martes, 19 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Consiguen Luz líquida a temperatura ambiente

Autor por Emilio Silvera    ~    Archivo Clasificado en La Luz esconde muchos secretos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La circulación de polaritones encuentra un obstáculo en un régimen supersónico (arriba) y superfluido (abajo). Polytechnique Montréal.

Por primera vez, un equipo de físicos ha conseguido crear “luz líquida” a temperatura ambiente. La luz se comporta generalmente como una onda y a veces como una partícula, que siempre viaja en línea recta. Sin embargo, en ciertas condiciones extremas, la luz puede actuar igualmente como un líquido que se cuela entre los objetos.

Anteriores investigaciones habían conseguido este efecto en el pasado, pero sólo a temperaturas próximas al cero absoluto, no a temperatura ambiente, como ha logrado esta investigación utilizando una mezcla de luz y de materia.

Esta mezcla de luz y de materia se ha conseguido con la ayuda de polaritones, que son unas  “casi partículas” surgidas del acoplamiento entre una onda luminosa y una onda de polarización eléctrica. Aunque los polaritones no son partículas elementales propiamente dichas, como los fotones o los electrones, se comportan como ellas debido a las reglas de la teoría cuántica.


La circulación de polaritones encuentra un obstáculo en un régimen supersónico (arriba) y superfluido (abajo). Polytechnique Montréal.
Resultado de imagen de luz liquida a temperatura ambiente... controlada
Esto ha tenido como consecuencia forzar a la luz a comportarse como un líquido cuántico superfluido alrededor de un obstáculo, en vez de difundirse como una onda clásica.Esta forma extraña de la luz es a la vez un superfluido, sin ninguna viscosidad, y una especie de condensado de Bose-Einstein, descrito a veces como el quinto estado de la materia. Esta materia extraña permite a la luz circular libremente alrededor de los objetos.

En física, el condensado de Bose-Einstein es el estado de la materia que se da en ciertos materiales a temperaturas cercanas al cero absoluto. En este estado, las partículas se desplazan a una velocidad increíblemente lenta y siguen los principios de la mecánica cuántica, más que de la física clásica, ya que empiezan a comportarse como ondas, en vez de partículas, y ocupan una posición en el espacio que no puede ser determinada con precisión.

A temperatura ambiente

Estas ondas se forman a temperaturas próximas al cero absoluto y no existen sino durante unas fracciones de segundo.

Este asunto es  tanto un superfluo, que tiene cero fricción y viscosidad, y una especie de  Bose-Einstein condensado  –  a veces descrito como el quinto estado de la materia – y permite que la luz fluya en realidad alrededor de los objetos y las esquinas.
Regular de la luz se comporta como una onda, y en ocasiones como una partícula , siempre viaja en línea recta. Es por eso que sus ojos no pueden ver alrededor de las esquinas u objetos. Sin embargo,  en condiciones extremas, la luz también puede actuar como un líquido, y de hecho fluir alrededor de los objetos.
“La observación extraordinaria de nuestro trabajo es que hemos demostrado que la superfluidez puede producirse igualmente a temperatura ambiente con la ayuda de polaritones”, asegura Daniele Sanvitto, del Instituto de Nanotecnología de CNR NANOTEC, en Italia, en un comunicado.Para crear polaritones, los investigadores han construido dispositivo óptico formado por dos espejos, uno enfrente del otro, y recubierto de una delgada película de moléculas orgánicas de sólo 100 nanómetros de espesor (el diámetro de un pelo tiene alrededor de 50.000 nanómetros).

Los científicos han bombardeado el dispositivo con impulsos láser de 35 femtosegundos (un femtosegundo equivale a la milbillonésima parte de un segundo) y de esta forma han obligado a la luz a comportarse como un líquido cuántico superfluido alrededor de un obstáculo, en vez de difundirse como una onda clásica.

De esta forma, hemos podido combinar las propiedades de los fotones (como su masa extremadamente pequeña y su elevada velocidad) con fuertes interacciones en razón de la presencia de electrones en el seno de las moléculas, explica otro miembro del equipo de investigación, Stéphane Kéna-Cohen.

