros de lo que le ocurre a la materia normal bajo estas extremas condiciones, pero las ondas gravitacionales pueden ofrecer pistas muy útiles, porque estas ondas deberían transmitirnos información acerca del interior de una estrella de neutrones, afirmó el equipo de LIGO.

LIGO también tiene un sistema configurado para alertar a los telescopios ópticos cuando el detector puede haber detectado una onda gravitacional. Algunos de los acontecimientos astronómicos que LIGO estudiará, como la colisión de estrellas de neutrones, pueden producir luz en todas las longitudes de onda, desde rayos gamma a ondas de radio. Con el sistema de alerta de LIGO, los físicos podrían observar algunos acontecimientos astronómicos u objetos en varias longitudes de onda de la luz, más las ondas gravitacionales, lo que proporcionaría una “visión muy completa” de esos eventos, dijo Reitze.

“Cuando suceda será, creo, el próximo gran acontecimiento en este campo”, añadió.

Relatividad

Resultado de imagen de Relatividad generalImagen relacionada

Las ondas gravitacionales fueron pronosticadas por primera vez por la teoría de la relatividad de Einstein, publicada en 1916. Esta famosa teoría ha resistido todo tipo de pruebas físicas, pero hay ciertos aspectos que los científicos no han podido estudiar en el mundo real, porque requieren circunstancias extremas. La extrema deformación del espacio-tiempo es un ejemplo de ello.

“Hasta hoy, sólo hemos visto espacio-tiempo distorsionado cuando hay mucha calma – como si viéramos la superficie del océano durante un día muy tranquilo”, explicó Kip Thorne de Caltech, otro miembro fundador de LIGO y experto en la curvatura del espacio-tiempo. “Nunca habíamos visto el océano agitado durante una tormenta, con olas chocando. Todo esto cambió el 14 de septiembre. La colisión de los agujeros negros que causaron estas ondas gravitacionales crearon una violenta tormenta en el tejido del espacio-tiempo”.

“Esta observación prueba esos supuestos de forma muy bella, muy contundente”, prosiguió Thorne, “y Einstein reaparece con un brillante éxito”.

Resultado de imagen de Relatividad general

Pero el estudio de la relatividad general vía ondas gravitacionales está lejos de haber concluido. Quedan por resolver preguntas acerca de la naturaleza del gravitón, la partícula que supuestamente transporta la fuerza gravitacional (del mismo modo que el fotón es la partícula que transporta la fuerza electromagnética). Y los científicos tienen muchas interrogantes alrededor de lo que sucede en el interior de los agujeros negros, que las ondas gravitacionales podrían iluminar (por decirlo de algún modo). Pero todo esto, dicen los físicos, será revelado lentamente, a lo largo de los años, a medida que LIGO y otros instrumentos acumulen más datos sobre otros eventos.

Un legado para el futuro

Resultado de imagen de Incrementando la sensibilidad de LIGO

En los próximos tres años los esfuerzos se centrarán en incrementar la sensibilidad de LIGO hasta su máximo potencial, anunció Reitze. El observatorio – que consiste en dos grandes detectores, uno en Louisiana y el otro en el Estado de Washington — será más sensible a las ondas gravitacionales. Pero los expertos no saben cuántos acontecimientos será capaz de ver LIGO, porque desconocen la frecuencia de estos eventos en el universo.

LIGO detectó la fusión de los agujeros negros binarios incluso antes de la primera campaña de observación oficial del instrumento tras su reciente renovación, pero es posible que fuera sólo un golpe de suerte. Para poner en marcha el tren de la astronomía gravitacional, LIGO simplemente necesita más datos.

Cuando se le pidió que comentara el impacto de LIGO en el mundo más allá de la comunidad científica, y cómo puede influir la ciencia de las ondas gravitacionales en el día a día de la gente, Reitzer dijo: “¿Quién sabe?”.

“Cuando Einstein predijo la relatividad general, ¿quién hubiera pronosticado que la usaríamos diariamente en nuestros teléfonos móviles?”, preguntó. (La relatividad general proporciona el conocimiento de cómo la gravedad influye sobre el paso del tiempo, y esta información es necesaria para la tecnología de los GPS, que usa satélites que orbitan más lejos de la atracción gravitatoria de la Tierra de la que siente la gente en la superficie).

