viernes, 26 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Agujeros negros gigantes

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Acreción de gas en un agujero negro estelar desde su estrella compañera azul

Acreción de gas en un agujero negro estelar desde su estrella compañera azul – YU JINGCHUAN, PLANETARIO DE PEKÍN

Descubren en nuestra Galaxia un agujero negro tan descomunal que no debería existir.

Su gigantesca masa, 70 veces mayor que la del Sol, es mucho mayor de lo que se creía posible

 

 

 

 

 

Nuestra galaxia, la Vía Láctea, contiene unos 100 millones de agujeros negros estelares, unos cuerpos cósmicos formados por el colapso de estrellas masivas y tan densos que ni la luz puede escapar. Hasta ahora, los científicos habían estimado que la masa de cada uno de esos agujeros negros no era más de 20 veces mayor que la del Sol. Pero se equivocaban. Un equipo internacional liderado el el Observatorio Astronómico Nacional de China ha descubierto uno mucho más gigantesco. Y completamente inesperado. El coloso, con una masa 70 veces mayor, se encuentra a 15.000 años luz de la Tierra.

El hallazgo, dado a conocer en el último numero de la revista «Nature», fue una gran sorpresa. «Los agujeros negros de tal masa ni siquiera deberían existir en nuestra galaxia, de acuerdo con la mayoría de los modelos actuales de evolución estelar», asegura el profesor Jifeng Liu, responsable del trabajo. «Pensamos que las estrellas muy masivas con la composición química típica de nuestra galaxia deben arrojar la mayor parte de su gas en poderosos vientos estelares a medida que se acercan al final de su vida. Por lo tanto, no deberían dejar un remanente tan masivo. LB-1 (como ha sido bautizado el agujero negro) es el doble de masivo de lo que creíamos posible. Ahora los teóricos tendrán que asumir el desafío de explicar su formación», explica.

Una aguja en un pajar

 

Resultado de imagen de Agujero negro engulle a una estrella

 

 

Hasta hace solo unos años, los agujeros negros estelares solo se podían descubrir cuando tragaban gas de una estrella compañera. Este proceso crea potentes emisiones de rayos X, detectables desde la Tierra, que revelan la presencia del objeto colapsado. Sin embargo, la gran mayoría de los agujeros negros estelares en nuestra galaxia no participan en un banquete cósmico y, por lo tanto, no emiten rayos X reveladores. Como resultado, solo alrededor de dos docenas de agujeros negros estelares galácticos han sido bien identificados y medidos.

Para contrarrestar esta limitación, Liu y sus colaboradores examinaron el cielo con el telescopio espectroscópico LAMOST de China, buscando estrellas que orbitan un objeto invisible, arrastradas por su gravedad.

Resultado de imagen de Agujero negro engulle a una estrella

Esta técnica de observación fue propuesta por primera vez por el científico inglés John Michell en 1783, pero solo se ha hecho factible con las recientes mejoras tecnológicas en telescopios y detectores. Aún así, la hazaña es como buscar una aguja en un pajar: solo una estrella de cada mil puede estar rodeando un agujero negro.

Después del descubrimiento inicial, se utilizaron los telescopios ópticos más grandes del mundo, el Gran Telescopio Canarias (Grantecan) de 10,4 m en La Palma y el telescopio Keck I de 10 m en Hawái, para determinar los parámetros físicos del sistema. Según los autores, los resultados fueron fantásticos: se vio una estrella ocho veces más pesada que el Sol orbitando un agujero negro de 70 masas solares, cada 79 días.

Ondas gravitacionales

 

Resultado de imagen de Virgo instalación detectores de ondas gravitacionales

Resultado de imagen de Vigo detecta ondas gravitacionalesResultado de imagen de Dos agujeros negros gigantes colisionan y forman ondas gravitacionales

 

El descubrimiento de LB-1 encaja muy bien con otro gran avance en astrofísica. Recientemente, los observatorios de ondas gravitacionales LIGO y Virgo han comenzado a captar ondas en el espacio-tiempo causadas por colisiones de agujeros negros en galaxias distantes. Curiosamente, los agujeros negros involucrados en tales colisiones también son mucho más grandes de lo que anteriormente se consideraba típico.

La observación directa de LB-1 demuestra que esta población de agujeros negros estelares demasiado masivos existe incluso en nuestro propio «patio trasero». «Este descubrimiento nos obliga a volver a examinar nuestros modelos de cómo se forman los agujeros negros de masa estelar», afirma el director de LIGO, David Reitze, de la Universidad de Florida en los Estados Unidos.

«Este notable resultado junto con las detecciones LIGO-Virgo de colisiones de agujeros negros binarios durante los últimos cuatro años realmente apunta hacia un renacimiento en nuestra comprensión de la astrofísica de agujeros negros», señala Reitze.

¿Cómo sujetar los pensamientos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Viajar al pasado    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Dentro de nuestras mentes se crean torbellinos de pensamientos que debemos ordenar. Andamos sumergidos en la espesa niebla de nuestra ignorancia y no siempre, sabemos “ver” con la claridad sificiente y necesaria cómo es el mundo. En escritos míos anteriores, me he referido a la teoría expuesta de manera magistral por el reconocido físico teórico Kip S. Thorne. Él cree firmemente que en el futuro será posible viajar al pasado a través de un agujero de gusano. Para que las bocas de entrada aquí, y la de salida “allí” -pongamos por ejemplo, que el allí está en Andrómeda- se mantengan abiertas, es necesario que dispongamos de energía exótica como la que se produce en las placas del Efecto Casimir.

Imagen relacionadaImagen relacionadaImagen relacionadaResultado de imagen de la Mente y las neuronas mensajerasResultado de imagen de la Mente y las neuronas mensajeras

Es el mayor secreto que el Universo esconde, lo que pasa dentro de nuestras Mentes, los torbellinos de ideas y pensamientos que se generan en nuestros cerebros y, a veces, sentimos la frustración de no comprender.

De la manera que vemos avanzar la ciencia, negar cualquier posibilidad futura, me parece al menos arriesgado y de tal maravilla, podría ser posible algún día muy lejos en el futuro, ¿quién sabe? si puede llegar a ser realidad. Sin embargo, hay que puntualizar algunas cosas.

  • Todos hemos oído contar, hemos leído o hemos visionado alguna película en la que el personaje principal viaja al pasado, se encuentra con su abuelo, se pelea con él y lo mata, y así, ni su padre ni él mismo pudieron nacer.
  • También se podría viajar al pasado, matar a Hitler y evitar el holocausto judío.
  • O impedir la crucifixión de Cristo.
  • O…

 

 

 

 

¡Pues va a ser que no! Los mecanismos del universo no permitirían tales acciones que cambiarían el curso de una historia que ya tuvo muchas consecuencias, y, como decía Hawking, alguna clase de censura cósmica, lo impedirá.

Si Thorne tiene razón y alguna vez vamos al pasado, a un mundo que fue y que no es el nuestro, creo que las leyes de la física impedirán que nuestra presencia fuese material y que nuestras acciones pudieran incidir en los hechos para cambiar su curso; eso es imposible. Cuando el suceso pasó no estábamos allí, y, por eso pasó de esa manera y, ahora, por mucho que queramos, no podremos cambiar ese hecho pasado. El Jarrón roto y hecho añicos nunca se podrá recomponer.

Resultado de imagen de El Tiempo que nació con el Big Bang

  El Tiempo, eso que no sabemos explicar lo que es, tiene mucho que decir. Es el único testigo con “vida” desde que se produjo el BIg Bang, él estuvo presente y ha sido testigo de todo el transcurrir de acontecimientos: Formación de partículas, nacimientos de las familias de Quarks, Leptones y Hadrones, los átomos, las moléculas y los cuerpos, ,la libreración de los fotones, el nacimiento de las estrellas y la creación de las galaxias, los mundos y… ¡La Vida!

Resultado de imagen de Podremos ir al pasado como hologramas

Es posible que algún día podamos visitar el pasado como hologramas, sin poder incidir en él

Nuestra presencia allí sería incorpórea, holográfica, o, de cualquier otra manera en la que  podríamos ver, observar, mirar con fascinación de manera directa lo que allí pasó, ser testigos de hechos históricos (seguramente sería una forma de turismo del futuro), pero no nos estaría permitido intervenir. Además, si eso algún día fuese posible, también es dudoso que las personas de aquel lugar de época remota, pudieran vernos, ya que, en realidad, nosotros en aquel momento no estábamos allí.

Resultado de imagen de Podremos ir al pasado como hologramas

             Investigadores niponer lograron crear el primer holograma

Lo que ya pasó es irreversible. No podemos físicamente retrotraer el tiempo para borrar lo que pasó. Cuando una estrella muere por haber agotado su combustiblre nuclear de fusión, explota como Supernova y crea una Nebulosa y un Agujero negro… ¿Cómo podríamos cambiar eso un millón de años más tarde, aunque consiguiéramos viajar al pasado?

Cuando un astrofísico mira una galaxia que está a 1.000 millones de años-luz de nosotros, está mirando el pasado. La galaxia que ve es la galaxia que fue hace 1.000 millones de años, que es el tiempo que ha tardado su imagen en llegar a nosotros viajando a la velocidad de la luz. No estamos capacitados de ninguna manera para poder observar esa galaxia tal y como es ahora; la distancia que la separa de nosotros tiene que ser recorrida, y el viaje duró mil millones de años, así que cuando lleguemos allí, la galaxia habrá evolucionado y será muy diferente a como era cuando iniciamos el viaje.

http://nuestrascharlasnocturnas.files.wordpress.com/2010/10/int-341269.jpgResultado de imagen de Los astrónomos creen haber hallado el objeto más lejano jamás divisado en el universo: una galaxia muy distante en el tiempo y en el espacio.

El Universo también tiene (como todo) su lado oscuro en el que se ocultan maravillas que deseamos desvelar. Las distancias en el Cosmos (para nosotros) han sido inalcanzables y nos valemos de la tecnología para desvelar secretos bien escondidos.

 

Los astrónomos creen haber hallado el objeto más lejano jamás divisado en el universo: una galaxia muy distante en el tiempo y en el espacio.  Semioculto en una foto captada por el Telescopio Espacial Hubble y dado a conocer este año, se encuentra un corpúsculo de luz que los astrónomos europeos calculan es una galaxia de hace 13.100 millones de años. Es un momento en que el universo era muy joven, de apenas 600 millones de años. De confirmarse, será el objeto más antiguo y más distante hallado hasta la fecha y, la galaxia, probablemente ni exista ya.

