sábado, 27 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Belleza está por todas partes

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Cómo no asombrarnos de nuestras complejas Mentes, lo mismo componemos una linda sinfonía que estructuramos una Teoría, construimos un Modelo, despejamos todas las letras que conforman el ADN, Mandamos Telescopios al Espacio para que nos traigan hasta nosotros objetos asombrosos situados a miles de millones de años, o, escribimos Historias inventadas de cosas que nunca han sucedido.

¿Tendremos algún límite en el Tiempo?

¿Estaremos destinados a algo mucho mayor?

¿Habrá otros seres que tengan ideas, pensamientos y sentimientos, como los tenemos nosotros?

Nuestro lugar en el Universo…¿cuál será?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Lo cierto es que, si en nuestra Galaxia existen unos 30.000 millones de estrellas G2V como el Sol, y, la mayoría tiene sus propios planetas, no puede caber duda de que muchos de esos mundos estarán situados en la zona habitable. Así que, si eso es en una sola galaxia ¿Qué no será en los más de cien mil, millones de galaxias que pueblan nuestro Universo (digo nuestro universo porque creo firmemente que habrá otros).

Así que, siendo así (que lo es), no podemos poner en tela de juicio la presencia de otros seres inteligentes en otros mundos.

 

                           

 

Antes en otra entrada que titulé “Observar la Naturaleza… da resultados”, comentaba sobre los grandes números de Dirac y lo que el personaje llamado Dicke pensaba de todo ello y, cómo dedujo que para que pudiera aparecer la biología de la vida en el Universo, había sido necesario que el tiempo de vida de las estrellas fuese el que hemos podido comprobar que es y que, el Universo, también tiene que tener, no ya las condiciones que posee, sino también, la edad que le hemos estimado.

 

                           

                                             Un bello remanente estelar de hilos de plasma

 Los filamentos de un remanente de Supernova que, mirándolos y pensando de donde vienen… Te hacen recorrer unos caminos alucinantes que comenzaron con una inmensa aglomeración de gas y polvo que se constituyó en una estrella masiva que, después de vivir millones de alos, dejó, a su muerte, el rastro que arriba podemos contemplar.

Para terminar de repasar la forma de tratar las coincidencias de los Grandes Números por parte de Dicke, sería interesante ojear restrospectivamente un tipo de argumento muy similar propuesto por otro personaje, Alfred Wallace en 1903. Wallace era un gran científico que, como les ha pasado a muchos, hoy recibe menos reconocimiento del que se merece.

Fue él, antes que Charles Darwin, quien primero tuvo la idea de que los organismos vivos evolucionan por un proceso de selección natural. Afortunadamente para Darwin, quien, independientemente de Wallace, había estado reflexionando profundamente y reuniendo pruebas en apoyo de esta idea durante mucho tiempo, Wallace le escribió para contarle sus ideas en lugar de publicarlas directamente en la literatura científica. Pese a todo, hoy “la biología evolucionista” se centra casi porm completo en las contribuciones de Darwin.

Wallace tenía intereses muchos más amplios que Darwin y estaba interesado en muchas áreas de la física, la astronomía y las ciencias de la Tierra. En 1903 publicó un amplio estudio de los factores que hace de la Tierra un lugar habitable y pasó a explorar las conclusiones filosóficas que podrían extraerse del estado del Universo. Su libro llevaba el altisonante título de El lugar del hombre en el Universo.

 

Wallace propuso en 1889, la hipótesis de que la selección natural podría dar lugar al aislamiento reproductivo de dos variedades al formarse barreras contra la hibridación, lo que podría contribuir al desarrollo de nuevas especies.