Imagen relacionadaImagen relacionada

            LIGO es mucho más de lo que podemos ver en la superficie, es una sofisticada estructura

LIGO es el “instrumento más sensible jamás construido”, dijo Reitze, y los avances tecnológicos realizados durante la construcción del observatorio pueden alimentar tecnologías que serán utilizadas en formas que todavía no se pueden predecir.

Thorne comentó que él ve la contribución de LIGO de manera algo distinta.

Resultado de imagen de Kip S. Thorne

“Cuando recordamos la era del Renacimiento y nos preguntamos, ‘¿Qué aportaron los humanos de esa era que tenga importancia para nosotros hoy en día?’, creo que todos estaríamos de acuerdo en que es el arte, una gran arquitectura y una gran música. De modo similar, cuando nuestros descendientes miren atrás hacia nosotros y se pregunten qué fue lo que les dejamos en herencia… Creo que será la comprensión de las leyes fundamentales del universo y de su función en el cosmos, así como la exploración espacial”, dijo Thorne.

“LIGO es una parte importante de esto. El resto de la astronomía también supone una parte importante de esto. Y pienso que la herencia cultural para las futuras generaciones es realmente mucho más grande que cualquier tipo de derivado tecnológico, o los avances tecnológicos de cualquier tipo. Creo que debemos estar orgullosos del legado que dejaremos a nuestros descendientes culturalmente”.

Fuente: SPACE

¿El fin del Mundo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Reportaje de El País-Ciencia

El Titular dice: El mundo da un paso más hacia el apocalipsis.
El Reloj del Fin del Mundo está a dos minutos y medio de la catástrofe, según un panel con 15 premios Nobel

 

 

Donald Trump, durante su investidura. SAUL LOEB (AP) / EPV

Cada año, un panel de científicos y especialistas nos dice cuánto queda para el fin del mundo. Lo hace de manera simbólica, con un reloj a punto de llegar al abismo, la medianoche: el indicador son los minutos que faltan para ese momento. Y hoy estamos muy cerca, a tan solo dos minutos y medio para el apocalipsis, según este grupo que incluye 15 premios Nobel. Los responsables del grupo lo han adelantado 30 segundos hacia las 0.00 horas. Nunca habíamos estado tan cerca de la destrucción de la humanidad desde 1953, cuando EE UU y la URSS pusieron sobre la Tierra sus primeras bombas termonucleares, con una capacidad destructiva desconocida hasta el momento.

Un sitio web permite cuantificar los daños que causaría la bomba atómica, solo basta identificar el lugar y activar la detonación

 

 

Nunca habíamos estado tan cerca de la destrucción de la humanidad desde 1953, cuando EE UU y la URSS pusieron sobre la Tierra sus primeras bombas termonucleares

 

En aquel momento, la humanidad estuvo a dos minutos de su fin. La bomba termonuclear de nuestra época no es producto de la Guerra Fría sino de un fenómeno mucho más caliente: la verborrea de Donald Trump y el calentamiento global. “Las palabras importan. No tanto como los hechos, pero importan mucho”, aseguró una portavoz del panel antes de anunciar la nueva situación. Las palabras que preocupan se refieren a las sugerencias de Trump de que Japón debería tener armamento atómico para afrontar la amenaza de Corea del Norte (puedes consultar la resolución en inglés en este PDF).

Resultado de imagen de Las dos superpotencias mundiales enfrían la crisis

El mundo llevaba dos años parado a tres minutos de la hora fatídica, la misma hora que en 1984 —la segunda peor crisis de la historia de este reloj—, cuando las dos superpotencias rompían relaciones y se alcanzaba un nuevo pico en el arsenal atómico mientras se avecinaba otra escalada de rearme. Curiosamente, en 1987 era Donald Trump el que promovía el desarme de EE UU y la URSS. Hoy, él es el problema que afronta el planeta. En diciembre, como presidente electo, Trump aseguraba que su país debía fortalecer su capacidad nuclear hasta que el mundo recobre el sentido en torno a estas armas.

