martes, 19 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cómo sería vivir en Marte?

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                    El Cráneo de Marte en el Cráter Gusev

Por muchas razones, el planeta vecino llamó siempre la atención de los pobladores de la Tierra y, con sus “canales” y su misterioso color rojo, despert´ço nuestra curiosidad y nos llevó a querer saber más de lo que allí pasaba. Algunas de las imágenes que pudimos obtener nos hizo -en ocasiones- pensar en una posible antigua civilización marciana.

Todos hemos visto, en más de una ocasión, imágenes del planeta Marte de regiones dispares y de variado contenido. Marte, el cuarto planeta desde el Sol, aparece marcadamente rojizo cuando se observa a simple vista. Tiene una delgada atmósfera compuesta (en volumen) por alrededor del 95% de dióxido de carbono, 2,7% de Nitrógeno, 1,6% de Argón, 0,1% de Oxígeno, 0,1% de monóxido de carbono y pequeñas trazas variables de vapor de agua. La presión atmosférica en la superficie es de unos 6 mbar. Las temperaturas superficiales pueden variar entre 0 y -125ºC, siendo la media de -50ºC. Es relativamente común la presencia de nubes blancas de vapor de agua condensada o de dióxido de carbono, particularmente cerca del terminador  y en latitudes polares.

Existen dos casquetes  de hielo de agua permanentes en los polos, que nunca se funden. En invierno éstos aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado hasta alcanzar los 60º de longitud. Ocurren esporádicamente tormentas de polvo que llegan a cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares.

                                       Algunas de las imágenes tomadas hicieron pensar en ciudades

La superficie de Marte es basalto volcánico con un alto contenido en hierro y, su oxidación, es la responsable de su color característico rojo oxido. El accidente oscuro más prominente, Syrtis Major, dirigida hacia el Este con una inclinación menor que 1º. Existen muchas áreas de dunas de arena rodeando las más grandes los casquetes polares y constituyendo los mayores campos de dunas del Sistema Solar.

Imágenes de la NASA muestran “sombras de árboles” sobre la superficie de las dunas en Marte, que en realidad y según explicaron los expertos,  son caminos de arena y extrañas formaciones ebidas a la especial conformación del terreno y de las tormentas de arena que allí son frecuentes.

Hace ya bastantes años que en la NASA tuvo lugar una reunión a la que asistieron algunos personajes conocidos como el recien fallecido Neil Armstrong, Homer Newel, Arthur Clarke y Wernher von Braun entre otros.  El motivo de tal cita no era otro que comentar sobre la posibilidad de ir a Marte e instalar allí una pequeña Colonia Humana que sirviera como punta de lanza para posteriores viajes.

Se habían estudiado las posibilidades y, tal proyecto podía ser posible si se tomaban las precauciones necesarias y se podía disponer de todo aquello que los colonos, en un primer momento pudieran necesitar. El doctor Von Braun proponía que una colonia residente en la Luna o Marte podría obtener oxigeno a partir de la trituración de las rocas y, como las rocas disponen de grandes cantidades de oxígeno, hasta el punto de que significan -más o menos- la mitad de su peso  (de hecho, la mitad de la masa de todo el mundo es oxígeno). Claro que, el oxígeno existente en las rocas no se encuentra en condiciones de ser respirado porque se halla estrechamente encadenado a otros elementos que componen las rocas.

Después de haber obtenido el oxígeno, continuó Von Braun, se puede haber transportado hidrógeno líquido desde la Tierra y combinarlos para obtener agua. La mayoría del peso del agua reside en los átomos de oxígeno que contiene. Por ejemplo, en un kilogramo de agua, los átomos de hidrógeno pesan únicamente doscientos cincuenta gramos. Transportar material desde la Tierra hasta la Luna resulta muy caro y, no digamos hasta Marte -alrededor de unos cien mil dolores el kilogramo de peso-, y teniendo in situ el oxígeno, el agua sería mucho más acequible hasta que, se pudiera extraer de la que hay en el mismo planeta.

La Agencia espacial china ha probado con éxito una cabina de 300 metros cúbicos que permitirá cultivar vegetales fuera de nuestro planeta, particularmente en Marte o la Luna. El propósito más ambicioso de la exploración espacial será, siempre, el posible asentamiento del ser humano en un planeta distinto a la Tierra, búsqueda que ha requerido de cientos de investigaciones para cubrir tantas o más necesidades asociadas con nuestra supervivencia diaria.

Como hemos dicho antes, trtransportar los materiales necesarios para instalar una colonia en aquel planeta sería de un coste enorme y, una vez allí, tampoco sería nada fácil construir los módulos necesarios para el cobijo de los viajeros y de sus instalaciones de supervivencia que requeiría de unas mínimas condiciones para la supervivencia.

