sábado, 27 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Desviar un gran Asteroide… Sueños, ilusiones.

Autor por Emilio Silvera    ~    Archivo Clasificado en Meteoritos asesinos    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

TOP 10 CRÁTERES DE ASTEROIDES

Lo que arriba podemos contemplar es sólo las marcas dejadas por la caída de un gran meteorito en el pasado de la Tierra, es decir, lo que queda del Cráter que se formó.

Se habla y no paramos de la posible caída de uno de estos grandes pedruscos que, en realidad, son mucho más que eso, ya que, algunos, pueden tener diámetros de hasta 500 Km., y, con esas medidas, la devastación de la Tierra estaría asegurada. Acordaos de los Dinosaurios, cuando en la Península del Yucatán en México cayó uno de estos viajeros del Espacio.

Resultado de imagen de dinosaurios en el cretacicoResultado de imagen de Extinción de los dinosaurios

      La caída del meteorito parece que fue el detonante para la extinción de estos enormes ejemplares

La edad de las rocas y los análisdis isotópicos mostraron que esta estructura data de finales del período Cretásico,  hace aproximadamente 65 millones de años. La principal evidencia es una delgada capa de iridio encontrada en sedimentos del límite K/T en varios afloramientos de todo el mundo. El iridio es un metal escaso en la Tierra, pero abundante en los meteoritos y asteroides.

Recientemente se ha reafirmado la hipótesis de que el impacto es el responsable de la extinción masiva del Cretásico-Terciario. En efecto, entre las consecuencias del choque destaca la extinción de diversas especies, como lo sugiere el limite K/T aunque algunos críticos argumentan que el impacto no fue el único motivo y otros debaten si en realidad fue un único impacto o si en la colisión de Chicxulub participaron una serie de bólidos que podrían haber impactado contra la Tierra  aproximadamente al mismo tiempo.

Resultado de imagen de Caldera de la Garita en Colorado

Se estima que el tamaño del bólido era de unos 10 km de diámetro y se calcula que el impacto pudo haber liberado unos 400 zettajulios (4 × 1023  julios) de energía, equivalentes a 100 teratones de TNT (1014toneladas) Se estima que el impacto de Chicxulub fue dos millones de veces más potente que la Bomba del Zar, el dispositivo explosivo más potente creado por el hombre jamás detonado, con una potencia de 50 megatones. Incluso la mayor erupción volcánica explosiva que se conoce —la que creó la Caldera de la Garita en Colorado, Estados Unidos—, liberó aproximadamente 10 zettajulios, lo que es significativamente menos potente que el impacto de Chicxulub

Resultado de imagen de dinosaurios del jurásico

Independientemente de lo peligroso que hubiera sido para los humanos convivir en el mismo Tiempo de estos magnificos ejemplares, no podemos negar la belleza salvaje que los Dinosaurios, en todas sus especies poseían.

Imagen relacionada

Fue una suerte para nosotros el que cayera aquel meteorito de 10 Km de diámetro sobre nuestro planeta, ya que, hizo posible que otros animales (sobre todo pequeños mamíferos) evolucionaran para salir de un callejón sin salida, para que 65 millones de años más tarde pudieran aparecer nuestros ancestros. Con ellos aquí, nuestras posibilidades de sobrevivir en la Tierra hubieran sido mínimas. Así que, cuando aparecimos 65 millones de años más tarde, ya se habían extinguido gracias al pedrusco asesino.

Resultado de imagen de Asteroides peligrosos para nosotros

Un astrónomo ruso detecta un nuevo asteroide que podría ser una amenaza para la Tierra. Debido a su tamaño y a su proximidad respecto a la Tierra, debería considerarse potencialmente peligroso. El asteroide LK24 fue descubierto por el astrónomo ruso Leonid Elenin, investigador del Instituto Keldysh de Matemática Aplicada, el 14 de junio, informa TASS. “Su tamaño es de unos 160 metros, y se acercará a la Tierra el 26 de junio a una distancia de 4,7 millones de kilómetros”, según el científico.

La trayectoria de los asteroides cambia según la influencia de los planetas por los que atraviesan de forma cercana. El asteroide LK24 se mueve en una órbita alargada, acercándose primero al Sol, para después alcanzar la órbita de Júpiter. No sabemos si en acercamientos posteriores el asteroide estará más cerca o más lejos de la Tierra”, aseguró el astrónomo.

LO cierto es que, el gran planeta Júpiter atrae hacia sí, con su fuerza de Gravedad, muchos posibles indeseados visitantes de la Tierra y nos sirve de escudo salvador. Claro que no siempre será de esa manera.

Asteroides asesinos

Hasta el momento hemos tenido mucha suerte de tener ahí a Júpiter como escudo salvador que, con la inmensa fuerza de Gravedad que genera, atrae a los posibles visitantes y evita que la Tierra sufra los impactos que podrían acabar con la Humanidad entera. Claro que, no siempre vamos a tener tanta suerte y, el día que nos llegue ese meteorito… ¡Que llegará! Si no estamos preparados… ¿Lo que pase será responsabilidad de todos?

Como se puede negar la ESA a participar en un Proyecto encaminado a destruir a estos posibles visitantes mientras se gastan ingentes cantidades en otras misiones de menos riesgo para la Humanidad?

Resultado de imagen de La Humanidad destruida por un gran Asteroide

Estamos tan panchos, tranquilos y ajenos a ese posible impacto que tiene que llegar. La excusa es que puede tardar el suceso en producirse cientos o miles de años. Sí, es cierto pero, también podría producirse el indeseado suceso en semanas, meses o años y, entonces, ¿qué tiempo tendríamos para evitar la debacle?

Siempre hemos oído decir: “Es mejor prevenir que curar”. Mi padre me decía: “Niño, más vale un por si acaso que un yo creí”. y, el hombre, llevaba toda la razón. Esperemos que los responsables de estos temas también se den cuenta de ello. Es mucho lo que nos jugamos.

