martes, 19 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Encuentros Espaciales

Autor por Emilio Silvera    ~    Archivo Clasificado en Encuentros Espaciales    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

asteroidesImagen relacionada

6 de agosto del 2016 (DG). La nave espacial para la caza de asteroides de la NASA reveló la existencia de cientos de objetos cercanos a la Tierra (NEOs) de los cuales 72 fueron recién detectados y ocho de los 72 fueron clasificados como asteroides potencialmente peligrosos  para la tierra

La más destructiva intensificación temporal de los normalmente suaves flujos de energía geotectónica – erupciones volcánicas o terremotos extraordinariamente potentes – o de energía atmosférica – vientos o lluvias anormalmente intensas –, parecen irrelevantes cuando se comparan con las repetidas colisiones del planeta con cuerpos extraterrestres relativamente grandes.

Imagen relacionada

La Tierra está siendo bombardeada continuamente por invisibles partículas microscópicas de polvo muy abundantes en todo el Sistema Solar, y cada treinta segundos se produce un choque con partículas de 1 mm de diámetro, que dejan un rastro luminoso al autodestruirse en la atmósfera. También son relativamente frecuentes los choques con meteoritos de 1 metro de diámetro, que se producen con una frecuencia de, al menos, uno al año.

Pero los impactos, incluso con meteoritos mayores, producen solamente efectos locales. Esto es debido a que los meteoritos que deambulan por la región de asteroides localizada entre Marte y Júpiter están girando alrededor del Sol en el mismo sentido que la Tierra, de manera que la velocidad de impacto es inferior a 15 Km/s.

Resultado de imagen de El Cráter de Arizona

El cráter de Arizona, casi perfectamente simétrico, se formó hace 25.000 años por el impacto de un meteorito que iba a una velocidad de 11 Km/s, lo que representa una potencia cercana a 700 PW. Estas gigantescas liberaciones de energías palidecen cuando se comparan con un choque frontal con un cometa típico. Su masa (al menos de 500 millones de toneladas) y su velocidad relativa (hasta 70 Km/s) elevan su energía cinética hasta 1022 J. Aunque se perdiera un diez por ciento de esta energía en la atmósfera, el impacto sería equivalente a una explosión de unas 2.500 bombas de hidrógeno de 100 megatones. Está claro que un fenómeno de estas características produciría impresionantes alteraciones climatológicas. Sin embargo, no es seguro y sí discutible que un impacto parecido fuese la causa de la extinción masiva del cretácico, siendo lo más probable, si tenemos en cuenta el periodo relativamente largo en que se produjo, que se podría explicar por la intensa actividad volcánica de aquel tiempo.

Aproximadamente, cada cincuenta o sesenta millones de años se produce una colisión con un cometa, lo que significaría que la biosfera, que ha evolucionado durante cuatro mil millones de años, ha debido superar unos cuarenta impactos de este tipo. Está claro que ha salido airosa de estas colisiones, ya que aunque haya sido modificada, no ha sido aniquilada.

La explosión de supernovas cercanas al Sistema Solar influyó en la evolución de la Tierra

     Se cree que la explosión de supernovas “cercanas” influyeron en la biosfera de nuestro planeta

Igualmente, la evolución de la biosfera ha sobrevivido a las explosiones altamente energéticas de las supernovas más “cercanas”. Dado que en nuestra galaxia se produce por término medio la explosión de una supernova cada 50 años, el Sistema Solar se encuentra a una distancia de 100 parsecs de la explosión cada dos millones de años y a una distancia menor de 10 parsecs cada dos mil millones de años. En este último caso, la parte alta de la atmósfera se vería inundada por un flujo de rayos X y UV de muy corta longitud de onda, diez mil veces mayor que el flujo habitual de radiación solar, lo que implica que la Tierra recibiría, en unas pocas horas, una dosis de radiación ionizante igual a la que recibe anualmente. Exposiciones de 500 roentgens son letales para la mayoría de los vertebrados y, sin embargo, los diez episodios de esta magnitud que se han podido producir en los últimos 500 millones de años no han dejado ninguna consecuencia observable en la evolución de la biosfera.

