viernes, 19 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Dónde estamos? ¿Hacia dónde vamos?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Han sido muchas las puertas que han sido abiertas para descubrir detrás de cada una, un misterio tal como el comienzo y formación del universo, el descubrimiento de la existencia de las cuatro fuerzas fundamentales, de las constantes universales, el movimiento de las galaxias por la expansión del universo, el descubrimiento del núcleo en el átomo que forma la materia de la que están hechas todas las cosas, de los quarks, hadrones, y leptones, las matemáticas, la física, la química, la astronomía, y también la filosofía, todo ello formando una ingente y descomunal obra que parece imposible que se llevara a cabo por unos insignificantes seres, habitantes de un insignificante planeta, que dependen para vivir de la luz y el calor de una estrella corriente a la que llamamos Sol (una estrella mediana, amarilla, de la clase G2V),  que forma parte de un conjunto de cien mil millones que conforman la Galaxia Vía Láctea que, a su vez, es una más de los más de cien mil millones que pueblan el universo.

Si nos comparamos, no ya con el universo entero, sino simplemente con la inmensidad de nuestra Galaxia (100.000 años luz de diámetro), somos menos que una brizna de polvo. Si nos comparamos con el universo entero… no somos nada. Y, sin embargo, nosotros tenemos la sensación, a pesar de todo, de SER, y, no precisamente nada insignificante pero…

Sí, necesitamos pensar, es precidso llegar más allá de los pensamientos actuales, buscar nuevos caminos

Sin embargo, en este punto debemos recapacitar un poco, reconocer con humildad la importancia que realmente tenemos en el universo y seguidamente, reconocer también los enormes logros conseguidos desde que, hace escasamente unos doscientos mil años, un animal se levantó para andar erguido y comenzar a pensar en otras formas de vivir, ideando rústicas herramientas para la caza, haciendo fuego y construyendo refugios.

El lenguaje mediante sonidos guturales vino a cambiarlo todo. Allí empezó el entendimiento inteligente de seres que de animales irracionales, evolucionaron hasta llegar a pensar por sí mismos, tener conciencia de SER y preguntarse de dónde venía y hacía dónde caminaba. Miraban hacia el cielo estrellado y se hacían preguntas sobre aquellos puntitos brillantes del cielo. Ese fue, sin dudarlo, el comienzo de la Astronomía.

Ya quedó escrito en alguna parte anterior de esta libreta, el pensamiento del filósofo científico Karl Popper que decía:

”Nuestros conocimientos son limitados, pero nuestra ignorancia es infinita…”.

 

Chess zhor 26.png
Chess zver 26.png a8 b8 c8 d8 e8 f8 g8 h8 Chess zver 26.png
a7 b7 c7 d7 e7 f7 g7 h7
a6 b6 c6 d6 e6 f6 g6 h6
a5 b5 c5 d5 e5 f5 g5 h5
a4 b4 c4 d4 e4 f4 g4 h4
a3 b3 c3 d3 e3 f3 g3 h3
a2 b2 c2 d2 e2 f2 g2 h2
a1 b1 c1 d1 e1 f1 g1 h1
Chess zhor 26.png
               Un tablero de ajedrez vacío

“Si se colocase sobre un tablero de Ajedrez (lo suficientemente grande) un grano de trigo en el primer casillero, dos en el segundo, cuatro en el tercero y así sucesivamente, doblando la cantidad de granos en cada casilla, ¿cuántos granos de trigo  habría en el tablero al final?”

 


18 \; 446 \; 744 \; 073 \; 709 \; 551 \; 615
Un poco más de 18 trillones en la escala numérica larga, lo que es una cifra mucho más alta de lo que la mayoría de la gente esperaría de forma intuitiva.

Este problema puede ser usado para explicar el funcionamiento de los exponentes, además del muy rápido crecimiento que en general caracteriza a las series exponencialesa y de las secuencias geométricas.

Sin embargo, aunque es verdad que existen millones de preguntas que no sabemos contestar, también lo es que nuestros conocimientos crecen de manera exponencial.Cada vez sabemos más en menor espacio de Tiempo.