La complejidad del cerebro, nuestra presencia en el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Cerebro y Mente    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“A primera vista el edificio de la ciencia aparenta estar erigido sobre suelo firme y profundos cimientos, como una  unidad congruente, monolítica, dando fe de una sola realidad. Sin embargo, la ciencia es un constructo dinámico, cambiante. Según  Thomas Kuhn, “Parece más bien una estructura destartalada con escasa coherencia”. Es producto de la observación, del razonamiento y también de muchas pasiones, siempre de seres humanos.”

 

 

El estudio biológico del cerebro es un área multidisciplinar que abarca muchos niveles de estudio, desde el puramente molecular hasta el específicamente conductual y cognitivo, pasando por el nivel celular (neuronas individuales),  los ensambles y redes pequeñas de neuronas (como las columnas corticales) y los ensambles grandes (como los propios de la percepción visual) incluyendo sistemas como la corteza cerebral o el cerebelo, e incluso, el nivel más alto del Sistema Nervioso.

Hemos podido llegar a saber que el cerebro, tanto si está despierto como si está dormido, tiene mucha actividad eléctrica, y no sólo por las señales individuales emitidas por una u otra neurona cuando se comunican entre sí. De hecho, el cerebro está envuelto por innumerables campos eléctricos superpuestos, generados por la actividad de los circuitos neuronales de las neuronas que se comunican. Una nueva investigación revela que estos campos son mucho más importantes de lo que se creía hasta ahora. Es posible que, de hecho, representen una forma adicional de comunicación neuronal. Se ha llegado a pensar que, con la evolución del cerebro, quizás algún día, los humanos, podamos transmitir telepáticamente. Sin embargo…

Aunque se han llevado a cabo muchos experimentos sobre la telepatía, su existencia no es aceptada por la gran mayoría de la comunidad científica, entre otras cosas, argumentando que las magnitudes de energía que el cerebro humano es capaz de producir resultan insuficientes para permitir la transmisión de información. No obstante, algunos investigadores señalan que, con la tecnología necesaria, en un futuro será posible interpretar las ondas cerebrales mediante algún dispositivo y enviar mensajes textuales a un receptor de manera inalámbrica, sin embargo descartan que este proceso pueda llevarse a cabo de cerebro a cerebro sin mediación tecnológica. Hasta la fecha, las únicas pruebas de la telepatía son las narraciones testimoniales, pues jamás se ha podido reproducir un fenómeno telepático en laboratorio.

La neurociencia es una de las teorías científicas con más éxito en las últimas décadas. Pero aún, en este apartado del edificio de la ciencia, al verlo de cerca nos encontramos con arenas movedizas. Los especialistas se enfrentan al gran reto de explicar cómo es que los procesos físicos en el cerebro pueden generar o incluso influenciar la experiencia subjetiva. Este es el llamado problema duro de la consciencia.

Resultado de imagen de La complejidad Social de Grupos en la Edad del Hierro

                                                                        Pero… ¡Vayamos mucho más atrás!

Los ladrillos del cerebro: Es evidente que el estímulo para la expansión evolutiva del cerebro obedeció a diversas necesidades de adaptación como puede ser el incremento de la complejidad social de los grupos de homínidos y de sus relaciones interpersonales, así como la necesidad de pensar para buscar soluciones a problemas surgidos por la implantación de sociedades más modernas cada vez.  Estas y otras muchas razones fueron las claves para que la selección natural incrementara ese prodigioso universo que es el cerebro humano.