Wallace, Alfred Russell (1823-1913), naturalista británico conocido por el desarrollo de una teoría de la evolución basada en la selección natural. Nació en la ciudad de Monmouth (hoy Gwent) y fue contemporáneo del naturalista Charles Darwin. En 1848 realizó una expedición al río Amazonas con el también naturalista de origen británico Henry Walter Bates y, desde 1854 hasta 1862, dirigió la investigación en las islas de Malasia. Durante esta última expedición observó las diferencias zoológicas fundamentales entre las especies de animales de Asia y las de Australia y estableció la línea divisoria zoológica -conocida como línea de Wallace- entre las islas malayas de Borneo y Célebes. Durante la investigación Wallace formuló su teoría de la selección natural. Cuando en 1858 comunicó sus ideas a Darwin, se dio la sorprendente coincidencia de que este último tenía manuscrita su propia teoría de la evolución, similar a la del primero. En julio de ese mismo año se divulgaron unos extractos de los manuscritos de ambos científicos en una publicación conjunta, en la que la contribución de Wallace se titulaba: “Sobre la tendencia de las diversidades a alejarse indefinidamente del tipo original”. Su obra incluye El archipiélago Malayo (1869), Contribuciones a la teoría de la selección natural (1870), La distribución geográfica de los animales (1876) y El lugar del hombre en el Universo (1903).

 

 

Pero sigamos con nuestro trabajo de hoy. Todo esto era antes del descubrimiento de las teorías de la relatividad, la energía nuclear y el Universo en expansión.  La mayoría de los astrónomos del siglo XIX concebían el Universo como una única isla de materia, que ahora llamaríamos nuestra Vía Láctea. No se había establecido que existieran otras galaxias o cuál era la escala global del Universo. Sólo estaba claro que era grande.

Wallace estaba impresionado por el sencillo modelo cosmológico que lord Kelvin había desarrollado utilizando la ley de gravitación de Newton. Mostraba que si tomábamos una bola muy grande de materia, la acción de la gravedad haría que todo se precipitara hacia su centro. La única manera de evitar ser atraído hacia el centro era describir una órbita alrededor. El universo de Kelvin contenía unos mil millones de estrellas como el Sol para que sus fuerzas gravitatorias contrapesaran los movimientos a las velocidades observadas.

 

William Thomson – Lord Kelvin | FISICA DE FLUIDOS Y ...

William Thomson (Lord Kelvin)

En el año 1901, Lord Kelvin solucionó cualitativa y cuantitativamente de manera correcta el enigma de la oscuridad de la noche en el caso de un universo transparente, uniforme y estático. Postulando un universo lleno uniformemente de estrellas similares al Sol y suponiendo su extensión finita (Universo estoico), mostró que, aun si las estrellas no se ocultan mutuamente, su contribución a la luminosidad total era finita y muy débil frente a la luminosidad del Sol. El demostró también que la edad finita de las estrellas prohibió la visibilidad de las estrellas lejanas en el caso de un espacio epicúreo infinito o estoico de gran extensión, lo que contestó correctamente al enigma de la oscuridad.

Lo intrigante de la discusión de Wallace sobre este modelo del Universo es que adopta una actitud no copernicana porque ve cómo algunos lugares del Universo son más propicios a la presencia de vida que otros. Como resultado, sólo cabe esperar que nosotros estemos cerca, pero no en el centro de las cosas.

Wallace da un argumento parecido al de Dicke para explicar la gran edad de cualquier universo observado por seres humanos. Por supuesto, en la época de Wallace, mucho antes del descubrimiento de las fuentes de energía nuclear, nadie sabía como se alimentaba el Sol, Kelvin había argumentando a favor de la energía gravitatoria, pero ésta no podía cumplir la tarea.

                        Regiones centrales de la Vía Láctea, con la posición de Sagitario A*  indicada. Imagen: IAA.

Regiones centrales de la Vía Láctea, con la posición de Sagitario A

En la cosmología de Kelvin la Gravedad atraía material hacia las regiones centrales donde estaba situada la Vía Láctea y este material caería en las estrellas que ya estaban allí, generando calor y manteniendo su potencia luminosa durante enormes períodos de tiempo. Aquí Wallace ve una sencilla razón para explicar el vasto tamaño del Universo.

