sábado, 27 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Aprender de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en elementos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Moléculas desprendidas de la cola de un asteroide

 

Encuentran componentes de ADN en unos meteoritos llegados del espacio. ¿Quiere decir esto que la Vida vino de fuera de la Tierra?

 

 

Hoy conocemos los núcleos presentes en el Universo.  La Astrofísica nuclear es una rama relativamente joven de la física entre cuyos objetivos destaca la descripción de las reacciones mediante las cuales tiene lugar la generación de energías y la síntesis de elementos químicos en el Universo. Se trata, por tanto, de un campo multidisciplinar que combina las observaciones astronómicas, con el análisis de la composición de meteoritos, la modelización astrofísica y la física nuclear tanto experimental como teórica.

                                 

                                                                                               Fred Hoyle

En 1957, E.M. Burbidge, W.A. Fowler and F. Hoyle y de manera independiente A.G.W. Cameron publicaron sendos artículos clave, donde definen los principales procesos que explican la transformación de unos núcleos en otros, asentados en base de la Astrofísica nuclear.

A lo largo de la segunda mitad del siglo XX, la Astrofísica nuclear ha conseguido importantes logros que sin duda están íntimamente conectados al impresionante avance experimentado por las técnicas instrumentales y de medidas asociadas y por la capacidad de cálculo numérico.

 

 

 

Los diferentes procesos de nucleosíntesis que tienen lugar durante la vida de una estrella dan lugar a la creación de nuevos elementos químicos que son expulsados al medio interestelar. Estos elementos pasan a formar parte de una nueva generación de estrellas, y pueden ser detectados mediante estudios espectroscópicos. La mejora de las técnicas utilizadas en la instrumentación observacional y de los métodos de detección espectroscópicos, la construcción de grandes telescopios como el VLT y el Keck a los que pronto se añadirá el Gran TeCan, y la posibilidad de hacer observaciones desde el espacio sin la interferencia de la atmósfera terrestre (Telescopio Hubble, Chandra, XMM Newton e Integral), ha permitido obtener toda una nueva visión del universo que nos rodea.

La Física nuclear experimental tampoco ha sido ajena a todos estos avances tecnológicos, desarrollando haces de núcleos estables e inestables y la instrumentación necesaria para realizar experimentos de precisión. Las reacciones nucleares que intervienen en los procesos astrofísicos son reacciones de fusión; reacciones de captura de protones, de neutrones y de partículas alfa y sus inversas; y procesos mediados por la interacción débil tales como las desintegraciones beta, capturas de electrones y de neutrinos.

 

Decaimiento β de un núcleo. Se observa como uno de los neutrones se transforma en un protón emitiendo un electrón) y un anti-neutrino electrónico.

En algunos casos se miden reacciones inducidas por núcleos estables y energías próximas a las que se dan en las estrellas, con secciones eficaces muy pequeñas, que necesitan el uso de instalaciones subterráneas capaces de blindar los equipos de detección a la radiación de origen cósmico. En otros casos, se estudian reacciones inducidas por núcleos inestables (también llamados núcleos exóticos), con una vida media muy corta, y difíciles de sintetizar en el laboratorio con la tecnología actual.

 

No obstante, en las últimas décadas, numerosas instalaciones de haces de núcleos exóticos (Louvain la Neuve, GANIL, GSI, ISOLDE) han desarrollado programas experimentales en los que se han determinado las propiedades fundamentales (masas y vidas medias) y propiedades de la estructura de núcleos claves en reacciones de interés Astrofísico. Igualmente se han medido un número importante de secciones eficaces asociadas a los diferentes procesos de nucleosíntesis. Por otro lado, la construcción de instalaciones de tiempo de vuelo de neutrones (n_ToF arroba CERN) ha permitido el desarrollo de programas dedicados al estudio de la captura neutrónica. Así mismo, las nuevas instalaciones que se construirán en los próximos años (FAIR, SPIRAL 2) incluyen en sus programas científicos el estudio de reacciones nucleares de interés astrofísico.

 

En la mayor parte de los Modelos Astrofísicos la Física Nuclear Teórica es necesaria para convertir un texto experimental en el ritmo de reacción que es necesario en la aplicación astrofísica concreta. Ahora mismo nos encontramos al comienzo de una nueva era de desarrollo de modelos teóricos basados en primeros principios (ab-anitio). Esto permitirá reducir las incertidumbres asociadas con extrapolaciones a regiones de la carta de núcleos que no han sido exploradas experimentalmente, pero que son relevantes para diferentes procesos astrofísicos como es el caso de núcleos muy ricos en neutrones para el proceso r.