El rayo de luz que es atraído por un agujero negro y desaparece en la singularidad, no puede volver para que lo podamos ver de nuevo. Allí, en ese lugar extraño y desconocido, se pierde toda la información y, si no explota y esparce todo su contenido, la información se perderá para siempre.

La entropía del universo es irreversible; el deterioro de los sistemas cerrados es imparable. Todo se transforma para convertir las cosas en otras diferentes. Son las leyes del universo, y a nosotros, simples mortales, sólo nos queda tratar de comprenderlas para obtener de ellas “tal como son” el mayor beneficio posible. Cuando la ambición o la inconsciencia nos lleva a querer cambiar las leyes del universo y de su naturaleza, el resultado no puede ser bueno. Somos nosotros los que tenemos que adaptarnos al medio y no al revés (excepto cuando por medios artificiales preparamos el medio para nuestro beneficio, pero simplemente adaptándolo y no cambiándolo).

Todas estas razones y muchas más que podrían exponerse aquí son las que impedirán algún día muy lejano de nuestro futuro, cambiar el pasado que, según mi opinión, es inamovible. ¡Ah!, y en contra de lo que dice en su libro Jean Bouchart, creo que todo lo que ocurre está causado por lo que ocurrió. Es lo que los físicos llaman causalidad. Nada ocurre porque sí, todo tiene su causa.

  • Si de verdad amas, te amarán.
  • Si estudias, aprenderás.
  • Si eres un vago, te llegará la miseria y la degradación.
  • Si haces lo que te gusta, serás más feliz.

 

Todo es la consecuencia de lo que hacemos. Igualmente, en nuestro mundo y en nuestro universo, rige la misma ley: si contaminas el planeta, se deteriorará el medio ambiente y morirá la atmósfera que ahora nos da la vida. Si una estrella agota su combustible nuclear, morirá, dejará de brillar y se convertirá en un objeto diferente. Todo es así.

Mi consejo: que nuestro comportamiento no sea nunca causante de males ajenos; que nos conformemos y sepamos valorar lo que tenemos; que tratemos cada día de ser mejores adquiriendo nuevos conocimientos, el verdadero sustento del ser. Cuanto más sabemos, más podemos ofrecer a los demás y a nuestro propio “espíritu”.

Resultado de imagen de Sentir Amor por la Humanidad

Seguramente, el verdadero amor es el único que nos salvará. En el último momento, surgirá en nosotros esa llama interior que llevamos dentro en la que se concentra todo lo bueno. El mal será rechazado y estaremos en un Universo mejor, más igual para todos, más justo y en el que, la dignidad de las personas estará asegurada. Quien trata de humillar a otro y despojarle de su dignidad, no es consciente de que en realidad, es su dignidiad la que se verá resentida por tan vil acción.

Resultado de imagen de Tratamos de engañarnos los unos a los otros

Vemos comportamientos que nos hacen sentir verguenza

En mi transcurrir cotidiano, por mi trabajo, veo con mucha pena cómo las personas tratan de engañarse las unas a las otras. Es la forma general, y lo excepcional es el encontrar, muy de tarde en tarde, personas decentes y honradas, mejor o peor preparadas (qué más da) pero nobles de espíritu y limpias de corazón; cuando eso ocurre, es como una ráfaga de aire fresco y perfumado que inunda los sentidos.

Como lo normal es todo lo contrario, la fealdad interior, el engaño, la ausencia de moralidad y de ética, la traición de los “amigos” o familiares, etc., mi remedio es bien sencillo: me encierro en mi mundo particular de la física, la astronomía y, en definitiva, de cualquier rama del saber que esté presente en ese momento en mis pensamientos, y de esa forma, por unos momentos, me olvido de la fea verdad que nos rodea. La bondad y el amor sólo aparecen en efímeras ráfagas que rápidamente se esfuman y desaparecen, excepto en ámbitos como el seno famliar. Ahí, dentro de la familia -la esposa, los hijos, nietos hermanos y los padres… se desencadena un alto índice de ternura que hace florecer lo lo mejor de nosotros. En el seno familiar podemos sentir las bocanadas de aire puro  y perfumado inexistentes en otro lugar. En algunos casos, ese estado de amor y de ternura se extiende hacia todos los demás.

Estamos en un mundo frío, cada cual campa a lo suyo y, por lo general,  los demás sólo son instrumentos para conseguir nuestros objetivos. Nuestro mundo está cambiando, ya está regido por Ordenadores personalizados que atienden a nuestras instrucciones y se ocupan de necesidades cotidianas en la casa, en la oficina, en la fábrica y que son capaces de realizar planteamientos matemáticos en minutos, cosa que los seres vivos no pueden hacer a pesar de ser ellos los inventores del prodigio. No veo nada claro el devenir de la Humanidad.

Pasemos a otras cuestiones. En  enero de 2.007, comenzó y se celebró en la India el 20 International Joint Conference of Artificial Intelligence, un encuentro en el que se pusieron al día todos los avances en inteligencia artificial, y donde fue celebrado el 50 cumpleaños de su creación.

El incremento de los resultados en este campo (mucho hemos hablado aquí de ello), ha sido asombroso. Internet es una buena prueba de ello en la búsqueda de información por contenido, comercio electrónico, sistemas de recomendación, web semántica, etc. el futuro de Internet, de la industria y del comercio, de las ciudades futuras, de los viajes espaciales, de la medicina, etc., etc., etc., dependerán de los progresos que se realicen en el ámbito de la inteligencia artificial y en la nanotecnología; ahí parecen estar el progreso del futuro.

geminoids

Hemos llegado a fabricar “clones” artificiales que cuesta identificar de los originales y… ¡Esto no ha hecho más que empezar! ¿Dónde acabará todo?

La inteligencia artificial, entre otras cosas, podrá llevar y facilitar información a países subdesarrollados que, de esta manera, podrá ofrecer educación a sus habitantes, mejorará la salud de la población, su agricultura, etc. la calidad de vida, en definitiva.

Ya se están desarrollando en Japón los ordenadores inteligentes (los llamados de quinta generación), y el entusiasmo de empresas informáticas japonesas y estadounidenses por la inteligencia artificial aconsejó a Europa no quedarse atrás y acometer sus propios proyectos mediante programas de investigación en estas nuevas tecnologías del futuro.

El término de inteligencia artificial, si no me falla la memoria, se acuñó en la reunión de Dartmouth en 1.956, que fue un evento único e histórico. Único porque no se volvió a celebrar, es decir, no fue el primero de una serie como ocurre con los congresos internacionales de lo que,  se llevan celebrandos 20; y fue histórico por el hecho de que allí se acuñó el término que ha prevalecido de inteligencia artificial.

En DartMouth se presentó un único resultado: un programa llamado Logic Theorist, capaz de demostrar teoremas de lógica proporcional contenidos (según leí) en la famosa obra “Principia Matematica” de Bertrand Russell y Alfred Whitehead (la obra más famosa de Newton lleva el mismo título). El programa lo desarrollaron Herbert Simón (que en 1.978 recibió el premio Nobel de Economía), Alan Newell y Clifford Shaw. Sin embargo, en éste de enero en la India, se presentaron 470 resultados seleccionados entre los casi 1.400 que recibieron.

Alan Turing cropped.jpgResultado de imagen de La máquina de Alan Turing

Estatua de Alan Turing y su retrato de fondo y a la derecha su máquina precursora

Desde aquella reunión del 56, los hitos alcanzados en el campo de la IA han sido extraordinarios: desde jugar al ajedrez hasta diagnosticar enfermedades, comprender textos sobre temas concretos que implican conocimientos especializados… No obstante, el objetivo de desarrollar las inteligencias artificiales generales que los pioneros de esta ciencia, reunidos en 1.956, propusieron para ser alcanzados, quedan aún muy lejanos. Pero, todo llegará; todo es cuestión de ¡tiempo!

Esta ciencia le debe mucho a las matemáticas. Alan Turing es un ejemplo. Fue un gran matemático que formalizó conceptos tan básicos para la informática como el concepto de algoritmo y el concepto de calculabilidad mediante la denominada Máquina de Turing, lo que nos lleva a considerar a Turing como a uno de los “padres” de la informática y, más concretamente, de la informática teórica. En 1.950 publicó un ensayo, “Computing Machinery and Intelligence”, donde describió su famoso Test de Turing, según el cual se podría determinar si una máquina es o no inteligente. La IA le debe pues el test que lleva su nombre, pero la informática le debe más.

Estamos tratando de crear cerebros positrónicos en los que se desarrollen los pensamientos propios y… ¡hasta los sentimientos! ¿No estaremos queriendo ir demasiado lejos? Está claro que la IA se aliará y formará equipo con la biología y la nanotecnología, y de esta unión surgirán avances que ahora ni podemos imaginar en nuestra actual comprensión (limitada) de la inteligencia artificial.

Como siempre me ocurre, cuando me pongo a escribir mis pensamientos vuelan, parece que estoy estableciendo una conversación conmigo mismo y traslado lo que se ella surge a la pantalla del ordenador, donde quedan plasmados todos los pensamientos presentes en mi cerebro en ese momento. En esas líneas de letras quiero expresar lo que recuerdo, lo que he leído, lo que he estudiado del tema que en ese momento ocupa mi atención, y así ocurre que, no siendo infalible, los errores pueden ser muchos y algunas explicaciones o comentarios poco documentados (consulto muy poco escribiendo y me dejo llevar), por lo que pido disculpas. Sin embargo, mis lectores -que son buenos amigos-, ganan en frescura y espontaneidad; el texto es más natural y en él están ausentes las artificialidades. Creo que salen ganando.

Resultado de imagen de MI mente llena de pensamientos se dispersa

Lo que quería decir antes -como otras veces me he ido por las ramas-, es que puedo comenzar hablando de una cuestión y terminar hablando de otra muy distinta. Me vienen a la mente temas diversos, y de manera natural, sigo mis pensamientos y así lo reflejo en la blanca pantalla.