Resultado de imagen de Civilizaciones adelantadas construyen refugios contra la radiación de supernovas

Lo cierto es que no tenemos tan cerca a ninguna estrella hipergigante que, al explotar como supernova, nos pueda inquietar, su radio de acción y vientos estelares del evento no llegarían a nosotros… con peligro

Si suponemos que una civilización avanzada podría preparar refugios para la población durante el año que transcurre ente la llegada de la luz y la llegada de la radiación cósmica, se encontraría con la inevitable dosis de 500 roentgens cada mil millones de años, tiempo suficiente para permitir el desarrollo de una sociedad cuyo conocimiento le sirviera para defenderse de un flujo tan extraordinario y de consecuencias letales.

emilio silvera

Los Terremotos

Autor por Emilio Silvera    ~    Archivo Clasificado en Los terremotos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La inmensa mayoría de los terremotos se originan en los procesos geotectónicos a gran escala que crean, hacen chocar y hunden en las zonas de subducción, las placas oceánicas. No menos del 95 por ciento de todos los terremotos se concentran a lo largo de los bordes de las placas y cerca de nueve décimas partes de éstos se localizan en el cinturón Circum-Pacífico, donde las placas, que son relativamente rápidas, están colisionando o deslizándose contra las placas continentales más pesadas. La mayor parte del resto de terremotos están asociados a los puntos calientes, generalmente señalados por volcanes en actividad.

Foto: tiempo.hn

En conjunto, los terremotos representan una fracción muy pequeña de la energía liberada por los procesos tectónicos de la Tierra. Desde 1900, en los mayores terremotos se han liberado anualmente una energía media cercana a los 450 PJ, que no supone más del 0’03 por ciento del flujo total de calor terrestre. La liberación anual de energía sísmica de todos los terremotos que se han medido alcanza unos 300 GW, que sumada a la energía de esfuerzo invertida en deformaciones irreversibles y al calor generado por fricción a lo largo de las fallas, daría un total próximo a 1 TW, lo cual representa solamente un 2’5 por ciento del flujo de calor global.

Pero este recuento total nos dice poco de la liberación de energía y de la potencia de un solo terremoto. Aunque la mayoría son tan débiles que pasan desapercibidos para las personas, cada año se producen terremotos terriblemente destructivos, que durante el siglo XX han causado más víctimas mortales que las inundaciones, ciclones y erupciones volcánicas juntas.

Mapa de los grandes terremotos registrados durante el mes de Abril del año 2014 y que alcanzó un récord mundial

La energía de estos terremotos se puede calcular a partir de la energía cinética de las ondas sísmicas generadas por la energía liberada en el esfuerzo de la deformación del suelo, pero rara vez se realizan estos cálculos directamente. Lo más frecuente es deducir la energía del terremoto a partir de la medida de su magnitud o de su momento. La medida típica de la magnitud de un terremoto fue establecida por Charles Richter en 1935, como el logaritmo decimal de la máxima amplitud (en micrómetros) registrada con un sismómetro de tensión estándar (Word-Anderson) a 100 Km de distancia del epicentro del temblor.

Desde que en 1942, Richter publicó la primera correlación entre la magnitud de energía sísmica liberada en un temblor, su trabajo (como por otra parte, es de lógica) ha sufrido numerosas modificaciones. La conversión sigue la forma estándar log10 E = a + bM, donde E es la energía liberada en forma de ondas sísmicas (en ergios), M es la magnitud de Richter, y a y b son los coeficientes empíricos que varían entre 6’1 – 13’5 y 1’2 – 2 respectivamente. Otras conversiones alternativas permiten obtener la energía liberada a partir del momento del terremoto, que se define como el producto de la rigidez por el desplazamiento medio de la falla y por la superficie media desplazada.