De hecho la NASA tiene algún proyecto en marcha para vigilar la llegada de alguno de estos indeseados visitantes. Sin embargo, algunos se presentan sin avisar con el tiempo suficiente.

emilio silvera

Lo mismo que el Universo, todo es dinámico y cambia

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo cambiante    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Maravillosa playa de la isla del océano wallpapers

Así las cosas, dentro de algunos miles de millones de años (o quizás antes), la escena que arriba contemplamos será cosa del pasado y, para cuando eso llegue, esperémos que la Humanidad haya sabido evolucionar lo suficiente como para poder haber buscado otros mundos donde instalarse. Pero, ¿qué pasará antes de que eso llegue? ¿Sabremos estar a la altura de Seres Inteligentes?

Lo misnmo el que el Universo, todo es dinámico y está sujeto al cambio

También nuestras mentes lo son, y a medida que el tiempo transcurre y observamos y tenemos experiencias, investigamos y experimentamos, llegamos a conclusiones más certeras de lo que las cosas son, de cómo es el mundo y todo lo que le rodea, el Universo en fin que, es todo lo que existe y del que en el pasado teníamos una noción muy vaga y, la mayor parte de las veces, equivocada. Ahora, aunque existen algunos rincones oscuros, al menos sabemos lo que son las galaxias, como nacen, viven y mueren las estrellas y qué cometido tienen… También podemos exponer de manera plausible (aunque no certera al 100 por 100), como pudo surgir la vida en el Universo y, más concretamente en nuestro pequeño mundo.

                La engañosa sensación de que son las estrellas las que se mueven cuando las miramos

La Tierra siempre nos pareció vasta e inmóvil, a través de dos millones de años en la prehistoria de la Humanidad nos proporcionó el escenario para poder realizar toda experiencia humana, con un cielo que no parecía otra cosa que un decorado lleno de luces que se movían. La Astronomía y la observación del espacio nos ha conducido a darnos cuenta de lo contrario: El Universo es vasto y el mundo de los hombres es pequeño.

Para cualquiera que siga el movimiento del Sol día tras día, y los movimientos de la Luna y las estrellas noche tras noche, es evidente que la Tierra constituye “el centro del universo” y que los cuerpos celestes giran a su alrededor diariamente, rindiendo homenaje a la morada del hombre. Cada día el Sol atraviesa la bóveda celeste; cada noche, la Luna y las estrellas realizan su ceremoniosa procesión a través de los cielos.

               Aún perduran los nombres de algunas constelaciones de aquellos antiguos Astrónomos

En las épocas antiguas, los hombres quedaban maravillados ante este movimiento nocturno de los cuerpos celestes y se preguntaban cuál podía ser su causa. A medida que seguían las estrellas noche tras noche, llegaron a dar un paso más, advirtiendo que sus formas no cambiaban; las estrellas de la Osa Mayor atravesabanm entonces el cielo formando una unidad, un conjunto inamovible y duradero de tal manera que hoy, aún continúa manteniéndose la figura legendaria del pasado. A partir de hechos como éste, los Astrónomos primitivos decidieron que las estrellas debían encontrarse firmemente atadas a una esfera enorme que rodeaba a la Tierra. La esfera daba una vuelta completa a la Tierra cada veinticuatro horas; cuando volvía a aparecer, las estrellas aparecían con ella. En el centro de esa esfera estaba la Tierra, sólida e inmóvil, situada convenientemente en el eje del Universo.

Algunos Astrónomos de la antigüedad en Grecia creyeron que podía ser la Tierra y no el cielo, quien giraba sobre su eje cada veinticuatro horas. Esta situación podía crear un movimiento aparente del cielo. Las estrellas podían estar fijas en el espacio, pero una persona colocada en una Tierra que rotaba sobre sí misma las vería moverse en la dirección contraria a la suya, de la misma manera en que un paisaje parece que se mueve cuando uno se encuentra subido a un carrusel o tiovivo. Y un Astrónomo griego tuvo incluso el “extraño” pensamiento de que, era la Tierra la que se movía alrededor del Sol mientras giraba sobre su propio eje. Hiparco de Samos le llamaban y, desde luego, en aquel tiempo, nadie le prestó atención, tuvo que venir Copérnico, 700 años más tarde, para que todos apoyaran esa idea que, aún entonces, algunos tacharon de locura.

Está claro que hoy, después de pasado el tiempo de saber lo que sabemos ahora, todas aquellas ideas nos parecen naturales y muy adecuadas para los tiempos que vivían y los conocimientos que, con sus escasos medios, podían alcanzar, y, sin embargo, los pensamientos avanzados eran, por lo general, objeto del idículo y el mayor escarnio sino de algo más grave aún.

Aunque ahora sabemos cómo se mueve la Tierra por el Espacio, para la mayoría de la gente de la época primitiva les parecía una estupidez que la masa de la Tierra pudiera girar sobre su eje como una peonza o viajar por el espacio como si de un barco se tratara. Evidentemente, todo aquello que no fuera más rápido que la Tierra quedaría siempre atrás; una flecha que lanzáramos al aire directamente hacia arriba debería caer al suelo  muchos kilómetros más allá; rocas y árboles deberían salir volando de una Tierra que girase sobre sí misma, de la misma manera que sale despedido el barro de la llanta de una rueda de vagón en movimiento. Desde el mismo momento que nadie había llegado a comprobar esos efectos, la Tierra debía encontrarse estacionaria, y el Sol, la Luna y las estrellas girarían a su alrededor diariamente. Así quedaba demostrado por toda la experiencia Humana.

Incisiones en huesos

Hace 32.000 años, en la era glacial, nuestros antepasados de la Edad de Piedra hacían incisiones en huesos de animales para representar las fases de la Luna. Vivían de la caza y la recolección, por lo que seguían las estrellas y predecían los cambios de estación gracias al cielo. Quizá observaban el Sol y la Luna y los dibujos que formaban las estrellas para conocer las estaciones. Probablemente así era cuando se desarrolló la agricultura y se domesticaron animales, 10.000 años antes de Cristo en Mesopotamia, la tierra fértil entre los ríos Tigris y Éufrates que ahora ocupa Irak. El cielo adquirió aún más importancia como medio para determinar la época apropiada para la siembra y la cosecha. Esas primeras civilizaciones mesopotámicas, especialmente los sumerios hacia 4.000 a. C., fueron las que dieron nombre a las más antiguas constelaciones: son las figuras que hoy conocemos como Leo, Tauro y Escorpio. Estas constelaciones señalaban puntos importantes en el recorrido anual del Sol por el cielo y constituían momentos cruciales en el año agrícola. Y, como los cielos condicionaban su forma de vida, los deificaron.

