jueves, 06 de agosto del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Siempre tratando de conocer el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

¡El Universo! Gracias a la Astronomía, la Astrofísica y otras disciplinas y estudios relacionados, estamos conociendo cada día lo que en realidad es nuestro Universo que, nos tiene deparadas muchas, muchas sorpresas y maravillas que ni podemos imaginar. ¡Son tántas las cosas que aún tenemos que aprender de éste Universo Inmenso!

 

 

Resultado de imagen de Las primeras estrellas aparecieron después de cientos de millonesde años

 

Las primeras estrellas aparecieron después de cientos de millonesde años

 

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

 

 

 

La liberación de los fotones hizo un universo transparente y la luz, recorrió, desde entonces, todos los confines del Cosmos

 

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados.Avanza creando en el horno termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma descomunal deuna supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

 

 

 

 

Puesto que el peso promedio de los protones en los productos de fisión como el cesio y el kriptón,por ejemplo, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante E = mc2. Esta es la fuente de energía que subyace en la bomba atómica de tan malos recuerdos.

Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

 

 

Resultado de imagen de Una protoestrella

 

Una proto-estrella es aquella que acaba de nacer, cuando en esa fase del nacimiento lanza grandes cantidades de hidrógeno y oxígeno desde sus polos, se está formando y mediante estos mecanismos busca la estabilidad que la mantendrá fusionando hidrógeno en helio durante miles de millones de años.

Cuando alguien oye por vez primera la historia del nacimiento, vida y muerte de las estrellas,por regla general (lo se por experiencia) no dice nada, sin embargo, su rostro refleja escepticismo.¿Cómo de gas y polvo puede surgir una estrella? ¿Cómo puede vivir10.000 millones de años?Después de todo,nadie ha vivido tanto tiempo como para ser testigo de su evolución. Y, si es así, ¿cómo pueden saberlo? Bueno, lo cierto es que sí, tenemos los medios necesarios para saber eso…y mucho más.

 

 

 

El Universo no tiene límites y todo lo que podamosm pensar quen está presente en él, ahí estará. Fijaos en lo que nos mostró National Geographic, las imágenes de un raro ejemplar de un solo ojo descubierto por pescadores en el Golfo de California. National Geographic acostumbra a asombrar al mundo con sus espectaculares fotografías, en ocasiones de especies tan asombrosas que parecen sacadas de otro planeta.¿Qué no habrá por ahí fuera?

 

 

http://2.bp.blogspot.com/_xBXZbW6ivIs/S8she0lpiDI/AAAAAAAAFe4/IUp98nHEFdE/s1600/gran_protuberancia_solar_stereo.jpg

 

 

Claro quetenemos los medios técnicos y científicos para saber la edad que tienen las estrellas.

 

Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar,la estrella más cercana a la Tierra (150 millones de Km = 1 UA), con un diámetro de 1.392.530 Km, tiene una edad de 4.500 millones de años. Y, sabemos tanto de él como de nuestra cercana Luna. Incluso se están realizando estudios con sofisticados ingenios tecnológicos que nos dirán lo que realmente ocurre en el núcleo del Sol.

Es tal su densidad, es tal su enormidad (es el 99% de todo el Sistema Solar) que,cada segundo, transforma por medio de la fusión nuclear, 4.654.000 toneladas de hidrógeno en 4.650.000 toneladas de helio; las 4.000 toneladas restantes son lanzadas al espacio exterior en forma de luz y calor, de la que una parte nos llega a la Tierra y hace posible la vida. Se calcula que al Sol le queda material de fusión para otros 4.500 millones de años. Cuando transcurra dicho periodo de tiempo, se convertirá en una gigante roja,eyectará el material de sus capas exteriores al espacio interesrtelar para formar una Nebulosa Planetaria y se transformará finalmente en una estrella enana blanca. Para entonces, ya no podremos estar aquí.

 

 

Archivo:NGC6543.jpg

 

 

Para cuando nuestro Sol se transforme en algo como lo que arriba podemos ver, ¿dónde estará la Humanidad? Aunque es posible que, para entonces,no quede ningún rastro de nuestra presencia aquí, o, también podría suceder que estemos tan ricamente instalados en otros mundos. ¡Quién sabe!

Cuando mentalmente me sumerjo en las profundidades inmensas del universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos en el contexto del Universo “infinito”. Como una colonia de bacterias que habitan en una manzana, allí tienen su pequeño mundo, lo más importante para ellas, y, no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno.

 

 

 

¡Es todo tan relativo! Millones de seres infinitesimales pueden vivir ahí arriba, y, para ellos, ese es, su universo. Ajenos a todo lo que ocurre a su alrededor nacen, se multiplican y mueren. Simplemente es cuestión de tamo, de perspectiva y, desde luego, de consciencia.

Igualmente, nosotros nos creemos importantes dentro de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados.El paso del Tiempo nos permitió evolucionar, y, al observar la Naturaleza y contemplar las maravillas que encerraba, mirar a los cielos y, asombrados ver el brillo de las estrellas, buscamos la manera de llegar hasta ellas para poder aprender lo importantes que eran para nosotros y para la vida. También, desde un universo pequeño de esferas cristalinas, nuestro creciente saber, nos llevó hacia un Universo ilimitado de enormes proporciones que no dejaba de crecer.

 

 Aquí, en el ITER, tratamos de producir energía de fusión, es decir, imitar lo que hacen las estrellas

 

Si algún día, aquí en la Tierra, aprendemos a reproducir la energía de las estrellas, ese día, la Humanidad habrá dado uno de los pasos más importantes de toda su historia. La Energía es la base de la vida, y, para poder llegar a las estrellas, donde está nuestro origen primero, es necesario que aprendamos a dominar esa fuente inagotable que nos llevaría más allá, mucho más allá de nuestro Sistema solar.

Tendremos que dominar la energía del Sol, ser capaces de fabricar naves espaciales que sean impenetrables a las partículas que a cientos de miles de trillones circulan por el espacio a la velocidad de la luz, poder inventar una manera de imitar la gravedad terrestre dentro de las naves para poder hacer la vida diaria y cotidiana dentro de la nave sin estar flotando todo el tiempo y, desde luego, buscar un combustible que procure velocidades relativistas, cercanas a c, ya que de otra manera, el traslado por los mundos cercanos se haría interminable. Finalmente, y para escapar del Sistema solar, habría que buscar la manera de romper la barrera de la velocidad de la luz. Bueno, más que romper, se trataría de burlarla.

 

 

 

http://3.bp.blogspot.com/_wwGnn63GwvA/S6p6WrgogII/AAAAAAAAEdM/3I0olvWIVOI/s1600/universo.png

 

El entramado de un multiverso desconocido pero, presentido, puede ser el lugar en el que está ubicado el nuestro, entre otros muchos universos en un cúmulo de ellos que, como en el nuestro las galaxias, formen complejas estructuras no de mundos ni de estrellas, ni de galaxias, sino de Universos.

No sería descabellado pensar que nuestro universo es uno de los muchos universos que antes que él existió y que, al cumplir su ciclo, desaparezca para hacer posible la llegada de un nuevo universo, con un nuevo tiempo, un nuevo espacio y unas nuevas especies en multitud de nuevas estrellas y nuevos mundos.

Si es así como realmente sucede, ¿todos los universos que han existido antes o que existirán después tendrán las mismas propiedades que este nuestro?