“La relación de diferentes ácidos grasos con los receptores nucleares les permite controlar diferentes funciones homeostáticas. De esta forma, los ácidos grasos, particularmente los poliinsaturados, se comportan como reguladores de la expresión de genes, una actividad para estos nutrientes absolutamente desconocida décadas atrás. Hemos visto que los ácidos grasos poliinsaturados, en forma directa o indirecta, a través de sus metabolitos, ejercen diferentes efectos en los distintos receptores nucleares identificados hasta ahora. Pueden regular PPARs, RXR, RAR, LXR, u otros receptores, produciendo modificaciones en la sensibilidad a la insulina del músculo y del tejido adiposo, en el contenido de triglicéridos del tejido adiposo, en la actividad de los transportadores GLUT, etc. Además, modulan procesos inflamatorios, disminuyen la división celular, y regular los procesos que conducen a la apoptósis, con lo cual intervendrían en la regulación de procesos malignos celulares. Es aún poco lo que sabemos sobre la relación entre los ácidos grasos dietarios, los receptores nucleares y la regulación de la expresión génica, y es posible que la mejor información sobre estas relaciones abra un nuevo mundo de conocimiento y de posibilidades de acción fisiológica y nutricional para los ácidos grasos.”

 

 

Claro que, para levantar cualquier edificio, además de un estímulo para hacerlo se necesitan los ladrillos específicos con las que construirlo y la energía con la que mantenerlo funcionando.

La evolución rápida del cerebro no solo requirió alimentos de una elevada densidad energética y abundantes proteínas, vitaminas y minerales; el crecimiento del cerebro necesitó de otro elemento fundamental:

Un aporte adecuado de ácidos grasos poliinsaturados de larga cadena, que son componentes fundamentales de las membranas de las neuronas, las células que hacen funcionar nuestro cerebro. La sinapsis es la unión funcional intercelular especializada entre neuronas, en estos contactos se lleva a cabo la transmisión del impulso nervioso

Resultado de imagen de ¿En que radica la facilidad de algunas personas para socializar mucho más fácilmente que otros?

Esas cosas siempre han sido de esa manera, algunos tienen más facilidad para interaccionar con la gente

¿En que radica la facilidad de algunas personas para socializar mucho más fácilmente que otros? Más allá de una cuestión de carácter, existen rasgos biológicos que pueden ayudar a los científicos a entender en donde radica el secreto de la popularidad y, es el cerebro, en donde se encuentra la clave para descubrirlo.

De acuerdo con un estudio realizado por la Dra. en Neurociencias MaryAnn Noonan en de la Universidad de Oxford en Inglaterra, el cerebro de las personas que tienen numerosos amigos consta de seis partes más grandes y mejor conectadas entre sí que el de las personas con pocos amigos.

La Dra. Noonan, presentó el resultado de su investigación en la reunión de la Sociedad de Neurociencias, en donde comentó haber encontrado que los seres humanos en posesión de una gran red de amigos y buenas habilidades sociales tienen ciertas regiones del cerebro que son más grandes, mejor conectadas con otras regiones y, sobre todo, más desarrollados que aquellos que no tienen las mismas habilidades sociales. Los rasgos biológicos marcados pueden ayudar a los científicos a entender en donde radica el secreto de la popularidad.

De todas las maneras, estamos muy lejos de saber sonbre una multitud de funciones y propiedades que están presentes en el cerebro y que, para los expertos, de momento, no tienen explicación. Por ejemplo, ¿por qué maduran antes las niñas que los niños? Las observaciones y los comportamientos de unos y otros nos han llevado a ese razonamiento final, y la verdad es que más allá de ser una opinión subjetiva, podría tener cierto fundamento.

A medida que crecemos nuestros cerebros se reorganizan y eliminan gran parte de las conexiones neuronales, quedándose sólo con aquellas que realmente proporcionan información útil. Esta información es, entre otra, la proveniente de regiones cerebrales que aunque estén lejanas sirven para contextualizar y comprender mejor la nueva información percibida: por ejemplo, escuchar un determinado sonido puede evocar el recuerdo de ciertas emociones, percibir según qué expresiones faciales se asocia con diferentes sentimientos y comportamientos, y una melodía musical está ligado a otros recuerdos de distintos tipos.