Stonehenge

Los antiguos observadores del cielo percibieron también que el Sol y la Luna parecen desplazarse atravesando 12 constelaciones que más tarde recibieron el nombre de zodiaco. Decidieron que en ellas residían los dioses del Sol y la Luna. Además, había otras cinco estrellas que recorrían el zodiaco, y cada una de ellas se consideró la residencia de un dios. Hoy sabemos que se trataba de los planetas. El zodiaco era también el lugar donde ocurrían los eclipses, poco frecuentes y muy temidos en los que la Luna se volvía de un siniestro color cobre, o la luz del Sol se apagaba por un tiempo eterno para los observadores. El cielo nocturno dejó así de ser sólo una herramienta para la agricultura y se convirtió en el hogar de los dioses y un libro ilustrado que contaba historias de importantes figuras a una gente que, a falta de escritura, carecía de otros medios para recordarlos.

Loss antiguos observadores del cielo, al no saber lo que eran, llamaban a los planetas vistos desde la Tierra “estrellas errantes”, ya que, se movían y no mantenían una posición fija o estática.

Así, se pudieron dar cuenta de que había un hecho que no estaba de acuerdo con esa imagen de una Tierra fija rodeada por una esfera de estrellas en rotación. Cinco “estrellas” no se comportaban como estrellas ordinarias; en lugar de mantener posiciones fijas en relación con otras estrellas, vagaban por los cielos, unas veces más cerca de una estrella y, otras, más cerca de otra. Los Astrónomos griegos, asombrados por el hecho de que esos cinco misteriosos objetos fueran diferentes a cualquier otra estrella, les denominaron “Errantes”, o planètès, en griego. Aquí fueron conocidos como planetas.

Los Planetas

Hoy día todos sabemos lo que es un planeta que significa un cuerpo esférico de roca y de hierro como la Tierra o Marte, o una gran esfera de hidrógrno como Júpiter o Satuno; pero aquellos astrónomos griegos y otros de su tiempo, que no disponían de telescopios, no tenían ni idea de que aquellos objetos a los que denominaban planetas pudieran ser cuperpos masivos como la Tierra. Para ellos y visto en la distancia, eran sencillamente puntos de luces parecidos a las estrellas y situados lejos, inalcanzables.

Asombrados por el movimiento errátivo de aquellos planetas, los astrónomos primitivos observaban cuidadosamente su posición, año tras año, y después de cierto tiempo, advirtieron que sus movimientos seguían una pauta. Cada planeta o estrella errante, , seguí un camino curvo en el cielo nocturno, que se dirigía primero de Este a Oeste y que, después, regresaba describiendo su curva de Oeste a Este.

Si los planetas se encontraban sujetos a una gran esfera que giraba en los cielos, deberian moverse atravesando el cielo solamente de Este a Oeste, en un recorrido fijo, igual que el resto de las estrellas. Evidentemente, no podían estar fijado a la esfera celestial. Debian estar situados en cualquier otro lugar del espacio. Pero ¿Dónde? ¿Y por qué iban y venían describiendo aquella especie de anillo?

Reflexionando sobre estas preguntas, dos astrónomos griegos llamados Apolonio el uno e Hiparco el otro, tuvieron la ingeniosa idea. Ellos defendían que los planetas estaban atados a la llanta de una rueda que giraba atravesando el cielo. Al girar la rueda por el cielo, el planeta describiría un camino curvo, exactamente como se podía observar en los planetas reales. Y, aunque aquella idea funcionó muy bien al principio… Cuando los astrónomos trataron de realizar la representar de las ruedas que iban rodando por el cielo según los movcimientos observados en los planetas, se encontraron conque era imposible hacer una imagen adecuada a menos que creyesen que las ruedas rodaban sobre otras ruedas. Es decir, un planeta se movía en la llanta de una rueda que, a su vez, se movía en la llanta de otra rueda.

Llegó Ptolomeo, en el s II d. de C. y concluyó que se necesitaba como mínimo cuarenta ruedas situadas sobre otras ruedas para describir los movimientos del Sol, la Luna y los cinco planetas -que por entonces eran conocidos-. Las ruedas rodantes de Ptolomeo parecían funcionar muy bien, pero la gente creía que su modelo celeste era demasiado complicado. Cuando Alfonso X, rey de Castilla y Aragón, oyó hablar del sistema ptolemaico, afirmó:

“Si el Señor me hubiera consultado a mí, le hubiera recomendado algo mucho más sencillo.”

 

 

 

 

Y John Milton, que hubo de enseñar el sistema ptolemaico como profesor de escuela en el siglo XVII, escribió disgustado acerca de Ptolomeo y de sus seguidores:

“Cómo discurren

Para guardar las apariciencias, cómo disponen la Esfera

Con lo Céntrico y lo Excéntrico garabateando sobre

El Ciclo y el Epiciclo, la Rueda en la Rueda…”

 

 

http://web.educastur.princast.es/proyectos/grupotecne/archivos/investiga/107sistema%20de%20ptolomeo.jpg

Sin embargo, el cuadro del Universo que poresentaba Ptolomeo era lo mejor que la mente humana, en aquellos tiempos, había podido construir, toda vez que, no se disponía de los datos más precisos que más adelante daría la observación telescópica de los cuerpos celestes -planetas y estrellas- de nuestra vecindad en el primer momento y mucho más lejos más tarde.

Pero no adelantemos acontecimientos y, fue finalmente, alrededor del 1500, cuando un clérico polaco llamado Copérnico, se hizo con una idea de Aristarco de Samos y, vino a plantear el modelo más cercano a la realidad de que era el Sol, y no la Tierra, el que ocupaba el Centro del Sistema solar y los planetas daban vueltas a su alrededor orbitándo al cuerpo mayor.

                 ¿Cómo imaginar una Tierra sin Gravedad?

