viernes, 24 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Es bueno hacerse preguntas y, tratar de contestarlas

Autor por Emilio Silvera    ~    Archivo Clasificado en Ciencias de la Tierra    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Qué le sucedería a todo el Oxígeno altamente reactivo de la atmósfera terrestre si no fuera renovado constantemente por la acción de los seres vivos que pueblan el planeta Tierra? Si elimináramos toda la vida que hay en el planeta, en muy poco tiempo la totalidad del Oxigeno quedaría bloqueado dentro de compuestos químicos estables, tales como los nitratos, el dióxido de Carbono, el agua, los óxidos de hierro y las rocas siliceas. Dicho de una forma más precisa, sin la intervención de la vida, todo el Oxígeno de la atmósfera quedaría bloquedo en menos de 10 millones de años. Esto indica lo sensible que es el entorno físico aparentemente estable de nuestro planeta a la presencia (0 ausencia) de la vida.

Fitoplancton

La Tierra se podría quedar sin Oxígeno si las temperaturas aumentan algunos grados más. El fitoplancton, los organismos vegetales que viven en suspensión dentro del agua y originan las dos terceras partes del oxígeno presente en la atmósfera, sería incapaz de gestionar tal incremento

El tema no resulta demasiado preocupante a una escala de Tiempo Humana -el mito popular según el cual, si mañana desapareciera la Selva Amazónica, nos asfixiaríamos todos, está lejos de ser verdad- pero diez millones de años representan sólo alrededor del 0,2 por ciento de la antigüedad de la Tierra hasta el momento presente.

Si un Astrónomo que está observando un planeta como la Tierra constata que dicho planeta posee una atmósfera rica en Oxígeno, esto significa que, o bien está siendo testigo de un suceso raro y transitorio qque por razones desconocidas tiene lugar en ese planeta, o que la atmósfera se mantiene en un estado que se encuentra lejos del equilibrio.

            La Vida es parte de la Tierra y ésta, es como es, porque en ella está la Vida.

La idea de que la Vida puede formar parte de un sistema autoregulador que determina la naturaleza física de la superficie actual de la Tierra (al menos en la “zona de la vida” una fina capa que va desde el fondo del océano hasta la parte más alta de la troposfera, es decir, hasta unos 15 kilómetros por encima de nuestras cabezas) fue recibido inicialmente de manera hostíl por los biólogos, y aún hoy continúa teniendo algunos oponentes.

Bueno, como de todo tiene que haber, también existen algunos movimientos místicos, cercanos a una especie de religión, a favor de Gaia (que por cierto, irritaron a Lovelock como lo hizo la Tolkien Society para J.R.R. Tolkien), que se fundamenta en una mala interpretación de lo que Lovelock y sus colegas decían. La misma Enciclopedía Británica (una copia en CD) -que debería estar mejor documentada- me dice que: “La hipótesis e Gaia es muy discutible porque da a entender que cualesquiera especies (por ejemplo, las antiguas bacterias anaerobias) podrían sacrificarse así mismas en beneficio de todos los seres vivientes”

¡Desde luego eso no es así! Esta afirmación tiene la misma lógica que decir que la teoría de Darwin es muy discutible porque sugiere que los conejos se sacrifican así mismo en beneficio de los zorros. Quizá os tenga que explocar que Lovelock no dijop nunca que Gaia sea una especie de dios, ni que la Madre Tierra cuide de nosotros, ni que una especie haga sacrificio en el bien de todos.

La verdad de todo esto es que Lovelock encontró una manera simple de describir todos los procesos relativos a la Vida que tienen lugar en la Tierra, incluídos muchos que tradicionalmente se han considerado procesos físicos no relacionados con la vida, como parte de una compleja red de interacciones, un sistema autoregulador (o autoorganizador), que ha evolucionado hasta llegar a un estado interesante, pero crítico, en el cual se puede mantener el equilibrio durante períodos de tiempo que resultan muy largos con rspecto a los estándares humanos, pero en el que pueden ocurrir unas fluctuaciones repentinas que lo aparten del equilibrio (análogo al equilibrio discontinuo de la evolución biológica).

Lo que Lovelock nos dice es que, el comportamiento de la Vida en la Tierra altera el paisaje físico (en el término “físico” incluye cuestiones tales como la composición de la atmósfera) y también el paisaje biológico, y que ambos cambios afectan de manera global al paisaje adaptativo, siendo la retroalimentación un componente clave de las interacciones.

        El conjunto Sol-Tierra-Vida forman el mejor triplete

No creo que sea necesario contar ahora toda la historia completa de cómo Gaia llegó a ser ciencia respetable, pero, si miramos retrospectivamente, podríamos tomar dos ejemplos del funcionamiento de esta teoría: Uno de ellos sería un modelo teórico y el otro sería tomado del mundo real, que muestran de qué modo se produce la autorregulación a partir de la interacción entre los componentes biológicos y físicos de un planeta vivo.