Nadie puede negar que en los últimos doscientos años hayamos avanzado más que en los 10.000 años anteriores. Claro está que nos hemos aprovechado de las experiencias e inventos de los que nos precedieron. Aprendimos de los errores (no siempre) y mejoramos sus descubrimientos que fueron puntos de apoyo que hicieron más fácil el trabajo. Igualmente, los que nos seguirán se encontrarán con buenos puntos de partida para seguir avanzando. Sobre todo, en física y astronomía, en esos ámbitos de lo pequeño y lo grande, tendrán la ventaja de contar con la mecánica cuántica y la relatividad, ya que, lo de la teoría de cuerdas y otros que se vislumbran como ciertas… van para largo y, como han dido algunos, son teorías del futuro que se adelantaron a su tiempo, de hecho, no estamos preparados ni para comprobarlas de manera experimental. Pero los nuevos conocimientos van llegando… sin pausa.

De esta manera, cada vez se avanza más en menos tiempo. El mundo cambia a nuestro alrededor y como somos parte del cambio, no lo percibimos en toda su extensión y grandeza pero, sin que nos demos cuenta, estamos entrando en otro mundo, en una nueva Sociedad, una manera nueva de vivir.

Hemos podido saber que en un principio, hace varios miles de millones de años (4.000), las condiciones de la Tierra, la composición enrarecida de su atmósfera, la formación de los océanos y la composición primigenia de sus aguas con abundantes chimeneas marinas de volcanes submarinos que arrojaban hidrocarburos y gases de metano, así como la proliferación de enormes tormentas y caída de rayos, todo ello acompañado de que por aquel entonces la capa de ozono que ahora nos protege de la radiación cósmica no existía, lo cual provocaba la intensa lluvia de partículas ultravioletas y rayos gamma que de manera continuada bombardeaban las aguas superficiales del planeta, además del territorio formado por la tierra seca.

Todo ello dio lugar a que existieran unas condiciones especiales que finalmente se tradujeron en la formación de la primera célula viva capaz de reproducirse por sí misma, a partir de la materia “inerte”. ¡Un verdadero milagro!, que evolucionó y a lo largo del tiempo nos trajo a nosotros, seres engreídos que se dan más importancia de lo que en realidad tienen. Siempre expreso estas comparaciones en relación al universo, ya que si nos ceñimos al ámbito planetario terrestre, la humanidad tiene una importancia de 1ª magnitud.

En realidad, si no ocurre ninguna desgracia planetaria, o es el mismo ser humano el que pone los medios para su auto-eliminación (contaminación, guerras, etc), será muy difícil parar su infinita ambición por saber cosas nuevas, su insaciable curiosidad lo empuja un paso más cada vez. Los problemas agudizan el ingenio y como ha venido sucediendo, el trabajo que unos empiezan es seguido por los que vienen detrás y, en ese sentido, se podría decir que somos una especie inmortal; unos trabajaron para ceder su fruto a otros que a su vez repiten el ciclo indefinidamente. Una especie con tales características es difícil de vencer y tiene pocos problemas que no pueda resolver… a la larga, con mucho tiempo por delante.

Esta especie, la nuestra, es un auténtico privilegio en el inmenso universo que nos ha situado en la galaxia Vía Láctea que, junto con su vecina Andrómeda es una de las treinta galaxias que aproximadamente componen un pequeño conjunto conocido como el Grupo Local. La situación del planeta Tierra no es nada privilegiada, está situado al borde de uno de los brazos espirales a 30.000 años luz del centro galáctico, exactamente en la periferia. Precisamente esta situación es la que hace posible que la vida surgiera en nuestro planeta que, de haber estado en el centro galáctico, seguramente, habría sido diferente.

Los problemas a los que antes me refería, no sé si todos ellos, pero los que tengan solución será de la mano de las matemáticas y de la física, las ramas de la ciencia que son la base de todas los demás. Las Ciencia es un gran árbol en el que, el tronco es la física, las ramas son la Química, la Biología, y otras disciplinas. Pero, ¿Y las matemáticas? Bueno, las matemáticas son las raíces, sin ellas la ciencia, no podría existir.

De lo que no puede haber duda alguna es sobre el destino final del universo, de una u otra forma quedará destruido. Lo mismo será si estamos en un universo abierto que se expansionará eternamente, como si estamos en un universo cerrado que se contraerá sobre sí mismo. En el primero reinará el frío del cero absoluto, todo quedara congelado y muerto. En el segundo será el fuego el que en una enorme bola de feroz temperatura lo arrasará todo.  Tanto en uno como en toro caso, el resultado será el mismo: ausencia de vida.