En aquella reunión se habló de enviar dos naves, cada una de ellas transportaría una tripulación de seis personas -tres hombres y tres mujeres- entre las que al menos una, sería un médico y el resto experto en distintas ramas que serían necesarias para obtener de lo que allí encontrarían el mayor rendimiento posible. Las naves viajarían por el sistema de las nodrizas, es decir, cada una de ellas llevaría provisiones para doce personas, y si una quedaba inutilizada, su tripulación pasaría a la otra.

Cada nave tendría algo más de sesenta metros de longitud y su peso sobrepasaría las seiscientas toneladas, de las que más de las dos terceras partes, sería el combustible necesario para el viaje. Posteriormente, se establecería en Fobos el instrumental necesario para producir allí combustible que posibilitaría la vuelta en su momento de una de las naves, mientras que la otra, quedaría en el planeta como primer gran módulo-vivienda con sus compartimentos para producir vegetales, agua y otros materiales precisos para la supervivencia de los viajeros astronáutas colonos.

Todas aquellas elucubraciones que los mencionados personajes hicieron en la reunión, no eran más que eso, elucubraciones y, en la realidad, ir al planeta Marte: “requiere nada más y nada menos que el ensamblaje de una nave de unas 4500 toneladas. O lo que es lo mismo, el equivalente a doce estaciones del tamaño de la ISS o 37 lanzamientos del cohete gigante Saturno V. ¿Cómo es esto posible? La explicación a este misterio la tenemos que encontrar en la despiadada Ecuación de Tsiolkovski , también conocida como la Ecuación del Cohete. Según las rígidas leyes de la física, un ligero aumento en la carga útil de una nave espacial requiere un aumento enorme en la masa inicial. ¿Por qué? Pues porque para lanzar esa carga extra es necesario transportar más combustible, lo que a su vez aumenta la masa inicial del vehículo haciendo necesario usar aún más combustible al lanzamiento.”

         Una nave tripulada a Marte… De monmento, ¡NO!

“Esto está muy bien, pero, ¿por qué una nave marciana debe ser tan grande? La razón es que a la Ecuación del Cohete debemos añadir otro factor que complica el poder viajar a otros planetas: la profundidad del pozo gravitatorio de la Tierra. Abandonar la gravedad terrestre es realmente difícil. Aunque parezca contraintuitivo, una nave situada en órbita baja a unos pocos cientos de kilómetros de altura ya ha recorrido el 73% del camino a otros planetas en términos energéticos. Efectivamente, para poner un objeto en órbita terrestre debemos acelerar hasta los 8 km/s, pero para abandonar la Tierra sólo necesitamos alcanzar los 11 km/s. El problema es que esa misma nave debe frenar para entrar en órbita marciana y luego tiene que aterrizar en la superficie del planeta rojo. Y, por supuesto, posteriormente tenemos que volver a la Tierra, para lo cual debemos llevar el combustible necesario para todas estas maniobras. Si recordamos el principio de la Ecuación del Cohete, entenderemos ahora por qué necesitamos una nave de 4000 toneladas para alcanzar el planeta rojo.” (Fuente: http://www.leycosmica.org/profiles/blogs/dificil-viajar-a-marte#ixzz2Pq9WE2SE).

Para cuando esa imagen de arriba sea posible, tienen que haber pasado mucho, muchos, muchos años durante los cuales nuestra tecnología actual estuviera a un nivel tan alto que nos permitiera construir navez de miles de toneladas en una base en la Luna y disponer de nuevos combustibles sólidos que no hicieran necesaria la ocupación de la mayor parte del volumen de la nave para transportarlo. Que ese nuevo combustible fuera de tal manera y calidad que, con un trozo como una piedra de 5 kilos, se pudiera extraer energía para realizar el viaje y suministrar caloría, alumbrado y demás necesidades energéticas para todo el viaje y llevar una buena remesa para cubrir las necesidades futuras en el planeta.

Mientras que en los primeros años, la colonia se agrandaba más y más para dar cabida a instalaciones y personal obrero y científico, se irían preparando las condiciones necesarias para poder terraformar aquel planeta que, con una atmósfera adecuada podría volver a ser un mundo habitable sin instalaciones artificiales de tan alto costo, no ya sólo en materiales, sino también en algunas vidas que, en estos proyectos siempre suelen perderse dada las dificultades que entrañan tan complejas misiones.

Se han ideado muchas maneras de cultivar plantas en el espacio haciendo pruebas en recintos artificiales preparados para ello y, los resultados, han sido óptimos siendo posible llevar a la práctica dichas instalaciones en un futuro próximo. Tenemos que pensar que, los viajeros-colonos no se pueden alimentar sólo con pasta metidas en tubos ni con pastillas de vitaminas. Además, en las instalaciones, se deben crear las condiciones de gravedad artificial para poder sobrevivir durante largos períodos en aquel planeta y, no digamos de los materiales que harían falta que tendrían que poseer una tecnología tan avanzada que no permitiera dejar pasar la radiación al interior.