Imagen modificada de “Neuronas y células and gliales“, de OpenStax College, Biología (CC BY 4.0).
Otros tipos de glía (además de los cuatro tipos principales) incluyen las células gliales satélite y las células ependimarias.
Las células gliales satélite cubren los cuerpos celulares de las neuronas en los ganglios del SNP. Se piensa que las células gliales satélite apoyan la función de las neuronas y tal vez actúan como una barrera protectora, pero su papel todavía no se comprende bien.
Las células ependimarias, qué recubren los ventrículos del cerebro y el canal central de la médula espinal, tienen cilios parecidos a cabellos que vibran para promover la circulación del líquido cefalorraquídeo que se encuentra dentro de los ventrículos y el canal espinal.

De esta forma, aunque la cantidad general de conexiones será más reducida según vamos madurando, el cerebro conserva las conexiones de larga distancia, que son las más complejas de establecer y de mantener y las realmente importantes para la integración de la información. Con ellas se consigue un procesamiento más rápido y eficiente. Esto explica también por qué la función cerebral no solo no empeora, sino que, en lugar de eso, mejora con los años (por lo menos, hasta los aproximadamente 40 años).

Nuestro sistema nervioso está siempre cambiando, es probable que cuando termines de leer este texto tu cerebro no sea el mismo que al comienzo de la lectura. El sistema nervioso tiene la capacidad de reordenar y crear nuevas sinapsis (conexiones entre neuronas), y gracias a esta característica somos capaces de aprender.

Cada experiencia deja una huella que modifica las sinapsis neuronales y permite que nos adaptemos a los constantes cambios de nuestro entorno, esta es la llamada Plasticidad Neuronal, que permite generar nuevas conexiones entre las neuronas, producto del aprendizaje y su almacenamiento en la memoria. Es decir, ¡el cerebro se transforma con la experiencia!.

Claro que, cuando hablamos del cerebro lo estamos haciendo del objeto más complejo del universo. Tiene tanta complejidad en sí mismo, que sus más de cien mil millones de neuronas nos hablan por sí mismo de ella. Nada en nuestro Universo se puede comparar a un objeto que con sólo un 1,5 Kg de peso, tenga tántas facultades y desarrolle tánta actividad como lo hace el cerebro Humano (el más adelantado y evolucionado que hasta el momento conocemos).

Explicar cualquiera de las “cosas” que están presentes en el cerebro, es, en sí mismo, un complejo ejercicio que supone “todo un mundo”, aunque estémos hablando de un sólo elementos de los muchos que allí están presentes. Por ejemplo…

Dentrita, Soma, Axón, Núcleo, Vaina de Mielina (estructura de una neurona clásica)
Que es la mielina?
La mielina es la capa gruesa que recubre los axones (tallo de las neuronas o células nerviosas), cuya función permite la transmisión de impulsos nerviosos entre distintas partes del cuerpo gracias a su efecto aislante. Se le clasifica como una lipoproteína y se encuentra en el sistema nervioso de los vertebrados.

Guía nutricional para regenerar mielina y nutrir cerebro

¿Cómo se forma la mielina?
La mielina se forma por una sustancia producida por las células de Schwann presentes en las neuronas conectivas y motoras, las cuales se enroscan a lo largo del axón formando la vaina de mielina, la cual es una sustancia que aísla con varias capas de lípidos y proteínas que rodean a los axones y acelera la conducción de los impulsos nerviosos al permitir que los potenciales de acción salten entre las regiones desnudas de los axones o nódulos de Ranvier (lugares donde no se enrosca la mielina o lugares no mielinizados), y a lo largo de los segmentos mielinizados.
Materia blanca y gris del cerebro
La mielina tiene un color blanco, de aquí la frase “materia blanca” la cual se refiere a la zona del cerebro cuyos axones están mielinizados, y la “materia gris”, se refiere a los cuerpos neuronales que no están mielinizados. La corteza cerebral, por ejemplo, es gris, al igual que el interior de la médula espinal (en donde los cuerpos neuronales se disponen en el centro y la mayoría de axones discurren por la periferia).
Spinal nerve-es.svg
Formación del nervio espinal a partir de las raíces dorsal y ventral. (Sustancia gris etiquetada en el centro a la derecha). Conductor de impulsos eléctricos que envían y reciben mensajes de todo tipo al cuerpo. En definitiva podemos comprender que una sóla “cosa”, la mielanina, tiene una importancia inmensa en el cerebro y, su falta, podría producir importantes difunciones.