Así y todo, a pesar de sus críticos, el modelo de Copérnico echó raíces en la mente de los hombres. Se comenzó a respirar un ambiente más fresco en todo aquel farragoso asunto y, desde luego, allí se entregó la llave que dio lugar a que se pudieran abrir otras puertas cerradas, a nuevas ideas y nuevos conceptos que llegaron de la mano de Kepler y Tycho Brahe y muchos otros después.

Ahora, sabiendo lo que sabemos, nos podemos asombrar de que, aquellos Astrónomos del pasado, hubieran podido creer que los planetas podían ser como Joyas pulidas y brillantes, perfectas e inmutables, mientras que la Tierra estaba formada por una sustancia ordinaria, tales como barro y agua y rocas pero, pasó el tiempo y abrieron los ojos para asombrados ver que, todos aquellos objetos maravillosos brillantes del cielo, eran también, como la misma Tierra, de barro, roca y agua esos materiales simples que van cargado de susctancias complejas que traen la vida si la radiación del Sol las calienta.

Ahora, desde la aventura que comenzó Galileo, hemos podido dejar el ámbito localista de Ptolomeo y Copérnico y nos hemos desplazado hasta un ámbito mucho mayor, en el que podemos hablar de big bang, de supercúmulos de galaxias y fusiones. Ahora sabemos cómo nacen, viven y mueren las estrellas y de qué están hechas, sabemos que algunas estrellas son pequeñas enanas rojas, otras medianas y amarillas y que también, existen estrellas gigantes supermasivas. Hemos llegado a saber que en las estrellas se producen las transiciones de fase de la materia simple en otras formas más complejas, y, sobre todo, hemos podido llegar a descubrir cómo funciona el Universo mediante cuatro fuerzas fundamentales que intervienen en lo que pasa por el todo el Cosmos. De la misma manera, llegamos a descubrir que todo lo grande (galaxias, estrellas y mundos), todo lo que podemos ver, está hecho de pequeños objetos que llamamos partículas y que son algunas elementales y otras complejas pero que, se unen en la manera adecuada para conformar todas las cosas que existen… ¿Incluídos nosotros!

Aunque el tema de hoy es bien conocido por “casi” todos, he pensado que muchos de los jóvenes que por aquí pasan, podrían necesitar tener una idea más amplia de cómo eran antes las cosas y lo que de ellas se pensaba y, de esa manera, me puse a escribir hasta dejar, este sencillo relato de lo que fue y hasta donde hemos podido llegar.

emilio silvera

¿Que dónde estamos? ¡En un Universo dinámico!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Estamos inmersos en una inconmensurable grandeza de variedad y coloridos escenarios en los que están presentes las fuerzas fundamentales del universo y las constantes que hacen posible que, formas de vida de cualquier índole que podamos imaginar, estarán pululando en sus ecosistemas y habitats, sin que nada pueda evitarlo, si lo pensamos bien, amigos míos, parece como si el universo hubiera sabido que nosotros, teníamos que venir.

Dibujo20150317 Principle of the fuzzy time dispersion measurement - nphys3293-f1

John Wheeler propuso que el espaciotiempo en la escala de Planck es una espuma cuántica. Una teoría cuántica de la gravedad que describa esta espuma cuántica debería violar la simetría de Lorentz de la teoría de la relatividad. Para explorar esta espuma cuántica, Giovanni Amelino-Camelia y varios colegas propusieron en 1998 estudiar la relación energía-momento para un fotón que haya recorrido distancias muy grandes, es decir, estudiar si la velocidad de un fotón en el vacío depende de si su energía no es constante.

 

Todos los objetos del Universo son el resulta de fuerzas antagónicas que, al ser iguales, se equilibran y consiguen la estabilidad. Las estrellas son el mejor ejemplo: La Gravedad trata de comprimir a la estrella que, mediante la fusión tiende a expandirse y, la lucha de esas dos fuerzas iguales en potencia crea la estabilidad. Con los átomos ocurre lo mismo,la carga positiva de los protones es  igualada por la negativa de los electrones.

 

             Hemos sabido llegar a los dos extremos desde lo pequeño a lo grande

Hemos podido llegar a unas alturas en el mundo de la exploración científica que, nos posibilita reconocer los impactos de los cambios que se producen con el devenir del tiempo en la Naturaleza y, hemos llegado a comprender que, el Universo, es dinámico. Hacia finales del siglo XIX se había llegado a saber que hubo un tiempo en que la Tierra y nuestro Sistema solar no existían; que la especie humana debía haber cambiado en apariencia y en el promedio de su capacidad mental a lo largo de enormes períodos de tiempo; y que en cierto sentido, amplio y general, el Universo debería estar degradándose, haciéndose un lugar  hospitalario y ordenado. Durante el siglo XX hemos podido ampliar esa imagen de un Universo cambiante.

Delante de nuestros propios ojos podemos contemplar  cambia, por ejemplo, el clima y la topografía de nuestro propio planeta y de todas las especies que en él están presentes en sus distintas formas de vida que, como muestra cercana de lo que ocurre en cualquier otro lugar del Universo, nos sirve de Laboratorio para la observación de la dinámica universal.

Hemos descubierto que todo el Universo de estrellas y galaxias está en un continuo estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan  de otros hacia un futuro que será distinto del presente. Hemos empezado a darnos cuenta de que vivímos en un “Tiempo” prestado. Los sucesos astronómicos catastróficos son comunes; los mundos colisionan. El planeta Tierra ha sufrido en el pasado impactos de cometas y asteroides. Un día se acabará nuestra suerte; el escudo que tan fortuitamente nos proporciona el enorme planeta Júpiter (leer la noticia de más abajo), que guarda los confines exteriores de nuestro Sistema solar, no será capaz de salvarnos.

 

Todos sabemos de las inmensas consecuencias que el impacto de un gran objeto sobre la Tierra tendría. Los cráteres que jalonan la superficie terrestre por todo el planeta nos hablan de lo que pasó en el pasado y,  eso, amigos míos, no tenemos muchas soluciones. Claro que todo es cuestión de tiempo y, al final, hasta nuestro Sol morirá para convertirse, primero en una gigante roja que sobrepasará Mercurio y Venus y se quedará muy cerca de nuestro planeta, para entonces, las temperaturas subirán y los océanos se evaporarán, la vida, tal como la conocemos, ya no estará en este vergel que, durante miles de años, nos ha dado cobijo a nosotros y a otros muchos seres.