Resultado de imagen de un modelo llamado daisyworld ( un mundo de margaritas )

El primero, un modelo llamado “Daisywold” (“Un mundo de margaritas”), es especialmente apropiado ya que se construye directamente a partir de un enigma que Sagan planteó a Lovelock poco después de que éste tuviera su ráfaga de inspiración en el JPL, y además, el modelo resuelve este enigma; es también un claro ejemplo del surgimiento de la vida, considerando que el total es mayor que la suma de las partes. Y Lovelock dice que es “el invento del que me siento más orgulloso”.

Resultado de imagen de un modelo llamado daisyworld ( un mundo de margaritas )

El enigma que el mundo de margaritas resuelve se conoce entre los astrónomos como la “paradoja del joven Sol que palidece”, aunque en realidad sólo era un enigma, no una paradoja, y, gracias a Lovelock, ahora ya ni siquiera es un enigma. El enigma procede del hecho de que los astrónomos pueden decir que el Sol emitía mucho menos calor cuando era joven que en el momento actual.

Han llegado a saber esto combinando informaciones relativas a interacciones nucleares obtenidas en experimentos realizados en la Tïerra, simulando mediante ordenador las condiciones existentes en el interior de las estrellas, y comparando los resultados de sus cálculos con informaciones sobre emisión de energía y la composición de estrellas de diferentes tamaños y edades, obtenidas mediante espectroscopia. Este es uno de los grandes logros de la F´siica del siglo XX (en gran medida no conocido por el público, aunque en éstas páginas os he hablado con fecuencia de Franhoufer…). Bueno, para lo que nos interesa ahora, lo importante es que podemos decir con seguridad que, cuando el Sistema solar era joven, el Sol estaba entre un 25 y un 30 por ciento más frío que en la actualidad -o, por decdirlo de otra manera, desde que se asentó como una estrella estable, la emisión de energía procedente del Sol ha crecido entre un 33 y un 43 por ciento-.

http://1.bp.blogspot.com/_mpYOYfBRro0/TMueufV6EMI/AAAAAAAAKLk/YihjCtwEH0E/s1600/alcin.jpg

El Sistema solar se estabilizó en lo que es más o menos su configuración actual hace aproximadamente unos 4.500 millones de años y sabemos, por las pruebas que aportan los fósiles hallados en las rocas más antiguas que se encuentran en la superficie terrestre, que el agua en estado líquido y la vida existían ambas en la superficie de nuestro planeta hace 4.000 millones de años.

El enigma es por qué el aumento de emisión de calor procedente del Sol, aproximadamente un 40 por ciento durante 4.000 millones de años, no hizo hervir el agua de la superficie terrestre, secándola y dejándola sin rastro de vida.

No hay problema alguna para explicar por qué la Tierra nmo era una bola de hielo cuando el Sol estaba más bien frío, Sabemos ahora que en la atmósfera de Venus, como en la de Marte, predonina el dióxido de Carbono, y este compuesto, junto con el vapor de agua, es una parte importante de los gases liberados por la actividad volcánica. No hay razón alguna para pensar que la atmósfera de la Tierra en los primeros tiempos fuera, de algún modo, diferente de las atmósferas de sus dos vecinos planetarios más próximos, y una atmósfera rica en dióxido de Carbono sería buena para captar el calor procedente del Sol en las proximidades de la superficie del planeta, manteniendola caliente por el llamado efecto invernadero.

Resultado de imagen de Un astrónomo que se pudiera en la superficie de Marte, provisto de un buen telecopio y un espectrómetro

Un astrónomo que se pudiera en la superficie de Marte, provisto de un buen telecopio y un espectrómetro de sensibilidades adecuadas, podría asegurar, midiendo la radiación infrarroja característica, que había un rastro de dióxido de Carbono en la atmósfera de la Tierra, de la misma manera que equipos aquí, en la Tierra, lo han detectado en la atmósfera de Marte. Pero la proporción del dióxido de Carbono en la Tierra es mucho menor que en la de Marte,

La potencia del efecto invernadero se puede ver contrastando la temperatura media que se da en la actualidad en la superficie terrestre con la de la Luna, que no tiene aire, aunque está prácticamente a la misma distancia del Sol que nosotros.

En realidad es bastante sencillo imaginar diversos modos en los que la temperatura del planeta ha podido mantenerse constante gracias a cambios en la composición de la atmósfera; científicos como Carl Sagan formuló varios razonamientos al respecto antes de que Lovelock presentara su concepto de Gaia, pero, ¿quer proceso natural podía conducir a la estabilidad? Nadie lo sabía. Entonces, ¿era sólo cuestión de suerte?. Sea lo que sea lo cierto es que, debemos procurar, a medida que la Tierra envejece, tratar de reducir de manera continuada, la emisión de gases que provoquen un efecto invernadero desmesurado y nosivo para la vida.

http://nea.educastur.princast.es/repositorio/RECURSO_ZIP/1_jantoniozu_Vegetales/Vegetales/Imagen/fotosin2.jpg