No creo que en los ciclos de universos se produzcan siempre las mismas consecuencias y estén presentes las mismas fuerzas. Simplemente con que la masa o la carga del electrón fuesen diferentes, el universo también lo sería. Los equilibrios de nuestro universo son muy sensibles, la materia que podemos observar: estrellas y galaxias, planetas y nosotros mismos, son posibles gracias al equilibrio existente a niveles nucleares. Los quarks confinados por gluones que fabrican la fuerza nuclear fuerte, se junta para crear protones y neutrones que conforman los núcleos de la materia y, al ser rodeados por los electrones, dan lugar a los átomos.

 

 

 

http://biancaatwell.com/wp-content/uploads/2010/12/Alien_00.jpg

 

 

Incluso es posible que, otros seres, en otros mundos lejanos, hayan podido llegar a las mismas conclusiones cuánticas que nosotros por diferentes caminos, no importan las matemáticas o las ecuaciones que apliquen, al final del camino, el resultado siempre será el mismo: partículas elementales (Quarks y Leptones) que no importa el nombre que les puedan dar, serán las que formarán otras partícuals complejas para formar núcleos que serán rodeados por electrones (sea cual pueda ser el nombre que “ellos” le den), y, de esa manera, a ellos también les aparecerá el átomo que unidos, formarán células que se juntaran para formar moléculas que se unirán para crear la materia.

En cromodinámica cuántica, la propiedad de libertad asintótica hace que la interacción entre quarks sea más débil cuanto más cerca están unos de otros (confinación de quarks) y la fuerza crece cuando los quarks tratan de separarse, es la única fuerza que crece con la distancia. Los quarks y los gluones están confinados en una región cuyo valor se define por:

R » ћc /L » 10-13cm


En realidad, la única manera de que pudiéramos observar quarks libres, sería en un ambiente con la temperatura del universo primitivo, es la temperatura de deconfinamiento. En aquel ¡infierno! primero del big bang, los quarks estuvieron libres durante un tiempo antes de formar protones y neutrones y otras partículas de las familias de los hadrones, como los mesones.

 

 

 

http://4.bp.blogspot.com/-WNaQ0W51gik/TdPjfoU8HRI/AAAAAAAAE60/5ZbIX3U5aso/s1600/AChildMundi.jpg

Pero, a todo esto, ¿qué pintamos aquí nosotros?

¡Mirado así no parece que seamos gran cosa! Sin embargo, la cuestión no es tan sencilla, y, parece (al menos a mí) que, si estamos aquí, tenemos algunas obligaciones que cumplir, y, entre ellas, una de las principales es conocer el Universo al que pertenecemos y del que formamos parte. Nuestras mentes, de alguna manera que aún no podemos determinar, están directamente conectadas con el Universo.

Muchos grandes pensadores se han devanado los sesos tratándo de desvelar los mistrerios del Universo, y, desde luego, nos dejaron datos y conocimientos valiosos que ahora, nos sirven de base para que nosotros podamos continuar sus trabajos y desvelos. Así, por medio de la Astronomía, la Astrofísica, la Física y las Matemáticas (la Química también está presente), podremos continuar andando por el largo camino que aún nos queda por recorreer.

Mientras tanto, disfrutemos del Universo pero, sin olvidar que, toda respuesta, está cargada de nuevas preguntas.

emilio silvera

LA MÍTICA TIERRA DE TARTESSOS

Autor por Emilio Silvera    ~    Archivo Clasificado en Civilizaciones antiguas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

LA LEYENDA DE TARTESSOS EN LA ANTIGÜEDAD

Casi todas las noticias documentales que se tienen de Tartessos se deben a antiguos autores griegos. En ellas se confunden con frecuencia lo histórico con lo mítico o semimítico, con reyes como GeriónHabisNóraxArgantonio. Asimismo ha sido frecuente la identificación de la Atlántida descrita por Platón en sus diálogos TimeoCritias con la capital o ciudad de Tartessos.

La idea de la tierra occidental de Tartessos aparece en uno de los mitos helénicos más extendidos. El geógrafo Estrabón (escritor romano de la época de Augusto) relata la historia del viaje de Hércules al lejano oeste, donde llevó a cabo su décimo trabajo. En esta región de Tartessos construyó Hércules dos columnas como monumento a su arduo viaje; y en la isla de Eritia, situada en aguas costeras, se le pidió que vigilase el ganado de Gerión (Estrabón 3, 5, 4; 3, 2, 11).

Parece que el nombre original fue acuñado por los fenicios, que las llamaron las Columnas de Melkart, divinidad de su ciudad de Tiro. Desde la ciudad de Tiro se envió una expedición, a finales del segundo milenio A.C., a Tartessos, cultura que se desarrollaba en el sur de la península ibérica, para fundar una colonia que explotara las materias primas, sobre todo la plata. Fundaron el enclave de Gadir, la actual Cádiz, y allí se construyó un templo dedicado a Melkart que, como el templo original en Tiro, tenía dos enormes columnas flanqueando la entrada.

                           El Estrecho de Gibraltar, a un lado la Península Ibérica y al otro Marruecos

El mito de Tartessos se consideraba paradigma del avance de la humanidad hacia una forma civilizada de vivir. Hay una historia interesante en el Epitome del historiador romano Justino (que en el siglo IV d.C. resumió la extensa Historiae Philippicae de Pompeyo Trogo). En el bosque de los tartesios, donde abundaba el ganado vacuno, había una vez un rey llamado Gárgoris que fue la primera persona que supo cómo se recogía la miel. Tenía un hijo ilegítimo, llamado Habis, que enseñó a su pueblo (los tartesios) a utilizar el arado; impidió que se convirtieran en esclavos y los dividió en siete tribus (o siete ciudades) (Justino 44, 1, 14).

“…son considerados los más cultos de los iberos, ya que conocen la escritura y, según sus tradiciones ancestrales, incluso tienen crónicas históricas, poemas y leyes en verso que ellos dicen de seis mil años de antigüedad.

Estrabón, III 1,6″
Resultado de imagen de Argantonio

Argantonio (?, h. 670 a. C. - ?, h. 550 a. C.) fue el último rey tartésico, único del que se tienen referencias históricas. Debido a su longevidad, hay historiadores que piensan que podría tratarse no de un rey sino de una dinastía ya que se le atribuyen tesoros con unos 300 años de diferencia. Aparece en fuentes griegas por su relación militar y comercial con Focea (colonia de los griegos en Asia Menor).

El oscurísimo mito de Tartessos fue absorbido por la poesía helénica: por poner un ejemplo sacado de la literatura clásica,  « Tartessos era conocida de oídas [ en tiempos de Homero ] como “ la más lejana en el oeste ”, donde, como dice el propio poeta [ Homero ] , cae en el Océano, “ la brillante luz del sol, tendiendo la negra noche sobre la tierra, el que da grano ” » (Estrabón 3, 2, 12). También se refiere a su propia fuente, Estesícoro de Himera (poeta griego de Sicilia que vivió en los tiempos de los viajes helénicos a los mares occidentales) para instaurar la tradición, cuyas raíces son muy profundas, del “reino” de Tartessos; y aquí el mito de Gerión y su ganado en Tartessos se vuelve más pertinente:

Parece que los antiguos llamaron al río Baetis « Tartessos »; y que llamaron a Gades y a la isla contigua « Eritia »; y se supone que esta es la razón por la cual Estesícoro habló de aquel modo del vaquero [pastor de ganado vacuno] de Gerión, a saber, que nació más o menos enfrente de la famosa Eritia, junto a las ilimitadas fuentes con raíces de plata del río Tartessos, en una caverna de un precipicio (Estrabón 3, 2, 11).

Lugares como éste de vestigios del pasado, son abundantes en muchas zonas de Huelva.