¿No resulta más ameno? De todas formas, siempre trato de finalizar los temas. Básicamente soy un insaciable buscador de la razón de ser de las cosas; todo me parece interesante. Mi curiosidad es ilimitada y mi vehemencia y pasión me llevan, a veces, a olvidarme de comer o (más grave aún), de recoger a mi mujer, que en un pueblo cercano espera mi llegada como habíamos quedado. Son cosas corrientes de mi manera de ser, que cuando emprendo una tarea, una lectura, o un proyecto, lo quiero tener terminado antes de… ¡haberlo comenzado!

http://upload.wikimedia.org/wikipedia/commons/e/e4/DS4_Champollion_2.jpg

Leo cualquier titular en un periódico: “Instalan un observatorio bajo el hielo para estudiar los confines del cosmos. Cuando esté en marcha, los científicos esperan que detecte 1.000 colisiones diarias de neutrinos, partículas minúsculas que nos traen información del universo.” No puedo, a partir de ahí, evitar el comprar el periódico o la revista para leer todo el reportaje completo, aunque sé que no dirán nada que ya no sepa sobre los neutrinos y la manera de cazarlos en las profundidades de la Tierra, en profundas minas abandonadas en las que colocan tanques de agua pesada que, conectados a potentes ordenadores, detectan la presencia de estas diminutas partículas -al parecer- carentes de masa que pertenecen a la familia de los leptones.

Cada segundo que pasa, billones de estas minúsculas partículas invisibles llamadas neutrinos, atraviesan nuestros cuerpos, en muchos casos, después de haber recorrido de un confín a otro todo el universo. Sin que nos demos cuenta estamos conectados con el otro extremo del Cosmos por medio de las conexiones invisibles que su Naturaleza impone. De hecho, somos parte de ese inmenso Universo que tratamos de conocer.

Resultado de imagen de Trillones de neutrinos viajan por el EspacioResultado de imagen de Trillones de neutrinos viajan por el EspacioResultado de imagen de Trillones de neutrinos viajan por el EspacioResultado de imagen de Trillones de neutrinos viajan por el Espacio

Los neutrinos, al contrario que los fotones, viajan sin cesar de un lado a otro del universo sin que ningún campo magnético los desvíe de su camino, y sin ser destruidos tras colisionar con otras partículas, ya que apenas poseen carga eléctrica ni interaccionan con la materia. Por ello, estudiar de cerca un neutrino permitiría descubrir su procedencia y aportaría a los científicos una valiosa información sobre los rincones del universo de los que provienen.

El problema que se plantea es que agarrar un neutrino no es tarea nada fácil, y aunque se cree que el neutrino puede ser el mensajero cósmico ideal, primero habrá que retenerlo para poder hacer la comprobación. Esta partícula fue anunciada o prevista su existencia por Wolfgan Pauli, y su nombre, neutrino (pequeño neutro en italiano), se lo puso el físico Enrico Fermi. Pauli quiso quiso así, con la existencia del neutrino, explicar dónde estaba la masa perdida en la fusión nuclear de la materia, en los fenómenos producidos por la radiación inducida por la fuerza nuclear débil. El neutrino era la explicación: La masa “perdida” se eyectaba al espacio en forma de energía representada por los neutrinos.

Aunque parezca no venir a cuento, me viene a la mente que el fin de la Edad de Hielo, hace 300 millones de años fue precedido por bruscos cambios en el nivel de dióxido de carbono (CO2), alteraciones violentas del clima y efectos drásticos sobre la vegetación del planeta. Pero, ¡¿qué estamos haciendo ahora?! La irresponsabilidad de algunos seres humanos es ilimitada.

Hace 300 millones de años, el hemisferio sur del planeta estaba casi totalmente cubierto por el hielo; los océanos del norte eran una sola masa gélida y los trópicos estaban dominados por espesas selvas, pero 40 millones de años después, el hielo había desaparecido; el mundo era un lugar ardiente y árido. La vegetación era escasa y los vientos secos soplaban sobre una superficie donde casi no había vegetación. Sólo un reptil podría sobrevivir en aquellas condiciones.

Ahora parece que estamos decididos a repetirlo. ¿Qué hará Gaia para defenderse? Creo que hará lo que estime necesario para preservar su integridad, y si para ello es preciso eliminar a los molestos “bichitos” que causaron el mal, no creo que dude en hacerlo, ya que los acogió, les ofreció todos los recursos necesarios para la supervivencia, y el pago no fue, precisamente, el más adecuado. Lo peor de todo esto es que el comportamiento, el egoísmo de unos pocos lo pagaremos todos. Es como cuando un niño molesta en el colegio y el maestro castiga a toda la clase.

Franz Liszt dijo una vez la hermosa frase siguiente:

“Nuestras vidas son preludios; preludios de una desconocida canción cuya primera nota es la muerte.”

 

Liszt encabezó su referencia a un poema de Lamartine, en uno de sus más conocidos poemas sinfónicos, con esta memorable definición. Y se hizo la pregunta ¿Será verdad que la muerte es el comienzo?

Bueno, es mejor ser respetuoso con ciertos pensamientos. Hay ciertos temas sobre los que la ciencia no tiene potestades ni puede legislar. Yo, en este sentido, me parapeto tras mi ignorancia para no pronunciarme sobre lo que desconozco, y sobre temas que la ciencia no está en condiciones de explicar. Claro que, no por ello y para mi intimidad, no dejo de tener mi propio criterio sobre lo que vendrá luego de ese último momento por el que tenemos que pasar todos.

Resultado de imagen de María Silvera pianista y clavecinistaResultado de imagen de María Silvera pianista y clavecinistaResultado de imagen de María Silvera pianista y clavecinistaResultado de imagen de María Silvera pianista y clavecinista

                Por su trabajo siempre está fuera de casa… ¡La hecho de menos!

Llegados a este punto, recuerdo las palabras de mi hija María, pianista y clavecinista, que tiene una personal y artística interpretación de las cosas a través de argumentos musicales. Para ella, la música es algo más que un arte; es el todo, una manera de interpretar la vida y de ver las cosas. La música es para ella su esencia, su materia revelada y el camino elegido para vivir en un mundo aparte, de colores, lleno de notas musicales que forman melodías de una belleza infinita. Cuando habla de su música, se transporta y vive dentro de una suerte poética que la eleva a un plano superior y filosófico, casi místico o religioso, que la revitaliza, le da una fuerza especial y, sobre todo, le hace feliz al estar haciendo aquello que más le gusta. El que puede conseguir eso, es un elegido -yo no pude elegir-. Claro que, a veces pienso: ¿No será que María se sumerge en su música para no ver la fealdad del mundo?

emilio silvera

Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

M81 y M82, entre polvo y gas de la Vía Láctea

 

Resultado de imagen de NUestra vecindad galácticaResultado de imagen de NUestra vecindad galáctica

 

NGC 346 en la Pequeña Nube de Magallenes. Entre los cúmulos de SMC y la nebulosa NGC 346 hay una región de formación de estrellas de unos 200 años luz -fotogrrafí arriba-, por el telescopio espacial Hubble. Explorando esta Nebulosa, los astrónomos han identificado una población de estrellas embrionarias concatenadas a tavés  de las sombrías, entrelazadas franjas de polvo, que se ven aquí, a la derecha.

 

 

 

Ha habido dos momentos de grandes cambios en la Física occidental. El primero llegó con Galileo y Newton, que hicieron que la ciencia abandonara los antiguos ideales griegos de la razón pura, haciéndola rigurosa y dependiente de los datos experimentales y de la causalidad, rechando conceptos tales como que la luz es una “cualidad”, e intentando cualificar cosas tales como luz y las fuerzas de la materia. Algunos, como Weinberg, siguen considerando a Newton como el científico más importante que ha existido:

 

File:Lagrange points2.svg

 

Curvas de potencial en un sistema de dos cuerpos (aquí el Sol y la Tierra), mostrando los cinco puntos de Lagrange. Las flechas indican pendientes alrededor de los puntos L –acercándose o alejándose de ellos. Contra la intuición, los puntos L4 y L5son máximos.

 

 

 

 

 

Resultado de imagen de Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas Blog de emilio silveraResultado de imagen de Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas Blog de emilio silvera

 

Dos fuerzas contrapuestas iguales que dan estabilidad en el átomo y en las estrellas

 

Resultado de imagen de El Universo y la Mente Blog de emilio silveraResultado de imagen de El Universo y la Mente Blog de emilio silveraResultado de imagen de El Universo y la Mente Blog de emilio silveraResultado de imagen de El Universo y la Mente Blog de emilio silvera
                                             Siempre hemos tratado de llegar a comprender

 

 

Puede que todo surgiera a partir de esa densidad infinita. Allí comenzó el Tiempo y el universo se expandió, se crearon las partículas de materia, que se juntaron para formar los núcleos que al verse arropados por los electrones con sus cargas negativas, venían a equilibrar las positivas de los protones y, de esa manera, se pudieron unir para formar moléculas y materia. Sustancia cósmica primero, estrellas y galaxias después, y, dentro de toda esa vorágine, miles de millones de años más tarde, llegaron a surgir en los mundos ¡la vida! Pensando en todo esto, a uno se le viene a la cabeza pensamientos del pasado, enseñanzas escolares y preguntas que no tienen respuestas.

 

 

Lo de no mirar atrás… ¡No me gusta! Si lo hubiéramos hecho , ¿cómo habríamos aprendido lo que sabemos? Todo es una sucesión de hechos que se van traspasando de una generación a la siguiente: El Presente está hecho del Pasadso, y, el Futuro, se está construyendo en el Presente.

Resultado de imagen de Los albores de la especie HUmana

Desde que asustados mirábamos los relámpagos en las tormentas, hemos observado la Naturaleza y, de ella, hemos podido ir aprendiendo. Esos conocimientos han hecho posible que nuestras mentes evolucionen, que surjan las ideas, que la imaginación se desboque y, vaya siempre un poco más allá de la realidad. Imaginar ha sido siempre una manera de evadir la realidad. El viaje en el tiempo ha sido una de esas fantásticas ideas y ha sido un arma maravillosa para los autores de ciencia ficción que nos mostraban paradojas tales como aquella del joven que viajó hacia atrás en el tiempo, buscó a su bisabuelo y lo mató. Dicha muerte produjo de manera simultánea que ni su abuelo, su padre ni él mismo hubieran existido nunca. Claro que, tal suceso es imposible; existe una barrera o imposibilidad física que impide esta de paradoja y, si no existe tal barrera, debería exisitir. Creo que, aún en el hipotético caso de que algún día pudiéramos viajsar en el tiempo, nunca podríamos cambiar lo que pasó. El pasado es inamovible.