De forma complementaria, se han producido grandes avances en la modelización astrofísica de las diferentes etapas de evolución estelar. Los desafíos actuales se centran en la realización de simulaciones en tres dimensiones espaciales de los diferentes fenómenos astrofísicos y en particular de las espectaculares explosiones de supernovas tanto termonucleares como debidas al colapso gravitatorio.

 

 

Físicos en el Laboratorio Nacional Argonne en Chicago han utilizado el superordenador IBM Blue Gene/P para modelar la extrema física de una explosión de supernova. La visualización de arriba del superordenador del Laboratorio Nacional de Argonne logró mostrar el mecanismo de la muerte violenta de una estrella masiva, después de una corta vida. La imagen muestró en colores los valores de energía en el núcleo de la supernova. Se asignaron diferentes colores y transparencias a diferentes valores de enstrofía. Ajustando selectivamente el color y la transparencia, los científicos pueden “pelar” las capas externas y ver lo que está sucediendo en el interior de la estrella.

 

      Arriba, varias visualizaciones de la combustión nuclear en una supernova.

El Modelo cosmológico del Big Bang parte de la hipótesis de que nuestro Universo actual es el resultado de la expansión desde un estado inicial extremadamente denso y caliente. Al expandirse la temperatura decrece, lo que permite la formación de neutrones y protones a partir de una “sopa” inicial de Gluones y Quarks. En este momento comienza la época de nucleosíntesis primordial que dura aproximadamente 3 minutos. Debido a la gran cantidad de fotones presentes (altas temperaturas), la rápida expansión y al hecho de que no existen núcleos estables con un número de nucleones (protones y neutrones) igual a 5 y 8, los únicos elementos producidos son principalmente Hidrógeno y Helio (³He y ⁴He) con abundancias residuales de Deuterio y Litio (⁶Li y ⁷Li).

          El surgimiento de la materia

                                                                                El Surgir de la Materia

Las cifras de las abundancias relativas de Schramm indican que el helio es aproximadamente 25% en masa y el hidrógeno aproximadamente el 73%, con todos los demás elementos constituyendo menos del 2%.

Las predicciones para las abundancias de elementos producidas durante el Big bang están de acuerdo con las observaciones con las abundancias de Deuterio y Helio (⁴He), para un valor de la razón de fotones a bariones que es consistente con las observaciones recientes del fondo de microondas. Es importante resaltar que (BBN), es decir, es la época de la nucleosíntesis primordial, la que nos permite “observar” el universo cuando éste tenía sólo unos pocos minutos de edad, mientras que el fondo de microondas corresponde a una edad de unos 300 mil años. A pesar del buen acuerdo en la predicción de los elementos más ligeros, la teoría predice una abundancia de Litio (⁷Li) superior en un facto 2-3 a la observada. Este hecho ha desencadenado toda una serie de estudios observacionales con el objetivo de determinar las abundancias primordiales de ⁶Li y ⁷Li junto con nuevas medidas experimentales de las reacciones ⁷Be (d.p)2α u d(α, γ)⁶Li.

                                     

                                                                              Evolución de las estrellas

Dado que en el Big Bang solamente se produjo hidrógeno y helio, el resto de los elementos tienen que sintetizarse en otro lugar. Actualmente, está bien establecido que la producción de elementos ligeros ocurre mediante las reacciones de fusión que tienen lugar en el interior de las estrellas. La secuencia está reflejada en el gráfico abajo.

 

                                              Diagrama HR

                           Procesos Nucleares y Nucleosíntesis durante la Combustión Hidrostática.

Las estrellas se forman a partir de la contracción de grandes nubes moleculares por su propia gravedad, Estas nubes están constituidas principalmente de hidrógeno y helio, junto con pequeñas trazas de otros elementos más pesados que en la astrofísica se denominan metales y que han sido formados en anteriores explosiones de supernova.

Podemos decir que una estrella nace en el momento en el que la temperatura en su centro es lo suficientemente elevada para desencadenar los primeros procesos de combustión nuclear. Una estrella se puede definir como una esfera de gas autoluminosa. Dado que el Sol es la estrella que mejor conocemos es conveniente tomarlo como referencia a la hora de definir propiedades estelares. El Sol posee un radio de unos 700 mil kilómetros, lo que equivale a 109 veces el radio de la Tierra. Su masa es 330 mil veces la masa de la Tierra. La temperatura en su superficie es de 6000 grados, mientras que en el centro es de 15 millones de grados. Allí la densidad es de 160 veces la densidad del agua. El Sol emite cada segundo la misma energía que consumiríamos en la Tierra durante 4 millones de años al ritmo actual de consumo de energía.