Ahora nos enteramos de que en Tartessos se exhibían grandes cantidades de plata. Sin embargo, si le dejamos que hable, Estrabón nos asegurará que Tartessos estaba situada más allá de un remoto paso en el sur de la Península Ibérica, y nos advertirá que en la Antigüedad no había unanimidad acerca de los límites geográficos de Tartessos. Y tampoco había opiniones no discutidas acerca de su asociación con un río, con una ciudad, o con ambas cosas, cada una de las cuales, según se consideraba, ofrecía una provisión igualmente favorable de buena suerte y prosperidad:

Resultado de imagen de Piteas el navegante aventurero en el Blog de emilio silvera

                    Piteas el navegante aventurero

Dado que el río tenía dos bocas, se dice que en tiempos antiguos se proyectó una ciudad en el territorio intermedio, una ciudad a la que llamaron « Tartessos », por el nombre del río; y al país, que ahora está ocupado por túrdulos, lo llamaron « Tartéside » … A Erastótenes le contradice Artemidoro, que dice que esta es otra afirmación falsa de Erastótenes  …y, en realidad, todas las demás afirmaciones que ha hecho confiando en Piteas el navegante-aventurero, debido a las falsas pretensiones de éste ( Estrabón 3, 2, 11 ).

La tierra de Tartessos se mencionaba en acontecimientos históricos documentados. Herodoto, historiador griego del siglo V a.C., tomó nota de más detalles del reino de Tartessos. Era gobernada por una rey en la época en que los coceos navegaron hasta el Mediterráneo occidental (c. 630-590 a.C.). El siguiente extracto de Herodoto se refiere a la muralla de Focea:

Cuando [los coceos] llegaron a Tartessos se hicieron amigos del rey de los tartesios, que se llamaba Argantonio; gobernó Tartessos durante ochenta años y vivió ciento veinte. Los coceos se granjearon tanto la amistad de este hombre, que primero éste les instó a irse de Jonia e instalarse en su país donde quisieran; y luego, al ver que no podía persuadirles y enterarse por ellos de que el poderío de los medos iba en aumento, les dio dinero para que con él construyesen una muralla alrededor de su ciudad. Sin escatimar se lo dio; porque el circuito de la muralla mide muchos estadios, y todo esto está hecho con grandes piedras bien ensambladas (Herodoto 1, 163).

Ahora un equipo de científicos buscan la ciudad perdida bajo el océano en las cercanías de Doñana en Almonte (Huelva)

El mito de la rica tierra de Tartessos fue transmitiéndose a lo largo de los siglos. Estrabón recuerda el pasaje en que Herodoto habla de la abundancia en la Península Ibérica. Dice Estrabón:

“Y cabría suponer que fue por su gran prosperidad que la gente de allí recibió el nombre complementario de « Macraeones » [gente de larga vida] y en particular los jefes; y por esto Anacreonte dijo lo siguiente: « Yo, por mi parte, no debería ni desear el cuerno de Amaltea, ni ser el rey de Tartessos durante ciento cincuenta años »; y por esto Herodoto tomó nota incluso del nombre del rey, a quien llamó Argantonio (Estrabón 3, 2. 13-14).”

Hallan puerto de donde Colón partió a América

El puerto de donde partió el navegante genovés Cristóbal Colón hacia América en 1492 fue hallado en Palos de la Frontera (Huelva), en el sur de España.

Allí fueron encontrados varios vestigios de tipo artesanal y pesquero, lo que situarían en este punto exacto el puerto del que partieron las tres carabelas de Colón hacia el Nuevo Mundo.
El hallazgo se produjo después de dos meses de excavaciones realizadas por un equipo de arqueólogos de la Universidad de Huelva, dirigido por el catedrático de arqueología Juan Manuel ampos.

Resultado de imagen de Partida del puerto de Palos 1492, pintura de Evaristo Domínguez

Partida del puerto de Palos 1492, pintura de Evaristo Domínguez, en el ayuntamiento de Palos de la Frontera (Huelva).

Las limitaciones de espacio nos impiden presentar otras citas y comentarios sobre Tartessos que se encuentran en la literatura clásica. Los que hemos dado son sólo algunos de los ejemplos más conocidos, los más valiosos para ayudarnos a comprender el concepto de Tartessos en la Antigüedad. Como mínimo, sirven para relatar las características principales de Tartessos. Aparte de estar situada vagamente en el remoto oeste —« la más lejana en el oeste »—, la mítica Tartessos transmitía, de forma abstracta, las siguientes percepciones. Era una región, accesible desde Gades, que asombraba a viajeros y extranjeros debido a su abundancia de metales. Era una tierra ocupada por una raza de gente con una identidad conocida y orígenes reconocibles, y resultó beneficiosa para los extranjeros en lo que se refiere al comercio.

EVALUACIÓN DE TARTESSOS EB TÉRMINOS ARQUEOLÓGICOS:

Resultado de imagen de Arqueología TartésicaImagen relacionadaImagen relacionadaResultado de imagen de Arqueología Tartésica

             Son muchos los vestigios de aquella época puestos al descubierto por los arqueólogos

Amalgamar la importancia de los mitos antiguos con datos arqueológicos verificables con el fin de construir una crónica digna de confianza es un objetivo muy convincente, pero representa una tarea difícil que requiere mucho cuidado. El mito de Tartessos es un paradigma de esa forma de erudición histórica. Se ha hecho uso de comentarios que aparecen en los textos antiguos, del análisis meticuloso de hallazgos prehistóricos y de informes procedentes de ambos campos de estudio. Se han hecho esfuerzos intensos por descubrir la verdad sobre Tartessos. Se ha dedicado mucho trabajo a identificar el río Tartessos (por no hablar del emplazamiento de la ciudad de Tartessos), por describir el gran “reino” de Tartessos y por comprender el régimen bajo el cual vivían los tartesios. Dada la naturaleza ambigua de la información que contienen las fuentes antiguas, es comprensible que no sea fácil alcanzar tales objetivos. En una etapa la fascinación que ejercía el mito lo hizo confundir con la realidad: Tartessos, según se ha dicho, «…no fue un mito. Los mercaderes coceos lo verificaron ». El problema no se ha resuelto todavía, pero ahora se le ha dado un tratamiento más pragmático y equilibrado. En la actualudad, un equipo está, desde hace dos años, indagando sobre Tartessos en la región de Doñana y, según parece, algo han encontrado.

RioTintoWater.jpg

Región de Rio Tinto en la que, los antiguos fenecios y Griegos obtenían oro y cobre. Mas recientemente, la NASA aha hecho investigaciones de estas aguas que podeis ver y que tienen un PH imposible que no impide la presencia de vida. Se cree que en Marte, se pueden dar condcionones parecidas.

Resultado de imagen de El antiguo Tartessos

La zona de verde quiere representar la situación del antiguo Tartessos. Precisamente en Huelva y cercano al triángulo Huelva-Sevilla.Cádiz.

Si hemos de dar crédito del mito erudito de Tartessos, debemos decidir si Tartessos es una ciudad, un río, un reino, un concepto geográfico o todas estas cosas a la vez. En el valle del Bajo Guadalquivir se han identificado más de 300 asentamientos que cronológicamente pueden incluirse en el período tartesio, pero ninguno de ellos reúne condiciones para haber sido emplazamiento real de Tartessos: hasta ahora la búsqueda de la ciudad ha sido infructuosa. Cádiz, que a menudo se confunde con Tartessos en la época romana y que probablemente es la más importante de las ciudades del Mediterráneo occidental del siglo VI a.C., es indiscutiblemente la ciudad fenicia de Occidente. Igualmente difícil es determinar a que río deberíamos llamar Tartessos: algunos lectores de Estrabón escogerían el río Betis (Guadalquivir), mientras que algunos lectores de Avieno (poeta romano del siglo IV d.C. que escribió un largo poema titulado Ora marítima, siguiendo el texto de un antiguo itinerario geográfico datado generalmente en c. 600 a.C.) optarían por el río Tinto, en Huelva. De modo parecido, no es fácil definir un reino de Tartessos, ya sea basándonos en los escritos de los historiadores antiguos o en términos arqueológicos, Es probable que el concepto de un rey de los tartesios esté relacionado con un relato ficticio que era popular entre los filósofos y poetas helenísticos y trataba del origen y la evolución de la raza humana.