¡El Tiempo! ¿Es acaso una abstracción? ¿Por qué no es igual para todos? ¿Podremos dominarlo alguna vez?  Claro que saber lo que es el tiempo… ¡No lo sabemos!, y, según las circunstancias, siempre será diferente para cada uno de nosotros dependiendo de sus circunstancias particulares: Quien está con la amada no siente su transcurrir, una hora será un minuto, mientras que, el aquejado por el dolor, vivirá en otro tiempo, un minuto será una eternidad. En cuanto dominar lo que entendemos por tiempo… Si pensamos con lógica, en lugar de introducir posibilidades físicas particulares o locales,  pensaremos como nos enseño Einstein, a una mayor escala,  en la utilidad de un y un tiempo únicos y unidos en un bloque de espacio-tiempo que se moldea en presencia de la materia y se estira o encoge con la velocidad.

                        Hay en todas las cosas un ritmo que es parte de nuestro Universo.

“Hay simetría, elegancia y gracia…esas cualidades a las que se acoge el verdadero artista. Uno puede ver ese ritmo en la sucesión de las estaciones, en la forma en que la arena modela una cresta, en las ramas de un arbusto creosota o en el diseño de sus hojas. Intentamos copiar ese ritmo en nuestras vidas y en nuestra sociedad, buscando la medida y la cadencia que reconfortan. Y sin embargo, es posible ver un peligro en el descubrimiento de la perfección última. Está claro que el último esquema contiene en sí mismo su propia fijeza. En esta perfección, todo conduce hacia la muerte.”

De “Frases escogidas de Muad´Dib”, por la Irulan.

 

Resultado de imagen de Imaginando un mundo etereoResultado de imagen de Imaginando un mundo etereoResultado de imagen de Imaginando un mundo etereoResultado de imagen de Imaginando un mundo etereo

          hemos imaginado estar en otros niveles, tener mentes que, unidaa al Universo no necesitan hacer preguntas, imaginando un futuro que podría ser,

Salgamos ahora fuera del espacio-tiempo y miremos lo que sucede allí.  Las historias de los individuos son trayectorias a través del bloque. Si se curvan sobre sí mismas para formar lazos cerrados entonces juzgaríamos que se ha producido un en el tiempo. Pero las trayectorias son las que son. No hay ninguna historia que “cambie” al hacerla. El viaje en el tiempo nos permite ser parte del pasado pero no cambiar el pasado. Las únicas historias de viaje en el tiempo posibles son las trayectorias autoconsistentes.  En cualquier trayectoria cerrada no hay una división bien definida entre el futuro y el pasado.

                                          Siempre nos ha gustado imaginar

Si este tipo de viaje hacia atrás en el tiempo es una vía de escape del final termodinámico del universo, y nuestro universo parece irremediablemente abocado hacia ese final, hacia ese borrador termodinámico de todas las posibilidades de procesamiento de información, entonces quizá seres súper avanzados en nuestro futuro estén ya viajando hacia atrás, hacia el ambiente cósmico benigno que proporciona el universo de nuestro tiempo. No descarto nada. Si le dicen a mi abuelo hace más de un siglo y medio que se podría meter un documento en una maquinita llamada fax, y el documento, de manera instantánea, aparecería en otra máquina similar situada a kilómetros de la primera…, los habría tachado de locos.

Resultado de imagen de Marchando en un círculo


Si se marcha en línea recta está claro quién va delante de quién. Si se marcha en círculo cualquiera está delante y detrás de cualquier otro. Como pregona la filosofía, nada es como se ve a primera , todo depende bajo el punto de vista desde en el que miremos las cosas.

“Lo primero que hay que comprender sobre los universos paralelos… es que no son paralelos. Es comprender que ni siquiera son, estrictamente hablando, universos, pero es más fácil si uno lo intenta y lo comprende un poco más tarde, después de haber comprendido que todo lo que he comprendido hasta ese momento no es verdadero.”

        Los hay que creen, que la vida, es única en la Tierra. De la misma forma nuestros sentidos actuales solo nos permiten percibir la parte física del Universo. A medida que vayamos evolucionando iremos accediendo a planos más sutiles de la Creación.

Lo cierto es que siempre nos hemos creído especiales, los elegidos, ¿los únicos? ¿Qué vamos a hacer con esta idea antrópica fuerte? ¿Puede ser algo más que una nueva presentación del aserto de que nuestra forma de vida compleja es muy sensible a cambios pequeños en los valores de las constantes de la naturaleza? ¿Y cuáles son estos “cambios”? ¿Cuáles son estos “otros mundos” en las constantes son diferentes y la vida no puede existir?

Resultado de imagen de Constantes universales

Si la carga del protón, o, la masa del electrón, variaran aunque sólo duera una diezmillonésima… ¡La Vida en nuestro planeta no estaría presente! Así son de important4es las constantes universales que hacen de nuestro Universo el que podemos observar.

En ese sentido, una visión plausible del universo es que hay una y sólo una forma para las constantes y leyes de la naturaleza. Los universos son trucos difíciles de hacer, y cuanto más complicados son, más piezas hay que encajar. Los valores de las constantes de la naturaleza determinan a su vez que los elementos naturales de la tabla periódica, desde el hidrógeno 1 de la tabla, hasta el uranio, número 92, sean los que son y no otros. Precisamente, por ser las constantes y leyes naturales como son y tener los valores que tienen, existe el nitrógeno, el carbono o el oxígeno… ¡Y, también nosotros!

                            Nuestro Universo es como es las constantes son las que son

Esos 92 elementos naturales de la tabla periódica componen toda la materia bariónica, la que conforma todos los objetos del universo. Hay elementos como el plutonio o el einstenio, pero son los llamados transuránicos y son artificiales, inestables y emiten radiación nosiva para la vida.

Hay varias propiedades sorprendentes del universo astronómico que parecen ser cruciales para el desarrollo de la vida en el universo. no son constantes de la naturaleza en el sentido de la constante de estructura fina o la masa del electrón. Incluyen magnitudes que especifican cuán agregado está el universo, con que rapidez se está expandiendo y cuánta materia y radiación contiene. En última instancia, a los cosmólogos les gustaría explicar los números que describen estas “constantes astronómicas” (magnitudes).  Incluso podrían ser capaces de demostrar que dichas “constantes” están completamente determinadas por los valores de las constantes de la naturaleza como la constante de estructura fina. ¡¡El puro y adimensional, 137!!


 

 

Un estudio de una de las constantes fundamentales del universo pone en duda la teoría popular de la energía oscura. La energía oscura es el dado a lo que está causando que la expansión del universo se acelere. Una teoría predice que una entidad inmutable que impregna el llamada la constante cosmológica, originalmente propuesta por Einstein, sería la verdadera .

 

Resultado de imagen de El cualquier charca caliente podrá surgir la vidaResultado de imagen de El cualquier charca caliente podrá surgir la vidaResultado de imagen de El cualquier charca caliente podrá surgir la vidaResultado de imagen de El cualquier charca caliente podrá surgir la vidaResultado de imagen de El cualquier charca caliente podrá surgir la vidaResultado de imagen de El cualquier charca caliente podrá surgir la vida

 

                         En nuestro planeta, como en otros, en cualquier charca caliente y con el adecuado ambiente y la química necesaria… Podría surgir la vida. Son muchos los mundos similares a la Tierra que existen sólo en nuestra Galaxia, y, no digamos por todo el Universo. Creer que la vida está presente sólo en nuestro planeta… Además de pretencioso es ilógico.

Lo cierto es que, las características distintivas del universo que están especificadas por estas “constantes” astronómicas desempeñan un papel clave en la generación de las condiciones para la evolución de la complejidad bioquímica. Si miramos más cerca la expansión del universo descubrimos que está equilibrada con enorme precisión. Está muy cerca de la línea divisoria crítica que separa los universos que se expanden con suficiente rapidez para superar la atracción de la gravedad y así para siempre, de aquellos otros universos en los que la expansión finalmente se invertirá en un estado de contracción global y se dirigirán hacia un Big Grunch cataclísmico en el futuro lejano. Las tres formas de Universo que nos ponen los cosmólogos para que podamos elegir uno que será el que realmente se asemeja al nuestro. Abierto, plano y cerrado todo será en función de la Densidad Crítica que el Universo pueda tener-

Resultado de imagen de La Densidad Crítica

Todo dependerá de cual sea el de la densidad de materia.

De hecho, estamos tan cerca de esta divisoria crítica que nuestras observaciones no pueden decirnos con seguridad cuál es la válida a largo plazo. En realidad, es la estrecha proximidad de la expansión a la línea divisoria lo que constituye el gran misterio: a priori parece altamente poco probable que se deba al azar. Los universos que se expanden demasiado rápidamente son incapaces de agregar material para la formación de estrellas y galaxias, de modo que no pueden formarse bloques constituyentes de materiales necesarios para la vida compleja. Por el contrario, los universos que se expanden demasiado lentamente terminan hundiéndose antes de los miles de millones de años necesarios para que se tomen las estrellas.

Sólo universos que están muy cerca de la divisoria crítica pueden vivir el tiempo suficiente y tener una expansión suave para la de estrellas y planetas…y ¡vida!

Gráfico: Sólo en el modelo de universo que se expande de la divisoria crítica (en el centro), se forman estrellas y los ladrillos primordiales para la vida. La expansión demasiado rápida no permite la creación de elementos complejos necesarios para la vida. Si la densidad crítica supera la (más cantidad de materia), el universo será cerrado y terminará en el Big Crunch.

No es casual que nos encontremos viviendo miles de millones de años después del comienzo aparente de la expansión del universo y siendo testigos de un estado de expansión que está muy próximo a la divisoria que la “Densidad Crítica”. El hecho de que aún estemos tan próximos a esta divisoria crítica, después de algo más de trece mil millones de años de expansión, es verdaderamente fantástico. Puesto que cualquier desviación respecto a la divisoria crítica crece continuamente con el paso del tiempo, la expansión debe haber empezado extraordinariamente próxima a la divisoria para seguir hoy tan cerca (no podemos estar exactamente sobre ella).

Gráfico: La “inflación” es un breve periodo de expansión acelerada durante las primeras etapas de la Universo.