Las primeras formas de vida terrestre basadas en la fotosíntesis (aquellas antiguas bacterias anaerobias) habrían tomado dióxido de Carbono del aire y lo habrían utilizado para formar sus cuerpos, pero habrían emitido metano al aire, con lo que el dióxido quedaría sustituido por otro gas, también de efecto invernadero, pero con unas propiedades de absorción de infrarrojos distintas de las del dióxido de Carbono. Cuando estas bacterias son más activas, el equilibrio se descompensan a favor del metano; cuando son menos activas, el equilibrio se decanta a favor del dióxido de Carbono.

http://3.bp.blogspot.com/_JEuCM0vqyag/TQtNr2eav5I/AAAAAAAAAA4/x-SKUAvlhbw/s1600/Efecto_Invernadero.gif

La clave para empezar a comprender como podía funcionar todo esto en la Naturaleza fue la introducción de una percepción retrsoectiva en los cálculos. Con un sencillo modelo que tenía en cuenta la creciente producción de calor del Sol. Lovelock pudo demostrar que, si se permite que las bacterias aumenten a una velocidad máxima cuando la temperatura es de 25 ºC, pero con menos rapidez a temperaturas superiores o inferiores y, en ningún caso, cuando las temperaturas bajan  de 0 ºC o superar los 50 ºC, se podría mantener la temperatura constante durante más o menos los primeros mil millones de años de la historia de la Tierra.

Entonces se pondrían en marcha otros procesos, principalmente el surgimiento de formas de vida que emitían oxígeno al aire, donde este elemento reaccionaria con el metano para eliminar de la red este componente, y también la disminución gradual de las concentraciones de dióxido de Carbono a través de los tiempos. Se puede hacer funcionar todo ello de una manera plausible, Sin embargo, el sistema (¿cómo no?) recibió algunas críticas. Y, aquí fue precisamente donde entró en escena Daisyworld.

Salidas de una simulación informática sencilla de un mundo de margaritas, en las que se aprecia la homeostasis que la biota es capaz de sostener en un cierto rango de temperatura.

Inicialmente Daisyworld fue un modelo desarrollado por Lovelock y sus colegas a principios de la década de los 80 y, desde entonces, ha cobrado vida por sí mismo (quizá adecuadamente), con variaciones sobre el tema que han sido desarrolladas por varios científicos, e incluso, en la década de 1990, se ha integrado en un juego de ordenador llamado Sim Eaurth.

Daisyworld comienza como un planeta igual que la Tierra,  pero sin vida, que recorre una órbita alrededor del Sol, a la misma distancia que lo hace la Tierra. En las versiones más sencillas del modelo, la superficie del planeta es principalmente tierra firme, con el fin de ofrecer un lugar donde puedan crecer las margaritas, y la composición de la atmósfera se mantiene constante, por lo que hay un efecto invernadero constante. Las margaritas se presentan en dos colores, blancas o negras, y crecen cuando la temperatura es de 20 ºC. Les va proporcionalmente peor cuando la temperatura desciende por debajo de este valor óptimo, y no pueden crecer por debajo de 5 ºC; también les va peor en proporción cuando la temperatura asciende por encima del valor óptimo, y no consigue crecer por encima de 40 ºC.

El modelo se pone a funcionar cuando la temperatura del Sol virtual aumenta lentamente del mismo modo que lo hacía el Sol real en su juventud. Una vez que la temperatura en el ecuador de la Tierra del modelo alcanza los 5 ºC, se diseminan semillas de margarita de ambas variedades por la superficie y se deja que actúen por su cuenta -con la condición de que se reproduzcan de verdad, de tal modo que las margaritas blancas tengan siempre descendencia blanca y las margaritas negras produzcan siempre otas también negras.

http://www.e-renova.net/coches-ocasion/77323_162092.jpg

Como ya sabe cualquiera que haya subido a un coche negro que ha estado aparcado al Sol en verano, los objetos de colores oscuros absorben el calor del Sol con mayor eficacia que los objetos de colores blancos. Por lo tanto, un macizo de margaritas negras absorberá calor y calentará la pequeña superficie en la que se encuentre, mientras que un macizo de margaritas blancas reflejará el calor y refrescará la tierra sobre la que está plantado.

Mientras Daisyworld está freco, las margaritas negras tienen una ventaja, ya que calientan su entorno, llevando la temperatura a un valor cercano al óptimo, y crecen. En las generaciones siguientes, las margaritas negras se propagan por la superficie del planeta a expensas de las blancas, de tal modo que todo el planeta se vuelve más eficaz para absorber el calor procedente del Sol, y su temperatura asciende aún más rápidamente que si lo hiciera sólo como resultado del aumento de la temperatura del Sol. Sin embargo, una vez la temperatura supera los 20 ºC en cualquier lugar de la superficie terrestre del modelo, son las margaritas blancas las que tienen ventaja, porque al refrescar la superficie hacen que la situación vuelva a tender a la temperatura óptima.