 

                                                           

El proceso triple alfa es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Lo dedujo Fred Hoyle en su investigación con su equipo

Dado que cuando nacen las estrellas están constituidas principalmente por hidrógeno, un mecanismo natural para explicar la generación de energía es la fusión de 4 núcleos de Hidrógeno (protones) para dar un núcleo de Helio (partícula alfa, α) Hans Bethe propuso una explicación a este proceso en 1939, al sugerir la existencia de dos posibles mecanismos hoy denominados cadena pp y ciclo CON. El resultado neto de ambos procesos es la conversión de cuatro protones en un núcleo de Helio que puede escribirse de manera simbólica por la relación

4¹H → ⁴H + 2e⁺+ 2ѵe + energía,

En la que además de un núcleo de Helio (³He, partícula α) se producen dos positrones (e+) y dos neutrinos electrónicos (ѵe). La energía librada en el proceso equivale a un 0,7% de la masa inicial de los cuatro núcleos de hidrógeno. La diferencia de masa se convierte en energía. Para poder mantener su ritmo de emisión de energía, el Sol necesita convertir 600 millones de toneladas de Hidrógeno en 596 millones de toneladas de Helio cada segundo, lo que significa que el Sol continuará quemando Hidrógeno a este ritmo durante los próximos 5.000 millones de años (más o menos).

Cuando llegue el momento en que el Sol consuma su combustible nuclear, todos sabemos bien que se convertirá primera en gigante roja y más tarde, expulsando materia que formará una Nebulosa Planetaria, quedará como enana blanca.

Conforme la temperatura en el centro de la estrella aumenta llega un momento en que la combustión del Helio comienza a ser posible. Podría pensarse que la combustión del Helio procede mediante la fusión de dos núcleos de Helio para dar un núcleo de ⁸Be. Sin embargo, eso no es posible dado que el ⁸Be no es estable y se desintegra nada más formarse. No obstante, su tiempo de vida es lo suficientemente largo (10⁻¹⁶ segundos) como para capturar otro núcleo de Helio y dar lugar a ¹²C mediante el proceso que es comúnmente conocido como “reacción triple alfa”.

 

                                                                  Diagrama del proceso triple-α
       Gracias a este proceso estamos los seres vivos en este planeta. Sin Carbono (la base de la vida), no estaríamos

Parte del Carbono formado reacciona con los núcleos de Helio presentes y produce Oxígeno mediante la reacción ¹²C(α, γ)¹⁶O. Esta última reacción es probablemente la más importante en astrofísica nuclear dado que su ritmo determina la proporción de Carbono y Oxígeno resultante de la combustión de Helio. Esta proporción tiene importantes consecuencias en la determinación de la composición de las enanas blancas y la evolución con masas mayores de 8 masas solares.

La reacción triple alfa ha sido objeto de un estudio experimental reciente donde los estados relevantes del ¹²C han sido poblados mediante las desintegraciones beta del ¹²N y ¹²B. El mismo equipo experimental ha completado el estudio anterior mediante la reacción ¹⁰B(³He, pααα). Este último experimento se ha realizado en el recientemente inaugurado acelerador Tamden del Centro de Micro-análisis de Materiales de la Universidad Autónoma de Madrid.

Las etapas siguientes de la vida de una estrella dependen de su masa. Estrellas con masas menores a aproximadamente 8 masas solares no alcanzan en su centro la temperatura suficiente para iniciar la combustión del Carbono. Estas estrellas finalizan sus vidas expulsando sus capas exteriores, dando así lugar a la formación de una Nebulosa Planetaria que contiene, aproximadamente, la mitad de la masa inicial de la estrella.

 

Las nebulosas planetarias también pueden - Naukas

En el centro de la Nebulosa queda una pequeña estrella que se contrae más y más hasta originar una enana blanca. En 1930, Subrahmanyan Chandrasekhar demostró la existencia de un valor máximo para la masa de una enana blanca, conocido como masa límite de Chandrasekhar. Una estrella con una masa mayor (~ 1,44 masas solares) no es estable y colapsa.

 

 

evolucion estelar

                                            Evolución de las estrellas en función de sus masas

Las estrellas con masas mayores de 8 masas solares pasan por sucesivas etapas de combustión y contracción quemando cada vez elementos más pesados. Las diferentes etapas de combustión son: combustión de Carbono, Neón, Oxígeno, y finalmente Silicio. Cada uno de estos procesos de combustión ocurre a temperaturas cada vez más elevadas como se ha podido comprobar en presencia de grandes densidades y temperaturas en el centro de la estrella de 25 masas solares durante sus diferentes etapas de combustión nuclear.