“Entonces, pienso yo que aquí hemos encontrado una explicación adecuada de la capacidad de emisión continuada de calor y luz por parte de nuestro Sol, y probablemente por muchos otros aproximadamente en la misma posición dentro del cúmulo solar. Esto haría que al principio se agregasen poco a poco masas considerables a partir de la materia difusa  en lentos movimientos en las porciones centrales del universo original; pero en un período posterior serían reforzadas por una caída de materia constante y continua desde sus regiones exteriores a velocidades tan altas como para producir y mantener la temperatura requerida de un sol como el nuestro, durante los largos períodos exigidos para el continuo desarrollo de la vida.”

Vallace ve claramente la conexión entre estas inusuales características globales del Universo y las consiciones necesarias para que la vida evolucione y prospere en un planeta como el nuestro alumbrado por una estrella como nuestro Sol. Wallace completaba su visión y análisis de las condiciones cósmicas necesarias para la evolución de la vida dirigiendo su atención a la geología  y la historia de la Tierra. Aquó ve una situación mucho más complicada que la que existe en astronomía. Aprecia el cúmulo de accidentes históricos marcados por la vía evolutiva que ha llegado hasta nosotros, y cree “improbable en grado máximo” que el conjunto completo de características propicias para la evolución de la vida se encuentre en otros lugares. Esto le lleva a especular que el enorme tamaño del Universo podría ser necesario para dar a la vida una oportunidad razonable de desarrollarse en sólo un planeta, como el nuestro, independientemente de cuan propicio pudiera ser su entorno local:

“Un Universo tan vasto y complejo como el que sabemos que existe a nuestro alrededor, quizá haya sido absolutamente necesario … para producir un mundo que se adaptase de forma precisa en todo detalle al desarrollo ordenado de la vida que culmina en el hombre.”

cluster-galaxias

Hoy podríamos hacernos eco de ese sentimiento de Wallace. El gran tamaño del Universo observable, con sus 1080 átomos, permite un enorme número de lugares donde puedan tener lugar las variaciones estadísticas de combinaciones químicas que posibilitan la presencia de vida. Wallace dejaba volar su imaginación que unía a la lógica y, en su tiempo, no se conocían las leyes fundamentales del Universo, que exceptuando la Gravedad de Newton, eran totalmente desconocidas. Así, hoy jugamos con la ventaja de saber que, otros muchos mundos, al igual que la Tierra, pueden albergar la vida gracias a una dinámica igual que es la que, el ritmo del Universo, hace regir en todas sus regiones. No existen lugares privilegiados.

Siempre hemos tratado de saber, cuál sería nuestro lugar en el Universo, no ya en relación a la situación geográfica, sino referido a esa fascinante historia de la vida que nos atañe a los humanos, la única especie conocida que, consciente de su Ser, libera pensamientos y formula preguntas que, hasta el momento, nadie ha sabido contestar.

emilio silvera

Las cosas que se leen por ahí (Periodista Digital)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿De donde surgió todo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La enorme masa de Sagitario A, el agujero negro supermasivo del centro de la galaxia, deforma el espacio-tiempo y desvía las órbitas de las estrellas

https://www.abc.es/ciencia/abci-habia-algo-antes-big-bang-201609170155_noticia.html

 

“En Cosmología, las condiciones “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo Después del Comienzo del Tiempo.”

 

La Astronomía enseña al ser humano su verdad más profunda”: Ramón Álamo |  Blogs El Tiempo

Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes.

Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo Marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que ahora tiene el Universo.

 

 metalesalcalinos003

 

Lepidolita, una de las mayores fuentes del raro rubidio y del cesio. El rubidio también fue descubierto, como el cesio, por los físicos alemanes Robert Wilhem Bunsen y Gustav Robert Kirchhoff en 1861; en este caso por el método espectroscópico. Su nombre proviene del latín “rubidus” (rubio), debido al color de sus líneas en el espectro.