El peligro nos acecha

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Reportaje en el País -Ciencia
 Las tripas de un meteorito desvelan cómo evitar un impacto con la Tierra

                             ¿Por qué no fue detectado el meteorito que cayó en Rusia?

 

Científicos españoles estudian por primera vez las propiedades mecánicas de la roca espacial que causó cientos de heridos en Rusia.

Punto del impacto del meteorito de Cheliabinsk, en Rusia.

                                        Punto del impacto del meteorito de Cheliabinsk, en Rusia. Getty

Era 14 de febrero de 2013 y los astrónomos de medio mundo esperaban observar al 2012 DA14, un meteorito descubierto por científicos españoles, pasar junto a la Tierra a una segura distancia de 27.680 kilómetros. Esa misma noche, otro cuerpo de unos 20 metros se acercaba a la Tierra sin que nadie lo hubiese detectado. En unas horas se convirtió en una espectacular bola de fuego sobre el cielo de Rusia. La onda expansiva causó cientos de heridos y fue una advertencia de lo vulnerable que es el planeta ante el impacto de cuerpos de este tipo.

Resultado de imagen de 2012 DA14

Ahora, un equipo de científicos europeos liderado por investigadores españoles ha sido el primero en analizar las propiedades mecánicas de uno de los miles de fragmentos de aquel meteorito que quedaron esparcidas por las llanuras heladas de Chelyabinsk, cerca de los Urales.

Los investigadores han realizado punciones milimétricas en el mineral para determinar su dureza, elasticidad y resistencia a la fractura. Los resultados, aceptados para publicación en Astrophysical Journal, pueden ser determinantes para diseñar una futura misión espacial que desvíe un meteorito más peligroso y evite su choque con la Tierra, según han explicado hoy dos de los responsables del estudio en una rueda de prensa.

Josep Maria Trigo sostiene el fragmeno de meteorito analizado. EFE

 

 

Los meteoritos de entre 30 o 50 metros, como el que arrasó una extensión de varios kilómetros cuadrados de bosque en Rusia a principios del siglo pasado suceden “en una escala de siglos o miles de años, pero en cambio en cualquier momento podemos sufrir un impacto como el de Chelyabinsk y no sabemos cuándo”, ha explicado Josep Maria Trigo, investigador del Instituto de Ciencias del Espacio (IEEE-CSIC) y coautor del estudio.

Trigo ha reconocido que si el asteroide llega desapercibido, como en el caso de Rusia, o se conoce solo unas horas o días antes, los humanos podemos hacer poco más que mirar. Pero si el cuerpo se detecta con un margen de meses o años, sí podría desviarse lanzando contra él una sonda. Para que el tiro sea certero es necesario conocer lo mejor posible la composición del cuerpo y saber en qué punto del mismo hay que atinar. Los meteoritos como el de Chelyabinsk se originan de asteroides que llevan mucho tiempo viajando por el Sistema Solar y han sufrido un número de colisiones que han transformado su consistencia y composición. Estudios como el realizado por los investigadores españoles podrían servir “para identificar cuáles son las zonas menos impactadas y conseguir que [tras el impacto] el meteorito salga despedido en la dirección contraria”, ha señalado Trigo.

Resultado de imagen de 2012 DA14

El proyecto AIM, con el que la Agencia Espacial Europea iba a colaborar con la NASA en una primera misión espacial de este tipo, no ha recibido el apoyo económico necesario y, por ahora, ha quedado en dique seco. La NASA tiene previsto continuar con su parte del proyecto, que lanzará una sonda de impacto contra un asteroide. Trigo es uno de los líderes de PALS, un proyecto para incluir varios satélites de pequeño tamaño que estaba siendo evaluado por la ESA junto a otros candidatos para volar en AIM. Trigo ha dicho hoy que el futuro de la misión “no está cerrado” y que “hay varios países europeos que quieren que AIM vuele”, aunque no ha identificado cuáles. “Tenemos que aprender a desviar asteroides antes de que no haya remedio”, ha señalado.