Por primera vez alguien ha hecho algunos números serios sobre la descabellada misión Mars One de llevar a cuatro astronautas a Marte en 2023 para no volver. La escena de arriba, al menos por el momento es sólo un sueño. Poder ver humanos en el planeta Marte requiere de muchas cosas que no tenemos de entre las cuales, la más importante son los conocimientos para plantear un viaje seguro y poder construir allí una verdadera colonia segura para los viajeros a ese inhóspito mundo.

En el pasado existió una intensa actividad volcánica en Marte. Tharsis Monts es la mayor región volcánica, estando Olympus Mons situado en el Noroeste, y la vasta estructura colapsada Alba Patera, en el Norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. Hoy no hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros. Por otra parte, dicha actividad volcánica del pasado, creó una gran red de galerias subterráneas por las que corría la lava y, en un hipotético viaje al planeta, algunas de ellas podrían ser aprovechadas como habitat más seguro.

Hay distribuidos cráteres de impacto a lo largo de todo Marte, aunque existe una altiplanicie casi completamente cubierta de cráteres, similar a las altiplanicies de la Luna, que cubre casi la mitad de la superficie del planeta, principalmente en el hemisferio Sur. Muchos de los cráteres de impacto más recientes, conocidos como cráteres de terraplén, tienen grandes pendientes en los bordes de su mantos de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.

Se puede vivir en Marte : Respuestas científicas 4.jpg

Muy lejos quedan ya otros aspectos del planeta Marte que, durante décadas impactó en la imaginación de hombres como Giovanni Virginio Schiaparelli, Percival Lowell y Willian Henry Pickering que, a finales del siglo XIX y principio del XX, insistían en despejar las dudas sobre si existían realmente los Canales que hicieron famosos estos personajes de leyenda. Más tarde, hace más de veinticinco años algo curioso sucedió en las cercanías del planeta Marte. La nave Vikingo 1 de NASA se encontraba volando alrededor del planeta, tomando fotografías de posibles lugares para el aterrizaje de la nave hermana Vikingo 2, cuando descubrió, sobre la superficie, una figura en sombras muy semejante a una cara humana. Una cabeza enorme de unos tres kilómetros de extremo a extremo parecía estar devolviendo la mirada a la cámara desde una región del Planeta Rojo conocida como Cidonia.

Imagínense la sorpresa de los controladores de la misión en el Laboratorio de Propulsión a Chorro, cuando la cara apareció en sus consolas. Sin embargo, la sorpresa duró poco tiempo. Los científicos fácilmente concluyeron que ésta era solo otra meseta Marciana, muy común en los alrededores de Cidonia, solo que esta tenía sombras extrañas que la hacían aparecer como un Faraón Egipcio.

Pero, amigos míos, la nave Mars  Global Surveyor abrió a la ciencia un nuevo horizonte en Marte. De alguna forma, el hombre, debe abordar de nuevo desde el principio la búsqueda de la vida en aquel planeta, lleno de secretos que sólo ahora empiezan a desvelarse después de más de un siglo de trepidantes debates entre astrónomos y aficionados.

La nave encontró inequívocos signos de la presencia de agua líquida en el planeta, algo que los científicos llevaban décadas tratando de confirmar. Es conocido que el agua líquida es el principal requisito para la vida tal como la conocemos nosotros, y si en el planeta rojo existe ese preciado elixir, como se ha podido comprobar mediante las investigaciones de la NASA, las posibilidades de que Marte sea un mundo vivo siguen plenamente vigentes.

Un cráter en suelo marciano que podría haberse formado por corrientes de agua

El examen de las rocas marcianas realizado por la Mars Pathfinder y su juguetón vehículo todoterreno Sojourner confirmó lo que ya tenían claro muchos expertos: el agua había pasado por allí, probablemente hace muchos millones de años, tal como revelan las huellas dejadas por gigantescas corrientes en las zonas de aterrizaje.

imagenes-marte

Estudiando el terreno en muchas de las regiones del planeta, de manera clara y precisa, se puede comprobar la presencia de agua que, al parecer, brota desde el subsuelo. Es preciso no perder de vista el carácter altamente volcánico de Marte que, hace mucho tiempo tuvo una gran actividad de importantes erupciones y, la enorme cantidad de lava que corría por inmensas zonas del planeta, entre otras cosas, debieron oradar el terreno abriendo enormes galerias subterráneas que, en la actualidad, al estar situadas en las profundidades del planeta, deben tener una temperatura mayor que en la superficie, están resguardadas de la radiación, y, si el agua corre por allí, no sería nada extraña que, colonias de bacterias, hongos y líquenes estuvieran bien asentadas a ese nivel interior. Lástima que la misión Curiosity no esté preparada para estudiar esto.