Resultado de imagen de Grandes terremotos

Los mayores terremotos registrados tienen magnitudes Richter comprendidas entre 8 y 8’9, con liberación de energía sísmica entre 48 PJ y 1’41 EJ. Todos hemos oído en alguna ocasión algún comentario sobre el terremoto de San Francisco de 1906, donde los cálculos basados en tres métodos utilizados en el esfuerzo dieron valores tan distintos como 9’40 y 175 PJ, y con método cinético se obtuvo 2’5 PJ.

Los terremotos, por ser a la vez de breve duración y estar limitados espacialmente, desarrollan potencias y densidades de potencia extraordinariamente altas. La potencia de un temblor de magnitud 8 en la escala de Richter que durase solamente medio minuto, sería de 1’6 PW, y si toda esta potencia estuviera repartida uniformemente en un área de 80 Km de radio, la densidad de potencia sería tan elevada como 80 KW/m2.

Obviamente, tales flujos pueden ser terriblemente destructivos, pero ni las pérdidas de vidas humanas ni los daños materiales que ocasionan los temblores están correlacionados de una manera sencilla con la energía liberada. La densidad de población o de industrias, así como la calidad de las construcciones, constituyen un factor muchísimo más importante para determinar la mortandad o el impacto económico de los mismo. Por ejemplo, el coste en vidas humanas del gran terremoto japonés que en 1923 arrasó Tokio, donde existía una alta densidad de casas de madera, fue unas 200 veces más elevado que el terremoto de San Francisco de 1906 en el que se liberó cuatro veces más energía. También aquí salen perdiendo, como siempre, los pobres.

Por otra parte, no podemos olvidar que la superficie del globo terrestre está dominada por las aguas, y los seres humanos viven en la Tierra seca. Sin embargo, vienen los tsunamis. La predicción de estas catástrofes continúa siendo imposible. Se tienen datos, se localizan las zonas de más frecuencia, y conocen las fallas de desgarre y las inversas, los ciclos, etc., pero el conocimiento es aún escaso para prevenir dónde y cuándo se producirán temblores.

Resultado de imagen de Las olas sísmicas que se pueden provocar por terremotos submarinos

Las olas sísmicas que se pueden provocar por terremotos submarinos se propagan durante miles de kilómetros a velocidades de 550 – 720 Km/h, perdiendo en su viaje muy poca potencia. Estas olas, prácticamente invisibles en el mar, se levantan hasta una altura de 10 metros en agua poco profundas y pueden llegar a golpear las costas con intensidades de potencia en superficie vertical de hasta 200 – 500 MW/m2, y con impactos horizontales de intensidad y potencia entre 10 – 100 MW/m2. Son, pues, mucho más potentes que los ciclones tropicales y causan grandes daños tanto materiales como en pérdida de vidas humanas.

emilio silvera

La Geotectónica

Autor por Emilio Silvera    ~    Archivo Clasificado en La Geotectónica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los grandes accidentes de la superficie terrestre (el fondo marino, los continentes y sus cordilleras) han sido generados por el imparable movimiento de los rígidos bloques de la litosfera. Las grandes placas oceánicas divergen en las crestas dorsales oceánicas, donde surge el magma creando nueva corteza basáltica, que se desliza a lo largo de fallas hasta que finalmente chocan con los bordes continentales donde se hunden en profundas fosas, zonas de subducción, para ser recicladas en el manto. Aunque el recorrido entre la dorsal y la fosa se completa en 107 años, algunas zonas continentales permanecen muy estables, estando cubiertas por rocas cuya edad es casi veinte veces la edad de las más antiguas cortezas marinas, que a su vez, datan de unos doscientos millones de años.

Dondequiera que choquen las relativamente rápidas placas tectónicas oceánicas con las enormes placas continentales, se forman cadenas montañosas en continua elevación. Los ejemplos más espectaculares se subducción y formación montañosa son, respectivamente, la placa del Pacífico sumergiéndose en las profundas fosas del Asia oriental, y el Himalaya, que se eleva por el choque de las placas índica y euroasiática.