Aunque la temperatura del Sol continúe aumentando, dado que ahora las margaritas blancas se propagan a expensas de las negras, la temperatura del planeta ha quedado rondando los 20 ºC hasta que toda la superficie planetaria queda cubierta de margaritas blancas. Entonces, como la temperatura del Sol sigue aumentando, las margaritas lo tienen cada vez más difícil, hasta que la temperatura alcanza los 40 ºC y mueren todas. La gama total de producción de energía solar que cubre esta versión del modelo va desde el 60 por ciento hasta el 140 por ciento de la producción actual de energía de nuestro Sol.

http://fc00.deviantart.net/fs70/i/2011/033/d/2/viva_la_vida_by_hikero-d38jagn.jpg

El efecto global es que durante un largo período de tiempo, aunque la producción de calor del sol del modelo aumenta, la temperatura de la Tierra del modelo no sólo permanece constante, sino que se mantiene en la temperatura óptima para la vida -sin que las margaritas hagan ninguna planificación consciente, y sin indicios de que otra clase de margaritas “se esté sacrificando así misma” en beneficio de todos los seres vivos-. Ambas variedades actuan sólo en su propio interés. Pero, ¿puede un sistema muy sencillo, como éste, ser realmente representativo del modo en que la Naturaleza actúa en realidad?

Bueno, unas de las cosas que no me gustan de este modelo es que no permite que las margarites evolucionen y que, por ejemplo, unas margaritas incolaras aparecieran por mutación y pudieran incadir todo el planeta en detrimento de las otras dos especies…Hay otras muchas posibilidades que el modelo deja fuera.

http://www.portalciencia.net/images/Moluscos.jpg

Esto es largo y, nos llevaría todo el día pero, lo que vengo a significar es que, el equilibrio Tierra-Vida es una fina línea que, en cualquier momento podemos romper y, si no andamos con cuidado podríamos ser los causantes de que, la simbiosis actual que existe entre la vida y el planeta se rompa y todo se vaya al traste…¿Qué pasó en Marte? La verdad es que nadie lo saber pero, si antes era como la Tierra y ahora, es como lo podemos ver…algo pasaría y, lo mejor es que no ocurra aquí lo mismo.

emilio silvera

Volar a las estrellas arrugando el espacio

Autor por Emilio Silvera    ~    Archivo Clasificado en El futuro tecnológico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Física

Reportaje en El Español

 

 

Las ondas gravitatorias recién descubiertas ilustran la deformación del tejido del universo, un concepto aplicable a los viajes más rápidos que la luz, aunque solo según la teoría.

 

Volar a las estrellas arrugando el espacio

 

                         Volar a las estrellas arrugando el espacio Ricky Brian / Patrick Montgomery Paramount

Reportaje de Javier Yanes
 

Mientras elaboraba su tesis doctoral en la Universidad de Gales, el físico mexicano Miguel Alcubierre veía un capítulo de Star Trek: La nueva generación, cuando tuvo una idea. Las naves de la serie se desplazan por el espacio a velocidades superiores a la de la luz gracias a sus warp drives o impulsores de curvatura, sistemas capaces de deformar el tejido del espacio-tiempo. ¿Sería posible proporcionar a los protagonistas de la serie un modelo teórico real que encajara con las ecuaciones de la relatividad general de Einstein?

 

 

Resultado de imagen de alcubierre drive nasa

 

Alcubierre, que hoy dirige el Instituto de Ciencias Nucleares de la Universidad Nacional Autónoma de México, lo consiguió. Y a la hora de poner un nombre a su hipotético propulsor, a sugerencia de su director de tesis, el físico hizo “un guiño a la ciencia ficción” y mantuvo el término warp drive, según cuenta a EL ESPAÑOL. Sin embargo, y desde la publicación de su teoría en 1994, la comunidad física se refiere a su propuesta como Alcubierre drive.

 

 

              Arrugas en la alfombra cósmica

 

Hace muy poco tiempo que hemos asistido al anuncio histórico de la primera detección de ondas gravitatorias, pequeñas sacudidas en el tejido del espacio-tiempo tal como lo definió Albert Einstein en su teoría general de la relatividad. Estas ondas creadas por las masas son normalmente minúsculas e indetectables; pero las producidas por un cataclismo entre objetos inmensamente pesados, como la fusión de dos agujeros negros, pueden llegar a cazarse en la Tierra gracias a la ínfima variación de longitud que provocan en un túnel alargado, lo que modifica el tiempo que la luz tarda en recorrerlo de un extremo a otro.

 

Resultado de imagen de El encuentro de dos agujeros negros

Dos agujeros negros que choquen emitiran ondas gravitacionales que saldrán despedidas del suceso a la velocidad de la luz, y, su recorrido será inmensamente grande, aunque, eso sí, detectarlas requiere un aparato muy sofisticado.

 

En esta deformación del espacio-tiempo se basa también la idea de Alcubierre. El físico mexicano imaginó una nave rodeada por una burbuja que es capaz de contraer el espacio-tiempo por delante de ella y expandirlo por detrás, avanzando en su arruga espacio-temporal como un surfista navega sobre una ola. Así, si queremos volar a una estrella lejana, no es la nave la que se aproxima a su destino, sino este el que se acerca gracias a esos pliegues en la alfombra cósmica.