File:Río Odiel.JPG

El río Odiel (antiguo río Tartesso) baja desde la Sierra de Huelva hasta la Capital, donde es navegable y desemboco en el Atlántico.

Si esto es así, entonces Gerión, Gárgoris y Habis son personajes sin ninguna base histórica real. Mantener ganado vacuno, recoger miel y avanzar hacia una forma de vida más civilizada son rasgos de la conducta humana que muchas leyendas tienen en común. Toda pretensión de que Argantonio era descendiente de los antiguos “reyes”  también debe tratarse con escepticismo. Por tanto, probablemente es más apropiado usar la expresión « el reino de Tartessos » como concepto geográfico abstracto que puede abarcar un orden social de carácter totalmente distinto del de una monarquía.

Resultado de imagen de Los fenicios comerciaban en Tartessos

Fenecios comerciantes que estuvieron en Tartessos

Resultado de imagen de Los fenicios comerciaban en TartessosResultado de imagen de Vasijas fenicias

Se cuenta que los fenicios enseñaron a los lugareños a trabajar los metales y el barro

En una etapa de las investigaciones existía la creencia de que Tartessos se ajustaba a una « cultura arqueológica »  que demostraba la influencia que los colonizadores orientales ejercieron sobre la población autóctona del sur de la Península Ibérica. El mito de Tartessos se veía entonces, en términos arqueológicos, como el resultado final de un proceso de « contacto cultural ». Podría, pues considerarse que valiosos objetos  funerarios (tales como jarros de bronce, peines de marfil y cerámica fina) y joyas espectaculares halladas en depósitos demuestran no sólo la participación de los tartesios en costumbres y rituales orientales, sino también la riqueza de algunos miembros de esta sociedad. Se pensaba que esta opulencia percibida del período tartessico encajaba bien en el mito de Tartessos: dicho de otro modo, podría ser que la aportación decisiva de los colonizadores fenicios diera vida al mito de Tartessos y lo hiciese verosímil.

Esta explicación resultaba muy justificable y, de hecho, era muy respetada en aquel tiempo. El período tartessico se asoció de manera provisional con el período de influencia oriental en la Península Ibérica. Sin embargo, esta opinión no era del todo concluyente. No guarda una correlación plena con las fuentes escritas, que describen un “reino” con una larga historia autónoma: y tampoco se corresponde con los descubrimientos arqueológicos, que han sacado a la luz un intenso período de habitación en el suroeste de España antes de los primeros vestigios de actividad comercial de los fenicios en Tartessos (c.750 a.C.). La teoría de una Tartessos sometida a una influencia oriental se ha ajustado de acuerdo con ello: ahora se conciben dos fases del período tartessico: la prefenicia y la posfenicia, o la de preorientalización (o protoorientalización) y la de postorientalización.

Los vestigios de las culturas Fenicia y Griega en Huelva, son claros y así lo demuestra la arqueología en las huellas encontradas en las excavaciones en el subsuelo del lugar.

En años recientes, se ha quitado gradualmente importancia a los componentes « orientales » del concepto de Tartessos y en su lugar se ha sancionado un concepto local. Ahora se piensa que los tartesios originales eran comunidades que precedieron a los fenicios, y la búsqueda de la auténtica Tartessos se ha centrado en los asentamientos del Bronce Final en la región de Cádiz, la provincia de Huelva y el valle del Bajo Guadalquivir. Como cabía esperar, antes se tenía entendido que los nativos se habían adaptado a las circunstancias nuevas que impusieron los colonizadores. Sin embargo, aunque estos postulados parecían razonables, un examen minucioso reveló sus defectos. La división cronológica entre los tartesios y los anteriores grupos de principios de la Edad del Bronce en el suroeste no es clara. Algunos de los rasgos fundamentales de la antigua (prefenicia) sociedad tartésica no serían desplazados apresuradamente: por ejemplo, en algunas partes de la sociedad es probable que los rituales funerarios y las unidades domésticas no experimentasen ningún cambio durante cierto tiempo. Por desgracia, existe sólo una comprensión rudimentaria de estos problemas pendientes de resolución en el período prefenicio del Bronce Final. Además, la región tartésica es un territorio inmenso y es difícil concebir que fuese unificado por una pauta uniforme de civilización. En teoría, se extiende desde el centro del suroeste de España hasta la llamada « periferia »: las regiones de Extremadura y del valle del Alto Guadalquivir. Los guerreros  que aparecen en las estelas bien podrían tomarse por tartesios. Hubo, de hecho, cambios sin precedentes en la región de Tartessos una vez los colonizadores llegaron a ella: un aumento del número de asentamientos; una notable exhibición de artefactos exóticos en las tumbas; un incremento de la producción de minerales; etc. Estos hallazgos han planteado una serie de problemas sociales y económicos: la aceleración del comercio; las consecuencias técnicas, comerciales y sociológicas de la producción de metal: la aparición de una clase dirigente; y otras nuevas cuestiones « tartésicas ». Actualmente existe un Equipo de especialistas que investigan en la Zona de Doñana y, al parecer, sus hallazgos pueden clarificar el panorama de la realidad de Tartessos.

EL MITO Y LA REALIDAD DEL BRONCE FINAL

Otros investigadores, como el cubano Georgeos Díaz-Montexano, van bastante más lejos y aseguran que, sumergida por esa zona, “sin ninguna duda”, se encuentran los restos de la Atlántida, la mítica ciudad descrita por Platón que decenas de historiadores, antropólogos y curiosos se han afanado por encontrar.

Afortunadamente, hay cierta veracidad en el mito de Tartessos. Se consideraba que era una región que ofrecía ricos minerales metalíferos, en especial de plata, y se suponía que los tartesios habían creado una fuerte tradición cultural: estas circunstancias se dan en el sur de la Península Ibérica. Los estuarios de los ríos Guadalquivir, Guadiana, Tinto y Odiel cuadran bien con las descripciones que hicieron los geógrafos antiguos (tales como Estrabón y Avieno) de una serie de ríos que pasan por el territorio de Tartessos, Es casi seguro que el renombrado lacus ligustinus guarda correlación con las marismas del estuario del río Guadalquivir. Los numerosos yacimientos que recientemente se han descubierto en esta región, y que se han reconocido como « tartésicos », estarían ubicados cerca de esta masa de agua en la Antigüedad.