La entropía no deja de hacer su trabajo en el sistema cerrado que es el universo que irremediablemente verá crecer el desorden y disminuir la energía; es la ley de la naturaleza, y contra dicha fuerza nada podemos hacer, es imparable y lo mismo que no podemos parar el tiempo, tampoco podemos parar los acontecimientos naturales que el paso del mismo conlleva. Las cosas se deterioran, nosotros envejecemos y los terrenos fértiles se erosionan y desertizan. Ricos ecosistemas, con el paso del tiempo, se convierten en parajes yermos donde la vida desaparece. Regiones que ocuparon grandes océanos quedaran secas y otras, serán inundadas por las aguas. Es el mundo cambiante y dinámico que tenemos en el que nada permanece por los siglos o milenios.

El universo tiene 13.500.000.000 años, un tiempo considerable si lo comparamos con los míseros ochenta años que podemos vivir nosotros. Sin embargo, nunca pensamos en ello, no comparamos la brevedad de nuestras vidas con tal inmensidad. Para todos nosotros, esa insignificante fracción de tiempo es en realidad enorme. Durante ese tiempo transcurren todas nuestras vidas y año tras año se suceden los acontecimientos que, ya de mayores, pasan por nuestros recuerdos: nuestra niñez, aquellas salidas al campo con los padres, los amigos de la infancia, el colegio, los deportes, el estudio o el trabajo temprano, la novia, la boda, los hijos, verlos crecer, la lucha de llevarlos adelante y… sin que nos demos cuenta, estamos situados a las puertas del irás y no volveras.

Todo transcurre… demasiado pronto y, casi no nos deja tiempo para… ¡hacer tántas cosas!

De esa manera, en una fracción del tiempo del universo, para nuestro ámbito particular han pasado muchísimas cosas; hemos vivido muchísimas experiencias, hemos aprendido, hemos tenido efímeros momentos de felicidad y también momentos de dolor, nos hemos sacrificado por conseguir cosas para nuestros hijos, cuando parece que todo está logrado y hemos alcanzado la meta…. nos tenemos que marchar.

Algunos pensadores nos dicen que el tiempo no existe, que es una abstracción de la mente,  y que sólo se trata de una ilusión de nuestros sentidos, el pasado, el presente y el futuro es sólo una ilusión de una misma cosa que nosotros llamamos tiempo. Sin embargo, en nuestro fuero interno, lo podemos catalogar como un gran tesoro, algo que necesitamos y del que nadie quiere salir. Todos queremos continuar dentro del ámbito del Tiempo, allí donde ocurren todas las cosas y, ser testigos de lo que pasa y también, de lo que vendrá.

       ¡Siempre nos faltará tiempo!

Escribiendo esta página, miro hacia arriba y veo lo que escribí hace un momento, miro mis dedos en movimiento y veo lo que escribo en este preciso momento presente… pero sigo mirando y ante mis propios ojos veo avanzar la fila de letras sobre la pantalla y en fracciones de segundo lo que fue presente es ya pasado y mis dedos siguen tecleando en busca del fiuturo inmediato que se hará presente y pasará a ser pasado…otra vez. Mientras que, la pantalla que está en blanca inmaculado, esa es, la que esconde lo que el futuro será, lo que nos dirá. Toda vez que, ¡el futuro no está escrito! Si de nosotros depende. Sin embargo, si el futuro al que nos referimos es el del Universo… Está bien determinado cual será.

emilio silvera

¿Hay una quinta fuerza de la naturaleza?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Una quinta fuerza en la Naturaleza

 

Una señal de un experimento húngaro de física apunta a la posibilidad de que exista una fuerza fundamental de la Naturaleza más allá de las cuatro que conocemos hasta el momento.

 

 Resultado de imagen de Una quinta fuerza en la Naturaleza

La Tierra rodeada de filamentos de materia oscura, según una hipótesis para explicar qué es NASA/JPL-Caltech

 

 

 

 

Todos, aunque no tengamos ni idea de física, hemos experimentado los efectos de las cuatro fuerzas fundamentales de la naturaleza. La gravedad nos pega al suelo, la interacción nuclear fuerte se rompe a base de bombardeos con neutrones para producir energía en las centrales atómicas, la radiación electromagnética que generan el Sol o las bombillas nos ilumina y la interacción nuclear débil, quizá la más esotérica, produce nuevos elementos y permite, por ejemplo, la datación por carbono 14.

En la naturaleza, existe la interacción de cuatro fuerzas a saber: la fuerza gravitacional, la fuerza nuclear fuerte, la fuerza electromagnética y la interacción débil.