En otras zonas de la litosfera, la afloración de rocas calientes del mando debilita inicialmente y agrietan posteriormente la corteza continental, hasta que finalmente, formando nueva corteza oceánica, separan los continentes. Ejemplos de diversos estadios de este proceso son el Mar Rojo, el golfo de Adén y las fracturas del Valle del Rift, en el este de África.

El movimiento de la placa africana es hacia el Norte a unos 2,15 centímetros cada año, lo cual la llevará a unirse al extremo sur de España dentro de 650.000 años, separando el mar Mediterráneo del océano Atlántico.

Este proceso de separación continental parece ser bastante regular. Se observan periodos de formación montañosa por compresión en el intervalo de cuatrocientos a quinientos millones de años, a los que sigue, unos cien millones de años más tarde, un resurgir de la rotura. Esta secuencia se repite en un ciclo supercontinental en el que se alterna la separación de grandes zonas continentales con su agrupamiento.

Hawaii

 

 

   Imagen de la isla de Hawái desde satélite.

Las plumas de magma que perforan la litosfera también crean focos calientes duraderos que están asociados a los volcanes. Las islas Hawai y la cadena de montañas oceánicas que se extienden desde ellas hasta Kamchatka constituyen la manifestación más espectacular de focos calientes que surgen en medio de la veloz placa del Pacífico, entre los que actualmente se encuentran los ríos continuos de lava del volcán Kilauea y la lenta creación de la futura isla hawaiana de Loihi.

Las enormes plumas de magma que afloran desde las capas profundas del manto han dado origen a grandes superficies de lava, la mayor de las cuales es la meseta oceánica de Ontong Java, que cubre dos millones de kilómetros cuadrados, y la meseta del Decán y la siberiana, que son las mayores formaciones basálticas continentales. La generación de estas extensas formaciones afecta de manera importante a la composición de la atmósfera debido a las grandes emisiones de CO2 y SO2 que las acompañan, y que causan elevaciones de la temperatura troposférica y lluvias ácidas, con los consiguientes efectos cruciales en la biota.

Resultado de imagen de Los procesos energéticos de la geotectónica terrestre

Los procesos energéticos de la geotectónica terrestre son complejos. Incluso resulta todavía incierta la contribución relativa de las fuerzas involucradas en el movimiento de las placas tectónicas. Las dos fuerzas más importantes están asociadas a la convección del material caliente del manto y al hundimiento de las zonas frías, con flotabilidad negativa, de la litosfera oceánica en las zonas de subducción. Este último proceso es debido a diferencias de densidad, máxima a una profundidad de doscientos o trescientos kilómetros, que generan un momento de fuerzas en el manto viscoso responsable de la principal fuerza convectiva.

Las velocidades de las placas, al ser estudiadas, se observa que las que cuentan con una mayor proporción de sus bordes en zonas de subducción se mueven a velocidades de 60 a 90 kilómetros por millón de años, mientras que la velocidad de las placas en las que no hay hundimiento de bloques es inferior a 40 kilómetros por millón de años.

Resultado de imagen de Volcanes

Sin embargo, la contribución de la emisión de material del manto no es despreciable, ya que la considerable energía potencial gravitatoria de extensas zonas de rocas calientes hace que se genere nueva corteza marina en las dorsales oceánicas con una velocidad que es, al menos, tres veces superior a la velocidad con que se genera en los planos abisales.

La combinación de ese “tirar” a lo largo de las zonas de subducción y de “empujar” en las dorsales da lugar a velocidades, para las placas más rápidas, de aproximadamente 20 cm/año durante cortos periodos de tiempo. Entre estas placas que se mueven rápidamente se encuentran no sólo los pequeños bloques como Nazca y Cocos, sino también la enorme placa del Pacífico, lo cual indica que la fuerza de arrastre del manto, proporcional al área y a la velocidad, debe ser relativamente pequeña.

La mayor parte del flujo de calor que se ha medido en la Tierra debe atribuirse a la formación de nueva litosfera oceánica.

emilio silvera