  • Color blanco-plateado brillante
  • Reacciona violentamente con el agua produciendo hidrógeno
  • Arde espontáneamente en contacto con el aire, formando óxido de rubidio
  • Muy blando

 

 rubidio003

 

El rubidio es un elemento bastante abundante en la corteza terrestre y está presente hasta en 310 partes por millón (ppm). Por su abundancia ocupa un lugar justamente por debajo del carbono y el cloro y por encima del flúor y del estroncio. El agua de mar contiene 0,2 ppm de rubidio, concentración que (aunque baja) es el doble de la concentración de litio.

Pero, aunque abundante, el rubidio se encuentra distribuido en pequeñas cantidades, generalmente asociado con el cesio, con el cual tiene una gran semejanza, en cenizas del tabaco, el te y el café; y en los minerales lepidolita y carnalita.

 

Lepidolita | Vives de la Cortada

Lepidolita

 

Carnalita - Wikipedia, la enciclopedia libre

Camalita

 

El Rubidio ha sido detectado en las estrellas y, siendo muy abundante en la corteza terrestre, es utilizado en en ciencia y tecnologías puntas, por lo que está presente en muchos laboratorios. El rubidio es semejante al cesio y al litio en que está integrado en minerales complejos; no se encuentra en la naturaleza como sales simples de halogenuros, como ocurre con el sodio y el potasio.

Es tan reactivo con oxígeno que puede arder espontáneamente con este elemento puro. El metal pierde el brillo muy rápidamente al aire, forma un recubrimiento de óxido y puede arder. Los óxidos que se producen son una mezcla de Rb2O, Rb2O2 y RbO2. El metal fundido se inflama espontáneamente al aire.

 

Rubidio 】 →→ - 【Tabla periodica 】 🔥🔥✓✓Rubidio | Slide Set

Rubidio

El rubidio reacciona violentamente con agua o hielo a temperaturas por debajo de –100º C (-148º F). Reacciona con hidrógeno para formar un hidruro, uno de los hidruros alcalinos menos estables.

No reacciona con nitrógeno. Con bromo o cloro, el rubidio reacciona vigorosamente con formación de flama. Se pueden preparar compuestos organorrubídicos con técnicas parecidas a las que se utilizan con el sodio y el potasio.

La mayor parte de los usos de rubidio metálico y de sus compuestos son los mismos que los del cesio y sus compuestos.

 

 

                                                                   Átomo de Rubidio 85 diciendo ‘hola’ a la cámara.

 

Pero, ¿qué estoy haciendo? El trabajo era sobre el primer momento de nuestro universo, y, me dejé llevar por el rubidio, volvamos a lo nuestro y comencemos el comentario de hoy, ahora sí, sobre el…

¿De dónde surgió el Rubidio?

El rubidio (del latín rubĭdus, rubio) fue descubierto en 1861 por Robert Bunsen y Gustav Kirchhoff en la lepidolita utilizando un espectroscopio —inventado un año antes— al detectar las dos rayas rojas características del espectro de emisión de este elemento y que son la razón de su nombre.

 

De dónde surgió todo? : Blog de Emilio Silvera V.

 

Big Bang

 

 

Hablaremos ahora del Big Bang, esa teoría aceptada por todos y que nos dice cómo se formó nuestro universo y comenzó su evolución hasta ser como ahora lo conocemos. De acuerdo a esta teoría, el universo se originó a partir de un estado inicial de alta temperatura y densidad, y desde entonces ha estado siempre expandiéndose. La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.

 

 

 

La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.

El tiempo de Planck es una unidad de tiempo considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el tiempo de Planck representa el instante de tiempo más antiguo en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:

t_P = \sqrt{\frac{\hbar G}{c^5}} \approx 5.39124(27) × 10−43 segundos

Llegados a este punto, me remito al párrafo primero del comentario de hoy, en él se deja claro que, nada sabemos de ese instante primero anterior al Tp. ¿Qué habría allí entonces, qué sustancias dieron lugar a la materia y, de dónde salieron las fuerzas fundamentales que rigen el universo?

 

             

 

                Esto llego miles de millones de años más tarde pero, ¿Qué había antes del comienzo del Tiempo?