Con estos antecedentes, cuando desde principios de este año comenzó a hablarse del posible descubrimiento de una quinta fuerza, muchos trataron de imaginar un fenómeno parecido que se nos hubiese podido escapar. Sin embargo, aún queda mucho para poder confirmar el hallazgo y los efectos de esa quinta fuerza no serían tan evidentes como los de las cuatro anteriores.

Vía Láctea y Andrómeda dentro de 3.750 millones de años

 

 

Varios experimentos en todo el mundo podrían confirmar o descartar la existencia de esta quinta fuerza

Si al final tiene éxito y no queda aplastada por nuevos datos que la refuten, la historia de esta revolución comenzará a contarse en Hungría. Allí, en el Instituto para la Investigación Nuclear de la Academia Húngara de ciencias en Debrecen, Attila Krasznahorkay y su equipo observaron un fenómeno extraño en un experimento diseñado para buscar “fotones oscuros”, un tipo de partículas que ayudarían a entender qué es la materia oscura. En su búsqueda, disparaban protones a unas dianas de litio, generando núcleos de berilio 8, un elemento inestable que, por efecto de la fuerza nuclear débil, se desintegraba produciendo electrones y positrones.

Buscando entre las partículas producidas en esos choques, encontraron una anomalía que solo eran capaces de explicar si existiese una partícula aún desconocida. Se trataría de un bosón ligero, solo 34 veces más pesado que un electrón, algo que permitiría su detección sin una máquina descomunal como el LHC, necesaria para generar bosones pesados como el higgs. Eso haría asequible para muchos grupos del mundo el estudio de ese rango energético en busca de la nueva partícula, pero también plantea la cuestión de por qué no se ha encontrado antes.

  Físicos de la Universidad de California sugieren que el trabajo realizado por un equipo en Hungría el año pasado podría haber revelado la existencia de una quinta fuerza de la naturaleza.

   Aquel estudio, como es natural, causó un gran revuelo en la comunidad de la Física, que tiene a varios grupos que se han fijado la meta de reproducir los experimentos realizados por el equipo de la del Instituto de Investigación Nuclear de la Academia Húngara de Ciencias.

El trabajo húngaro ganó relevancia internacional cuando un grupo de físicos teóricos de la Universidad de California en Irvine liderado por Jonathan Feng tomó sus datos y trató de explicar su significado en un reciente artículo publicado en la revista Physical Review Letters. Según ellos, no se trataría de un fotón oscuro, sino de un bosón. El motivo por el que no se habría encontrado hasta ahora, pese a que hay aceleradores capaces de generar partículas de esa masa desde los años cincuenta, es que no interactuaría con protones, y solo se relacionaría con electrones y fotones de una forma débil. Ahora que otros grupos saben dónde buscar, podrán dedicar sus experimentos a la búsqueda de nuevos datos que confirmen o descarten la existencia del bosón X.

                          ¿Podría estar el Universo lleno de fotones oscuros que tienen masa?

 

 

 

La nueva partícula podría servir para elaborar una teoría unificada que explicase todas las fuerzas conocidas

“Con los experimentos que hay en marcha y los que están a punto de arrancar, se podrá comprobar en uno o dos años si esa partícula existe”, señala Eduard Massó, catedrático de Física Teórica en la Universidad Autónoma de Barcelona. No obstante, Massó recuerda que la experiencia muestra que a veces hay señales de física exótica que al final son efectos de los propios experimentos que no se han interpretado bien. Sobre la posibilidad real de que la señal observada por el equipo húngaro se confirme como el indicio de esa nueva fuerza de la naturaleza, otro físico responde con humor: “Hay rumores sobre la existencia de un templo oculto en las profundidades del Himalaya, dedicado únicamente a servir de mausoleo a las quintas fuerzas difuntas”.

El escepticismo sobre los resultados del grupo húngaro se alimenta además por dos anuncios previos que acabaron en nada. Según contaba a la revista Quanta el investigador de la Universidad del Estado de Míchigan (EE. UU.) Oscar Naviliat Cuncic, en 2008 afirmaron haber descubierto un bosón de 12 megaelectronvoltios y en 2012 otro de 13,5. Ambos hallazgos desaparecieron cuando se obtuvieron nuevos datos con mejores detectores.

atomki_AP

 

El año pasado, un equipo de físicos nucleares en Hungría observaron una anomalía en las desintegraciones  de átomos excitados de berilio-8  -en las que se produjeron inesperados pares de partículas con un ángulo particular de separación. El bache en los datos de los físicos era inconfundible, con probabilidades de menos de uno de cada 100 mil millones que surgieran por casualidad. Informaron de la anomalía en Physical Review Letters en enero, en ese entonces, los investigadores argumentaron que podría significar la existencia de una nueva partícula fundamental. Pero al principio, pocos se dieron cuenta del descubrimiento.