 

 

 

 

                                      Recreación de estos hipotéticos viajes. Les Bossinas NASA

 

“El objeto se mueve sin moverse en realidad”, dice el físico; “es el espacio el que hace el trabajo”. El modelo permite, según su autor, “viajar a velocidades arbitrarias, incluso mayores que las de la luz”, ya que en realidad la nave no quebranta este límite físico respecto a su entorno local. Y en un experimento mental ya clásico sobre los viajes a velocidad superluminal, si los tripulantes de la nave encendieran los faros delanteros, verían el chorro de luz proyectado hacia delante, ya que la luz emitida seguiría moviéndose más aprisa que el vehículo dentro de la burbuja.

 

 

 

 

La publicación del modelo de Alcubierre provocó a su vez una onda expansiva en su propio tejido espacio-temporal, el de la física teórica a finales del siglo XX. Desde entonces, las cinco páginas del estudio del mexicano han sido descargadas de la web de la revista Classical and Quantum Gravity más de 25.000 veces, y su trabajo ha sido citado en más de un centenar de artículos, además de haber motivado obras de ciencia ficción y locas especulaciones en la imaginación popular.

 

Energía negativa y materia exótica para mantener abiertos los huecos de entrada y salida del agujero de gusano.


 

 

Claro que, en física, de la teoría a la práctica a menudo media una distancia tan insalvable como la del espacio interestelar. El primer problema fundamental de la burbuja de Alcubierre es la propia burbuja. “Para producir esta distorsión del espacio se requiere de algo que llamamos energía negativa, que es esencialmente equivalente a la anti-gravedad”, apunta el físico; “y hasta donde sabemos, eso no existe”, zanja. En la física clásica, la que podemos experimentar en nuestra vida diaria, hablar de energía negativa es un concepto tan absurdo como tratar de encender la oscuridad. “Pero en el extraño mundo de la mecánica cuántica, de hecho se predice la existencia de la energía negativa”, precisa a este diario el matemático de la Universidad Estatal Central de Connecticut (EEUU) Thomas Roman.

 

Resultado de imagen de el físico Stephen Hawking demostró que la energía negativa es un elemento necesario para viajar hacia atrás en el tiempo

No creo que logremos  esa máquina que nos lleve a lo que se fue

 

Según explica Roman, en 1992 el físico Stephen Hawking demostró que la energía negativa es un elemento necesario para viajar hacia atrás en el tiempo. En física, la idea de desplazarse más rápido que la luz está íntimamente ligada a la del viaje temporal, ya que sería posible sentarnos en una posición en la que viéramos cómo una señal transmitida a velocidad superluminal llega a su destinatario antes de haber sido enviada por el emisor. La energía negativa nace de la aplicación de estas condiciones a las ecuaciones de Einstein; por lo tanto, si se coloca en las fórmulas no sólo rompe la barrera de la luz, aunque sea en el papel, sino que también nos regala un billete al pasado.

 

 

 

 

Pero aunque la física cuántica teórica permita la existencia de esta energía, no es tan fácil obligar a la realidad a que lo acepte. Según la relatividad especial de Einstein, masa y energía son dos caras de una misma moneda (la famosa E=mc2), por lo que la energía negativa equivale a un tipo de materia que no tenemos, y que los físicos denominan “exótica”. “Las curvaturas del warp drive solo pueden ser causadas por este tipo de materia hipotética”, señala a EL ESPAÑOL Carlos Barceló, físico teórico del Instituto Astrofísico de Andalucía del CSIC (IAA). Barceló expone que “la materia que conocemos no tiene estas características”; pero del mismo modo que la física de partículas predice la energía negativa, “se ha especulado que quizá podría haber situaciones cuánticas en las que se genere materia de este tipo”.

 

Una nave sin control

 

El de la energía negativa, o la materia exótica, no es el único obstáculo en el modelo de Alcubierre. Su propio autor opone una segunda gran pega, el llamado “problema del horizonte”. Dado que el frente de la burbuja se desplazaría a una velocidad aparente mayor que la de la luz, los pilotos de la nave no podrían acceder a él, y esto tendría consecuencias bastante indeseables. Por un lado, no podrían enviar señales para detener o dirigir la burbuja, por lo que continuarían viajando indefinidamente a menos que la pompa estallara o alguien desde fuera hiciera algo al respecto.

 

 

¿Cómo serían este tipo de viajes?

 

¿Cómo serían este tipo de viajes? NASA

 

Pero también, y dado que los tripulantes de la nave estarían desconectados del exterior de la burbuja, si fuera posible crear una infraestructura que permitiera el desplazamiento –como han sugerido algunos teóricos–, ésta no podría ser colocada durante el propio viaje, como hacían los constructores de los ferrocarriles que iban tendiendo las vías a medida que la locomotora avanzaba. En este caso la locomotora no tendría puertas para salir al exterior, por lo que las vías deberían ser colocadas por un equipo que viajara a pie, o en este caso en una nave convencional, y por tanto muy lenta.