Pero la tendencia de la expansión a separarse de la divisoria crítica es tan solo otra consecuencia del carácter atractivo de la fuerza gravitatoria. Está claro con sólo mirar el diagrama dibujado en la página que los universos abiertos y cerrados se alejan más y más de la divisoria crítica a medida que avanzamos en el tiempo. Si la gravedad es repulsiva y la expansión se acelera, esto hará, mientras dure, que la expansión se acerque cada vez más a la divisoria crítica. Si la inflación duró el tiempo suficiente, podría explicar por qué nuestro universo visible está aún tan sorprendentemente próximo a la divisoria crítica. Este rasgo del universo que apoya la vida debería aparecer en el Big Bang sin necesidad de de partida especiales.

Resultado de imagen de Planetas parecidos ala TierraResultado de imagen de Planetas parecidos ala TierraResultado de imagen de Planetas parecidos ala Tierra

Todas estas explicaciones nos llevan a pensar que entre los miles de millones de galaxias conocidas que se extienden por el , cada una de las cuales contiene a su vez miles de millones de estrellas, no es nada descabellado pensar que existen también, cientos de miles de millones de planetas que giran alrededor de muchas de esas estrellas, y que en alguno de estos últimos debe haber, como en el nuestro formas de vida, algunas inteligentes.

MiniaturaResultado de imagen de Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press).Resultado de imagen de Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press).

Han creado un mapa muy detallado del Universo cercano en 3D (según publica Europa Press). Un equipo internacional han podido completar el mapa más preciso y completo hecho hasta el momento y, con este avance, se puede conocer el universo y sus contenidos con una mayor precisión.

 

Así, nos hacemos una idea más o menos plausible del conjunto, podemos llegar a la conclusión de que, para llegar al estadio de evolucioón en el que nos encontramos, las estrellas tuvieron que más de 10.000 millones de años para hacer posible la existencia de materiales complejos aptos para la bio-química de la vida y, una vez conformado el primigenio material, se necesitaron otros 1.000 millones de años para que, las primeras y rudimentarias células vivas precursoras de la vida inteligente aparecieran.

Siatuada a 12.900 M de años-kuz, descubren la Galaxia lejana y, seguramente, de la primeras

Hemos podido, observando a la Naturaleza, saber de todo esto que más arriba hemos comentado, y, todos los obtenidos, todos los secretos desvelados, todos los nuevos conocimientos, nos han acercado más y más al Universo infinito del que formamos parte y, al ritmo del universo, nuestras mentes han evolucionado para poder imaginar… ¡Hasta viajar en el Tiempo! Incluso pensamos en manejar las estrellas como ya, de hecho, podemos hacer con los átomos que las conforman.

emilio silvera

¿Alquimia estelar? ¿Proplasma vivo? ¿De dónde venimos?

Autor por Emilio Silvera    ~    Archivo Clasificado en Alquimia estelar    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

 

Estructuración del protoplasma de la Vida con unas notables facultades para hacer cosas nuevas a partir de otras viejas. ¡Cuánto se habría excitado y cuán complacido habría estado Pasteur si hubiera conocido el famoso experimentio de Miller! Pese a ser el mismo un teísta, Pateur estaba convencido de que Dios creó la vida sobre la Tierra combinando precisamente fuerzas químicas y azar. Reconocía también, como sabemos, que los compuestos or´ganicos de los seres vivos son ópticamente activos, es decir, poseen una asimetría interna capaz de desviar planos de luz polarizada. Estaba impresionado, con el hecho de que, fuera de los tejidos vivos, los compuestos asimétricos se encuentran siempre en forma racémica: una mezcla de moléculas orientadas a la derecha, y otras, orientadas a la izquierda. Solamente en estos tejidos vivos, los compuestos orgánicos tienen una lateralidad bien definida.


En la imagen de arriba podemos ver la estructura de molécula de ciclosporina A en forma de corona, izquierda de la imagen (representación de bolas y varillas) y unida a su diana por la que ejerce su función farmacológica (representada como modelo de esferas). Se une a la ciclofilina (en blanco) y esta a su vez a la Calcineurina. Esta última es la encargada de permitir la respuesta inmune de los linfocitos por lo que ésta queda bloqueada. Siempre hemos querido saber sobre el origen de la vida y los secretos que la rodean y cómo apareció en nuestro mundo.

Resultado de imagen de El protoplasma para mantener su forma debe renovar sus moléculas de materiaImagen relacionada

El protoplasma para mantener su forma debe renovar sus moléculas de materia. El recambio de sustancias es lo que se conoce globalmente como metabolismo. Corresponde a reacciones sencillas de oxidación, reducción, hidrólisis, condensación, etc. Estas reacciones se van modificando y perfeccionando, en los casos más optimistas, hasta llegar a diferenciarse procesos idénticos en alguna o algunas reacciones, A. Baj y Palladin estudiaron la respiración, con todas sus reacciones y catalizadas por su fermento específico. S. Kostichev, A. Liebedev estudiaron la química de la fermentación.

Michurin estudió la relación del organismo y el medio. Los fermentos de las estructuras protoplasmáticas determinaban sus reacciones por la velocidad y la dirección, estableciendo una relación con el medio. Se establecía un círculo de fenómenos relacionados y ordenados regularmente. Se producían asimilaciones y desasimilaciones de sustancias orgánicas con el fin de autoconservación y autorenovación del protoplasma.

En la base de la organización de todo individuo está la célula, y en la célula el protoplasma, en cuya compleja estructura morfológica y química reside el principio de todas las funciones vitales. Inicialmente la organización morfológica de la célula sólo se conocía a través de los medios ópticos. Dentro de los límites de su poder resolutivo; con la introducción del microscopio electrónico amplió notablemente los conocimientos sobre la estructura celular, al conseguirse aumentos hasta 200 veces superior a los obtenidos por los medios ópticos.

Imagen relacionada

Muchas son las veces que aquí, en este lugar dedicado a distintas disciplinas de la Ciencia, hemos hablado de la Vida. Sin embargo, nunca nos hemos parado a explicar la cuestión del proceso del origen de la vida, conociendo antes, aunque sea de manera sencilla y sin profundidad, aquellos principios básicos de la estructura del protoplasma, ese sustrato material que será la base de todos los seres vivos, sin excepción.

A finales del siglo XIX y principios del XX, había científicos que creían que los organismos sólo eran “máquinas vivientes” especiales, de estructuras muy complejas y, aseguraban que la estructura del protoplasma era algo así como una máquina, construido conforme a un determinado plan y que estaba formado por “vigas” y “tirantes” como si de un puente se tratara y que, de manera similar a éste, los lazos de unión tenían unida toda la estructura que, de esta manera, se mantenía firme, y, esa estructura de tan estricto orden en la colocación recíproca de las distintas partes del protoplasma, era precisamente, según ellos, la causa específica de la vida. Y, a todo ello, sin olvidarse del Carbono, la base de todo signo de vida que conocemos.

Pero el estudio concreto del protoplasma desmintió esta teoría mecanicista. Fue probado que no existía ninguna estructura parecida a una máquina ni siquiera a las de máxima precisión, en el interior del protoplasma.

Es bien conocido que la masa básica del protoplasma es líquida; nos hallamos ante un coacervado complejo, constituido por una gran cantidad de sustancias orgánicas de un peso molecular considerable, entre estas destacan las proteínas y los lipoides. Por esta razón, se encuentran flotando a su libre albedrío en esa sustancia coacervática fundamental, partículas filamentosas coloides, quizás enormes moléculas proteínicas sueltas, y muy probablemente, auténticos enjambres de esas moléculas. El tamaño de las partículas es tan diminuto que no se distinguen ni a través de los microscopios actuales más sofisticados. Pero encontramos otros elementos visibles en el interior del protoplasma. Cuando las moléculas proteínicas y de otras sustancias se unen formando conglomerados, destacan en la masa protoplasmática en forma de pequeñas gotas, captadas a través del microscopio, o en forma de coágulos, con una determina estructura denominados elementos morfológicos. El núcleo, las plastídulas, las mitocondrias, etcétera.

Resultado de imagen de Sustancia protoplasmáticaResultado de imagen de Sustancia protoplasmática

Estos elementos protoplasmáticos, observables a través del microscopio, son, esencialmente, una manifestación aparente y externa de determinadas relaciones de solubilidad, enormemente complejas, de las distintas sustancias que conforman el protoplasma y que se ha podido comprobar que tiene, un papel determinante, en el curso del proceso de la vida, que no se puede comparar de ningún modo con el papel que desempeña una máquina en su trabajo específico. Esto queda totalmente justificado por la sencilla razón de que una máquina y el protoplasma son dos sistemas distintos y contrarios.

Sin duda, lo que caracteriza la función de una máquina es el desplazamiento mecánico de sus diferentes partes en el espacio. Por esa razón hay que insistir que el elemento más importante de la estructura de una máquina es, precisamente, la colocación de sus piezas; mientras que el proceso vital tiene un carácter totalmente distinto. Se manifiesta esencialmente con el recambio de sustancias, o sea, con la interacción química de las diferentes partes que conforman el protoplasma. Por esto deducimos que el elemento primordial en toda la estructuración del protoplasma es el orden concreto que siguen los procesos químicos en el tiempo, la forma tan armónica en que se combinan, siempre con tendencia a conservar en su conjunto el sistema vital.

Es de vital importancia para la formación del protoplasma que exista una estructura interna determinada. Pero otro factor no menos decisivo es la organización en el tiempo, o sea, que los procesos que se dan en el protoplasma lo hagan en armonía. Cualquier organismo, tanto animal, planta o microbio, vive únicamente mientras pasen por él, de forma continuada y constante, nuevas partículas de sustancias, cargadas de energía. Distintos cuerpos químicos pasan del medio ambiente al organismo; y cuando están dentro, sufren unos determinados y esenciales trastornos, mediante los cuales acaban convirtiéndose en sustancias del propio organismo invadido y serán iguales que aquellos cuerpos químicos que antes formaban parte del ser vivo. Este proceso se conoce con el nombre de asimilación. Sin embargo, de forma paralela a este proceso se da la desasimilación, que se trata precisamente del proceso contrario, es decir, las distintas sustancias que forman la parte del organismo vivo son sensibles a los cambios del propio organismo, se desintegran a menor o mayor velocidad, y son sustituidas por los cuerpos asimilados. De esta forma, los productos de la desintegración se echan al medio envolvente.