Las respuestas están escondidas en ese primer intervalo infinitesimal que está antes del Comienzo del Tiempo que conocemos, es una fracción de tiempo que nos queda en la más absoluta oscuridad. Nadie ha podido ir más allá del Tiempo de Planck y, siendo un intervalo de tiempo tan pequeño… ¡nos diría tantas cosas!

 

                                 

 

Una buena vela encendida no es suficiente para alumbrar nuestra ignorancia de lo que pasó en los primeros momentos del “Big Bang”. Sin embargo…La esperanza es lo último que se pierde, y, aunque los físicos cuando tratan de exponer con sus matemáticas aquellos hechos primeros, las primeras fracciones del primer segundo del Big Bang, se ven imposibilitados…Esperamos que, más adelante, en el futuro lejano, podamos entrar en ese Tiempo de Planck ahora inalcanzable.

Con nuestro conocimiento actual de física de partículas de altas energías, podemos hacer avanzar el reloj hacia atrás a través de la teoría leptónica y la era hadrónica hasta una millonésima de segundo después del Big Bang, cuando la temperatura era de 1013 K. Utilizando una teoría más especulativa, los cosmólogos han intentado llevar el modelo hasta 1035 s después de la singularidad, cuando la temperatura era de 1028 K. Esa infinitesimal escala de longitud es conocida como límite de Planck, = 10-35 m, que en la Ley de radiación de Planck, es distribuída la energía radiada por un cuerpo negro mediante pequeños paquetes discretos llamados cuantos, en vez de una emisión continua. A estas distancias, la gravedad está ausente para dejar actuar a la mecánica cuántica.

                               

 

La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.

La radiación de fondo cósmica proporciona la evidencia más directa de que el universo atravesó por una fase caliente y densa. En la teoría del Big Bang, la radiación de fondo es explicada por el hecho de que durante el primer millón de años más o menos (es decir, antes del desacoplo de la materia y la radiación), el universo estaba lleno de plasma que era opaco a la radiación y, por tanto, en equilibrio térmico con ella. Esta fase es habitualmente denominada “bola de fuego primordial“.

Sí, creo que es el peor “suceso” peor contado de la Historia. Nadie estuvo allí para escribir la crónica y… Se conjetura

Cuando el universo se expandió y se enfrió a unos 3000 ºK, se volvió transparente a la radiación, que es la que observamos en la actualidad, mucho más fría y diluida, como radiación térmica de microondas. El descubrimiento del fondo de microondas en 1.956 puso fin a una larga batalla entre el Big Bang y su rival, la teoría del universo estacionario de F. Hoyle y otros, que no podía explicar la forma de cuerpo negro del fondo de microondas. Es irónico que el término Big Bang tuvo inicialmente un sentido burlesco y fue acuñado por Hoyle, contrario a la teoría del universo inflacionario y defensor del estacionario.

 

Cronología del Big Bang

Era

Duración

Temperatura

Era de Planck

de 0 a 10-43 seg.

a 10-34 K

Era de radiación

de 10-43 a 30.000 años

desde 10-34 a 104 K

Era de la materia de 30.000 años al presente (13.500.000.000 años).

desde 104 a 3 K actual

 

Para fijar más claramente los hechos se debe extender la explicación evolutiva del universo en las fases principales que son:

 

La materia salió de ese clima de enormes temperaturas ahora inimaginables y, durante varias etapas o eras (de la radiación, de la materia, hadrónica y bariónica… llegamos al momento presente habiendo descubierto muchos de los secretos que, el Universo guardaba celosamente para que, nosotros, los pudiéramos desvelar.

 

                                                                                 

 

La Era de Planck:

En cosmología, la época de Planck es el más temprano período de Tiempo en la historia del universo, entre cero y 10−43 segundos (como antes decía, un tiempo de Planck), durante el cual las cuatro fuerzas (nucleares fuerte y débil, electromagnética y gravitatoria, estaban unificadas en una sola fuerza y aún, no existían las partículas elementales que más tarde surgirían para formar la materia.