San Bartolomé de Almonte- aquí hay un error, se refieren a Tharsis, una cuenca minera cerca de San Bartolomé y Alosno- en la provincia de Huelva, era un asentamiento metalúrgico prefenicio. Los hornos rudimentarios para la combustión de minerales, los vasos perforados que se usan para la copelación y los desechos de ésta que se encontraron en este pequeño pueblo de chozas son testimonio de que los nativos poseían la capacidad de aprovechar las menas de cobre, plata y oro de la región durante el siglo VIII a.C. En otros pueblos parecidos del Bronce Final (tales como Quebrantahuesos, Chinflón y Niebla), es probable que las técnicas metalúrgicas se estuvieran perfeccionando desde el Calcolítico. Es muy posible que en las laderas de las colinas de la propia Huelva ya en el siglo XI a.c. encontrase sustento una población dotada de técnicas metalúrgicas. Los minerales se transportaban desde la sierra de Aznalcóllar hasta Almonte, y desde Riotinto, Tharsis y las otras minas hasta los asentamientos metalúrgicos de Huelva. Los fenicios aprovecharían plenamente los recursos locales: se mantendrían ambas rutas, aunque se producirían cambios significativos en la pauta de la habitación. Se fundarían nuevos asentamientos (por ejemplo, Tejada la Vieja) como centros de distribución  de mineral; y desaparecerían algunos de los antiguos (tales como San Bartolomé de Almonte), mientras otros (Huelva o Niebla, por ejemplo) formarían el núcleo de la expansión urbanística. Los minerales metalíferos servirían a los intereses de los explotadores, lo que, como es natural, haría que los tartesios se enriquecieran. Al ver cómo cristaliza una nueva serie de circunstancias económicas como esta, Tartessos ya no es una tierra « remota » en el oeste, y tampoco es un territorio puramente aborigen: de un modo u otro pierde su intrínseca naturaleza mítica.

Muralla púnica de Cartegena

Las comunidades del Bronce Final en la región de Tartessos eran consumadas productoras de cerámica bruñida de gran calidad. Platos y cuencos a menudo muestran la característica decoración de líneas en ambos lados. Esta cerámica unifica a las primeras comunidades tartésicas y da a entender que existían niveles de vida parecidos. Otro tipo de cerámica « tartésica » — la cerámica pintada de estilo « Carambolo »— revela la existencia de comunidades que poseían gran habilidad pero seguían viéndose limitadas a una simple economía de subsistencia. Ni siquiera los logros que hemos señalado indican que hubiera individuos ricos en la primitiva sociedad de Tartessos, Las comunidades vivían en chozas redondas construidas con zarzo y adobe, y, al parecer, dependían del cultivo de cosechas y de la ganadería. En comparación con los logros de los primitivos metalúrgicos del sureste, los restos de los metalúrgicos del bronce en el período prefenicio siguen siendo muy limitados. Por esto, el concepto de una Tartessos rica parece mucho más aplicable al período posfenicio, en el que la sociedad mostraba verdaderas señales de riqueza. El mito de una Tartessos opulenta se deriva probablemente de historias sobre sus fértiles tierras y de especulaciones en torno a los ingresos que producían sus minas.

Resultado de imagen de En Doñana se busca la ciudad de TartessosImagen relacionadaImagen relacionadaImagen relacionada

Son muchos los indicios que nos inducen a pensar que, el antiguo Tartessos está aquí, cerca de mi casa en Huelva, y, si finalmente se descubren sus ruínas, tendremos la oportunidad de exponer aquí un buen reportaje de todo lo que se pueda averiguar.

Arriba os he dejado una reseña de la Prehistoria de mi Región que abarca, no sólo Huelva, sino los terrenos de Cádiz y Sevilla con parte del Algarve Portugués que era la zona que dominaba el reino de Argantonio, aquel rey legendario.

Publica: emilio silvera

UNA COSMOLOGÌA NO CONVENCIONAL 1ª Parte

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología de vacío    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

UNA COSMOLOGÌA NO CONVENCIONAL

por Ramon Marquès Sala Filósofo de la Física Cuántica y de la Cosmología

RESUMEN.- Presento unos aspectos clave de la Cosmología del Vacío que, si bien no han sido demostrados ni reconocidos por la comunidad científica, tengo la esperanza que con el tiempo lo sean. En una Ciencia como la Cosmología del Vacío, donde la comprobación empírica es tan complicada, creo que la inteligencia, la intuición y la imaginación deben adelantarse.

Imagen relacionada

PALABRAS CLAVE: El big-bang, el espacio vibratorio en expansión, el bosón de Higgs, el efecto frenado, la gravedad, la masa y la inercia, el campo puro o primordial.

Imagen de archivo de colisiones de partículas en el descubrimiento del bosón de Higgs

INTRODUCCIÓN.- Se trata de una Cosmología no convencional. Haciéndose referencia de unos puntos de importancia capital que difieren de lo aceptado actualmente por la comunidad científica.  Lo cual no quiere decir que renuncie a su veracidad, tengo mucha fe en ellos y la esperanza que algunos aspectos apuntados se demuestren pronto, otros podrían tardar en ser reconocidos. Quizás resulte que yo no llegue a poder ver el reconocimiento, pero entiendo que la causa nunca muere y ya me considero pagado por tener la sensación de haber contribuido a ella. Algún aspecto, especialmente el efecto frenado y sus consecuencias, después del descubrimiento del bosón de Higgs, creo que sí podría darse ya por científicamente demostrado. El espacio vibratorio en expansión, del que vengo hablando desde hace muchos años, es una realidad admitida, aunque con palabras diferentes. Aunque esté convencido de mi Cosmología, esto no quita que sea consciente de que la falibilidad es una premisa fundamental de todo ser humano.
Los aspectos clave en cuestión son:

Resultado de imagen de La singularidad del Big Bang

1.-El big-bang no tuvo porqué comenzar en un punto
2.-El espacio vibratorio en expansión  (que equivale al espacio de Higgs) arrastra las partículas y el Universo
3.-El efecto frenado da la gravedad, la masa y la inercia
4.- Lo que han sido presentados como la enigmática energía oscura y la materia oscura.
5.-El  campo puro o primordial, un lugar para la Metafísica

1.-EL BIG-BANG NO TUVO PORQUÉ COMENZAR EN UN PUNTO.- La oposición principal a la teoría del big-bang en su momento fue la del Universo estacionario de Fred  Hoyle, pero curiosamente fue este mismo autor el que dio el espaldarazo definitivo a la teoría del big-bang, dándole el nombre y sobretodo mostrando que para la gran cantidad de H y He que existe en el Universo fue necesaria una temperatura extremadamente alta como preconiza el big-bang. Por otra parte últimamente se ha demostrado en el espacio el fondo de microondas, el resto de aquella temperatura inicial, por Arno Penzias y Robert Wilson en los laboratorios Bell.

¿Pero fue necesario que todo comenzara en un punto inmensamente pequeño? Yo creo que no. Para mi resulta anti-intuitivo y debe haber otras opciones. Una posibilidad es que el origen del Universo fuera a consecuencia de la desestabilización y del choque entre dos universos diferentes, uno de materia y otro de anti-materia. Ello proporcionaría  una explosión con el calor necesario para la formación del H y del He, y explicaría la gran cantidad de pares de partículas- antipartículas que navegan por el vacío. Y nuestro Universo sería el resultado de las partículas que sobraron al no resultar anuladas en el apareamiento de las partículas-antipartículas consiguiente al choque.

Seguirá.

¡Objetos misteriosos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Kip Thorne, especialista en Agujeros Negros e impulsor del Proyecto LIGO que localizó las ondas gravitacionales,  nos cuenta en uno de sus libros, cómo algunos científicos especializados como él, pudieron despejar muchas de las incógnitas escondidas en los misteriosos objetos.  La idea de que Agujeros negros gigantes podían activar los cuásares y las radiogalaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos personajes de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.

Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).

En Cygnus X-1, en el centro galáctico, tenemos un Agujero Negro modesto que, sin embargo, nos envía sus ondas electromagnéticas de rayos X. En el disco de acreción, las corrientes de gas adyacentes rozarán entre sí, y la intensa fricción de dicho roce calentará el disco a altas temperaturas.

En los años ochenta, los astrofísicos advirtieron que el objeto emisor de luz brillante en el centro de 3C273, el objeto de un tamaño de 1 mes-luz o menor, era probablemente el disco de acreción calentado por la fricción de Lynden-Bell.