Sí, las consecuencias del Caos son impredecibles. Nosotros hemos reconocido los secretos simples del caos y la impredecibilidad que asedian a tantas partes que rodean a nuestro mundo. Sí, es cierto que entendemos que nuestro clima es cambiante pero, no podemos predecir esos cambios. Hemos apreciado las similitudes entre complejidades como ésta y las que emergen de los sistemas de interacción humana -sociedades, economías, ecosistemas…- y, , del interior de la propia mente humana.

Todas esas complejidades tratan de convencernos de que el mundo es como una montaña rusa desbocada, rodando y dando bandazos; que todo lo que una vez hemos tenido por cierto podría ser derrocado cualquier día, sin que nosotros, pobres mortales, podamos evitarlo y, algunos, incluso ven semejante perspectiva como una razón  sospechar de la ciencia, como si produjera un efecto corrosivo sobre los fundamentos de la Naturaleza humana y de la certeza, como si las construcciones del Universo físico y el vasto esquema de sus leyes debiera haberse establecido pensando en nuestra fragilidad psicológica.

 

La ilusión de realidad la hemos experimentado todos en los sueños. Sin embargo, también estando despiertos estamos “viendo” una “realidad” que no existe, sólo está en nuestras mentes. El caso es que, la materia sólida que vemos, en realidad, en su mayor parte, esta conformada por espacios vacíos.

Pero hay un sentido en el que todo  cambio e impredecibilidad es una ilusión. No constituye toda la historia sobre la Naturaleza del Universo. Hay tanto un lado conservador como un lado progresista en la estructura profunda de la realidad. A pesar del cambio incesante y la dinámica del mundo visible, existen aspectos de la fábrica del Universo que son misteriosos en su inquebrantable constancia. Son estas misteriosas cosas invariables las que hacen de nuestro Universo el que es y lo distinguen de otros mundos que pudiéramos imaginar.

Lo mismo que existen los hilos invisibles que mantiene unidas a las galaxias, de la misma manera, hay un hilo dorado que teje una continuidad a través de la Naturaleza. Nos llevan a esperar que ciertas cosas sean iguales en otros lugares del espacio además de la Tierra; que fueron y serán las mismas en otros tiempos además de hoy; que  algunos casos, ni la hiostoria ni la geografía importan y, son como leyes inamovibles, no hechas por el hombre que, según hemos podido llegar a saber, están por encima de todas esas cuestiones terrenales en las que el hombre ha intervenido de una u otra manera. De hecho, quizá sin uns substrato semejante de realidades invariables no podría haber corrientes superficiales de cambio ni ninguna complejidad de materia y mente.

Los secretos más ocultos del Universo están codificados en unos valores numéricos, aparentemente eternos, a los que llamamos “constantes de la naturaleza”.  ellas se encuentran algunas tan famosas como la de la gravitación universal, G, la de la velocidad de la luz, c, o la de Planck, h. Pero, ¿son las “constantes de la naturaleza” realmente constantes? ¿Son las mismas en todas partes? ¿Están todas ellas ligadas? ¿Podría haber evolucionado y persistido la vida si fueran ligeramente distintas? Claro que, estos enigmas nos conducen hasta las fronteras más ignoradas de la ciencia, nos desvela las profundas implicaciones que estas constantes tienen para el destino del universo y el lugar de los hombres en él y, aunque conocemos sus valores, sus números, no podemos dar una explicación de por qué resultan ser esos.

Sí, confinados en un hermoso planeta desde el que, mediante el ingenio y la imaginación, tratamos de escapar para saber, lo que existe fuera de nuestro entorno, en regiones remotas del Universo a las que no podemos llegar. Sin embargo, no perdemos la esperanza de que, algún día…

Y, mientras tanto, nosotros los humanos, una especie que ha logrado la consciencia de SER, estamos aquí confinados en este hermoso planeta que llamamos Tierra y,  ella, tratamos de desvelar esos misterios y otros muchos llenos de secretos que en la Naturaleza subyacen para que los podamos desvelar. Parece mentira que en un planeta igneo, incandescente, podemos ver ahora nuestro hermoso planeta que desde hace cuatro mil millones de años acoge la Vida.

charlesdarwin04.jpg

“Su clima y su topografía varían continuamente, como las especies que viven en él. Y lo que es más espectacular,  hemos descubierto que todo el universo de estrellas y galaxias está en un estado de cambio dinámico, en el que grandes cúmulos de galaxias se alejan de otros hacia un futuro que será muy diferente del presente. Ahora sabemos que, vivimos en un tiempo prestado.”

El mundo que nos rodea es así porque está conformado por esas constantes de la Naturaleza que hacen que las coaas sean como las podemos observar. Le dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la Naturaleza. ¿Recordáis el 137? Ese  puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son,  la razón de sus valores sigue siendo un secreto profundamente escondido.

Y, a pesar de todo esto, el Universo, sigue siendo dinámico y cambiante de tal manera que no deja de evolucionar y, estrellas que hoy podemos ver brillando en el cielo, “mañana” habrán desaparecido siempre dando lugar a otros objetos y otras conformaciones pero, ni la masa ni la energía, habrán cambiado en el Universo.

Pero, y nosotros…¿habremos cambiado?, o, quizá como esas estrellas, tampoco estaremos aquí para  el Universo alcance esa fase final del frío absoluto en la que nada, ni el tiempo ni el espacio se podrá mover y, si eso llega… ¡dónde estarán los pensamientos de tántos?

emilio silvera

El secreto está en las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en las estrellas y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

https://gcdn.emol.cl/exploracion-espacial/files/2015/04/telescopio-hubble-1.jpg

 

Multitud de estrellas de aproximadamente 1 ó 2 millones de años que componen la agrupación estelar llamada R136.en la Nebulosa de la Tarántula.

https://gcdn.emol.cl/exploracion-espacial/files/2015/04/telescopio-hubble-2.jpg

NGC 2174 es una nebulosa que se encuentra ubicada en la constelación de Orión, a 6 millones de años luz de la Tierra.