Por otra parte, en todo esto debemos tener en cuenta un gente que, siendo ineludible para la vida, está siempre presente en todo lo que a ella concierne. El Agua.

Resultado de imagen de El Agua

El agua pura es un líquido inodoro e insípido. Tiene un matiz azul, que sólo puede detectarse en capas de gran profundidad. A la presión atmosférica (760 mm de mercurio), el punto de congelación del agua es de 0 °C y su punto de ebullición de 100 °C. El agua alcanza su densidad máxima a una temperatura de 4 °C y se expande al congelarse. Como muchos otros líquidos, el agua puede existir en estado sobreenfriado, es decir, que puede permanecer en estado líquido aunque su temperatura esté por debajo de su punto de congelación.

Es muy cierto que la sustancia del organismo vivo siempre se encuentra en movimiento, desintegrándose y volviendo a formarse de manera continua en virtud de la gran cantidad de reacciones de desintegración y síntesis, que se dan guardando una fuerte relación entre ellas. Ya Heráclito, aquel gran dialéctico de la antigua Grecia, nos decía: “nuestros cuerpos fluyen como un arroyo, y de la misma manera que el agua de éste, la materia se renueva en ellos.” Está claro que una corriente o un chorro de agua pueden mantener su forma, su aspecto externo, durante un tiempo, pero su aspecto sólo es la manifestación exterior de ese proceso continuo y constante del movimiento de las partículas del agua. Incluso la misma existencia de este sistema depende, naturalmente, de que las renovadas moléculas de materia pasen constantemente, y a una velocidad determinada por el chorro de agua. Pero si interrumpimos este proceso, el chorro dejará de existir como tal. Lo mismo sucede en todos los sistemas conocidos como dinámicos, los cuales tienen un proceso concreto.

Resultado de imagen de Seres vivos como sistemas dinámicos

Es un hecho concreto e innegable que los seres vivos también son sistemas dinámicos. Igual que el chorro de agua al que antes hacíamos referencia, su forma y su estructura sólo forman parte de la expresión externa y aparente de un equilibrio, muy competente, formado por procesos que se dan en el ser vivo en sucesión permanente a lo largo de toda su vida. Sin embargo, el carácter de estos procesos es totalmente diferente a los que ocurre en los sistemas dinámicos de la naturaleza orgánica.

Las moléculas de agua llegan al chorro, ya como moléculas de agua, y lo atraviesan sin que se produzca ningún cambio. Pues el organismo toma del medio ambiente sustancias ajenas y desconocidas para él, pero a continuación, mediante procesos químicos muy complejos, son convertidos en sustancias del propio organismo, muy parecidas a los materiales que forman su cuerpo.

Imagen relacionada

Precisamente esto es lo que hace posible las condiciones que mantienen constantemente la composición y estructura del organismo, ignorando este proceso continuo e ininterrumpido de desasimilación que se da en todos los organismos vivos.

Así pues, desde una perspectiva puramente química, el recambio de sustancias, también llamado metabolismo, es un conjunto enorme de reacciones más o menos sencillas, de oxidación, reducción, hidrólisis, condensación, etcétera. Lo que lo hace diferente del protoplasma, es que en el metabolismo, estas reacciones se encuentran organizadas en el tiempo de de cierto modo, las cuales se combinan para poder crear un sistema integral. Dichas reacciones no surgen por casualidad, y de forma caótica, sino que se dan en estricta sucesión, y en un orden armónico concreto.

El ácido pirúvico (ver otros nombres en la tabla) es un ácido alfa-ceto que tiene un papel importante en los procesos bioquímicos. El anión carboxilato del ácido pirúvico se conoce como piruvato. El ácido pirúvico es un compuesto orgánico clave en el metabolismo. Es el producto final de la glucolisis, una ruta metabólica universal en la que la glucosa se escinde en dos moléculas de piruvato y se origina energía (2 moléculas de ATP).

Ese orden será la base de todos los fenómenos vitales conocidos. En la fermentación alcohólica, por ejemplo, el azúcar proveniente del líquido, que es fermentable, penetra en la célula de la levadura, sufriendo determinados trastornos químicos. O sea, primero se le incorpora el ácido fosfórico y luego se divide en dos partes.

Una de las cuales experimentará un proceso de reducción, mientras que la otra se oxidará, quedando convertida, finalmente, en ácido pirúvico, que más tarde se descompondrá en anhídrido carbónico y acetaldehído. Este último se reducirá, quedando transformado después en alcohol etílico. Como resultado, podemos observar que el azúcar queda convertido en alcohol y anhídrido carbónico.

Imagen

Esto nos demuestra que en la célula de la levadura, lo que determina la producción de estas sustancias es el extraordinario rigor con que se dan todas estas reacciones, las cuales se suceden de forma muy ordenada. Sólo con que sustituyésemos en esta cadena de transmutaciones un único eslabón o si alterásemos en lo más mínimo el orden de dichas transmutaciones ya no tendríamos como resultado alcohol etílico, sino cualquier otra sustancia. En efecto, en las bacterias de la fermentación de la leche, el azúcar, al principio sufría los mismos cambios en la levadura, pero cuando se llega a la fermentación del ácido pirúvico, éste ya no se descompone, todo lo contrario, se reduce al instante. Esto explica que en las bacterias de la fermentación láctica el azúcar no se transforme en alcohol etílico, sino en ácido láctico.

Las encimas

Estructura de la triosafosfato isomerasa.  Conformación en forma de diagrama de cintas  rodeado por el modelo de relleno de espacio de la proteína.Esta proteína es una eficiente enzima involucrada en el proceso de transformación de azúcares en energía  en las células.

La enzimología, al igual que las disciplinas experimentales que han surgido como ramas del tronco común que es la biología, tiene una historia propia construida a través de observaciones, experiencias, pruebas y teorías.

Se inició con el estudio de los procesos de fermentación y de putrefacción y Antoine-Laurente Lavoisier fue el primero en plantear sobre bases cuantitativas el proceso de la fermentación alcohólica, al observar una relación entre cantidad de azúcar presente y productos formados durante el proceso.

Un estudio de la síntesis de distintas sustancias en el protoplasma demuestra que éstas no se crean de repente, y no provienen de un acto químico especial, sino que son el resultado de una cadena larguísima de trastornos químicos.

No puede constituirse un cuerpo químico complejo, propio de un ser vivo en concreto, sin que se produzcan centenares o miles de reacciones en un orden regular, constante, y ya previsto con rigurosidad, lo cual constituirá la base de la existencia del protoplasma.

 

                                                       La Biología Físico-Química

La bioquímica, es la rama de la Química y de la Biología que tiene por objetivo principal el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de Carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas las que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía.

Porque cuanto más compleja es la sustancia, más reacciones intervienen en su formación dentro del protoplasma y estas reacciones deben coordinarse entre sí con mayor rigor y exactitud. En efecto, investigaciones bastante recientes han demostrado que en la síntesis de las proteínas a partir de los aminoácidos toman parte gran cantidad de reacciones que se producen en una sucesión muy ordenada. Únicamente como consecuencia de esta rigurosa armonía, de esta sucesión ordenada de las reacciones, se da en el protoplasma vivo ese ritmo estructural, esa regularidad en la sucesión de los distintos aminoácidos que también podemos apreciar en las proteínas actuales.

Resultado de imagen de Mol´çeculas proteicasResultado de imagen de Mol´çeculas proteicas

Por consiguiente, las moléculas proteínicas, así originadas y con una estructura determinada se agrupan entre sí, y ciertas leyes las hacen tender a la formación de auténticos conglomerados moleculares que se acaban separando de la masa protoplasmática y se distinguen como elementos morfológicos, visibles a través del microscopio, como formas protoplasmáticas características por su gran movilidad. De esta manera, la composición química propia del protoplasma, como su estructura, son la manifestación del orden en que se producen estos procesos químicos que se dan de forma continua y permanente en la materia viva.

Hidrógeno

Resultado de imagen de Moléculas de HidrógenoResultado de imagen de Moléculas de Hidrógeno

Todos sabemos de su importanica para la vida

En el siglo XVI se observó que cuando el ácido sulfúrico actuaba sobre el hierro se desprendía un gas combustible. En 1766 Henry Cavendish demostró que dicho gas era una sustancia distinta a otros gases también combustibles, confundiendo el gas obtenido, al que llamo <<aire inflamable>>. Provenía del hierro y no del ácido sulfúrico, también demostró que el gas en el aire y en el oxígeno se formaba Agua

                                                                      La Atmósfera

Es la capa de gas que rodea a un cuerpo celeste que tenga la suficiente masa como para atraer ese gas. Los gases son atraídos por la gravedad del cuerpo, y se mantienen en ella si la gravedad es suficiente y la temperatura de la atmósfera es baja. Algunos planetas están formados principalmente por gases, con lo que tienen atmósferas muy profundas. Si no se dan ciertos parámetros, el protoplasma de la vida, nunca habría hecho acto de presencia.

– Nitrógeno (78%) y
– Oxígeno (21%)

– El 1% restante lo forman el argón (0,9%), el dióxido de Carbono (0,03%), y distintas proporciones de vapor de agua, y trazas de hidrógeno, ozono, metano, monóxido de Carbono, helio, neón, kriptón y xenón.

Ozonosfera y sodiosfera

Resultado de imagen de Ozonosfera

Desde 15 hasta 60 kilómetros de altitud, el ozono, que en las zonas próximas al suelo se encuentra sólo en pequeñas cantidades, aparece en porcentajes más sensibles y forma la ozonosfera. Este ozono absorbe la radiación ultravioleta procedente del Sol, haciendo posible de es modo la existencia de vida en la Tierra.

Pues bien, debemos preguntarnos de qué depende ese orden, propio de la organización del protoplasma, y cuáles son sus causas inmediatas. Un estudio minucioso sobre esta cuestión dejará demostrado que el orden indicado no es simplemente algo externo, que queda al margen de la materia viva, teoría defendida por los idealistas; en cambio, hoy día, sabemos perfectamente que la velocidad, la dirección y el encadenamiento de las diferentes reacciones, todo lo que forma el orden que estamos viendo, depende totalmente de las relaciones físicas y químicas que se establecen en el protoplasma vivo.