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273

Normalmente pensamos que la fricción es una pobre fuente de calor. Sin embargo, puesto que la energía gravitatoria es enorme, mucho mayor que la energía nuclear, la fricción puede realizar fácilmente la tarea de calentar el disco y hacer que brille con un brillo 100 veces mayor que la galaxia más luminosa.

¿Cómo puede un agujero negro actuar como un giróscopo? James Bardeen y Jacobus Petterson de la Universidad de Yale comprendieron la respuesta en 1975: si el agujero negro gira rápidamente, entonces se comporta precisamente como un giróscopo. La dirección del eje del giro permanece siempre firme fijo e inalterado, y el remolino creado por el giro en el espacio próximo al agujero permanece siempre firmemente orientado en la misma dirección.

Bardeen y Petterson demostraron mediante un cálculo matemático que este remolino en el espacio próximo al agujero debe agarrar la parte interna del disco de acreción y mantenerlo firmemente en el plano ecuatorial del agujero; y debe hacerlo así independientemente de cómo esté orientado el disco lejos del agujero.

A medida que se captura nuevo gas del espacio interestelar en la parte del disco distante del agujero, el gas puede cambiar la dirección del disco en dicha región, pero nunca puede cambiar la orientación del disco cerca del agujero. La acción giroscópica del agujero lo impide. Cerca del agujero el disco sigue y permanece siempre en el plano ecuatorial del mismo.

Sin la solución de Kerr a la ecuación de campo de Einstein, esta acción giroscópica hubiera sido desconocida y habría sido imposible explicar los cuásares. Con la solución de Kerr a mano, los astrofísicos de mitad de los años setenta estaban llegando a una explicación clara y elegante. Por primera vez, el concepto de un agujero negro como un cuerpo dinámico, más que un simple “agujero en el espacio”, estaba jugando un papel central en la explicación de las observaciones de los astrónomos.

¿Qué intensidad tendrá el remolino del espacio cerca de un agujero gigante? En otras palabras, ¿cuál es la velocidad de rotación de los agujeros gigantes? James Bardeen dedujo la respuesta: demostró matemáticamente que la acreción de gas por el agujero debería hacer que el agujero girase cada vez más rápido. Cuando el agujero hubiera engullido suficiente gas en espiral para duplicar su masa, el agujero debería estar girando casi a su velocidad máxima posible, la velocidad más allá de la cual las fuerzas centrífugas impiden cualquier aceleración adicional. De este modo, los agujeros negros gigantes deberían tener típicamente momentos angulares próximos a su valor máximo.

En las imágenes podemos contemplar galaxias que se fusionarán y, sus agujeros negros centrales se harán gigantes

¿Cómo puede un agujero negro y su Disco dar lugar a dos chorros que apuntan en direcciones opuestas? De una forma sorprendentemente fácil, reconocieron Blandford, Rees y Lynden-Bell en la Universidad de Cambridge a mediados de los setenta. Hay cuatro formas posibles de producir chorros; cualquiera de ellas funcionaria, y, aquí, donde se explica para el no versado en estos objetos cosmológicos, sólo explicaré el cuarto método por ser el más interesante:

El Agujero es atravesado por la línea de campo magnético. Cuando el agujero gira, arrastra líneas de campo que le rodean, haciendo que desvíen el plasma hacia arriba y hacia abajo. Los chorros apuntan a lo largo del eje de giro del agujero y su dirección está así firmemente anclada a la rotación giroscópica del agujero. El método fue concebido por Blandford poco después de que recibiera el doctorado de física en Cambridge, junto con un estudiante graduado de Cambridge, Roman Znajek, y es por ello llamado el proceso Blandford-Znajet.

Resultado de imagen de Agujeros negros

Algunos dicen que en los agujeros negros está la puerta hacia la quinta dimensión (una idea peregrina), si miramos la manera en que ataca a una estrella vecina y la engulle, no creo que la lleve a dar una vuelta por esa quinta dimensión que imaginó Kaluza.

Este proceso es muy interesante porque la energía que va a los chorros procede de la enorme energía rotacional del agujero (esto debería parecer obvio porque es la rotación del agujero la que provoca el remolino en el espacio, y es el remolino del espacio el que provoca la rotación de las líneas de campo y, a su vez, es la rotación de las líneas de campo la que desvía el plasma hacia fuera.)

¿Cómo es posible, en este proceso Blandford-Znajet, que el horizonte del agujero sea atravesado por líneas de campo magnético? tales líneas de campo serían una forma de “pelo” que puede convertirse en radiación electromagnética y radiada hacia fuera, y por consiguiente, según el teorema de Price, deben ser radiadas hacia fuera. En realidad, el teorema de Price solo es correcto si el agujero está aislado, lejos de cualquier otro objeto.

Pero el agujero que estamos discutiendo no está aislado, está rodeado de un disco de acreción. Así que las líneas de campo que surgen del agujero, del hemisferio norte y las que salen del hemisferio sur se doblarán para empalmarse y ser una continuación una de otra, y la única forma de que estas líneas puedan entonces escapar es abriendo su camino a través del gas caliente del disco de acreción. Pero el gas caliente no permitirá que las líneas de campo lo atraviesen; las confina firmemente en la región del espacio en la cara interna del disco, y puesto que la mayor parte de dicha región está ocupada por el agujero, la mayoría de las líneas de campo confinadas atravesarán el agujero.

Imagen relacionada

¿De donde proceden esas líneas de campo magnético? Del propio disco.

Cualquier gas en el Universo está magnetizado, al menos un poco, y el gas del disco no es una excepción. Conforme el agujero acrece, poco a poco, gas del disco, el gas lleva con él líneas de campo magnético. Cada pequeña cantidad de gas que se aproxima al agujero arrastra sus líneas de campo magnético y, al cruzar el horizonte, deja las líneas de campo detrás, sobresaliendo del horizonte y enroscándose. Estas líneas de campo enroscadas, firmemente confinadas por el disco circundante, extraerían entonces la energía rotacional del agujero mediante el proceso de Blandford-Znajet.

Los métodos de producir chorros (orificios en una nube de gas, viento de un embudo, líneas de campo arremolinadas ancladas en el disco, y el proceso Blandford-Znajet) actúan probablemente, en grados diversos, en los cuásares, en las radiogalaxias y en los núcleos característicos de algunos otros tipos de galaxias (núcleos que se denominan núcleos galácticos activos).

El 16 de marzo de 2013 se cumplió medio siglo del descubrimiento de que los cuásares eran objetos extragalácticos muy brillantes y a enormes distancias de nosotros.

Si los cuásares y las radiogalaxias están activados por el mismo tipo de máquina de agujero negro, ¿qué hace que parezcan tan diferentes? ¿Por qué la luz de un cuásar aparece como si procediera de un objeto similar a una estrella, intensamente luminoso y de un tamaño de 1 mes-luz o menos, mientras que la luz de radiogalaxias procede de un agregado de estrellas similar a la Vía Láctea, de un tamaño de 100.000 años-luz?

Parece casi seguro que los cuásares no son diferentes de las radiogalaxias; sus máquinas centrales también están rodeadas de una galaxia se estrellas de un tamaño de 100.000 a.l. Sin embargo, en un cuásar el agujero negro central está alimentado a un ritmo especialmente elevado por el gas de acreción y, consiguientemente, el calentamiento friccional del disco es también elevado. Este calentamiento del disco hace que brille tan fuertemente que su brillo óptico es cientos o miles de veces que el de todas las estrellas de la galaxia circundante juntas.