Es la era que se inició con el surgir de la materia,  cuando el efecto gravitacional de la materia primera comenzó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antiguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, este efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang. Este hecho marcó el comienzo de la era de la materia.

De la radiación

 

                                                             Fundación Secretos para contar | Big Bang: el principio de todo

 

Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang. Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación.

La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual los partículas lentas dominaron la expansión del universo.

Era hadrónica

 

 

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras. Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.

 

Era Leptónica

 

 

 

Intervalo que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y antileptones en gran número en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang. Después, los leptones se unieron a los hadrónes para formar átomos.

Así se formó nuestro universo, a partir de una singularidad que explotó expandiendo toda la densidad y energía a unas temperaturas terroríficas, y a partir de ese mismo instante conocido como Big Bang, nacieron, como hermanos gemelos, el tiempo y el espacio junto con la materia que finalmente desembocó en lo que ahora conocemos como universo.

El universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes.

El universo es el conjunto de todo lo que existe, incluyendo (como he dicho) el espacio, el tiempo y la materia.  El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein-de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.

 

 

 

El universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Existe evidencia creciente de que el espacio puede estar lleno de una materia oscura invisible que puede constituir muchas veces la masa total de las galaxias visibles.

Como ya quedó claro antes, el concepto más favorecido de origen del universo es la teoría del Big Bang, de acuerdo con la cual el universo se creó a partir de una densa y caliente concentración enorme de materia (una singularidad) en una bola de fuego que explotó y se expandió para crear el espacio, el tiempo y toda la materia que lo conforme. Todo ello ocurrió, según los datos de que se disponen, hace ahora aproximadamente 15.000 millones de años, o 15 eones (109).

Uso de la dilatación del tiempo para medir la curvatura del espacio-tiempo  - SKYCR.ORG: NASA, exploración espacial y noticias astronómicas

 

               La NASA midiendo la curvatura en el espacio-tiempo alrededor del planeta

El universo se formó y apareció el tiempo y el espacio y la materia. Es lo que dice la teoría que antes hemos descrito. Sin embargo, hay muchas cuestiones que, por lo menos a mí, no han quedado claras y me llevan a preguntas tales como:

¿Cuántas partículas hay en el universo?

¿De dónde vino la sustancia del universo?

¿Qué hay más allá del borde del universo?

En realidad, no existen respuestas concretas para estas preguntas, porque para empezar no sabemos como es de grande el universo. Sin embargo, si podemos hacer algunas hipótesis.

 

 

                                                                        El Universo está lleno de espacios “vacíos”

Podemos calcular que hay unas 100.000.000.000 de galaxias en el universo. Cada una de estas galaxias tiene una media de masa igual a 100.000.000.000 la masa del Sol. Quiere decir que la cantidad total de materia en el universo sería igual a 1011×1011 ó 1022 veces la masa del Sol.

 

                                              File:Observable universe logarithmic illustration.png

 

Ilustración del universo observable con el Sistema Solar en el centro, los planetas interiores, el cinturón de Asteroides, los planetas exteriores, el cinturón de Kuiper, la nube de Oort, Alfa Centauri, el brazo de Perseo, la Via Láctea, Andrómeda y las galaxias cercanas, la telaraña cósmica de cúmulos galácticos, la radiación de fondo de microondas y el Big Bang en el borde. Sobre la masa total del universo, estos son los cálculos actuales que, deben ser confirmados:  en el universo hay materia suficiente para hacer 10.000.000.000.000.000.000.000 (diez mil trillones) de soles como el nuestro.

La masa del Sol es de 2×1033 gramos. Esto significa que la cantidad total de materia en el universo tiene una masa de: 1022×2×1033 ó  2×1055 gramos. Lo que podemos reseñar:

20.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000, que es igual a veinte nonillones.

 

 

Imagen: (las magnitudes en la imagen deben desplazar el punto decimal una posición a la izquierda) que explica la diferencia sobre el dato de la edad del universo (1.37×1010 años luz) en comparación a la estimación sobre el radio actual del universo observable (4.65×1010 años luz). La explicación de tal sería que al mirar la radiación de fondo y las galaxias más lejanas se observa el pasado con una mayor densidad de materia por centímetro cúbico del universo.