“Todo apunta a que la naturaleza rechaza la formación de burbujas como las de Alcubierre”, concluye Barceló. El físico del IAA agrega que además existen “problemas de inestabilidad“: en concreto, las altas temperaturas en el interior de la burbuja no solo la destruirían, sino que incinerarían todo su contenido, nave y tripulantes. El propio Alcubierre admite que su experimento mental no tiene “ninguna aplicación práctica hasta la fecha, y no la puede haber mientras los problemas mencionados no se puedan resolver, si es que tienen solución, que pueden muy bien no tenerla”.

Imposible, pero nada lo es

 

 

Resultado de imagen de alcubierre drive nasa

 

 

Y a pesar de todas las objeciones en contra, la cuestión de los propulsores de curvatura continúa provocando encendidas discusiones entre los físicos. Para los teóricos es puramente una manera de explotar las posibilidades de las ecuaciones, pero las conjeturas nacidas a raíz de algunos resultados experimentales afloran periódicamente a la luz pública, para entusiasmo de unos e indignación de otros.

Hace pocos meses, un grupo heterodoxo de la NASA llamado Laboratorio de Física de Propulsión Avanzada, o Eagleworks, causó una conmoción al sugerir que había construido un tipo de propulsor llamado EmDrive que se opone a toda la lógica física y en el que algunos teóricos ven la posibilidad de crear burbujas de distorsión del espacio-tiempo. El asunto fue tan comentado en los medios como irritante para la propia NASA, que prohibió a los ingenieros de Eagleworks pronunciarse públicamente. A raíz de aquello, la agencia archivó los artículos de su web relacionados con la idea del warp drive, reemplazándolos por una declaración que afirma: “Warp Drive o cualquier otro término para viajes más rápidos que la luz aún no son más que una especulación. El grueso del conocimiento científico concluye que esto es imposible”.

Al menos por el momento, deberemos conformarnos con posibilidades más al alcance de la tecnología. La NASA investiga activamente en el campo de los propulsores iónicos, una opción que no permitirá los viajes interestelares pero sí romper nuestras fronteras actuales, y que para Alcubierre “son de momento los sistemas más prometedores”. En un futuro muy lejano, imagina el físico, tal vez lleguemos a construir cohetes de antimateria; “pero de momento es ciencia ficción”, concluye. Respecto a lo que pueda depararnos el futuro, nos queda el consuelo de Barceló: “En ciencia natural nunca se puede decir de nada que es imposible”

¿Había algo antes del Big-Bang?

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ABC- Ciencia

 

http://3.bp.blogspot.com/-EgYu203xVYQ/TpZgFOU8FfI/AAAAAAAAAJU/q5xInJzoB-4/s1600/penrose-21.png

 

 

Según la teoría de la Cosmología Cíclica Conforme, de Sir Roger Penrose, el Universo vive un ciclo continuo e infinito de «creaciones»

 

“ A la izquierda: Imagen en el óptico de la nebulosa del Cangrejo tomada por el telescopio Hubble, a la que se han asignado colores falsos para resaltar los diferentes elementos químicos que la componen. La nebulosa abarca una distancia de unos 6 años luz. En el centro: Imagen del objeto en rayos X. A la derecha: Recreación artística de la estrella de neutrones central, de apenas unos kilómetros de diámetro, con su campo magnético. El eje de rotación del púlsar queda representado por la línea vertical de color verde. Las franjas azules, paralelas al eje que forman los polos magnéticos del astro, simbolizan los haces de radiación emitidos por el objeto. Debido a la rápida rotación de la estrella, esos haces se orientan hacia la Tierra una vez cada 33 milisegundos. Cuando eso ocurre, desde nuestro planeta se observa un breve pulso de radiación electromagnética muy energética”
LaNebulosaseformó trásuna explosión deSupernova,claro que,eltérmino explosión,si estáreferido al Big Bang,sequedamuy cortoparadescribir todo loque allí,sesupone que pasó.
 NASA, ESA, J. Hester, A. Loll (ASU)
Héctor Socas, investigador del Instituto de Astrofísica de Canarias (IAC). Créditos: ACTPress.

 

 

 

POR HÉCTOR SOCAS NAVARRO/Investigador en el Instituto Astrofísico de Canarias (IAC)

 

 

Sir Roger Penrose es una leyenda viva de la Física. Durante el festival Starmus tuve el placer de escucharle explicando su controvertida teoría cosmológica. Su exposición fue tan elocuente, convincente e incluso divertida, que me causó una profunda impresión. A ver si en este artículo consigo explicarla de forma mínimamente coherente.

Estamos bastante seguros de que el Universo entero comenzó con lo que se llama el Big Bang (la «gran explosión») hace la friolera de 13,700 millones de años. En realidad, lo de la explosión no es una muy buena metáfora. Este nombre lo acuñó despectivamente el astrofísico Fred Hoyle durante la retransmisión de un programa de radio de la BBC en 1949. Hoyle se burlaba con él de la absurda teoría que había propuesto el sacerdote (además de físico y matemático) Georges Lemaître. El propio Einstein al principio tampoco creía en las ideas de Lemaître. El prejuicio de la época era que el Universo debía ser algo estático e inmutable. Pero las matemáticas de Lemaître eran impepinables.