Los astrónomos, cegados por el brillo del disco, no pueden ver las estrellas de la galaxia, y por ello el objeto parece “cuasi estelar” (es decir, similar a una estrella; como un minúsculo punto luminoso intenso) en lugar de parecer una galaxia.

La región más interna del disco es tan caliente que emite rayos X; un poco más lejos el disco está más frío y emite radiación ultravioleta; aún más lejos está más frío todavía y emite radiación óptica (luz); en su región mas externa está incluso más frío y emite radiación infrarroja. La región emisora de luz tiene típicamente un tamaño de aproximadamente un año-luz, aunque en algunos casos, tales como 3C273, puede ser de un mes luz o más pequeña.

Estas explicaciones para los cuásares y las radiogalaxias basadas en agujeros negros son tan satisfactorias que es tentador asegurar que deben ser correctas.

Está claro que hemos podido acceder a muchos conocimientos que no hace mucho tiempo eran impensables pero, las teorías de Einstein y Planck, deben ser sobrepasadas y debemos ir mucho más lejos, allí donde residen esas respuestas que hasta el momento nadie ha sabido dar y que responderán a preguntas que fueron posibles formular, gracias a Einstein y Planck, ya que, sin los conocimientos que ellos nos hicieron llegar, no podríamos intuir que hay muchas cosas que están más allá de sus postulados.

emilio silvera

Todo lo que existe es Universo: Los pensamientos también

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Constituido por innumerables galaxias de estrellas, de sistemas planetarios, multitud de Nebulosas de las que “nacen” nuevas y brillantes estrellas de todo tipo y mundos, multitud de objetos exóticos como los la variedad que encierran las estrellas de neutrones como púlsares y magnétares, o, los agujeros negros misteriosos, explosiones Supernovas, y, todo ello, en un espacio de una magnitud inimaginable para nuestras mentes que, rodeados de los objetos y las cosas cotidianas, no se paran a pensar en esas inmensas verdades que están ahí, en la lejanía del espacio-tiempo inconmensurable.

La Humanidad, nuestra especie, siempre miró hacia los confines del cielo estrellado y se hacía preguntas que no podía contestar. En muchos de los trabajos que aquí se han expuesto quedaron reflejadas aquellas Civilizaciones antiguas que nos hablaban, con sus grabaciones en la piedra de  los lejanos confines del cosmos que ellos imaginaban. Hemos podido llegar a un nivel de tecnología que nos permite otear horizontes muy lejanos y captar, con nuestros ingenios, galaxias que se podría decir, sin temor a equivocarnos, que están situados en los confines del Universo.

Podemos examinar la radiación que emiten las estrellas jóvenes, estudiar nebulosas lejanas y captar los extraños átomos y moléculas que las conforman y, al mismo tiempo, observar como se van creando las condiciones precisas de gravitación, vientos estelares y otros fenómenos cósmicos para que, en los nuevos mundos y las nuevas estrellas surjan a la vida (así lo imagino yo). Somos testigos de un carrusel cosmológico que gira y gira “eternamente” envuelto en ciclos de destrucción y creación que se suceden en presencia de energías inimaginables, para que todo siga igual al mismo tiempo que todo cambia.

             Lo cierto es que hemos encontrado mundos muy parecidos a la Tierra

Nuestro Universo ofrece las mejores condiciones para que la Vida, hiciera acto presencia en él. Sin embargo, siempre habrá dos bandos que discrepan en ese sentido: Por un lado están aquellos que creen en la presencia de la vida en múltiples mundos en las galaxias que pueblan el espacio del universo inmenso, y, por la otra parte, están aquellos que niegan tal posibilidad y se aferran a que, para que surgiera la vida en la Tierra, se tuvieron que dar tal cúmulos de condiciones que es imposible que se vuelvan a repetir en ningún otro lugar.

También es cierto que otros muchos mundos no podrían albergar la vida ni en el extremo de las posibilidades conocidas por nosotros y que denominamos extremófila por estar presente en condiciones que nunca podríamos (antes de ser descubierta), haber imaginado que pudiera ser posible que formas de vida existieran en condiciones imposibles. Existen regiones del Universo que son extremadamente peligrosas donde la radiación y las energías extremas están presentes y, ningún mundo que pudiera existir por sus alrededores tendría la posibilidad de albergar ninguna clase de vida.

Atmósferas corrosivas como la de Venus impide la presencia de vida en multitud de mundos

Somos conscientes de que no podemos vivir aislados y desde siempre hemos tratado de saber qué ocurría más allá, en la lejanía de las estrellas donde algunos imaginativos pensaban que otras criaturas habitaban un sin fín de mundos que, como la Tierra, tendrían las condiciones necesarias para ello. Para ellos, el Universo ofrecía todas las posibilidades a favor y en contra, su diversidad era tanta que mundos llenos de vida pululaban alrededor de estrellas situadas a decenas, cientos, miles o millones de años-luz de nosotros y, también, había mundos imposibles donde nada podía surgir a la vida.

Ni afirmar ni negar podemos. En lo referente a la vida en otros mundos, todo podría ser posible y la vida tanto inteligente como vegetativa en múltiples formas y con distintos metabolismos, como ocurre aquí en nuestro planeta, es posible que esté presente en aquellos mundos que como el nuestro tengan aquellos requisitos necesarios para su sustento. Atmósfera calentada por una estrella benigna que caliente el planeta, océanos y bosques, y, en defintiiva, todo aquellos que es necesario para mantener latente formas de vida que como la nuestra, parecida o totalmente diferentes, se desarrollen en un ambiente adecuado a las condiciones que cada especie pudiera requerir.

Foto

    Charles Darwin: “Creo que hasta el los lugares más inhóspitos, la vida podría estar presente.”

La vida más resistente que se conoce es la vida invisible: los microoganismos y las bacterias. Los seres vivos capaces de sobrevivir en condiciones extremas se llaman extremófilos. Sobreviven en condiciones que serían letales para cualquier otra forma de vida. Resisten temperaturas extremas, por encima del grado de ebullición del agua y por debajo del de congelación, condiciones de acidez, de falta de luz solar y de oxígeno, de presión, de salinidad… Pueden permanecer en estado de letargo durante miles de años y volver a reanimarse al contacto con el agua.

Resultado de imagen de Los extremófilos

            Podrían estar en cualquier parte

Lo único que necesitan los extremófilos es: materia orgánica, agua y una fuente de energía. La materia orgánica abunda por todo el Cosmos. Pueden emplear una fuente de energía distinta a la luz solar. De hecho, a comienzos de los 90, se descubrió una bacteria que vivía en el subsuelo, a 7 kms de profundidad, y se alimentaba a base de petróleo. Lo que sí necesita la vida extremófila es agua en estado líquido. O, al menos, así lo creemos. Hasta hoy, no hay pruebas de que ninguna forma de vida pueda sobrevivir sin agua líquida. Pero podemos estar equivocados.

Hasta ahora, la Tierra es el único lugar del universo donde está confirmada la existencia de agua en estado líquido. Pero en el propio Sistema Solar hay planetas y satélites con agua helada. Si se demostrara que los extremófilos pueden sobrevivir con agua helada, se abrirían nuevas posibilidades en la búsqueda de vida extraterrestre.

Foto

 Arquea productora de metano. Se han encontrado microorganismos productores de metano en dos ambientes extremos en la Tierra: enterrados bajo kilómetros de hielo en Groenlandia y en los suelos cálidos del desierto. Estos descubrimientos hacen más plausible la esperanza que tenemos sobre la existencia de vida en Marte.