 La región central de la nebulosa de la Tarántula en la Gran Nube de Magallanes. El cúmulo de estrellas R136 joven y denso se puede ver en la parte inferior derecha de la imagen - NASA, ESA, P Crowther (University of Sheffield)

Aquí, con m´ças detalles. La región central de la nebulosa de la Tarántula en la Gran Nube de Magallanes. El cúmulo de estrellas R136 joven y denso se puede ver en la parte inferior derecha de la imagen – NASA, ESA, P Crowther (University of Sheffield)

Mira las estrellas, como brillan en el cielo.

Mira las estrellas, brillar como luceros.

En ellas está luz,

También los Elementos.

De ellas vinistes tú,

Y la Vida del Universo.

Fusión de deuterio con tritio, por la cual se producen helio 4, se liberan un neutrón y se generan 17,59 MeV  de energía, como cantidad de masa apropiada convertida de la energía cinética de los productos, según la fórmula E = Δm c2.

Todos los elementos de la Tabla Periódica existentes en el Universo se fraguaron en las estrellas, allí el proceso de fusión nuclear hace complejo lo que es sencillo. Todos los seres vivos de la Tierra están hechos de esos elementos y, el 99% corresponde a eso que llamamos CHON (Carbono, Hidrógeno, Oxígeno y Nitrógeno), el otro 1% corresponde a trazas de otros elementos también “fabricados” en las estrellas yu en explosiones de Supernovas.

Resultado de imagen de La Vida en el Universo

Y, siendo así (que lo es), mirando esas imágenes de arriba de lugares distantes cuajado de estrellas (también de mundos), ¿cómo podemos dudar de que la Vida, prolifera por todo el Universo?

emilio silvera

Nebulosas Planetarias y estrellas enanas blancas

Autor por Emilio Silvera    ~    Archivo Clasificado en Nebulosas y estrellas    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 File:Ngc2392.jpg

 

                               NGC 2392 es una nebulosa planetaria en la constelación de Gérminis

En la imagen de arriba contemplamos la Nebulosa del Esquimal o del Payaso, NGC 2392, que forma un conjunto vistoso. Por su curiosa apariencia, que recuerda a la cara de una persona rodeada por una capucha, recibe también los nombres de Nebulosa Esquimal. Se encuentra, según autores, a unos 3000 o/ 5000 años-luz de la Tierra.

La edad de NGC 2392 se estima en unos 10.000 años, y está compuesta por dos lóbulos elípticos de materia saliendo de la estrella moribunda. Desde nuestra perspectiva, unos de los lóbulos está delante del otro.

Se cree que la forma de la nebulosa se debe a un anillo de material denso alrededor del ecuador de la estrella expulsado durante la fase de gigante roja. Este material denso es arrastrado a una velocidad de 115.000 km/h., impidiendo que el viento estelar, que posee una velocidad mucho mayor, empuje la materia a lo largo del ecuador. Por el contrario, este viento de gran velocidad (1,5 millones de km/h) barre material por encima y debajo de la estrella, formando burbujas alargadas. Estas burbujas, de 1 año luz de longitud y la mitad de anchura, tienen filamentos de materia más densa. No obstante, las líneas que van de dentro a afuera en el anillo exterior (en la capucha) no tienen todavía explicación, si bien su origen puede deberse a la colisión entre gases de baja y alta velocidad.

La Nebulosa del Esquimal fue descubierta por William Herschel  el 17 de enero de 1787.

MyCn18-crop.png

                                                               La Nebulosa Reloj de Arena

Una nebulosa planetaria es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado,  expulsada durante la fase de rama asintótica gigante que atraviesan las estrellas gigantes rojas  en los últimos momentos de sus vidas.

Las nebulosas planetarias son objetos de gran importancia en astronpmía,  debido a que desempeñan un papel crucial en la evolución química de las Galaxias,  devolviendo al medio interestelar metales pesados  y otros productos de la nucleosíntesis de las estrellas (como Carbono, Nitrógeno, xígeno, Calcio… y otros).  En galaxias lejanas, las nebulosas planetarias son los únicos objetos de los que se puede obtener información útil acerca de su composición química.

File:NGC6543.jpg

La Nebulosa Ojo de Gato.  Imagen en falso color (visible y rayos X) tomada por el tomada por el Hubble.

La gama y diseños de Nebulosas Planetarias es de muy amplio abanico y, en esa familia de Nubulosas podemos admirar y asombrarnos con algunas que, como la famosa Ojo de Gato (arriba), nos muestra una sinfonía de arquitectónica superpuesta que ni la mente del más avispado arquitecto habría podido soñar.

Enanas Blancas son estrellas misteriosas que, como residuos de otras que fueron, se resisten a “morir” y quedan envueltas en ese manto precioso de nebulosas planetarias durante siglos. Las formas y colores de estas maravillosas figuras han llamado desde siempre la atención de los astrónomos y astrofísicos que se han devanado los sesos para averiguar los mecanismos que allí se han tenido que producir para que esas nebulosas se dejen ver con esas fabulosas formas de exóticas figuras.


fisica

Una enana blanca es una pequeña y densa estrella que es el resultado final de la evolución de todas las estrellas (por el ejemplo el Sol), excepto las muy masivas. Según todos los estudios y observaciones, cálculos, modelos de simulación, etc., estas estrellas se forman cuando, al final de la vida de las estrellas medianas, agotan el combustible de fusión nuclear, se produce el colapso de sus núcleos estelares, y quedan expuestas, cuando las partes exteriores de la estrella son expulsadas al espacio interestelar formar una Nebulosa Planetaria. En el centro de la Nebulosa, queda desnudo un puntito blanco que es, la estrella enana blanca.

El Núcleo se contrae bajo su propia gravedad hasta que, habiendo alcanzado un tamaño similar al de la Tierra , se ha vuelto tan densa (5 x 10 ^8 Kg/m3) que sólo evita su propio colapso por la preseión de degeneración de los electrones (los electrones son fermionesque estando sometidos al Principio de exclusión de Pauli, no pueden ocupar niguno de ellos el mismo lugar de otro al tener el mismo número cuántico y, siendo así, cuando se juntan demasiado, se degeneran y comienzan una frenética carrera que, en su intensidad, incluso frenar la implosión de una estrella -como es el caso de las enanas blancas).