Emilio Silvera V.

Moléculas vivas sorprendentes

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En matemáticas se pueden trazar líneas precisas y concretas que dividan en dos clases entes de naturaleza matemática. Una estructura geométrica se puede suponer o no a su imagen especular. Una estructura asimétrica puede tener una lateralidad a la derecha o bien a la izquierda.

 

Leyes de la Reflexión y EspejosGISELA D Tablero de reflexión de espejo acrílico con forma geométrica para fondo de fotos, adornos de fotografía, hoja de exhibición reflectante (geometría, 6 piezas) : Amazon.es: Electrónica

 

Cualquier número entero positivo es par o impar, y no hay ninguno de tales números para el cual su situación  a este respecto ofrezca la menor duda. Pero en el mundo, si exceptuamos el nivel subatómico de la teoría cuántica, las líneas divisorias son casi siempre difusas. El alquitrán, ¿es sólido o líquido?. Lo cierto es que, la mayoría de las propiedades físicas se “mueven” en un espectro continuo que hace que vayan cambiando de manera imperceptible de un extremo a otro del mismo.

 

 

APRENDAMOS SOBRE LA MATERIA: CAMBIOS DE ESTADO

El paso del tiempo convierte en líquido, gas o sólido algunos materiales y, a otros, los deforma hasta perder su estructura original para convertirlos en lo que antes no eran. Nada permanece, todo cambia. Sea cual fuere la línea de división, habrá algunos casos en los que no podamos definirla y, en otros, habrá objetos tan próximos a ella que el lenguaje ordinario no será lo suficientemente preciso como para poder afirmar a qué lado pertenece. Y, la propiedad de la vida, está, precisamente, en uno de esos continuos.

Para porbar esto basta que consideremos los virus: son las estructuras biológicas más pequeñas que se conocen  con la propiedad de poder “comer” (absorber sustancias situadas en sus proximidades), crecer y fabricar copias exactas de sí mismas.

 

Son mucho más pequeños que una bacteria (en realidad, algunos virus infectan las bacterias) y pasan sin dificultad a través de un filtro de porcelana fina que, aunque a nosotros nos parezca que está completamente sellada y su superficie es totalmente hermética y lisa, para ellos, tan “infinitamente” pequeños, ofrece miles de huecos por los que poder colarse.

 

 

Nuevas grabaciones en vídeo de un virus que infecta a las células sugiere que los virus se expanden mucho más rápido de lo que pensábamos. El descubrimiento de este mecanismo permitirá crear nuevos fármacos para hacer frente a algunos virus. En la punta de un alfiler caben millones de ellos. De hecho, los virus tienen el tamaño de una décima de micrómetro (diezmillonésima parte del metro).

 

 

El mundo de lo muy pequeño es fascinante y, por ejemplo, si hablamos de átomos, se necesitarían aproximadamente una cantidad para nosotros inconmensurable de átomos (602.300.000.000.000.000.000.000) para lograr un solo gramo de materia. Fijaos que hablamos de lo pequeño que pueden llegar a ser los virus y, sin embargo, el Hidrógeno con un sólo protón es el átomo más ligero y su masa es 400.000 veces menor que la masa de un virus, como antes dije, el organismo vivo más pequeño que se conoce.

 

Bacterias En La Punta De Un Alfiler, Ilustración 3D Que Muestra Múltiples Bacterias Pequeñas En Una Superficie De Alfiler Doméstico Fotos, retratos, imágenes y fotografía de archivo libres de derecho. Image 97984144

                                                Bacterias en la punta de un alfiler

El virus más diminuto conocido mide unos o,00000002 m; su tamaño es 2.000 veces mayor que el del átomo. Y, en la punta del alfiler que antes mencionamos cabrían 60.000.000.000 (sesenta mil millones) de átomos.

 

 

Según nuestra física actual, no es posible dividir el espacio en un tamaño más pequeño que determinada magnitud. Concretamente, ese límite está en un tamaño de 10 elevado a la potencia de -35 metros (esto es, treinta y cinco ceros después del punto decimal antes del 1). Éste es, pues, el tamaño mínimo que puede tener un objeto físico, o el tamaño de un supuesto objeto.

ASchewe calculó cuántos de estos objetos cabrían en una cabeza de alfiler, y para ello escogió la más pequeña jamás fabricada: la usada por IBM para ordenar 35 átomos de xenón que formasen las letras “IBM”. Esta punta de microscopio tenía una anchura de un átomo, es decir, los diez mil millonésimos parte de un metro.