Lo que pasaría si se encuentra

A la espera de que la comunidad científica averigüe si el bosón X es o no una realidad, Massó adelanta qué significaría esa quinta fuerza que, en principio, no tendría una influencia tan evidente en nuestra vida como las cuatro que conocemos hasta ahora. “En el nivel más entusiasta, encontrar esta partícula que se acopla de una forma tan precisa y tan especial a las otras partículas, supondría una revolución. Sería la punta del iceberg de una nueva física, porque existe la posibilidad de que la materia oscura tenga interacciones más allá de las gravitacionales, que no nos dan mucha información sobre esas partículas”, indica. “Muchos experimentos para buscar la materia oscura no han dado los resultados esperados y es posible que sea algo muy diferente de lo que se había supuesto. Es posible que sean partículas de lo que a veces se llama un mundo shadow [de sombra] que contactaría con el nuestro a través de unas interacciones mediadas por esa quinta fuerza, que sería como un puente entre nuestro mundo y el de la materia oscura”, plantea.

VectorBoson_1000

 

Sorprendentemente, mientras que se necesitaba un mayor supercolisionador del mundo para producir el bosón de Higgs pesado, el hipotético bosón de Hungría es tan ligero, con un peso de sólo 34 veces el peso del electrón, que podría haber aparecido en los experimentos hace décadas. Si realmente existe, ¿cómo ha pasado desapercibido durante tanto tiempo? La mayoría de los expertos se mantienen escépticos hasta que se presenten nuevas prueba en la fisíca de partículas – incluso para Feng, “es una presión enorme  decir que una quinta fuerza ha sido descubierta, y reconoce que, obviamente, es necesario comprobarlo.

La partícula hallada únicamente actúa sobre electrones y neutrones

                              Dicen que la partícula hallada sólo actúa sobre electrones y neutrones

En un segundo escenario, es posible que “esta quinta fuerza no tenga consecuencias para nuestra vida”, apunta Massó. Sin embargo, podría servir para acercarse a una teoría que unifique las cuatro grandes fuerzas, algo a lo que Einstein dedicó los últimos años de su vida. Aunque en los años sesenta se vio que a altas energías las fuerzas electromagnética y nuclear débil se podrían explicar como una sola, los esfuerzos para hacer lo mismo con el resto no han tenido éxito. Quizá este nuevo bosón podría servir para lograr lo que no consiguió el descubridor de la Relatividad.

Un gato vivo y muerto en dos sitios al mismo tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Investigadores de EE UU logran entrelazar grupos de cuatro fotones y mantenerlos estables, un paso necesario para la creación de ordenadores cuánticos

 

 

Investigadores de EE UU logran entrelazar grupos de cuatro fotones y mantenerlños estables, un paso necesario para la creación de ordenadores cuánticos

 

 

 

 

A Erwin Schrödinger su ejemplo del gato en la caja le parecía ridículo

                                      A Erwin Schrödinger su ejemplo del gato en la caja le parecía ridículo

Erwin Schrödinger recibió un Nobel por sus aportaciones a la física, tiene un cráter a su nombre en la cara oculta de la Luna y realizó aportaciones filosóficas fundamentales para la genética. Sin embargo, su nombre es mundialmente conocido por un experimento mental que planteó en 1935 en el que un gato podía estar muerto y vivo al mismo tiempo. En aquel caso creado para ilustrar la extrañeza de la mecánica cuántica, que el físico austriaco calificaba de ridículo, se introducía un gato en una caja de acero junto a una pequeña cantidad de material radiactivo. La cantidad era tan pequeña que solo existía un 50% de posibilidades de que durante la hora siguiente uno de los átomos decayese. Si eso sucedía, se activaría un mecanismo que llenaría la caja de ácido hidrociánico, uno de los gases tóxicos utilizados en las trincheras de la Primera Guerra Mundial, y el gato moriría.