Los ingenios robotizados que hemos enviado y seguimos enviando al planeta Marte están bien para realizar alguna que otra misión. Sin embargo, lo que es buscar signos de vida pasada o presente en aquel mundo… Será cosa de los humanos cuando podamos poner los pies en el suelo de ese mundo hostíl que, con el tiempo, podríamos convertir en fértil y adecuado para instalarnos en él para cuando, los habitantes de la Tierra sean tantos miles de millones que, ni el propio planeta lo pueda soportar.

Si amigos, este sería el cambio de aquel árido planeta cuando lo podamos terraformar.”La primera tarea sería espesar la atmósfera marciana. Mucha de esa atmósfera (y del agua) se cree que se fueron congelando en las capas polares a medida que el planeta se enfriaba. Estas capas están compuestas por hielo seco (bióxido de carbono congelado) y por hielo de agua. Algo de aquella atmósfera puede estar en el permafrost debajo de la superficie. ¿Cómo podríamos hacer para evaporar las capas de hielo y comenzar a elevar la temperatura de la atmósfera?. Tanto el agua como el bióxido de carbono son gases de invernadero. Esto es, atrapan el calor de la luz solar, lo que aumentaría la temperatura superficial. Así se comenzaría un ciclo que fundiría más hielo, calentaría el planeta, e incrementaría tanto la presión del aire como la temperatura. Este proceso se volvería auto-sostenible y podría llevar a un efecto invernadero desbocado. Aún cuando aumentaría la cantidad de bióxido de carbono en la atmósfera, es un paso necesario para el incremento de la presión y de la densidad de la atmósfera.

La luz solar que cae sobre la superficie de un planeta, llega primordialmente como luz visible y ultravioleta. El planeta absorbe esta energía solar, y luego la irradia en forma de energía infrarroja hacia la atmósfera. Los gases de invernadero de la atmósfera funcionan como una capa aislante global, atrapando la radiación infrarroja e impidiendo que escape hacia el espacio.”

        Los cambios que se podrían producir en el planeta serían asombrosos

La Humanidad necesitará en el futuro disponer de nuevos habitats y, no sería mala idea que fuéramos planificando, poco a poco, la llegada de ese día que, aunque aún esté lejos en el futuro…, como todo en el universo, llegará. Si pensamos en los habitantes que tendrá la Tierra dentro de 100 años, nos daremos cuenta de que cada vez serán necesarios más recursos y, nuestro planeta, no los puede generar de manera ilimitada, llegará un momento en el que la presión humana sea tan grande que, ni la Tierra la podrá soportar.

                         A mí, todos estos escenarios me hacen imaginar…¡tantas cosas!

Hoy en día sabemos de los océanos y mares que hace muchos millones de años adornaban el planeta Marte, y, las Imágenes que de aquel planeta hemos podido captar, claramente nos hablan de las correntías de cantarinos torrentes fluviales que, corriente abajo, oradaban las superficie del planeta dejando la huella de su presencia.

Valles Marineris y otros lugares del planeta tienen las pruebas de lo que Marte, en el pasado fue. Puede ser que Lowell se equivocara sobre la existencia de unos canales construídos por la mano de seres inteligentes en aquel planeta. Él concibió “los canales” como obras de ingenieria de una civilización inteligente para transportar el agua, pero quizá no lo estuviera en lo más importante, es decir, en su convicción sobre la existencia de vida en Marte. Es algo que no sabemos aún pero que, probablemente, no tardaremos mucho en saber.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 WISE: Nebulosas Corazón y Alma en Infrarrojo

“¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopeia? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una forma en luz visible que nos recuerda a un clásico símbolo de un corazón. La imagen de arriba, sin embargo , fue realizada en luz infrarroja por el recientemente lanzado telescopio WISE. La luz infrarroja penetra bien dentro de las enormes y complejas burbujas creadas por la formación estelar en el interior de estas dos regiones de formación de estrellas.

Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos desde estas nebulosas, que juntas abarcan unos 300 años luz.” (APOD)

Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazon (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una region de la galaxia donde muchas estrellas se estan formando. IC 1805 (la nebulosa Corazon) es a menudo llamada tambien como la nebulosa del Perro Corriendo, debido obviamente a la apariencia de la nebulosa vista desde un telescopio.

http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

Foto de la estrella Sirio A y B a la izquierda inferior

Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

En el centro de la Nebulosa del Corazón ¿Qué poderes

                                                  Seguimos en la Nebulosa del Corazón (otra región)

Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo, unidas a las de los gases, se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado, poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma; su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.

La masa máxima de las estrellas puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían desde alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.

