viernes, 24 de enero del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Una pincelada de la Relatividad

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://th.physik.uni-frankfurt.de/~jr/gif/phys/einst_pat.jpg

Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E=mc2.  Puesto que la velocidad de la luz al cuadrado (c2) es un número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía.  Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química.  La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad, energía condensada.

http://2.bp.blogspot.com/_-Rw4Rb4bpMc/SRnwxorU6QI/AAAAAAAAAko/VA75n0HebDQ/s400/Materia+OScura-Energ%C3%ADa+oscura-Internet

Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la Naturaleza.  Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales como la materia y la energía o el espacio y el tiempo que, gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.

http://www.nasa.gov/centers/glenn/images/content/84540main_warp24.gif

Nuevos conceptos que desataron nuestra imaginación

Desde entonces, estos conceptos, los tenemos que clasificar, no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una parte y espacio-tiempo por la otra.  El impacto directo del trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX.  Claro que, en contra del criterio de Einstein que era un pacifista y nunca quiso participar en proyectos de ésta índole.

http://i.ytimg.com/vi/7EG0s4K1MR4/hqdefault.jpg

Einstein completó su teoría de la relatividad con una segunda parte que, en parte, estaba inspirada por lo que se conoce como principio de Mach, la guía que utilizó Einstein para crear esta parte final y completar su teoría de relatividad general.

Einstein enunció que, la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor.  Esta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio.

http://img6.imageshack.us/img6/989/f05040202.jpg

Esto, a su vez, puede resumirse en la famosa ecuación de Einstein, que esencialmente afirma:

Materia-energía determina la curvatura del espacio-tiempo

Esta ecuación engañosamente corta es uno de los mayores triunfos de la mente humana (me he referido a ella en otras muchas ocasiones).  De ella emergen los principios que hay tras los movimientos de las estrellas y las galaxias, los agujeros negros, el big bang, y seguramente el propio destino del Universo.

http://t3.gstatic.com/images?q=tbn:ANd9GcQoYxxyfM8GgZ11MjUfFBSD2nKSJkfScNuOlWfGfxxx_ip_tLhbiyLVbdD5

Es curiosa la similitud que se da entre la teoría del electromagnetismo y la relatividad general, mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas y, apareció Maxwell que, finalmente formuló la teoría.

Einstein, al igual que Faraday, había descubierto los principios físicos correctos, pero carecía de un formulismo matemático riguroso suficientemente potente para expresarlo (claro que Faraday no era matemático y Einstein si lo era).  Carecía de una versión de los campos de Faraday para la Gravedad.  Irónicamente, Riemann tenía el aparato matemático, pero no el principio físico guía, al contrario que Einstein.  Así que, finalmente, fue Einstein el que pudo formular la teoría con las matemáticas de Riemann.

http://www.cienciakanija.com/wp-content/uploads/espirales_7.jpg

Einstein, como todos sabeis, se apoyo en otros muchos para formular sus teorías relativistas desde Mach, Maxwell y Lorentz hasta el propio Riemann. Sin embargo, fue él quien tuvo la chispa de ingenio de ver con claridad el significado de todos aquellos postulados que andaban sueltos por el mundo de la física y supo reunirlos en una teoría coherente y unificadora que, a lo largo del tiempo, ha sido demostrada de manera más que suficiente y aclaratoria.

La obra de Einstein está revestida de grandes éxitos en el campo de la Física y de la Cosmología, y, hasta tal punto es así que, el Cosmos sería otro sin la teoría de la Relatividad General de cuyas ecuaciones -arriba reseñadas- aún se están obteniendo consecuencias mucho más allá de los agujeros negros.

También esa simple ecuación que, se está convirtiendo en uno de los mayores logros de la Humanidad, por su sencilles y simpleza en contraposición con su profundidad y complejidad en cuanto a los mensajes que encierra, como por ejemplo, el hecho de que dichas ecuaciones de campo de la teoría de Einstein emerjan como por encanto desde las profundidades de la Teoría de cuerdas. Sin que nadie las llame, allí aparecen.

¿Qué tienen estas ecuaciones? ¿Qué mensajes nos envía? ¿Qué secretos encierra?

emilio silvera


¡Sondas Espaciales!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El cohete Atlas-Centauro lanza el Surveyor I el 30 de Mayo  de 1966. La primera sonda espacial fue la soviética Lunik 2 que llegó a la Luna en 1959, después vinieron otras muchas no sólo a la Luna sino hacia otros planetas. Es cierto que la presencia de los seres humanos en la Luna fue un gran acontecimiento y un enorme trinfo, sin embargo, los mayores logros, son debidos a las sondas espaciales que, haciendo un trabajo para el que nosotros no estamos preprados, han conseguido poner a nuestro alcance conocimientos sobre planetas lejanos y lunas misteriosas.

Leer más

Un 2012 bueno para todos

Autor por Emilio Silvera    ~    Archivo Clasificado en Felicidad para todos    ~    Comentarios Comments (18)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

A finales del pasado mes de diciemnre, os dejaba aquí nuestros buenos deseos que, desgraciadamente, no se están cumpliendo y, cada día podemos ver el deterioro al que se ha llegado en muchas naciones y, la pobreza que inunda las casas de muchas familias. ¿Cómo podríamos revertir ésta nefasta situación?

Con el mayor deseo de bienestar para todos, os decíamos:

                                     A pesar de que no bebo nada de alcohol, haré una excepción y con Shalafi, brindaré por todos ustedes

Los artífices de este humilde lugar, Shalafi como Administrador y emilio silvera como “obrero” imaginativo de la divulgación científica, no tienen más remedio que, desde aquí, mostrar su agradecimiento a los muchos amigos que nos han distinguido con su presencia en tan sencillo lugar desde el que hemos tratado de llevar a todos, un poco del conocimiento del mundo, del saber del Universo, de las complejidades de la mente, del origen de la Vida y, de nuestro destino en las estrellas.

Leer más

¡El Límite de las Teorías!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para la XIX Edición del

Siempre andamos a vueltas con las teorías, y, tenemos que ser conscientes que las teorías tienen unos límites que están bien determinados. Veamos:

¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son.

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33 centímetros, más joven que el tiempo de Planck 10ˉ⁴³ segundos y supere la temperatura de Planck de 1032 grados.  Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

Leer más

No es facil entender la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando los átomos de Cl y Na interaccionan por aproximarse suficientemente sus nubes electrónicas, existe un reajuste de cargas, porque el núcleo de Cl atrae con más fuerza los electrones que el de Na, así uno pierde un electrón que gana el otro. El resultado es que la colectividad de átomos se transforma en colectividad de iones, positivos los de Na y negativos los de Cl. Las fuerzas electromagnéticas entre esos iones determinan su ordenación en un cristal, el Cl Na. Por consiguiente, en los nudos de la red existen, de manera alternativa, iones de Na e iones de Cl, resultando una red mucho más fuerte que en el caso de que las fuerzas actuantes fueran de Van der Waals. Por ello, las sales poseen puntos de fusión elevados en relación con los de las redes moleculares.

Hablemos de cuerpos.

Me referiré en primer lugar a los que constituyen nuestro entorno ordinario, que sería todo el entorno que abarca nuestro planeta. En segundo lugar considerare los demás cuerpos y objetos del universo. El análisis de muestras de esos diversos cuerpos ha puesto de manifiesto que, en función de la composición, los cuerpos pueden ser simples y compuestos. Los primeros son, precisamente, los llamados elementos químicos, a las que el insigne Lavoisier (conocido como padre de la química), consideró como el último término a que se llega mediante la aplicación del análisis químico.

Leer más