Han pasado más de 150 años desde que Darwin publicara su famosa obra El origen de las especies. Sus ideas han prevalecido en el transcurrir del tiempo y ni los nuevos descubrimientos ni los muchos avances logrados han podido dejar de lado la idea de la evolución. Más de doscientos años después de su nacimiento, sus ideas siguen en el candelero de la Biología y nos habla de que, la vida, como el decía, puede surgir en cualquier charca embarrada y caliente.  Sus ideas han sido profundamente analizadas por los mejores especialistas en biología que han tenido que reconocer su influencia en el mundo científico de los distintos campos de la biología, en general, y de la biología evolutiva, en particular.

Pero es interesante ejemplarizar su capacidad sintetizadora y premonitoria en el por aquel entonces, campo novedoso de la biología, la extremofilia, a partir de la exploración de los lagos salobres del río negro en Argentina. A finales de 1831, Darwin se embarcó en el Beagle (ya contamos aquí aquella historia), tardaron meses en atravesar el Atlántico. Desembarcaron el Maldonado y recorrieron las costas de Uruguay y Argentina realizando numerosas observaciones geológicas, botánicas, zoológicas y antropológicas. Ciertamente, aquella “excursión” investigadora por méritos propios pasó a los anales de la Historia.

                                         La imagen está referida a la Misión Planck de la ESA

En cada tiempo hemos hecho las cosas como hemos posido, siempre en busca del saber y queriendo descubrir los secretos que la Naturaleza esconde. Darwin partió en el Beagle hacia lo desconocido en un viaje peligroso y aventurero en busca de lo desconocido. Ahora, nosotros mucho más adelantados, buscamos lo mismo: Saber. Sin emnbargo, utilizamos otros medios que, como la Misión Planck de la Esa, por ejemplo, vamos a la búsqueda del origen del Universo.

La misión que data de 2.009, no es algo improvisado que se hizo a la ligera, estuvo planificándose y preparándose durante dos décadas de manera muy cuidadosa y con exquisito esmero para cuidar hasta el último detalle dentro de las más avanzadas técnicas que la ciencia actual podía permitirse. El telescopio espacial Planck nos ha ayudado a comprender mejor la historia del Universo, desde una fracción de segundo después del Big Bang a la evolución de las estrellas y de las galaxias a lo largo de estos 13.700 millones de años. Aunque la fase de observaciones científicas ya haya terminado, el legado de esta misión sigue vivo. Planck se lanzó en el año 2009 y pasó 4.5 años observando el firmamento para estudiar cómo evolucionó la materia cósmica con el paso del tiempo.

      Planck y la radiación cósmica de microondas

Los científicos que trabajan con los datos de Planck presentaron la imagen más precisa de la radiación cósmica de microondas (CMB, por sus siglas en inglés), los restos de la radiación del Big Bang que quedaron grabados en el firmamento cuando el Universo tenía apenas 380.000 años.

La señal CMB es la imagen más precisa de la distribución de masa en el Universo primitivo. En ella se pueden detectar minúsculas fluctuaciones de temperatura que se corresponden con regiones que, en un principio, presentaban densidades ligeramente diferentes, y que constituyen las semillas de todas las estructuras, estrellas y galaxias que podemos ver hoy en día. Jan Tauber, científico del proyecto Planck para la ESA, declaraba:

“Planck nos ha proporcionado la imagen a cielo completo de la señal CMB más precisa de la historia, con la que podremos poner a prueba una gran variedad de modelos sobre el origen y la evolución del cosmos”

 

http://universodoppler.files.wordpress.com/2013/06/gaia_mapping_the_stars_of_the_milky_way_node_full_image.jpg

El objetivo principal de Gaia es crear un mapa en 3D de alta precisión de nuestra galaxia, la Vía Láctea, observando repetidamente mil millones de estrellas para determinar su posición precisa en el espacio y sus movimientos a través de él. La sonda espacial Gaia es otro de los muchos proyectos que tratan de investigar dónmde estamos situados en el contexto de nuestra Galaxia, la Vía Láctea.

Recreación artística de la nave Euclides. | ESA

La Agencia Espacial Europea (ESA)  ha dado luz verde a la misión Euclides, que se lanzará en 2020 con el objetivo de estudiar la misteriosa energía oscura que compone el 73% del Universo. La misión Euclides contará con un telescopio de 1,2 metros de diámetro que nutrirá una cámara de 576 millones de píxeles con imágenes en muy alta resolución de 2.000 millones de galaxias, equivalente a las del Telescopio Espacial Hubble. Con esos datos, y mediante tecnología de infrarrojos, los científicos desarrollarán una cartografía de las grandes estructuras del Universo y medirán la distancia entre las galaxias captadas por la cámara.

El telescopio WISE ha llegó al final de su fase de mapear en infrarrojo, pero continuó con la misión de realizar el siguimiento de los más cercanos cometas y asteroides, además de enanas marrones. Se ideó un telescopio infrarrojo que orbitara la Tierra y que ha sido empleado para mapear objetos fríos, polvorientos o lejanos que los telescopios de luz visible no pueden observar. Durante 2010 ha tomó más de 1,8 millones de fotografías utilizando su telescopio de 16 pulgadas y cuatro detectores de longitudes de onda infrarrojas, observando el cielo una vez y media, descubriendo estrellas, cometas y más de 33.500 asteroides en el proceso.

[Img #13113]

“Un sistema de cinco planetas, de los cuales dos tienen un radio 1,41 y 1,61 veces superior al de la Tierra y están en la zona habitable”. Este es el título de un estudio que investigadores internacionales publican esta semana en Science. El hallazgo ha sido posible gracias a las observaciones del telescopio espacial Kepler de la NASA. La estrella anfitriona es Kepler-62 y los dos planetas protagonistas se han bautizado como Kepler-62 e y f, orbitando más lejos que sus compañeros b, c y d. A Kepler-62 e y f llega un flujo solar desde su estrella parecido al que reciben Venus y Marte por parte de nuestro Sol. Respectivamente, los dos exoplanetas reciben alrededor de 1,2 y 0,41 veces la radiación solar que alcanza la Tierra. Basándose en modelos y simulaciones computacionales, los científicos consideran que el tamaño de estos dos nuevos planetas sugiere que podrían ser rocosos, como la Tierra, o estar compuestos de agua sólida.

Resultado de imagen de La NASA descubre 7 planetas de los que 3 podrían ser habitablesResultado de imagen de La NASA descubre 7 planetas de los que 3 podrían ser habitables

Hace unos pocos días nos sorprendieron con la noticia. El nuevo sistema solar orbita en torno a una estrella enana roja llamada Trappist-1, un astro del tamaño de Júpiter ubicado en la constelación de Acuario a 40 años luz de nosotros.

Si miramos al cielo en una noche oscura y estamos en el lugar adecuado, podremos contemplar, la inemnsidad en la que estamos inmersos y situados en un pequeño planeta apto para albergar la vida, podemos admirar parte de nuestra Galaxia, la Vía Láctea que nunca hemos podido contemplar en su totalidad al estar confinados en el planeta y no tener los medios para salir fuera y poder tomar una imagen completa del lugar en el que vivimos. Podemos hacerlo con otras galaxias lejanas y, de la nuestra, sólo la conocemos por datos parciales que podemos ir juntando en los diversos estudios que para ello hemos llevado a cabo y seguimos llevando con misiones que, como las que más arriba se reseñan, nos facilitan datos precisos para que podamos saber, de nuestro lugar en el Universo desde esta Galaxía que es sólo una de entre cien mil millones.

Desde un lugar minúsculo, un pequeño terrón de roca y agua que orbita una estrella mediana que le suministra la luz y el calor necesario para que podamos estar aquí, sin pararnos a pensar en nuestra ínfima medida en el contexto del Universo,y, sin embargo, lo cierto es que lo queremos conquistar.

¡Ilusos!

emilio silvera