 

 La estrella Sirio es la más brillante y tiene el doble de tamaño que nuestro Sol

 

* Eta Carinae (NGC 3372) tiene 400 veces el diámetro del Sol inmersa en esa Nebulosa que la esconde dentro del gas y el polvo-

 

* Betelgeuse tiene 1.000 veces el díametro de nuestro Sol

Pero la estrella más grande conocida es:

VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol.

El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, hace posible que los protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por cada kilogramo de hidrógeno quemado de esta manera, se convierten en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta forma, deja “sembrado” de estos materiales el “vacio” estelar.

Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.

 

Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, desde luego, nos podemos quedar asombrados de que puedan existir cosas tan grandes como VY Canis Majoris. Podéis observar en ellas su tamaño en comparación con nuestro Sol.

El Color de las estrellas indican de qué materiales están conformadas y, así se compruena mediante el estudio de sus espectros.

  • Color azul, como la estrella I Cephei
  • Color blanco-azul, como la estrella Spica
  • Color blanco, como la estrella Vega
  • Color blanco-amarillo, como la estrella Proción
  • Color amarillo, como el Sol
  • Color naranja, como Arcturus
  • Color rojo, como la estrella Betelgeuse.

Otra clasificación es a partir de sus espectros, que indican su temperatura superficial. También por el color. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad. También evolución estelar y magnitudes aparentes y absolutas y el tipo espectral con la distancia en a. L., es otra de las clasificaciones.

Después de estas clasificaciones genéricas tenemos otras mas particulares y definidas referidas a estrellas binarias, estrellas capullo, con baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, de bario, de bariones, de campo, de carbono, de circonio, de estroncio, de helio, estrella de la población I extrema, de la población intermedia, de la rama gigante asintótica, estrella de litio, de manganeso, de manganeso-mercurio y, viceversa, estrella de metales pesados, de neutrones, estrellas de quarks (hipotética con densidad intermedia entre la estrella de neutrones y el agujero negro), estrella de referencia, de silicio, de tecnecio, de tiempo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estándar, evolucionada, etc.

La luz proveniente de la superficie caliente del Sol pasa a través de la atmósfera solar más fría, es absorbida en parte, por eso llega a nosotros presentando las características líneas oscuras en su espectro. Las líneas oscuras del espectro del sol coinciden con líneas de los espectros de algunos elementos y revelan la presencia de estos elementos en la superficie solar. Las longitudes de onda de las radiaciones se indican en nanometros (nm).

El Sol

 

 Els Sol

                             De qué está hecho el Sol

La posición e intensidad de las líneas oscuras del espectro solar han permitido establecer que casi las tres cuartas partes de la masa del Sol son hidrógeno, el elemento más simple. Casi todo el resto es helio, el segundo elemento más simple. En suma, entre hidrógeno y helio suman alrededor del 98 por ciento de la masa solar. El 2% restante está compuesto, aproximadamente, por la siguiente proporción de elementos: 0,8% de oxígeno, 0,6% de carbono, 0,2% de neón, 0,15% de nitrógeno, 0,05% de magnesio, y, en menor porcentaje aún, hierro, sodio y silicio.

La composición química de una estrella varía según la generación a la que pertenezca. Cuánto más antigua sea, más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en volumen, la relación es 90% de hidrógeno y 10% de helio.

En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad está directamente relacionada con la edad de la estrella. A más elementos pesados, más joven es la estrella.

 http://animalderuta.files.wordpress.com/2010/10/188091main_d-protoplanetary-082907-5161.jpg

Un equipo japones de astrónomos han descubierto una fuerte correlación entre la metalicidad del disco de polvo protoplanetario y su longevidad. A partir de éste hallazgo proponen que las estrellas de baja metalicidad son menos propensas a tener planetas, incluyendo gigantes gaseosos, debido a la corta vida de los discos protoplanetarios.

La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.

El tipo espectral estelar, conocido también como Clasificación espectral de Harvard, ya que lo comenzó a esbozar Edward Charles Picjering de la Universidad de Harvard en el año 1890, y que perfeccionó Annie Jump Cannon de la misma universidad en 1901, es la clasificación estelar más utilizada en astronomía. Las diferentes clases se enumeran de las más cálidas a frías. Son las siguientes:

 

Clase Temperatura Color Convencional Masa Radio Luminosidad Líneas de absorción Ejemplo
O 28 000 – 50 000 K Azul 60 15 140 000 Nitrógeno, carbono, helio y oxígeno 48 Orionis
B 9600 – 28 000 K Blanco azulado 18 7 20 000 Helio, hidrógeno Rigel
A 7100 – 9600 K Blanco 3,1 2,1 80 Hidrógeno Sirio A
F 5700 – 7100 K Blanco amarillento 1,7 1,3 6 Metales: hierro, titanio, calcio, estroncio y magnesio Canopus
G 4600 – 5700 K Amarillo 1,1 1,1 1,2 Calcio, helio, hidrógeno y metales El Sol
K 3200 – 4600 K Amarillo anaranjado 0,8 0,9 0,4 Metales y óxido de titanio Albireo A
M 1700 – 3200 K Rojo 0,3 0,4 0,04 Metales y óxido de titanio Betelgeuse

 

Las magnitudes Masa, Radio y Luminosidad, en proporción respecto al Sol (Sol=1).