Dentro de nuestras mentes, en una maraña de neurones y conexiones de signosis que, de alguna manera, están conectadas con el Universo al que pertencemos. Ahí reside la Conciencia de Ser y del mundo que nos rodea. Tras complicados procesos químicos de los elementos que conforman la materia compleja de nuestros cerebros, se ha desarrollado una estructura muy compleja de la que, al evolucionar durante miles de años, se ha podido llegar a generar pensamientos, profundas ideas y sentimientos.

No creo que seámos un único caso en el Universo. ¡Son tántos los mundos y las estrellas! Si en el Cosmos, la Conciencia estuviera representada sólo por nosotros… ¡Qué desperdicio de mundos, qué ilógica razón tendría el Universo para haber accedido a traer aquí, a una sola especie de observadores que, como bien sabemos, estamos expuestos, por mil motivos, a la extinción, y, sería una verdadera dewgracia universal que los pensamientos y los sentimientos desaparecieran para siempre. ¿Qué clase de Universo sería ese? Sin estar presente ese ingrediente de los pensamientos y la consciencia… ¡Sería un Universo inutil!

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El Sistema Solar está situado en uno de los tres brazos en espiral de esta galaxia llamado Orión, a unos 27.000/30.000 años luz del núcleo, alrededor del cual gira a la velocidad de 250 km por segundo, empleando 225 millones de años en dar una vuelta completa, lo que se denomina año cósmico. El Sistema Solar que es un sistema planetario compuesto por ocho planetas que giran en torno al Sol, la única estrella de este sistema.

 

 

 

 

El límite imaginario entre El Sistema Solar y el espacio interestelar se estima que está a 100 U.A., aproximadamente unos 15.000 millones de kilómetros de nuestro Sol. Este límite o frontera recibe el nombre de heliopausa y, como decimos, es imaginario debido a que en el Universo hay más vacío que materia.

En este vacío (espacio interplanetario) hay material proveniente de diferentes elementos de la Galaxia, tanto de cometas y asteroides como de la actividad de los planetas que expulsan partículas que, al no ser retenidas por atmósfera alguna, escapan al espacio. Por tanto, podría decirse que el polvo del espacio interplanetario es una variedad del polvo interestelar.

La Vía Láctea desde la Tierra

La galaxia de la Vía Láctea, o simplemente la Vía Láctea, es una galaxia espiral donde se encuentra el Sistema solar y a su vez se encuentra la Tierra el planeta que acoge a nuestra especie y muchas más. Según las observaciones, posee una masa de 1012 masas solares y es una espiral barrada. Su diámetro medio se estima en unos 100 000 años luz, equivalentes a casi un trillón y medio (1,42×1018) de kilómetros o 9480 millones de unidades astronómicas. Se calcula que contiene entre 200 000 y 400 000 millones de estrellas. La distancia desde el Sol hasta el centro de la galaxia (según las últimas medidas más refinadas) es de alrededor de 25 766 años luz (7900 pc.). es decir, el 52 % del radio total galáctico. La Vía Láctea forma parte de un conjunto de unas cuarenta o cincuenta galaxias llamado Grupo Local, y es la segunda más grande y brillante tras la galaxia Andrómeda (aunque puede ser la más masiva, como lo muestra un estudio reciente).

              Desde la Tierra el núcleo de la Galaxia se ve de la manera que arriba podemos observar

Así las cosas, sabemos que estamos situados en el Brazo de Orión a  25 766 años luz del centro galáctico, y, sabiendo que el diámetro galáctico es de unos 100.000 años luz, nosotros, estamos situados a 24.234 años luz del borde de la galaxia del núcleo hacia abajo, y, sin embargo, existe una extraña curiosidad.