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

Las propiedades químicas de las sustancias integradoras del protoplasma, en primer lugar, y también las de las sustancias orgánicas que intervienen son las que constituyen la base de todo ello. Dichas sustancias orgánicas poseen enormes posibilidades químicas y pueden generar gran variedad de reacciones. Pero, aprovechan estas posibilidades con mucha “pereza”, lentamente, a veces a una velocidad ínfima. En muchas ocasiones, se necesitan meses e incluso años, para que llegue a producirse alguna de las reacciones efectuadas entre las mismas sustancias orgánicas. Por esto, los químicos, para acelerar el proceso de las reacciones entre las sustancias orgánicas, usan a menudo en su trabajo diferentes sustancias de acción enérgica-ácidos y álcalis fuertes, etcétera.

Para conseguir tal aceleramiento cada vez con más frecuencia, los químicos recurren a la utilización de los catalizadores. Hace ya mucho tiempo que habían notado que sólo con añadir una pequeña dosis de algún catalizador a la mezcla donde se estaba realizando una reacción, se producía un gran aceleramiento de ésta. Además, otra propiedad propia e los catalizadores es que no se destruyen durante el proceso de la reacción, y cuando esta finaliza, comprobamos que queda exactamente la misma cantidad de catalizador que añadimos a la mezcla al principio. Así que, cantidades insignificantes de catalizador son suficientes, muchas veces, pata provocar la rápida transmutación de masas considerables de diferentes sustancias. Esta cualidad, hoy día, es de gran utilidad para la industria química, que usa como catalizadores distintos metales, sus óxidos, sus sales y otros cuerpos orgánicos o inorgánicos. Las reacciones químicas dadas en animales y vegetales entre las distintas sustancias orgánicas se suceden a gran velocidad. De lo contrario, la Vida no pasaría tan rápida como en realidad pasa. Se sabe que la gran velocidad de las reacciones químicas producidas en el protoplasma es debida a la presencia constante de catalizadores biológicos especiales llamados fermentos.

Hace tiempo que estos fermentos fueron descubiertos, y ya con anterioridad, los científicos se habían fijado en ellos. Pues resultó que los fenómenos se podían extraer del protoplasma vivo y así separarse en forma de solución acuosa o como polvo seco de fácil solubilidad. Esto me hace pensar en lo que ocurre en las Nebulosas. No hace mucho se consiguieron fermentos en forma cristalina y se resolvió su composición química. Estos resultaron ser proteínas, y muchas veces, en combinación con otras sustancias de distinta naturaleza. Estos fermentos, por el carácter de su acción, se asemejan a los catalizadores inorgánicos. Sin embargo, se diferencian de ellos por la increíble intensidad de sus efectos.

En este sentido, los fermentos superan a los catalizadores inorgánicos de acción en centenares de miles, y en ocasiones hasta en millones de veces. Así que en los fermentos de naturaleza proteínica se da un mecanismo increíblemente perfecto y racional que hace posible acelerar las reacciones químicas entre las distintas sustancias orgánicas. Los fermentos también se caracterizan por la excepcional especifidad de su acción.

La Teoría Celular

 

    • Robert Hooke (1635 – 1703)

    Carl Woese (1928 – 2012)

    • Anton van Leeuwenhoek (1632- 1723)

        • Theodor Schwann (1810 – 1882)

        Xavier Bichat (1771 – 1802)

        • Matthias Jakob Schleiden (1804 – 1881)

 

 

Llegados a este punto debemos profundizar un poco más en la constitución de los seres vivos. Para ello debemos saber la teoría celular, enunciada por Matthias Schleiden (1804-1881) y Theodor Schwann (1810-1882).

La teoría celular de Schleiden y Schwann señala un rasgo común para todos los seres vivos: todos están compuestos por células y por productos elaborados por ellas. Aunque la idea de que la célula es el “átomo” de la vida nos parezca evidente, su importancia y la dificultad de su descubrimiento son parejas a la dificultad del descubrimiento de la existencia de átomos en química, y marca un cambio de paradigma en la manera de concebir la vida.

La teoría celular se basó en los adelantos realizados mediante los aparatos de observación debidos inicialmente a Robert Hooke (1635-1703) y a Anton Van Leeuwenhoek (1632-1723). Hooke construyó cientos de microscopios. Los más avanzados estaban formados por dos lupas combinadas como ocular y objetivo (microscopio compuesto).

imagen de un piojo

 imagen de células vegetales

Aunque con ellos llegó a alcanzar 250 aumentos, eran preferibles los de una sola lente, como los que construyó van Leeuwenhoek, ya que presentaban menos aberración cromática. Con esos instrumentos consiguieron descubrir infusorios (aquellas células o microorganismos que tienen cilios u otras estructuras de motilidad para su locomoción en un medio líquido), bacterias, la existencia de capilares en la membrana interdigital de las ranas.

Ahora sabemos que tanto los paramecios como los organismos superiores están formados por una o más células, almacenan y transportan la energía, duplican su material genético y utilizan la información que ese material contiene para sintetizar proteínas siempre de la misma forma. Todos estos procesos, que están presentes en todas las células, son los que forman la maquinaria de la vida.

Resultado de imagen de Sustancias orgánicas que nos dan las vitaminasResultado de imagen de Sustancias orgánicas que nos dan las vitaminas

                 Sustancias orgánicas que nos dan las vitaminas

Por supuesto, esto es a causa de las particularidades del efecto catalítico de las proteínas; pues la sustancia orgánica (el sustrato) que sufre alteraciones en el transcurso del proceso metabólico, forma ya al principio, una unión bastante compleja aunque de corta duración, con la correspondiente proteína-fermento. Esta fusión tan completa, no es estable, pues sufre distintos trastornos con mucha rapidez: el sustrato sufre las transformaciones correspondientes y el fermento se regenera, para poder unirse de nuevo a otras porciones del sustrato.

Entonces, para que las sustancias integradoras del protoplasma vivo puedan participar realmente con el metabolismo, debe combinarse con una proteína y constituir con ella un enlace complejo. De no ser así, sus posibilidades químicas se producirán muy lentamente y entonces perderán toda su importancia en el impetuoso proceso vital. Por esta razón el cómo se modifique una sustancia orgánica en el transcurso del metabolismo, depende, además de la estructura molecular de esta sustancia, y de las posibilidades químicas de la misma, también de la acción de fermentación de las proteínas protoplasmáticas, las cuales se encargan de llevar esa sustancia al proceso metabólico general.

Los fermentos, además de ser un poderoso acelerador de los procesos químicos sufridos por la materia viva; son también un mecanismo químico interno, el cual se encarga de que esos procesos sean conducidos por un cauce muy concreto. La gran especificidad de las proteínas-fermentos consigue que cada una de ellas forme enlaces complejos sólo con determinadas sustancias y catalice solamente algunas reacciones. Por esto, cuando se produce éste o el otro proceso vital, y con más motivo, cuando se verificas todo el proceso metabólico, actúan miles de proteínas-fermento de distintas clases. Cada una de estas proteínas puede catalizar de forma específica una sola reacción, y sólo el conjunto de acciones de todas ellas, en muy precisa combinación, hará posible ese orden regular de los fenómenos que entendemos como base del metabolismo.

Con el uso de los distintos fermentos específicos que se obtienen a partir del organismo vivo, en el laboratorio, pueden reproducirse de forma aislada cada una de las reacciones químicas, y todos los eslabones que forman el proceso metabólico. Así desenredamos el ovillo tan sumamente complicado de las transmutaciones químicas producidas durante el metabolismo, donde miles de reacciones individuales se mezclan. Por este mismo procedimiento se puede descomponer el proceso metabólico en sus diferentes etapas químicas, se puede analizar las sustancias integradora de la materia viva, y además los distintos procesos realizados en ella.

De esa manera se demostró que la respiración funciona a partir de una serie de reacciones como la oxidación o la reducción, dichas reacciones se dan con muchísimo rigor en un orden estricto y cada una de éstas es catalizada por un fermento específico (S.Kóstichev, A. Liédev y otros autores).

En 1878 el biólogo alemán Walter Fleming descubrió que se podían teñir unas estructuras existentes en el interior del núcleo y llamo cromatina a la materia que las formaban.

Como las células de la preparación morían al teñirse, y en una preparación existían células en muy diferentes etapas de crecimiento y división, Fleming pudo estudiar estas etapas y comprender cómo evolucionaba la vida de la célula.

Al comenzar el proceso de división celular la cromatina forma una especie de hilos que se denominan, con mucha lógica, cromosomas (cuerpos coloreados) y Fleming llamó al proceso de división celular mitosis, una palabra griega que significa hilo.

En 1887 el biólogo belga Edouart van Beneden contó el número de cromosomas de células de diferentes especies y llegó a la conclusión de que el número de cromosomas es una característica de la especie. Todas las células humanas tienen 46 cromosomas.

También descubrió que los espermatozoides y los óvulos tenían la mitad de los cromosomas de las células normales, y dedujo que al unirse conservaban todos sus cromosomas, con lo que recuperaban el número característico de la especie.

imagen de espermatozoides

Tanto Fleming como van Beneden comprendieron que eran los cromosomas del huevo los que determinaban las características del animal que se iba a formar, pero no podían saber el mecanismo por el que lo hacían.

Por entonces se empezó a llamar citoplasma al conjunto de protoplasma y orgánulos que están comprendidos entre el núcleo y la pared o membrana celular, y se empezaron a estudiar estos orgánulos.

Así, en 1898 el biólogo alemán Carl Benda descubrió las mitocondrias, que en griego significa hilos de cartílago. Ahora sabemos que son los órganos que se encargan de la obtención de energía a partir de azúcar y oxígeno. Ese mismo año Golgi descubrió el complejo que lleva su nombre.

              Aminoácidos y azúcares de la vida están ahí presentes

Hoy día, ya hemos dado el salto del análisis de los procesos vitales a su reproducción, a su síntesis. De esta forma, combinando de manera precisa en una solución acuosa de azúcar, una veintena de fermentos distintos, obtenidos a partir de seres vivos, pueden reproducirse los fenómenos propios de la fermentación alcohólica. En este líquido, donde gran cantidad de proteínas distintas se hallan disueltas, los trastornos que sufre el azúcar son verificados en el mismo orden regular que siguen en la levadura viva, aunque aquí no existe ninguna estructura celular.