Qué son los nucleones? - Quora

 

A pesar de su ínfima dimensión, los nucleones conformados por tripletes de quarks (protones y neutrones),  se unen a los electrones para formar los átomos y, estos a su vez, son los que forman la materia que conforman las Galaxias del Universo y todos los demos objetos que podemos observar.

Miremos ahora al revés. La masa del universo está concentrada casi por entero en los nucleones que contiene. Los nucleones son partículas diminutas y hacen falta 6×1023 de ellas para formar una masa equivalente a un gramo.

Pues bien, si 6×2023 nucleones hacen 1 g, y si hay 2×1055 g en el universo, entonces el número total de nucleones en el universo podría ser de 6×1023×2×1055 ó 12×1078, que de manera más convencional se escribiría 1,2×1079.

 

   

    Arthur Stanley Eddington

En uno de mis trabajos que se titulaba los grandes números del Universo, se habló de como Arthur Stanley Eddington, un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También  hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.

Entre los números que Eddington consideraba de importancia primordial estaba al que ahora conocemos como número de Eddington, que es igual al número de protones en el universo visible. Eddington calculó (a mano) este número con enorme precisión en un crucero trasatlántico, sentado en cubierta, con libreta y lápiz en la mano, tras calcular concienzudamente durante un tiempo, finalizó escribiendo:

“Creo que el Universo hay:

 

15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296

 

de protones y el mismo número de electrones”.

 

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080.  Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente.

 

                                     

 

Los astrónomos opinan que el 90 por 100 de los átomos de universo son hidrógeno, el 9 por 100 helio y el 1 por 100 elementos más complejos.  Una muestra de 100 gramos, o mejor 100 átomos, consistiría entonces en 90 átomos de hidrógeno, 9 de helio y 1 de oxígeno (por ejemplo). Los núcleos de los átomos de hidrógeno contendrían 1 nucleón cada uno: 1 protón. Los núcleos de los átomos de helio contendrían 4 nucleones cada uno: 2 protones y 2 neutrones. El núcleo del átomo de oxígeno contendría 16 nucleones: 8 protones y 8 neutrones. Los 100 átomos juntos contendrían, por tanto, 145 nucleones: 116 protones y 26 neutrones.

Existe una diferencia entre estos dos tipos de nucleones. El neutrón no tiene carga eléctrica y no es preciso considerar ninguna partícula que lo acompañe. Pero el protón tiene una carga eléctrica positiva, y como el universo es, según creemos, eléctricamente neutro en su conjunto, tiene que existir un electrón (con carga eléctrica negativa) por cada protón, creando así el equilibrio existente.

De esta manera, por cada 142 nucleones hay 116 electrones (para compensar los 116 protones). Para mantener la proporción, los 1’2×1079 nucleones del universo tienen que ir acompañados de 1×1078 electrones. Sumando los nucleones y electrones, tenemos un número total de 2’2×1079 de partículas de materia en el universo visible y que podemos comprobar. Lo cual se puede escribir como:

22.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 (ó 22 tredecillones).

Leptones y Quarks: ¿Las partículas fundamentales? | Leptonix

La grandeza de nuestro Universo tiene su origen en las minúsculas partículas que conforman la materia, en las interacciones fundamentales que rigen las leyes y, en las constantes universales que indican cómo deben ser las cosas: la velocidad de la luz, la masa del electrón, la constante de estructura fina…

De las demás partículas, las únicas que existen en cantidades importantes en el universo son los fotones, los neutrinos y posiblemente los gravitones, pero son partículas sin masa. Veintidós tredecillones es, después de todo, un número apreciable para un universo de importancia.

Mecánica cuántica - Wikipedia, la enciclopedia libreLas cuatro claves fundamentales que necesitas para comprender la física  cuánticaInvestigadores analizan la relación entre Mecánica Cuántica y la Teoría de  la Relatividad General | Instituto Milenio de Investigación en Óptica, MIRO

              Si no se explican estas imágenes… ¿Quién podría decir lo que cada una de ellas es?