La cantidad de objetos que allí cabrían, en esa punta de alfiler mucho más diminuta que cualquier alfiler que tengamos por casa, es de 10 elevado a la potencia 25, un diez seguido de veinticinco ceros (10.000.000.000.000.000.000.000.000). Algo francamente difícil de imaginar.

 

Cuántas cosas caben en la cabeza de un alfiler? - INVDESIdentificada una característica de los virus que los hace más propensos a saltar de animales a humanosÁcido desoxirribonucleico - Wikipedia, la enciclopedia libre

El virus más diminuto conocido mide unos o,00000002 m; su tamaño es 2.000 veces mayor que el del átomo. Y, en la punta del alfiler que antes mencionamos cabrían 60.000.000.000 (sesenta mil millones) de átomos.

… de onda correspondientes, desde el Everest hasta las moléculas de agua y el átomo de hidrógeno, pasando por ojos de aguja, glóbulos rojos, virus y ADN.

Como los virus son menores que la longitud de onda de la luz, no pueden observarse con un microscopio luminoso ordinario, pero los bioquímicos disponen de métodos ingeniosos que les permiten deducir su estructura, ya que pueden verlos mediante bombardeos con rayos X u otras partículas elementales.

En ralidad, se puede decir que un cristal “crece”, pero lo hace de un modo ciertamente trivial. Cuando se encuentra en una solución que contiene un compuesto semejante a él, dicho compuesto se irá depositando sobre su superficie; a medida que esto ocurre, el cristal se va haciendo mayor, pero el virus, igual que todos los seres vivos, crece de una manera más asombrosa: toma elementos de su entorno, los sintetiza en compuestos que no están presentes en el mismo y hace que se combinen unos con otros de tal manera que lleguen a dar una estructura compleja, réplica del propio virus.

 

 

Cómo ayudar al estómago con la bacteria Helicobacter PyloriHelicobacter Pylori: Causas, síntomas y tratamiento | Top Doctors

              Helicobacter Pylori, enemigo íntimo del sistema

Los virus sólo se multiplican en células vivientes. La célula huésped debe proporcionar la energía y la maquinaria de síntesis, también los precursores de bajo peso molecular para la síntesis de las proteínas virales y de los ácidos nucleicos. El ácido nucleico viral transporta la especificidad genética para cifrar todas las macromoléculas específicas virales en una forma altamente organizada.

El coronavirus, más letal entre los más mayoresEl coronavirus es un ser vivo?Coronavirus: por qué no todos los virus son malos para nuestra salud - BBC News Mundo

 

El poder que tienen los virus de infectar, e incluso matar, un organismo, se debe precisamente a esto. Invade las células del organismo anfitrión, detiene su funcionamiento y lo sustituye, por decirlo de alguna manera, por otros nuevos. Ordena a la célula que deje de hacer lo que normalmente hace para que comience a fabricar las sustancias necesarias para crear copias de sí mismo, es decir, del virus invasor.

El primer virus que se descubrió, y uno de los más estudiados, es el virus sencillo que produce la “enfermedad del mosaico” en la planta del tabaco. Cristaliza en forma de barras finas que pueden observarse a través del microsopio electrónico. Recientemente se ha descubierto que cada barra es, en realidad, una estructura helicoidal orientada a la derecha, formada por unas 2.000 moléculas idénticas de proteína, cada una de las cuales contiene más de 150 subunidades de aminoácidos.

Las moléculas de proteínas se enrollan alrededor de una barra central imaginaria que va de un extremo a otro del cristal. Sumergido en la proteína (y no en la parte central, como podría pensar un estudiante) hay una única hebra helicoidal, enroscada hacia la derecha, de un compuesto de carbono llamado ácido nucleico. El ácido nucleico es una proteína, pero igual que éstas es un polímero: un compuesto con una molécula gigante formada por moléculas más pequeñas enlazadas de manera que formen una cadena.
Un polímero es una macromolécula en la que se repite n veces la misma estructura básica (monómero). En el caso del hule, las cadenas pueden tener desde n=20 000 hasta n=100 000.
ADN
La doble hélice del ADN consiste en dos polinucleótidos enlazados a través de puentes de hidrógeno entre bases de cada cadena. b) Una timina de un lado se une con una adenina del otro. c) Una citosina con una guanina. Las unidades menores , llamadas nucleótidos están constituidas por átomos de Carbono, Oxigeno, Nitrógeno, Hidrógeno y Fósforo; pero donde las proteínas tienen unas veinte unidades de aminoácidos, el ácido nucleico tiene solamente cuatro nucleótidos distintos. Se pueden encadenar miles de nucleótidos entre sí, como lo hacen las subunidades de aminoácidos de las proteínas en una variedad practicamente infinita de combinaciones, para formar cientos de miles de millones de moléculas de ácido nucleico. Exactamente igual que los aminoácidos, cada nucleótido es asimétrico y orientado a la izquierda. A causa de ello, la espina dorsal de una molécula de ácido nucleico, igual que la de una molécula de proteína, tiene una estructura helicoidal orientada hacia la derecha.
                                         