Todos estos procesos son, en realidad, terriblemente complejos y están expuestos a que, cualquier alteración del medio incida de manera directa en su devenir. Pero, por otra parte y en las circunstancias adecuadas, no existe ningún factor físico o químico, ni sustancia orgánica o sal inorgánica que, de alguna manera, puedan alterar el curso de las reacciones fermentativas. Cualquier aumento o disminución de la temperatura, alguna modificación de la acidez del medio, del potencial oxidativo y de la composición salina o de la presión osmótica, alterará la correlación entre las velocidades de las distintas reacciones de fermentación, y de esta forma cambia su sucesión temporal. Es aquí donde se asientan todas las premisas de esa unidad entre el organismo y el medio, tan característica de la vida.

Esta organización tan especial de la sustancia viva influye en gran manera, en las células de los organismos actuales, en el orden y la dirección de las reacciones fermentativas, las cuales son la base del proceso metabólico. Cuando se agrupan las proteínas entre sí pueden quedar aisladas de la solución general y conseguir diferentes estructuras protoplasmáticas de muy ágil movimiento. Con total seguridad, sobre la superficie de estas estructuras se encuentran concentrados gran cantidad de fermentos.

Está claro que el orden característico de la organización del protoplasma está basado en las distintas propiedades químicas de las sustancias integradoras de la materia viva.

 

 

1.-Todos los seres vivos están formados por células y sus productos. Por tanto la célula es la unidad anatómica del organismo.

2.-Todas las células proceden de otras células preexistentes y éstas, a su vez, de otras células. Esto lo certificaron los viejos científicos con el axioma omnis cellula e cellula, latinajo que significa lo que todos ustedes suponen, que toda célula procede de otra célula.

3.-La célula es la unidad funcional del organismo.

4.-La célula es también la unidad genética del organismo.

Básicamente la célula está formada por tres elementos:

 

Núcleo
Membrana y
Citoplasma

 

 

Resultado de imagen de La membrana envuelve la célulaResultado de imagen de La membrana envuelve la célula


La membrana envuelve la célula confiriéndole su individualidad. Dicho de otra manera, la célula es una unidad separada de otras células por su membrana.

El citoplasma está formado por un líquido llamado citosol (solución celular) y gran cantidad de gránulos que reciben el nombre genérico de organelos y que más adelante describiremos. Adelantemos que en estos organelos hay una gran actividad ya que se encargan de funciones digestivas y respiratorias.
El núcleo está separado del resto del citoplasma por otra membrana, la membrana nuclearEn su interior se encuentra el material genético que crea los patrones para producir nuevas células con las características de nuestra especie. Una célula humana siempre producirá otra célula humana.

emilio silvera

¡La Vida se abre paso!

Autor por Emilio Silvera    ~    Archivo Clasificado en La vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La vida, desde hace unos 3.800 millones de años está presente en nuestro planeta y, se muestra de muy diversas formas y en distintos dominios que, en unos casos han evolucionado y en otros, siguen como eran hace miles de millones de años. Cada día, para nuestro asombro y sorpresa, se descubren nuevas formas y en muy distintos lugares. Una reciente publicación en el apartado de Ciencia de  ABC y firmado por José Manuel Nievez el pasado 21 de Agosto, nos ha comunicado:
 “Encuentran, por primera vez, un ecosistema completo bajo los hielos de la Antártida.”

        “Miles de especies viven en un lago subterráneo al que la luz y el aire no han llegado en millones de años.”

 

 

 

Encuentran, por primera vez, un ecosistema completo bajo los hielos de la Antártida
Nature

Bajo los hielos de la Antártida hay vida en abundancia. Lo acaba de demostrar una expedición norteamericana, llamada Wissard (Whillans Ice Stream Subglacial Access Research Drilling), formada por investigadores de varias universidades y que esta semana ha publicado en Nature sus primeras conclusiones. Bajo una capa de hielo de más de 800 metros de grosor, los científicos han encontrado todo un ecosistema viviendo en un lago subterráneo al que la luz y el aire no han llegado en millones de años.

Hallan miles de formas de vida en un lago a 3 km bajo el hielo de la Antártida

Las formas de vida descubiertas son microorganismos unicelulares que para subsistir convierten amoniaco y metano en energía. La mayor parte de estos organismos pertenecen al dominio de las Arqueas, en el que se encuentran los seres vivos más antiguos del planeta. La investigación tiene implicaciones para la búsqueda de vida en otros ambientes extremos, tanto en la Tierra como en otros mundos del Sistema Solar.

Para John Priscu, profesor de la Universidad de Montana y jefe científico de la expedición Wissard, “ahora podemos probar al mundo de forma inequívoca que la Antártida no es un continente muerto”. El estudio, en efecto, aporta las primeras pruebas directas de que la vida es capaz de resistir en las más duras condiciones del ambiente subglacial.

Hallan vida a -13,5ºC bajo el hielo de un lago de la Antártida

Desert Research Institute: El Lago Vida es el hogar de numerosos microbios. Hay agua – Hay Vida

Brent Christner, otro de los autores del estudio, afirma que se trata de la primera prueba definitiva de que bajo la capa de hielo antártico “no solo hay vida, sino ecosistemas activos que hemos estado buscando durante décadas. Con este trabajo damos un golpe sobre la mesa y afirmamos: šSí, teníamos razónš”.

Priscu, por su parte, asegura no estar del todo sorprendido de que el equipo haya logrado encontrar por fin vida tras perforar más de 800 metros de hielo hasta llegar al lago subglacial Whillans. No en vano, se trata de un investigador experimentado y que ha trabajado tanto en el Polo Norte como en el Polo Sur. Este otoño, en efecto, cumplirá su campaña número 30 en la Antártida, y hace mucho que predijo este descubrimiento.

Buscan vida bajo el hielo en la Antártica

                   Aunque nos parezca imposible, bajo los hielos Antárticos, la vida esatá presente

Hace ya más de una década, Priscu publicó dos artículos en Science describiendo por primera vez cómo la vida microbiana podría vivir y multiplicarse bajo los hielos de la Antártida. Y hace cinco años, publicó otro artículo en el que predijo que el ambiente subglacial antártico podría albergar el humedal más extenso de toda la Tierra, uno que no estaría dominado por aves y otros animales, sino por microorganismos que utilizan los minerales de las rocas heladas para obtener la energía que necesitan para vivir.

Durante la última década, Priscu se ha dedicado a recorrer el mundo dando conferencias sobre lo que podríamos encontrar bajo la Antártida, y recaudando fondos para una expedición que podría cambiar para siempre nuestra visión sobre el mayor continente del planeta.

                              Microbios que viven a 800 metros bajo el Hielo

Sin embargo, Priscu sí que se muestra muy excitado con respecto a varios detalles del hallazgo, especialmente en la forma de funcionar de estos organismos, sin luz solar y a temperaturas muchos grados bajo cero, y al hecho de que la mayoría de ellos, tal y como revelan los análisis de ADN, sean Arqueas. Arquea es uno de los tres dominios principales de la vida. Los otros dos son Bacteria y Eukariota.

La mayoría de las arqueas subgaciales encontradas utilizan la energía de los enlaces químicos del amoniaco para fijar el dióxido de carbono y llevar a cabo otras funciones metabólicas. Otro grupo de organismos utilizan la energía y el carbono presente en el gas metano para sobrevivir. Para Priscu, probablemente todo este amoniaco y metano procedan de la descomposición de materia orgánica que se depositó en la zona hace cientos de miles de años, cuando la Antártida era aún templada y el mar inundó la parte occidental del continente.

Las emisiones de metano del Ártico este mes se registraron en niveles históricos-altos, causando gran preocupación entre los climatólogos, que citan fusión rápida del hielo marino y el calentamiento del océano Ártico como las principales causas.

También advierte el investigador de que si la Antártida continúa calentándose, se liberarán a la atmósfera enormes cantidades de metano acumulado en el hielo, un poderoso gas de efecto invernadero capaz de acelerar dramáticamente el cambio climático.

El equipo de científicos también demostró que los microorganismos que viven en el lago Whillans no pueden ser fruto de la contaminación de los materiales de los propios científicos, tal y como se sospecha que ocurrió con los hallados en el lago subglacial de Vostok. Los escépticos, por su parte, apoyan esta posibilidad y sugieren que los microorganismos encontrados son los que llevaban consigo los propios investigadores.

“Hemos llegado hasta el extremo -asegura Priscu- para garantizar que no hemos contaminado en absoluto uno de los ambientes más puros y prístinos del planeta y que nuestras muestras tienen la máxima integridad”.

4.000 especies

 

Resultado de imagen de eNCUENTRAN MÁS DE 4000 ESPECIESResultado de imagen de eNCUENTRAN MÁS DE 4000 ESPECIESResultado de imagen de eNCUENTRAN MÁS DE 4000 ESPECIESResultado de imagen de eNCUENTRAN MÁS DE 4000 ESPECIES

En cuanto a las especies encontradas, resulta muy dificil su identificación, pero, afirma Christner por su parte, “hemos visto una columna de agua que probablemente tiene unas 4.000 šcosasš que podríamos llamar especies. Existe una increíble diversidad”.

El equipo de Wissard volverá a perforar durante el próximo verano austral. Wissard es el primer esfuerzo multidisciplinar a gran escala para examinar directamente la biología del ambiente subglacial antártico. La masa de hielo de la Antártida cubre una superficie equivalente a una vez y media la de los Estados Unidos y contiene el 70% del agua dulce de la Tierra.

Resultado de imagen de vIDA EN LA aNTÁRTIDAResultado de imagen de vIDA EN LA aNTÁRTIDA

Muy por debajo de la gruesa capa de hielo que cubre la Antártida, hay lagos de agua dulce sin una conexión directa con el océano. Estos lagos son de gran interés para los científicos, que tratan de entender el transporte de agua y la dinámica del hielo bajo la superficie congelada del continente.

El lago Whillans es uno de los más de 200 lagos que se conocen bajo la superficie del continente helado y el río subterráneo que lo alimenta fluye bajo la plataforma de Ross, una masa de hielo del tamaño de Francia, y desemboca en el océano, a gran profundidad, al que proporciona grandes cantidades de nutrientes y contribuye a la circulación de las corrientes marinas.

¡No conocemos ni nuestra peropia casa… ¡Y queremos viajar hacia las lejanas estrellas! ¡Ilusos!