La variedad de estrellas es grande y para los estudiosos fascinantes. Tal diversidad es debida a la evolución que desde su formación tiene cada tipo de estrella en función de su masa y de los gases y polvo cósmico que la forman y los que se crean en su núcleo (horno solar) a miles de millones de grados de temperatura capaces de transformar materiales simples como el hidrógeno hacia una gama más compleja y pesada que, finalmente, mediante la explosión de supernova (más temperatura), arroja al espacio materiales que, a su vez, forman nuevas estrellas de 2ª y 3ª generación con materiales complejos. La vida en nuestro planeta pudo surgir gracias a que en la Tierra había abundancia de estos materiales creados en las estrellas. Podemos decir, sin temor a equivocarnos que nosotros mismos estamos hechos del material creado en las estrellas lejanas que posiblemente, hace miles de millones de años explotó en supernova a millones de años luz de nuestro Sistema Solar.

Pero el Universo se rige por lo que llamamos las Fuerzas y Constantes Fundamentales de la Naturaleza, tenemos que decir que, precisamente, estas constantes son las que tienen el mérito de que las estrellas brillen en las galaxias y de que nosotros estemos aquí para mirar a los cielos y contemplar su belleza.

Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.

 

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.

Las fuerzas fundamentales

Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La

transporta el gravitón.

Las constantes fundamentales


Constante

Símbolo

Valor en unidades del SI

Aceleración en caída libre

g

9,80665 m s-2

Carga del electrón

e

1,60217733(49) × 10-19 C

Constante de Avogadro

NA

6,0221367 (36) × 1023 mol-1

Constante de Boltzmann

K=R/NA

1,380658 (12) × 10-23 J K-1

Constante de Faraday

F

9,6485309 (29) × 104 C mol-1

Constante de los gases

R

8,314510 (70) × J K-1 mol-1

Constante de Loschmidt

NL

2,686763 (23) × 1025 mol-3

Constante de Planck

h

6,6260755 (40) × 10-34 J s

Constante de Stefan-Boltzmann

σ

5,67051 (19) × 10-8 Wm-2 K-4

Constante eléctrica

ε0

8,854187817 × 10-12 F m-1

Constante gravitacional

G

6,67259 (85) × 10-11 m3 Kg-1 s-2

Constante magnética

μ0

× 10-7 Hm-1

Masa en reposo del electrón

me

9,1093897 (54) × 10-31 Kg

Masa en reposo del neutrón

mn

1,6749286 (10) × 10-27 Kg

Masa en reposo del protón

mp

1,6726231 (10) × 10-27 Kg

Velocidad de la luz

c

2,99792458× 108 m s-1

Constante de estructura fina

α

2 π e2/h c

Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces.

La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e indicamos con α, es como hemos dicho antes, una combinación de e, c y h (el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si e, h y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza.

 

Si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas.

Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos,

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.

 http://4.bp.blogspot.com/_vN2CzO8lJI8/TCgyBTdgFLI/AAAAAAAAAC0/3G3ep8WFRGA/s1600/resplandor.jpg

Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Artes que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partierndo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.

Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.

Claro que estamos en el Año Internacional de Luz, y, no debemos perder de vista que la luz tiene tanto importancia para vida como el agua. Sin luz tendríamos un planeta oscuro con un asola nochr eterno, frío de tenebroso, sin esos bellos rincones que se pueden conformar cuando la luz, encide en una montaña, en el bosque, en el horiozonte del Océano, o, simplemente sew refleja en la blanca nieve, en las olas del Mar o en una atronadora catarata.

La luz Natural es un don que nos dio la Natursleza y hace posibre que esa luz y ese calor que el Sol nos envia, haga posible la vida en el planrte, se produzca la tan necesario fotosíntesis, y muchos más beneficiosos fenónomemos que, no siempre sabemos valorar en su justa medida.

emilio silvera

Nuestro lugar en el Universo… ¿Cuál será?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Enormes radares situados por todo el mundo lanzando ondas han podido ser la evidencia inequívoca de que aquí, en la Tierra, existen seres inteligentes que tratan de captar señales venidas del espacio exterior, de vigilar los posibles peligros que nos puedan llegar de mñás allá de los confines del Sistema solar, o, de captar esas señales que denoten la presencia de otros seres inteligentes que, situados en otros mundos lejanos, nos quieren decir alguna cosa o transmitir algún mensaje. Nosotros ya lo hemos intentado y continuamos haciendolo.