Las enanas blancas se forman con muy altas temperaturas superficiales (por encima de los 10 000 K) debido al calor atrapados en ellas, y liberado por combustiones nucleares previas y por la intensa atracción gravitacional que sólo se ve frenada por la degeneración de los electrones que, finalmente, la estabilizan como estrella enana blanca.

estrellas

Este tipo de estrellas, con el paso del tiempo, se enfrían gradualmente, volviéndose más débiles y rojas. Las enanas blancas pueden constituir el 30 por ciento de las estrellas de la vecindad solar, aunque debido a sus bajas luminosidades de 10 ^-3 – 10 ^-4 veces la del Sol, pasan desapercibidas. La máxima máxima posible de una enana blanca es de 1,44 masas solares, el límite de Shandrasekhar. Un objeto de masa mayor se contraería aún más y se convertiría en una estrella de neutrones o, de tener mucha masa, en un agujero negro.

Visión artística de una enana blanca, Sirio B – Crédito: NASA, ESA y G. Bacon (STScl)

Las enanas blancas son estrellas calientes y pequeñas, generalmente del tamaño de la Tierra, por lo que su luminosidad es muy baja. Se cree que las enanas blancas son los residuos presentes en el centro de las nebulosas planetarias. Dicho de otra manera, las enanas blancas son el núcleo de las estrellas de baja masa que quedan después de que la envoltura se ha convertido en una nebulosa planetaria.

El núcleo de una enana blanca consiste de material de electrones degenerados. Sin la posibilidad de tener nuevas reacciones nucleares, y probablemente después de haber perdido sus capas externas debido al viento solar y la expulsión de una nebulosa planetaria, la enana blanca se contrae debido a la fuerza de gravedad. La contracción hace que la densidad en el núcleo aumente hasta que se den las condiciones necesarias para tener un material de electrones degenerados. Este material genera presión de degeneración, el cual contrarresta la contracción gravitacional.

                         Procyon B, una débil enana blanca.

Al ser estudiadas más a fondo las propiedades de las enanas blancas se encontró que al aumentar su masa, su radio disminuye. A partir de esto es que se encuentra que hay un límite superior la masa de una enana blanca, el cual se encuentra alrededor de 1.4 masas solares (MS). Si la masa es superior a 1.4 MS la presión de degeneración del núcleo no es suficiente detener la contracción gravitacional. Este se llama el límite de Chandrasekhar.

Debido a la existencia de este límite es que las estrellas de entre 1.4 MS y 11 MS deben perder masa para poder convertirse en enanas blancas. Ya explicamos que dos medios de pérdida de masa son los vientos estelares y la expulsión de nebulosas planetarias. Sin embargo, existen otras posiblidades que se puedan dar en este tipo de estrellas que son muy densas. Por ejemplo, si cerca de alguna de ellas reside otra estrella que esté lo bastante cerca, la enana blanca, poco a poco, puede ir robándole masa a la estrela compañera hasta que, llegado a un punto, ella misma se recicla y se convierte en una estrella de Neutrones.

enanas
A esto da lugar la unión de dos enanas blancas o una enana blanca colisionando con una estrella de neutrones

Después de que una estrella se ha convertido en enana blanca, lo más probable es que su destino sea enfriarse y perder brillo. Debido a que las enanas blancas tienen una baja luminosidad, pierden energía lentamente, por lo que pueden permanecer en etapa en el orden de años. Una vez que se enfrían, se vuelven rocas que se quedan vagando por el Universo. Este es el triste destino de nuestro Sol.

La detección de enanas blancas es difícil, ya que son objetos con un brillo muy débil. Por otro lado, hay ciertas diferencias en las enanas blancas según su masa. Las enanas blancas menos masivas sólo alcanzan a quemar hidrógeno en helio. Es decir, el núcleo de la estrella nunca se comprime lo suficiente como alcanzar la temperatura necesaria para quemar helio en carbono. Las enanas blancas más masivas sí llevan a cabo reacciones nucleares de elementos más pesados, es decir, en su núcleo podemos encontrar carbono y oxígeno.


Comparación de tamaños entre la enana blanca IK Pegasi B (centro abajo), su compañera de clase espectral A IK Pegasi A (izquierda) y el Sol (derecha). enana blanca tiene una temperatura en la superficie de 35.500 K.

Allá por el año 1908, siendo Chandrasekhar un avanzado estudiante de física, vivía en Madrás, en la Bahía de Bengala (En cuyo Puerto trabajó Ramanujan), y, estando en  aquella ciudad el célebre científico Arnold Sommerfeld, le pidió audiciencia y se pudo entrevistar con él que, le vino a decir que la física que estudiaba estaba pasada, que se estaban estudiando nuevos caminos de la física y, sobre todo, uno a cuya teoría se la llamaba mecánica cuántica que podía explicar el comportamiento de lo muy pequeño.



blancas
                  El joven Chandrasekhar

Cuando se despidieron Sommerfeld dio a Chandrasekhar la prueba de imprenta de un artículo técnico que acaba de escribir. Contenía una derivación de las leyes mecanocuánticas que gobiernan grandes conjuntos de electrones comprimidos en volúmenes pequeños, por ejemplo ( este caso) en una estrella enana blanca.

A partir de aquel artículo, Chandrasekhar buscó más información y estudió estos fenómenos estelares que desembocaban en enanas blancas. Este tipo de estrella habían descuibiertas por las astrónomos a través de sus telescopios. Lo misterioso de las enanas blancas era su densidad extraordinariamente alta de la materia en su interior, una densidad muchísimo mayor que la de cualquier otra cosa que los seres humanos hubieran encontrado antes. Chandrasekhar no tenía forma de saberlo cuando abrió un libro de Eddintong que versaba sobre la materia, pero la lucha por desvelar el misterio de alta densidad le obligaría fibnalmente a él y a Eddintong a afrontar la posibilidad de que las estrellas masivas, cuando mueren, pudieran contraerse para formar agujeros negros.

astrofisica

De las enanas blancas más conocidas y cercanas, tenemos a Sirio B. Sirio A y Sirio B son la sexta y la séptima estrellas en orden de proximidad a la Tierra, a 8,6 años-luz de distancia, y Sirio es la estrella más brillante en nuestro cielo. Sirio B orbita en torno a Sirio de la misma manera que lo hace la Tierra alrededor del Sol, pero Sirio B tarde 50 años en completar una órbita a Sirio y la Tierra 1 año al Sol.