 

Una historia que circula por Internet desde hace muchos años cuenta que nuestro Sol forma parte de las Pléyades, que son un grupo de estrellas muy jóvenes que se encuentran a 450 años luz de la Tierra y que pertenecen a la constelación de Tauro. Este grupo de estrellas gira alrededor de Alcyon, la estrella más grande del grupo. El Sol tardaría 24.000 años en completar una órbita completa alrededor de Alcyon. Alrededor de esta estrella existiría un anillo de fotones que sería atravesado dos veces por el Sol en cada órbita, tardando cada vez 2000 años. Durante estos 2.000 años nuestro planeta estará continuamente bajo una iluminación omnidireccional permanente, que no producirá sombras. Los efectos de esta radiación fotónica serían entre otros el de la aparición de una nueva glaciación, disminución de la velocidad de rotación de la Tierra y cambio del eje de rotación.

Nadie sabe de dónde vino la sustancia del universo, no siempre la ciencia puede dar respuesta a todo, es la manera de regular los sistemas para obtener respuestas tras el duro trabajo del estudio, la investigación y el experimento. Hasta el momento nos falta información para contestar la pregunta.

 

                                        El día que lleguemos a saber lo que encierran los fotones…nos podemos llevar una gran sorpresa

“La respuesta podía estar en la existencia de “energía negativa” que igualara la “energía positiva” ordinaria, pero con la particularidad de que cantidades iguales de ambos se unirían para dar nada como resultado”

 

Qué es el Gran Vacío del universo?

¿Qué sabemos del vacío? Lo que sabemos es que no existe un vacío absoluto… ¡Siempre hay!

En realidad todo podría ser muy simple, tanto como + 1 – 1 = 0

Diversas fuentes y pesquisas han podido lograr que el presente trabajo vea la luz y sea publicado aquí (con un poquito de cosecha propia),

emilio silvera

Las estrellas nos trajeron aquí I

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del Universo y… de la vida inteligente. Sin los materiales que en las estrellas de “fabricaron”, nunca podría existir la vida en mundos como el nuestro. Allí, en las estrellas se fusionaron en sus hornos nucleares todos los elementos necesarios para la Vida, y, aunque todos miran hacia ellas en la noche estrellada, ven como están titilando como queriendo decirles algo, la mayoría no comprende todo lo que ahí está presente y lo mucho que significa para nosotros.

 

Mirar estrellas para buscar a nuestros seres queridos.

 

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

 

Se publican nuevas imágenes de la Nebulosa de Orión con el James Webb

Pudimos descubrir que en otros ámbitos, los objetos eran mucho mayores,que nuestro propio entorno

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico.

 

ESTRUCTURA CRISTALINA - ESTRUCTURA DE LOS METALES - BIEN EXPLICADO!!!! - YouTube

 

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

 

Materia Inerte - Concepto, características y ejemplos

Materia “inerte”

Porque, ¿Qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas.

¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia “inerte”?

                                DIFERENCIAS DE UN SER VIVO Y LA MATERIA INANIMADA. SER VIVO MATERIA INANIMADA Los seres vivos lo componen las miles de especies de plantas y animales que existen en nuestro mundo. La materia inanimada o inerte es todo aquello que no tiene vida: el viento, las rocas, el agua, el suelo, etc. Los organismos vivos requieren de una serie de procesos químicos llamado metabolismo, Estos procesos son esenciales para la vida de los seres vivos. La materia inanimada no ingiere o transforma otros materiales para obtener energía Los seres vivos tienen la capacidad de producir otros seres de la misma especie, ya sea por reproducción sexual o por reproducción asexual. Mientras, la materia inerte carece de esta capacidad.

 

 

Claro que materia “inerte” debidamente evolucionado a través de los Eones. ¡Lo inerte se animó! Alcanzó la Vida

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Leer más