Recientemente se han descubiertos unas moléculas sorprendentes con irregularidades en su quiralidad. Por ejemplo, existen segmentos anómalos de ADN que se enroscan al revés. Este ADN “zurdo” se halló por primera vez en un tubo de ensayo, pero en 1987 se ideó un procedimiento para identificar dichos segmentos anómalos en células vivas. El papel del ADN invertido no está claro, y pudiera estar implicado en los mecanismos que ponen en marcha mutaciones que nos lleven a ser hombres y mujeres del futuro con otros “poderes” que vayan más allá para que, de esa manera, podamos llegar a comprender la Naturaleza de las cosas y, en definitiva, nuestra propia naturaleza que, de momento, sigue siendo un gran misterio para nosotros.
                                  Quiralidad - Wikipedia, la enciclopedia libreQuiralidad
                                                                                                   Quiralidad
Esta cosita tan pequeñita… ¡tendría tanto que contarnos! La quiralidad está a menudo asociada a la presencia de carbonos asimétricos. Un carbono asimétrico es aquel que se une a cuatro sustituyentes diferentes. Un ejemplo de carbono asimétrico lo tenemos en la molécula de Bromo-cloro-yodo-metano. El carbono está unido a bromo, cloro, yodo e hidrógeno, cuatro sustituyentes diferentes que lo convierten en quiral o asimétrico. La molécula y su imagen en un espejo son diferentes, ningún giro permite superponerlas. La relación entre una molécula y su imagen especular no superponible es de enantiómeros
.
               
Lo cierto es que todo está hecho de esas pequeñas partículas… Quarks y Leptones, esas partículas elementales del grupo de los fermiones que nos llevan hasta la materia que conocemos y todas sus formas vivas o inertes.. Las estudiamos y observamos los comportamientos que en situaciones distintas puedan tener y, una de las cuestiones que resultó curioso constatar es que,   existen partículas subatómicas que podríamos llamar pares y otras que podríamos llamar impares, porque sus combinaciones y desintegraciones cumplen las mismas propiedades que la suma de enteros pares e impares. Una partícula de paridad par puede partirse en dos de paridad par, o en dos de paridad impar, pero nunca en una de paridad par y otra de paridad impar (esto implica la conservación de la paridad).
Tiada huraian foto disediakan.
Y, de la misma manera que existen principios de conservación para la paridad, el momento angular, la materia…, también es un hecho irreversible ese principio que nos lleva a saber que, a partir de la materia “inerte”, surgieron los “seres” más pequeños que conocemos y que hicieron posible el surgir de la inmensa variedad de formas de vida que la evolución hizo llegar hasta nosotros que, estamos aquí hablando de todas estas cuestiones curiosas que nos llevan a saber, un poco más, del mundo en el que vivimos, de la Naturaleza y, de nosotros.
emilio silvera

Comentario sobre Lovejoy y sobre la idea del Alma

Autor por Emilio Silvera    ~    Archivo Clasificado en Rumores del saber del mundo    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

luz gif - Pesquisa Google | Twin flame runner, Twin flame, Space pictures

          El telescopio James Webb capta la imagen infrarroja más nítida y profunda del Universo

 

                                                                  Resultado de imagen de El Libro Ideas de Peter Watson

             Si queréis saber sobre cosas extraordinarias y personajes asombrosos…. Buscad el libro que arriba aparece

Recordemos aquí algunos pasajes que pude encontrar en fuentes diversas, sobre todo, en el Libro Ideas de cuyo autor, PETER WATSON, podríamos decir que aquí, nos dejó un enorme estudio del saber del mundo y de aquellos acontecimientos del pasado que, desde luego, no deberíamos olvidar. Aquí os dejo algunos pasajes que, de vez en cuando, apostillo con alguna que otra frase mía.

 

Arthur Oncken Lovejoy, historian and philosopher of science

Lovejoy era en todos los sentidos una figura impresionante.  Leía libros en inglés, alemán, francés, griego, latín, italiano y español, y sus estudiantes contaban como anécdota que, había pasado su año sabático de la Johns Hopkins dedicado a leer “los pocos libros de la biblioteca del Museo Británico que aún no había leído.  Sin embargo, se le reprochó por tratar las ideas como “unidades” entidades subyacentes e inalterables, como los elementos químicos.