Eddintong describía como habían estimado los astrónomos, a partir de observaciones con telescopios, la masa y la circunferencia de Sirio B. La masa era de 0,85 veces la masa del Sol; la circunferencia media 118.000 km. Esto significaba que la densidad media de Sirio B era de 61.000 gramos por centímetro cúbico, es decir 61.000 veces mayor que la densidad del agua. “Este argumento se conoce ya hace algunos años -nos decía Eddintong-” Sin embargo, la mayoría de los astrónomos de aquel tiempo, no se tomaban en serio tal densidad, Sin embargo, si hubieran conocido la verdad que conocemos: (Una masa de 1,05 soles, una circunferencia de 31.000 km y una densidad de 4 millones de gramos por cm3), la habrían considerado aún más absurda.

NGC6543.jpg

Arriba la famosa Nebulosa planetaria ojo de Gato que, en su centro luce una estrella enana blanca de energéticas radiaciones en el ultravioleta y que, a medida que se vaya enfriando, serán de rayos C y radio que, dentro de unos 100 millones de años vieja y fria, será más rojiza y se habrá convertido en un cadáver estelar.

Aquellos trabajos de Chandraskar y Eddintong desembocaron en un profundo conocimiento de las estrellas de neutrones y, se llego a saber el por qué conseguian el equilibrio que las estabilizaba a través de la salvación que, finalmente encontraban, en la mecánica cuántica, cuando los electronesdegenerados por causa del Principio de esclusión de Pauli, no dejaban que la fuerza gravitatoria continuara el proceso de contracción de la estrella y así, quedaba estabilizada como estrella de neutrones.

De la misma manera, se repetía el proceso estrellas más masivas que, no pudiendo ser frenadas en su implosión gravitatoria por la degeneración de los electrones, sí que podia frenarse la Gravedad, mediante la degeneración de los Neutrones. Cuando esa estrella más masiva se contraía más y más, el Principio de exclusión de pauli que impide que los fermiones estén juntos, comenzaba su trabajo e impedía que los neutrones (que son fermiones), se juntaran más, entonces, como antes los electrones, se degeneraban y comenzaban a moverse con velocidades relativistas y, tan hecho, impedía, por sí mismo que la Gravedad consiguiera comprimir más la masa de la estrella que, de manera, quedaba convertida, finalmente, en una Estrella de Neutrones.



Enanas Blancas, estrellas misteriosas



Al formarse la estrella de neutrones la estrella se colapsa hasta formar una esfera perfecta con un radio de tan solo unos 10 kilómetros. En este punto la presión neutrónica de Fermi resultante compensa la fuerza gravitatoria y estabiliza la estrella de neutrones. Apenas una cucharilla del material que conforma una estrella de neutrones tendría una masa superior a 5 x 10 ^12 kilogramos.

Los modelos de estrellas de neutrones que se han logrado construir utilizando las leyes físicas presentan varias capas. Las estrella de neutrones presentarían una corteza de hierro muy liso de, aproximadamente, un metro de espesor. Debajo de corteza, prácticamente todo el material está compuesto por núcleos y partículas atómicas fuertemente comprimidos formando un “cristal” sólido de materia nucleica.

Son objetos extremadamente pequeños u densos que surgen cuando estrellas masivas sufren una explosión supernova del II, el núculeo se colapsa bajo su propia gravedad y puede llegar hasta una densidad de 10 ^17 Kg/m3. Los electrones y los protones que están muy juntos se fusionan y forman neutrones. El resultado final consiste solo en neutrones, cuyo material, conforma la estrella del mismo . Con una masa poco mayor que la del Sol, tendría un diámetro de sólo 30 Km, y una densidad mucho mayor que la que habría en un terrón de azúcar con una masa igual a la de toda la humkanidad. Cuanto mayor es la masa de una estrella de neutrones, menor será su diámetro. Está compuesta por un interior de neutrones superfluidos (es decir, neutrones que se comportan como un fluido de viscosidad cero), rodeado por más o menos una corteza sólida de 1 km de grosor compuesta de elementos como el hierro. Los púlsares son estrellas de neutronesmagnetizadas en rotación. Las binarias de rayos X masivas también se piensan que contienen estrellas de neutrones.

universo

Todos aquellos argumentos sobre el comportamiento de las enanas blancas vinieron a desembocar en la paradoja de Edddintong que, en realidad, fue resuelta por el Joven Chandrasekhar en el año 1925 al leer un artículo de R.H. Fowler “Sobre la materia densa”. La solución residía en el fallo de las leyes de la física que utilizaba Eddintong. Dichas leyes debían ser reemplazadas por la nueva mecánica cuántica, que describía la presión en el interior de Sirio B y otras enanas blancas como debida no al calor sino a un fenómeno mecanocuántico : los movimientos degenerados de los electrones, también llamado degeneración electrónica.

Resultado de imagen de La degeneración electrónica

La degeneración electrónica es algo muy parecido a la claustrofia humana. Cuando la materia es comprimida hasta una densidad 10.000 veces mayor que la de una roca, la nube de electrones en torno a cada uno de sus núcleos atómicos se hace 10.000 veces más condensada, Así, cada electrón queda confinado en una “celda” con un volumen 10.000 veces menor que el volumen en el que previamente podía moverse. Con tan poco espacio disponible, el electrón, como nos pasaría a cualquiera de nosotros, se siente incómodo, siente claustrofobia y comienza a agitarse de manera incontrolada, golpeando con enorme fuerza las paredes de las celdas adyacentes. Nada puede deternerlo, el electrón está obligado a ello por las leyes de la mecánica cuántica. Esto está producido por el Principio de esclusión de Pauli que impide que dos fermiones estén juntos, así que, fuerza es, la que finalmente posibilita que la estrella que se comprime más y más, quede finalmente, constituida estable como una enana blanca.

emilio silvera