¿Cómo serán ellos?

Lo cierto es que hemos llegado a comprender que la vida en la Tierra, toda sin excepción está basada en el Carbono y, como también sabemos que las leyes del Universo son las mismas en todas partes, es lógico pensar que lo que pasó aquí habrá podido pasar allí, en cualquier planeta lejano situado en nuestra Galaxia o en cualquiera de la multitud de galaxias que conforman nuestro universo en el que cientos de miles de millones de mundos, no pueden estar vacíos y carentes de vida.

Antes en otra entrada que titulé “Observar la Naturaleza… da resultados”, comentaba sobre los grandes números de Dirac y lo que el personaje llamado Dicke pensaba de todo ello y, cómo dedujo que para que pudiera aparecer la biología de la vida en el Universo, había sido necesario que el tiempo de vida de las estrellas fuese el que hemos podido comprobar que es y que, el Universo, también tiene que tener, no ya las condiciones que posee, sino también, la edad que le hemos estimado.

 Los filamentos de un remanente de Supernova que, mirándolos y pensando de donde vienen… Te hacen recorrer unos caminos alucinantes que comenzaron con una unmensa aglomeración de gas y polvo que se constituyó en una estrella masiva que, después de vivir millones de alos, dejó, a su muerte, el rastro que arriba podemos contemplar.

Para terminar de repasar la forma de tratar las coincidencias de los Grandes Números por parte de Dicke, sería interesante ojear restrospectivamente un tipo de argumento muy similar propuesto por otro personaje, Alfred Wallace en 1903. Wallace era un gran científico que, como les ha pasado a muchos, hoy recibe menos reconocimiento del que se merece.

Fue él, antes que Charles Darwin, quien primero tuvo la idea de que los organismos vivos evolucionan por un proceso de selección natural. Afortunadamente para Darwin, quien, independientemente de Wallace, había estado reflexionando profundamente y reuniendo pruebas en apoyo de esta idea durante mucho tiempo, Wallace le escribió para contarle sus ideas en lugar de publicarlas directamente en la literatura científica. Pese a todo, hoy “la biología evolucionista” se centra casi porm completo en las contribuciones de Darwin.

Wallace tenía intereses muchos más amplios que Darwin y estaba interesado en muchas áreas de la física, la astronomía y las ciencias de la Tierra. En 1903 publicó un amplio estudio de los factores que hace de la Tierra un lugar habitable y pasó a explorar las conclusiones filosóficas que podrían extraerse del estado del Universo. Su libro llevaba el altisonante título de El lugar del hombre en el Universo.

Wallace propuso en 1889, la hipótesis de que la selección natural podría dar lugar al aislamiento reproductivo de dos variedades al formarse barreras contra la hibridación, lo que podría contribuir al desarrollo de nuevas especies.

Wallace, Alfred Russell (1823-1913), naturalista británico conocido por el desarrollo de una teoría de la evolución basada en la selección natural. Nació en la ciudad de Monmouth (hoy Gwent) y fue contemporáneo del naturalista Charles Darwin. En 1848 realizó una expedición al río Amazonas con el también naturalista de origen británico Henry Walter Bates y, desde 1854 hasta 1862, dirigió la investigación en las islas de Malasia. Durante esta última expedición observó las diferencias zoológicas fundamentales entre las especies de animales de Asia y las de Australia y estableció la línea divisoria zoológica -conocida como línea de Wallace- entre las islas malayas de Borneo y Célebes. Durante la investigación Wallace formuló su teoría de la selección natural. Cuando en 1858 comunicó sus ideas a Darwin, se dio la sorprendente coincidencia de que este último tenía manuscrita su propia teoría de la evolución, similar a la del primero. En julio de ese mismo año se divulgaron unos extractos de los manuscritos de ambos científicos en una publicación conjunta, en la que la contribución de Wallace se titulaba: “Sobre la tendencia de las diversidades a alejarse indefinidamente del tipo original”. Su obra incluye El archipiélago Malayo (1869), Contribuciones a la teoría de la selección natural (1870), La distribución geográfica de los animales (1876) y El lugar del hombre en el Universo (1903).

Pero sigamos con nuestro trabajo de hoy. Todo esto era antes del descubrimiento de las teorías de la relatividad, la energía nuclear y el Universo en expansión.  La mayoría de los astrónomos del siglo XIX concebían el Universo como una única isla de materia, que ahora llamaríamos nuestra Vía Láctea. No se había establecido que existieran otras galaxias o cuál era la escala global del Universo. Sólo estaba claro que era grande.

Wallace estaba impresionado por el sencillo modelo cosmológico que lord Kelvin había desarrollado utilizando la ley de gravitación de Newton. Mostraba que si tomábamos una bola muy grande de materia, la acción de la gravedad haría que todo se precipitara hacia su centro. La única manera de evitar ser atraído hacia el centro era describir una órbita alrededor. El universo de Kelvin contenía unos mil millones de estrellas como el Sol para que sus fuerzas gravitatorias contrapesaran los movimientos a las velocidades observadas.