¡Qué cosas!

 

                                 Beltrand Russell

Lovejoy fue ciertamente quien dio el impulso inicial a la historia de las ideas al convertirse en el primer director del Journal of the History of  ideas, fundado en 1.940 (entre los primeros colaboradores estaban Bertrand Russell y Paul  O. Kristeller).  En el primer ejemplar, Lovejoy expuso el objetivo primordial del Journal: explorar la influencia de las ideas clásicas en el pensamiento moderno.

Lo curioso del caso es que, en los años transcurridos desde su fundación (hace más de 70 años), el Journal of the History of  ideas ha continuado explorando la sutil forma en que una idea lleva a otra a lo largo de la historia.  He aquí algunos de los temas tratados en números recientes: El efecto de Platón en Calvino; la admiración que Nietzsche profesaba por Sócrates; el budismo en el pensamiento alemán del siglo XIX; la relación de Newton y Adam Smith; el vínculo de Emerson con el hinduismo; Bayle como precursor de Kart Popper;  el paralelismo entre la antigüedad tardía y la Florencia del Renacimiento; etc.

 

Karl Popper

En  su ensayo aparecido en el Journal para celebrar el cincuentenario de su publicación, el colaborador que lo escribía identificaba tres fallos dignos de ser señalados.

Uno de ellos era la incapacidad de los historiadores para comprender el verdadero significado de una de las grandes ideas  modernas, la “secularización”.

Otro, la generalizada decepción  respecto a la “psicohistoria”, cuando existían santísimas figuras que reclamaban una comprensión psicológica profunda: Erasmos, Lutero, Rousseau, Newton, Descartes, Vico, Goethe, Emerson, Nietzche…

 

Facultad de MedicinaFriedrich W. Nietzsche - Editorial VerbumJohann Wolfgang von Goethe Hand Drawing outline, United Kingdom, 1833. vector de Stock | Adobe Stock

                                                              Descartes –  Nietzche  –  Goethe

Y, por último, el fracaso de historiadores y científicos para dar cuenta de la “imaginación” como una dimensión de la vida en general y, especialmente, de la producción de ideas.

¡Las ideas, qué peligro!

Es la única libertad que nos podemos permitir.  El pensar libremente y para nosotros mismos, otra cosa es el exponer nuestros pensamientos a los demás.  Unas veces por inconveniente, otras por pudor, otras por temor a las críticas, y otras por parecernos a nosotros mismos indignas de ser conocidas, así, se pierden grandes ideas.

Alguna vez he comentado  sobre el Laboratorio Cavendish, y me viene a la memoria que fue allí, donde Thomson, en 1.897, realizó el descubrimiento que vino a coronar anteriores ideas y trabajos de Benjanmin Franklin, Euge Goldstein, Wilhelm Röntgen, Henri Becquernel y otros.

Durante la antigüedad tardía y la Edad Media, la tecnología del Alma…

 

El alma puede permanecer después de la muerte, según la ciencia | RPP Noticias

 

Al percatarse de que todos veían el deterioro del cuerpo comido por los gusanos con la llegada de la muerte, el clero, se inventó la “salvación del Alma”, nuestro Yo especial que, podía ser salvado si nuestra contribución era generosa.

Pero, ¿Qué es el Alma? Acaso un invento de los hombres para tener la esperanza de que, todavía pueden salvar algo. Su relación con la “otra vida”, con la divinidad y, en especial, con el clero, permitió a las autoridades religiosas ejercer un poder extraordinario.

No se puede negar que, la idea del Alma, enriqueció inmensamente la mente de los seres humanos a lo largo de los siglos, pero tampoco se puede negar que también es cierto que durante ese mismo tiempo mantuvo a raya el pensamiento y la libertad. ¿Os acordáis de Giordano Bruno y Galileo? Aquello retrasó el progreso y contribuyó a mantener el pueblo (en su mayor parte) ignorante y sometido al clero educado y culto.

 

               

 El Papa que renunció a todo y se marchó

Si él mirara hacia atrás, hasta la Edad Media, vería con vergüenza como sus iguales, vendían indulgencias. Es decir, cobraban por salvar las “Almas” de los pecadores que, con riquezas, no con arrepentimientos, se creían a salvo de sus maldades. ¿habrá mirado y, al ver aquello, ha decidió marcharse?