Resultado de imagen de El gato de Schrödinger

De acuerdo con los principios de la mecánica cuántica, durante el tiempo que durase el experimento, el gato estaría vivo y muerto al mismo tiempo, resultado de un fenómeno conocido como superposición. Sin embargo, esa circunstancia cambiaría cuando abriésemos la caja para acabar con la incertidumbre. En ese momento, de vuelta a la dura e incontrovertible realidad de la física clásica, el gato estaría o vivo o muerto.

Resultado de imagen de Dos partículas entrelazadas

 

Dos partículas entrelazadas lo seguirán estando aunque las separen un millón de kilómetros

Con el tiempo, los científicos han sido capaces de manipular los estados cuánticos de la materia y es posible que en el futuro este conocimiento sirva para construir potentes ordenadores cuánticos. Esta semana, en un artículo que se publica en la revista Science, un equipo de físicos de la Universidad de Yale (EE UU) muestra cómo ha logrado mantener un “gato de Schröedinger” cuántico vivo y muerto en dos lugares a la vez.

Resultado de imagen de Dos partículas entrelazadas

En realidad, estos gatos cuánticos son grupos de hasta cuatro fotones con estados entrelazados pese a estar en recipientes separados. El entrelazamiento es un fenómeno cuántico por el que las partículas subatómicas pueden alinear sus estados cuando están en contacto y mantenerlo después separadas, incluso a millones de kilómetros de distancia. El equipo de Yale, liderado por Chen Wang, fue capaz de introducir los fotones en receptáculos separados y modificar su estado, como el gato que está vivo o muerto, observando cómo cambiaban de forma coordinada.

El interés del trabajo, según explica Oriol Romero-Isart, investigador en el Instituto de Física Teórica de la Universidad de Innsbruck (Austria), es que “permite crear dos qbits (sistemas cuánticos que servirían para gestionar la información en ordenadores cuánticos) y aplicar correcciones para que duren más”. La inestabilidad de estos qbits hace que sean poco prácticos para construir máquinas cuánticas y es un reto para producir aplicaciones prácticas con este tipo de física. Normalmente, sin la aplicación de correcciones, un qbit se destruiría en menos de un segundo. Con las correcciones, comenzaría acercándose la posibilidad de emplear el potencial de un sistema en el que las partículas no solo sirven para codificar información a partir de unos y ceros, como en la computación convencional, sino que pueden aprovechar la posibilidad de que estén en varios estados al mismo tiempo.

La capacidad del grupo de Yale para crear “gatos de Schrödinger” de un gran número de fotones es importante porque para corregir los errores que hacen que el qbit se diluya en muy poco tiempo es mejor tener un sistema con muchas piezas. “Si nos imaginamos un sistema que pueda tener varios estados, en el que las partículas son canicas rojas y azules, si solo tienes una canica, cuando cambia el color, pierdes la información. Pero si tengo 100 canicas del mismo color, si solo cambia una de información, podría reparar el error y mantener la información gracias al resto”, explica Romero-Isart.

 

 

Un ión interactúa con el sistema y, al mismo tiempo, establece contacto controlado con el entorno. Fuente: IQOQI.

 

Los simuladores cuánticos serán una aplicación previa a los potentes ordenadores cuánticos

Las posibilidades que abren estudios como el publicado en Science son enormes, pero la extrañeza cuántica tiene sus límites. Aunque dos partículas entrelazadas seguirán estándolo aunque las mandemos a planetas separados por un millón de kilómetros, este sistema no serviría para transmitir información más rápido que la luz. La física no permite esa herejía y en este caso se conserva el dogma porque no es posible manipular a nuestro antojo el estado de esas partículas entrelazadas.

Entre las aplicaciones prácticas más cercanas de las máquinas cuánticas, Romero-Isart, que ha planteado la posibilidad de realizar un experimento en el que un objeto con millones de átomos esté en dos lugares a la vez, señala la simulación cuántica. “Se trataría de hacer un prototipo, de la misma manera que se hace con modelos de menor tamaño en aviación, para recrear un sistema cuántico muy complejo, como la física de los sólidos”, señala. “Saber cómo interaccionan los electrones en un sólido puede ayudarnos a entender cómo se puede crear un material en el que haya superconductividad a temperatura ambiente”, añade. Ahora, los materiales empleados para conducir la electricidad a temperatura ambiente, como el cobre, producen una enorme resistencia que limita su eficiencia. Este tipo de progresos llegarían antes que los ordenadores cuánticos, una tecnología posible, pero que aún requerirá mucho tiempo para hacerse realidad.