William Thomson (Lord Kelvin)

En el año 1901, Lord Kelvin solucionó cualitativa y cuantitativamente de manera correcta el enigma de la oscuridad de la noche en el caso de un universo transparente, uniforme y estático. Postulando un universo lleno uniformemente de estrellas similares al Sol y suponiendo su extensión finita (Universo estoico), mostró que, aun si las estrellas no se ocultan mutuamente, su contribución a la luminosidad total era finita y muy débil frente a la luminosidad del Sol. El demostró también que la edad finita de las estrellas prohibió la visibilidad de las estrellas lejanas en el caso de un espacio epicúreo infinito o estoico de gran extensión, lo que contestó correctamente al enigma de la oscuridad.

Lo intrigante de la discusión de Wallace sobre este modelo del Universo es que adopta una actitud no copernicana porque ve cómo algunos lugares del Universo son más propicios a la presencia de vida que otros. Como resultado, sólo cabe esperar que nosotros estemos cerca, pero no en el centro de las cosas.

Wallace da un argumento parecido al de Dicke para explicar la gran edad de cualquier universo observado por seres humanos. Por supuesto, en la época de Wallace, mucho antes del descubrimiento de las fuentes de energía nuclear, nadie sabía como se alimentaba el Sol, Kelvin había argumentando a favor de la energía gravitatoria, pero ésta no podía cumplir la tarea.

En la cosmología de Kelvin la Gravedad atraía material hacia las regiones centrales donde estaba situada la Vía Láctea y este material caería en las estrellas que ya estaban allí, generando calor y manteniendo su potencia luminosa durante enormes períodos de tiempo. Aquí Wallace ve una sencilla razón para explicar el vasto tamaño del Universo.

“Entonces, pienso yo que aquí hemos encontrado una explicación adecuada de la capacidad de emisión continuada de calor y luz por parte de nuestro Sol, y probablemente por muchos otros aproximadamente en la misma posición dentro del cúmulo solar. Esto haría que al principio se agregasen poco a poco masas considerables a partir de la materia difusa  en lentos movimientos en las porciones centrales del universo original; pero en un período posterior serían reforzadas por una caída de materia constante y continua desde sus regiones exteriores a velocidades tan altas como para producir y mantener la temperatura requerida de un sol como el nuestro, durante los largos períodos exigidos para el continuo desarrollo de la vida.”

Vallace ve claramente la conexión entre estas inusuales características globales del Universo y las consiciones necesarias para que la vida evolucione y prospere en un planeta como el nuestro alumbrado por una estrella como nuestro Sol. Wallace completaba su visión y análisis de las condiciones cósmicas necesarias para la evolución de la vida dirigiendo su atención a la geología  y la historia de la Tierra. Aquó ve una situación mucho más complicada que la que existe en astronomía. Aprecia el cúmulo de accidentes históricos marcados por la vía evolutiva que ha llegado hasta nosotros, y cree “improbable en grado máximo” que el conjunto completo de características propicias para la evolución de la vida se encuentre en otros lugares. Esto le lleva a especular que el enorme tamaño del Universo podría ser necesario para dar a la vida una oportunidad razonable de desarrollarse en sólo un planeta, como el nuestro, independientemente de cuan propicio pudiera ser su entorno local:

“Un Universo tan vasto y complejo como el que sabemos que existe a nuestro alrededor, quizá haya sido absolutamente necesario … para producir un mundo que se adaptase de forma precisa en todo detalle al desarrollo ordenado de la vida que culmina en el hombre.”

cluster-galaxias

Hoy podríamos hacernos eco de ese sentimiento de Wallace. El gran tamaño del Universo observable, con sus 1080 átomos, permite un enorme número de lugares donde puedan tener lugar las variaciones estadísticas de combinaciones químicas que posibilitan la presencia de vida. Wallace dejaba volar su imaginación que unía a la lógica y, en su tiempo, no se conocían las leyes fundamentales del Universo, que exceptuando la Gravedad de Newton, eran totalmente desconocidas. Así, hoy jugamos con la ventaja de saber que, otros muchos mundos, al igual que la Tierra, pueden albergar la vida gracias a una dinámica igual que es la que, el ritmo del Universo, hace regir en todas sus regiones. No existen lugares privilegiados.

Siempre hemos tratado de saber, cuál sería nuestro lugar en el Universo, no ya en relación a la situación geográfica, sino referido a esa fascinante historia de la vida que nos atañe a los humanos, la única especie conocida que, consciente de su Ser, libera pensamientos y formula preguntas que, hasta el momento, nadie ha sabido contestar.

emilio silvera