Veamos:

 

El Telescopio Espacial Hubble ha captado galaxias situadas a 13.000 millones de años luz de nuestro Sistema solar, y, sin embargo, nunca parece haberse dirigido hacia ese lugar del borde de la Galaxia situado a sólo  24.234 años luz que nos separa de él para saber que es lo que allí pueda haber.

Resulta extraño que podamos conocer lugares tan lejanos de nosotros y, sin embargo, otros más cerca de nosotros, nos son desconocidos. De todas las maneras, en esto del Espacio, las cosas son poco usuales y se salen de nuestras experiencias cotidianas, las enormes distancias lo hacen todo diferente. Acordáos de aquella misión llamada Voyager 1 y 2

                     La Sonda Voyager 1.

 

La razón de que se lanzasen estas naves cuando se lanzaron (en agosto y septiembre de 1977) era que Júpiter, Saturno, Urano y Neptuno estaban alineados de una forma que sólo se da una vez cada 175 años. Esto permitía a las dos naves utilizar una técnica de«aprovechamiento de la gravedad» por la que eran lanzadas sucesivamente de un gigante gaseoso al siguiente en una especie de versión cósmica de chasquido de látigo. Aun así, tardaron nueve años en llegar a Urano y doce en cruzar la órbita de Plutón. A estas alturas han salido del Sistema Solar y andan por el Espacio Interestelar hacia las profundidades del Cosmos.

El Sol visto desde los planetas del Sistema Solar y Plutón.

En un vacío tan solitario se puede empezar a entender por qué han escapado a nuestra atención incluso los objetos más significativos (las lunas de Plutón, por ejemplo). Y Plutón no ha sido ni mucho menos un caso único a ese respecto. Hasta las expediciones del Voyager, se creía que Neptuno tenía dos lunas. El Voyager descubrió otras seis. Hace algunos años, se creía que había 30 lunas en el sistema solar. Hoy el total es de 9o, como mínimo, y aproximadamente un tercio de ellas se han descubierto en los últimos años. Lo que hay que tener en cuenta, claro, cuando se considera el universo en su conjunto, es que ni siquiera sabemos en realidad lo que hay en nuestro sistema solar.

                                                                     El Cinturón de Kuiper.

 

Después de Plutón   hemos de pasar por El Cinturón de Kuiper. Es una región en forma de disco que se encuentra más allá de la órbita de Neptuno, aproximadamente entre 30 y 100 UA (Unidades Astronómicas) del Sol, que contiene muchos pequeños cuerpos helados. Actualmente se le considera la fuente de los cometas de periodo corto.  Aunque los valores de las estimaciones son bastante variables, se calcula que existen al menos 70.000 “transneptunianos” entre las 30 y 50 unidades astronómicas, con diámetros superiores a los 100 km. Más allá de las 50 UA es posible que existan más cuerpos de este tipo, pero en todo caso están fuera del alcance de las actuales técnicas de detección. Las observaciones muestran también que se hallan confinados dentro de unos pocos grados por encima o por debajo del plano de la eclíptica. Estos objetos se les conoce como KBO’s (Kuiper Belt Objects).

Universo visible, desde 13.700 hasta 180.000 millones de años luz. Aunque la edad del universo sea de 13.700 millones de años, la expansión producida debido al Big Bang hace que el universo más lejano observable se haya alejado mucho más que esa distancia, a pesar de haber recorrido menos de 13.700 millones de años luz (1,37×10^10).

La verdadera distancia comóvil al extremo del universo visible es sobre 46.500 millones de años luz en todas las direcciones desde la Tierra, así el Universo visible se puede considerar como una esfera perfecta con la Tierra en el centro y un diámetro de unos 93.000 millones de años luz/880.000 trillones de km (5.865 billones de UA).​ Hay que notar que muchas fuentes han publicado una amplia variedad de cifras incorrectas para el tamaño del Universo visible, desde 13.700 hasta 180.000 millones de años luz. Aunque la edad del universo sea de 13.700 millones de años, la expansión producida debido al Big Bang hace que el universo más lejano observable se haya alejado mucho más que esa distancia, a pesar de haber recorrido menos de 13.700 millones de años luz (1,37×10^10).