 

Johann Tetzel - Enciclopedia de la Historia del Mundo

 

Sólo tenemos que pensar en la desfachatez con la que el fraile Tetzel afirmaba que era posible comprar indulgencias para las “almas” del purgatorio, y que estas saldrían volando al cielo tan pronto como las monedas golpearan el plato.  Los abusos como estos, aún persisten hoy en día, nada más claro como ejemplo el ver la cantidad de ancianos y viudas que solos en la vida y enfermos, dejan sus fortunas a la Iglesia que, por cierto, tienen situadas sus propiedades en las mejores enclaves de las ciudades.

Los abusos a que se prestaba lo que algunos llaman “tecnologías del alma” fueron uno de los principales factores que condujeron a la Reforma, la cual, a pesar de lo ocurrido con Juan Calvino en Ginebra, fundamentalmente despojó al clero del control de la fe e impulsó la duda y el descreimiento.

 

                                      Resultado de imagen de El Alma que sube al cielo al morir

 

Sí, de muchas maneras nos pintaron el Alma que, para muchos, abusando de la ignorancia del pueblo, supuso un gran negocio “su salvación”. Aun hoy, desgraciadamente, prevalece mucho de aquel mundo.

Las diversa transformaciones del alma (la idea de que estaba contenida en el semen en la Grecia de Aristóteles,  el alma tripartita del Timen platónico, la concepción medieval y renacentista del Homo duplex, la idea del alma como mujer, o como ave, el diálogo entre el alma y el cuerpo de Marvell, “las monadas” de Leibniz) pueden resultar hoy bastante pintorescas, pero en su época fueron cuestiones muy serias, y constituyeron importantes etapas en la ruta hacia la idea moderna del ser.

 

Resultado de imagen de El Alma tripartita de Aristóteles

                Cada cual se despachó a su gusto a la hora de explicar lo que el Alma podía significar

En mi anterior trabajo os hablé de manera bastante extensa sobre estas cuestiones del ser, el alma, la conciencia y, en definitiva, del cerebro que es habitad natural de todas estas cuestiones.  La filosofía y la metafísica están presentes haciendo compañía a lo que entendemos por ser consciente.

Las profundidades del ser (nuestro complejo de interioridad) se manisfestó en la llamada Era Axial, en términos aproximados, entre los siglos VII y IV a. de C.

 

                                           

                    Repartían oraciones como placebos para mitigar las penas a cambio de prebendas

Por aquella época, más o menos de manera simultánea, ocurrió algo similar en Palestina, la India,  China, Grecia y muy posiblemente también en Persia.  En cada uno de estos casos, la religión establecida se había vuelto en extremo ritualista y exhibicionista.  En particular, en todas partes habían surgido sacerdotes que se habían adjudicado una posición de altísimos privilegios, con lo cual, Vivian de manera totalmente opuesta a lo que predicaban.

Aquella casta privilegiada, controlaba el acceso a Dios o a los Dioses (según los casos), y se beneficiaba de su elevado estatus que, sobre todo, ponían al servicio de los poderosos de turno.

Pero en todas estas culturas, surgieron profetas molestos que, al pregonar la salvación del Alma desdeotro prisma distinto, dejaban al descubierto las mentiras interesadas de estos sacerdotes y falsas religiones.

 

Imágenes de Buda - Descarga gratuita en Freepik

                                                                                                     Buda

Surgieron profetas (en Israel) u hombres sabios (Buda y los autores de los Upanishads en la India, Confusio en China,  etc.)  que denunciaron al clero y recomendaron la introspección, a sostener que la ruta hacia la auténtica santidad implicaba algún tipo de abnegación y de estudio íntimo.  Platón sentó las bases de la supremacía de la mente sobre la materia.

 

                                           

                                                                                Confucio

Todos estos hombres mostraron el camino a través del ejemplo personal, y su mensaje es muy similar al que más tarde predicaron Jesús y,  más tarde, San Agustín y algún otro.

De éstos auténticos hombres buenos  que incluso sacrificaron sus vidas para dedicar todo su esfuerzo al bien de los demás, se han aprovechado, desde tiempos inmemoriales, la legión de espabilados que amparados y enmascarados en las distintas religiones han utilizado toda esa bondad para el propio lucro, engañando a los fieles de buena fe de manera inmisericorde y en ausencia total de conciencia, moral y ética. ¡Que gentuza!

Prefiero no seguir por este camino y dejo aquí el comentario, ya que, de seguir este sendero espinoso estaría recorriendo un escabroso historial lleno de barbaridades e injusticias del ser humano y, todo ello, en el nombre de Dios.

Emilio Silvera