Resultado de imagen de Lemaitre Y la expansión del Universo

Georges Lemaître y Albert Einstein que, tras muchas discuosiones…

Su solución de las ecuaciones de Einstein implicaba que el Universo debía estar o bienexpandiéndose o bien colapsando, cayendo sobre sí mismo como un edificio en demolición. Visto con perspectiva histórica, debe dar mucha rabia eso de que alguien coja las ecuaciones que son el trabajo de tu vida y las resuelva magistralmente para llegar a una conclusión que aborreces. Las discusiones entre Einstein y Lemaître, que llevaron al primero a proponer la existencia de una «constante cosmológica», merecerían un artículo aparte. Por lo pronto, baste decir que, como buen científico, Einstein acabó aceptando la evidencia, tanto teórica como empírica, que comenzaba a acumularse. Pese a sus prejuicios iniciales, terminó abrazando la idea de que, efectivamente, el Universo se estaba expandiendo.

La singularidad original

 

La historia sería más o menos así: Al principio de los tiempos, todo el Universo estaba concentrado en una singularidad, un punto de densidad infinita que repentinamente estalló en ese instante inicial, saltando toda la materia, energía y espacio despedidos en todas direcciones. A medida que pasa el tiempo, la Física nos dice que las galaxias van a sentir el tirón gravitatorio unas de otras, y esto debería hacer que poco a poco se vayan frenando. Cuánto se van a frenar dependerá de cuánta masa haya en el Universo. Si hay mucha, la gravedad terminará por dominar, la expansión se detendrá y el Universo volverá a caer sobre sí mismo.

NASA / WMAP Science Team

Si hay poca, la atracción será incapaz de frenar la expansión y el Universo continuará expandiéndose por toda la eternidad, aunque a menor velocidad. La distinción es trascendental, con implicaciones hasta en el plano espiritual. Porque un Universo que vuelve a colapsar se presta a la perspectiva del ciclo infinito de big bang-big crunch, el ciclo continuo y eterno de creación y destrucción. Mientras que la otra posibilidad nos lleva a una insulsa muerte final de toda la existencia, más que nada por aburrimiento.

La sorpresa de la densidad crítica

 

 

Resultado de imagen de La Densidad Crítica del Universo

 

 

De la Densidad Crítica, o lo que los Cosmólogos llaman el Omega Negro (la materia existente en el Universo), dependerá su final. Tres podrían ser las clases de Universo en el que vivimos.

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas… y ¡vida!

 

 

 

La cantidad de masa (o, hablando con más precisión, de energía) que se necesita para pasar de un comportamiento a otro se llama «densidad crítica». No hace mucho, cuando yo estudiaba, sin ir más lejos (y créanme que tampoco hace tanto de eso), nos preguntábamos si en el Universo había más o menos densidad que la crítica. Parecía que no, que era muy pequeña, que no sería suficiente toda la masa para volver a cerrar el ciclo. Pero claro, en aquella época no se conocían la materia y la energía oscura. Si tenemos en cuenta estos factores, nos encontramos con uno de los grandes misterios de la cosmología moderna: ¡Resulta que tiene exactamente la densidad crítica!

La radiación de fondo de microondas, una de las mayores evidencias de que ocurrió un Big Bang
La radiación de fondo de microondas, una de las mayores evidencias de que ocurrió un Big Bang- WIKIPEDIA

La revelación de que la densidad del Universo es exactamente la crítica (con tanta precisión como somos capaces de medir), sacudió el mundo de la Física. Y es que, aunque sea en el plano subconsciente, se hace difícil no evocar la imagen de un creador para explicar tal coincidencia cósmica. La situación de crisis existencial se resolvió poco después, para alivio de muchos, con la llegada de la teoría de la inflación.

Por ponerlo en términos muy simples, esta teoría nos dice que durante la primera fracción de segundo (técnicamente, desde los 10-36 hasta los 10-32 segundos), el Universo sufrió una expansión tan brutalmente violenta, que el término «explosión» se queda muy corto para describir lo que ocurrió. La expansión en esa época fue acelerada exponencialmente, que es una forma que hay en Física de decir enormemente rápida.

Los cosmólogos suelen decir que todo lo que existe pasó de tener el tamaño de un átomo al de un melón. Por alguna razón se suele usar el melón como medida de referencia. Podrían decir que medía 30 centímetros, que era como un balón de baloncesto o como un florero grande. Pero no, parece que lo del melón lleva camino de convertirse en la unidad estándar de volumen cósmico, algo así como el campo de fútbol lo es hoy en día para medir áreas de monte quemado.

Archivo:Bicep2.jpg

La cuestión es que a este disparatado crecimiento del espacio, infinitamente más rápido que la luz, se le llama inflación. Es un poco contraintuitivo porque, en lenguaje cotidiano, el verbo inflar nos suena mucho más suave y benigno que explotar. Es bien conocido que los físicos no son muy buenos para poner nombres a las cosas. No entendemos bien cómo y por qué ocurrió la inflación salvo que parece estar relacionado con lo que se llama «gran unificación», la época en la que las tres fuerzas fundamentales de la naturaleza eran una, grande y única.