 

 

Imagen que explica la diferencia sobre el dato de la edad del universo (1.37×1010 años luz) en comparación a la estimación sobre el radio real del universo observable (4.65×1010 años luz).4​ La explicación de tal sería que al mirar la radiación de fondo y las galaxias más lejanas se observa el pasado con una mayor densidad de materia por centímetro cúbico del universo.

Illustration showing the history of the cosmos

Siendo el Big Bang la Teoría más aceptada y la que mejor concuerda con la observación, lo cierto es que, nunca hemos podido conocer el principio, es decir, no hemos sido capaces de traspasar esa linea invisible del Tiempo de Planck. ¿Qué pasó más allá de ella en ese infinitesimal espacio de tiempo… ¡No lo sabemos!

Por otra parte, es curioso no conociendo el principio, tampoco conozcamos el final, es decir, ¿que habrá el borde del Universo? Si el Universo tiene un principio debe tener un final y, ese final, supongamos que es un borde formado por las últimas galaxias del Universo… ¿Qué habrá más allá?¿Acaso espacios vacíos que al recorrerlos nos llevaría hasta otros Universo?

Si miramos nuestro universo veremos que todo se repite una y otra vez: Las galaxias y las estrellas, los mundos, los púlsares y estrellas de neutrones, las Nebulosas… Los Agujeros negros y los Cuásares… Siempre las mismas cosas y, de entre ellas, los mundos que, en opcasiones, pueden tener seres vivos. Y, si eso es así (que los es), ¿por qué no otros universos?

Imagen

Una posibilidad real

Por todas estas razones, se debe considerar seriamente la posibilidad de que vivamos en un multiverso. Esto podría ayudar a comprender los problemas de la complejidad y de la sencillez. El hecho de que las leyes y consensos de la física parezcan tan afinados como para permitir la existencia de la vida en ingentes cantidades procedentes de valores extremadamente “improbables”, resulta obvio a partir de la suposición de que nuestro universo es sólo una pequeña parte de un vasto multiverso, en el que las diferentes regiones presentan leyes distintas. Desde esta perspectiva, vivimos en una de las áreas “antrópicamente favorables”. (En cosmología el Principio Antrópico establece que cualquier teoría válida sobre el universo tiene que ser consistente con la existencia del ser humano.)

Esta selección antrópica posee dimensión estrictamente teleológica y no teológica, sin ninguna relación con cualquier tipo de “Diseño Inteligente”. No sería otra cosa que la generalización evidente del efecto de selección que ya debe ser considerado dentro de nuestro propio universo. Cuando se maneja cualquier muestra, resulta imposible no preguntarse si es representativa del conjunto entero, y esta cuestión por supuesto debe extenderse cuando se considera nuestro universo dentro del multiverso.

                            El Hublle ha captado la galaxia más lejana hasta el momento

A pesar de que la luz que emite es extremadamente tenue, los autores del hallazgo consideran que la galaxia, denominada GN-z11, es sorprendentemente brillante, teniendo en cuenta la descomunal distancia que le separa de la Tierra: 13.400 millones de años luz. La medición de este objeto aporta una prueba contundente de que otras galaxias brillantes detectadas en anteriores imágenes del Hubble se encuentran sin lugar a dudas a distancias extraordinarias, lo cual demuestra que los astrónomos están logrando explorar las galaxias más primitivas que se formaron en el Universo.

este hallazgo ubica a GN-z11 a una distancia que hasta ahora se pensaba que sólo podría captar el futuro Telescopio James Webb, cuyo lanzamiento está previsto en 2018. Esperémos que, cuando el nuevo Telescopio esté en funcionamiento, nos pueda llevar mucho más lejos y decirnos, que hay más allá del “borde del Universo”.

emilio silvera