El Universo no se frena

 

 

 

 

El otro gran descubrimiento que ha tenido lugar desde los tiempos de Einstein es otro hallazgo reciente que también ha causado cierta zozobra existencial. Discutíamos antes las dos posibilidades sobre hasta qué punto sería la gravedad capaz de frenar la expansión del Universo, creando un ciclo continuo de explosión-colapso (Big Bang-Big Crunch) o bien una expansión que se iría ralentizando eternamente pero sin llegar nunca a detenerse del todo. Pues bien, hoy en día sabemos que no va a ser ni lo uno ni lo otro. Resulta que el Universo no se está frenando. No tiene visos de querer volver a colapsar pero tampoco está ralentizando su marcha.

Antes al contrario, las observaciones nos muestran que desde hace 5,000 millones de años (un tercio de su vida), el Universo ha dejado de frenarse y ¡ha comenzado a acelerar! Este resultado fue obtenido por dos grupos independientemente y ambos recibieron el Premio Nobel en 2011. Fue tan sorprendente que ninguno de los dos grupos se atrevió a publicarlo hasta que se enteraron de los resultados del otro. Para explicar el fenómeno, los teóricos han tenido que postular la existencia de una «energía oscura», que sería omnipresente en todo el espacio vacío.

El ciclo continuo de Penrose

 

Hasta aquí hemos explicado la cosmología moderna canónica, la visión aceptada mayoritariamente por los expertos en el tema. ¿Qué es, entonces, lo que añade Penrose? Pues, según su teoría, estas dos revelaciones, la inflación y la expansión acelerada del Universo, están íntimamente relacionadas. De hecho, serían la misma cosa. Para Penrose, el Universo vive un ciclo continuo e infinito de «creaciones», pero no en el modelo tradicional de explosión-colapso.

Una fotografía de Roger Penrose, tomada en 2005
Una fotografía de Roger Penrose, tomada en 2005- Festival della Scienza

En su lugar, Penrose postula que cada uno de los ciclos (que él llama eones) acaba con una fase de expansión acelerada que se convierte en la inflación del eón siguiente. Lo de Penrose no es una ocurrencia, es una teoría. Esto significa que ha resuelto las ecuaciones de la relatividad general y los números cuadran salvo por un factor de escala. Quiere decirse que las escalas del nuevo universo son mucho mayores, tanto en el espacio como en el tiempo.

De Universo a melón

 

 

Resultado de imagen de Un nuevo Universo ciclico después del final

 

 

Así, todo nuestro Universo en expansión acelerada, está camino de convertirse en lo que sería un melón del Universo siguiente. Y los miles de millones de años que dura esta expansión serían la breve fracción de segundo en aquel nuevo Universo. Quizás en un futuro increíblemente distante, habrá criaturas inconcebiblemente grandes y lentas en el siguiente eón, investigando esta época en la que vivimos hoy en día, a la que quizás den el absurdo nombre de inflación y quizás la consideren el origen de su universo. Una implicación particularmente profunda de todo esto es que, de ser cierto, estaríamos ahora mismo viviendo un nuevo big bang que comenzó hace 5,000 millones de años y lo estaríamos viendo transcurrir a cámara superlenta.

Sir Roger Penrose, sustentador de esta teoría, en el Festival della Scienza, Génova, 2011.

Quiero resaltar que esta teoría, llamada Cosmología Cíclica Conforme, no es la aceptada por la mayoría de los cosmólogos. Sin embargo, no hay nada incorrecto o erróneo en ella, que sepamos. Penrose es uno de los mayores expertos mundiales en la física de la relatividad general y la cosmología. Su teoría cumple con la física conocida y esto sí que es un mérito que le concede la comunidad. Al igual que hizo Lemaître hace un siglo, ha encontrado una solución matemática correcta a las ecuaciones de la Física que conocemos, pero es una solución que aborrecen sus colegas por razones más filosóficas que científicas.

Resultado de imagen de ondas gravitacionales

Un aspecto particularmente fascinante es que, como toda buena teoría, la naturaleza cuantitativa de la cosmología de Penrose le permite hacer predicciones. Las ecuaciones indican que los eones no son completamente independientes y algo de información se puede transmitir de uno a otro. En particular, las ondas gravitacionales (ésas que recientemente detectó el experimento LIGO) creadas por catástrofes cósmicas en el eón anterior podrían atravesar la época de la inflación y llegar hasta nuestros días. Estas ondas producirían patrones de anillos concéntricos en el fondo cósmico de microondas. Ni que decir tiene que muchos investigadores están ya manos a la obra buscando esos anillos. Si se encontraran, sería la primera observación de algo que ocurrió antes del Big Bang.

Héctor Socas Navarro es investigador del Instituto de Astrofísica de Canarias (IAC) y divulgador en «Coffe Break». El autor agradece al Dr Jose Alberto Rubiño por su lectura crítica y comentarios para mejorar este artículo.