viernes, 29 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Lo que se cree sobre el universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Según la teoría del Big Bang, el Universo se originó en una singularidad espaciotemporal de densidad infinita matemáticamente paradójica. El universo se ha expandido desde entonces, por lo que los objetos astrofísicos se han alejado unos respecto de los otros. Es decir, lo que se ha expandido ha sido el espacio, con lo cual, no se viola el principio de la relatividad de la velocidad de la luz, toda vez que, los objetos, nunca pudieron sobrepasar dicha velocidad.

The massive compact star cluster in NGC 3603 and its surrounding

El Universo

El Universo es todo lo que podemos tocar, sentir, percibir, medir o detectar. Abarca los cosas vivas, los planetas, las estrellas, las galaxias, las nubes de polvo, la luz e incluso el tiempo. Antes de que naciera el Universo, no existían el tiempo, el espacio ni la materia. Esto es lo que podemos deducir sobre el Universo en cualquier lugar que podamos mirar y, ciertamente, es difícil hacerse una idea a que todo esto, pudiera ser de esta manera. Que a partir de un punto de “infinita densidad y energía surgieran tantas cosas… ¡Es difícil de creer! Sin embargo, es la mejor versión que tenemos.
En cualquier enciclopedía nos dirán:

“El universo es la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía y el impulso, las leyes y constantes físicas que las gobiernan. Sin embargo, el término también se utiliza en sentidos contextuales ligeramente diferentes y alude a conceptos como cosmos, mundo o naturaleza.

Observaciones astronómicas indican que el universo tiene una edad de 13,73 ± 0,12 millardos de años (entre 13 730 y 13 810 millones de años) y por lo menos 93 000 millones de años luz de extensión.2 El evento que dio inicio al universo se denomina Big Bang. Se denomina Big-Bang a la singularidad que creó el universo. Después del Big Bang, el universo comenzó a expandirse para llegar a su condición actual, y continúa haciéndolo.

Debido a que, según la teoría de la relatividad especial, la materia no puede moverse a una velocidad superior a la velocidad de la luz, puede parecer paradójico que dos objetos del universo puedan haberse separado 93 mil millones de años luz en un tiempo de únicamente 13 mil millones de años; sin embargo, esta separación no entra en conflicto con la teoría de la relatividad general, ya que ésta sólo afecta al movimiento en el espacio, pero no al espacio mismo, que puede extenderse a un ritmo superior, no limitado por la velocidad de la luz. Por lo tanto, dos galaxias pueden separarse una de la otra más rápidamente que la velocidad de la luz si es el espacio entre ellas el que se dilata.”

Ilc 9yr moll4096.png

La radiación de fondo de microondas

Mediciones sobre la distribución espacial y el desplazamiento hacia el rojo (redshift) de galaxias distantes, la radiación cósmica de fondo de microondas, y los porcentajes relativos de los elementos químicos más ligeros, apoyan la teoría de la expansión del espacio, y más en general, la teoría del Big Bang, que propone que el universo en sí se creó en un momento específico en el pasado.

Observaciones recientes han demostrado que esta expansión se está acelerando, y que la mayor parte de la materia y la energía en el universo son las denominadas materia oscura y energía oscura, la materia ordinaria (barionica), solo representaría algo más del 5 % del total3 (véanse materia oscura y energía oscura).

Los experimentos sugieren que el universo se ha regido por las mismas leyes físicas, constantes a lo largo de su extensión e historia. Es homogéneo e isotrópico. La fuerza dominante en distancias cósmicas es la gravedad, y la relatividad general es actualmente la teoría más exacta para describirla. Las otras tres fuerzas fundamentales, y las partículas en las que actúan, son descritas por el Modelo Estándar. El universo tiene por lo menos tres dimensiones de espacio y una de tiempo, aunque experimentalmente no se pueden descartar dimensiones adicionales muy pequeñas. El espacio-tiempo parece estar conectado de forma sencilla, y el espacio tiene una curvatura media muy pequeña o incluso nula, de manera que la geometría euclidiana es, como norma general, exacta en todo el universo.

La ciencia modeliza el universo como un sistema cerrado que contiene energía y materia adscritas al espacio-tiempo y que se rige fundamentalmente por principios causales.

Basándose en observaciones del universo observable, los físicos intentan describir el continuo espacio-tiempo en que nos encontramos, junto con toda la materia y energía existentes en él. Su estudio, en las mayores escalas, es el objeto de la cosmología, disciplina basada en la astronomía y la física, en la cual se describen todos los aspectos de este universo con sus fenómenos.

Resultado de imagen de Lemaitre y su universo

La teoría actualmente más aceptada sobre la formación del universo, fue teorizada por el canónigo belga Lemaître, a partir de las ecuaciones de Albert Einstein. Lemaitre concluyó (en oposición a lo que pensaba Einstein), que el universo no era estacionario, que el universo tenía un origen. Es el modelo del Big Bang, que describe la expansión del espacio-tiempo a partir de una singularidad espaciotemporal. El universo experimentó un rápido periodo de inflación cósmica que arrasó todas las irregularidades iniciales. A partir de entonces el universo se expandió y se convirtió en estable, más frío y menos denso. Las variaciones menores en la distribución de la masa dieron como resultado la segregación fractal en porciones, que se encuentran en el universo actual como cúmulos de galaxias.

En cuanto a su destino final, las pruebas actuales parecen apoyar las teorías de la expansión permanente del universo (Big Freeze ó Big Rip, Gran Desgarro), que nos indica que la expansión misma del espacio, provocará que llegará un punto en que los átomos mismos se separarán en partículas subatómicas. Otros futuros posibles que se barajaron, especulaban que la materia oscura podría ejercer la fuerza de gravedad suficiente para detener la expansión y hacer que toda la materia se comprima nuevamente; algo a lo que los científicos denominan el Big Crunch o la Gran Implosión, pero las últimas observaciones van en la dirección del gran desgarro.”

Ahora, Roger Penrose, de la Universidad de Oxford y uno de los físicos más brillantes de la actualidad, cree haber detectado “atisbos” de la existencia de otro universo. Uno que existía antes que el Big Bang. Lo cual pone, literalmente, patas arriba las teorías cosmológicas actuales. En un artículo recién publicado en ArXiv.org, Penrose explica que ha llegado a esa extraordinaria conclusión tras analizar, en los datos del satélite WMAP, ciertos patrones circulares que aparecen en el fondo de microondas cósmico y que sugieren, ni más ni menos, que el espacio y el tiempo no empezaron a existir en el Big Bang, sino que nuestro universo existe en un ciclo continuo de “rebotes” que él llama “eones”.

Según Penrose, lo que actualmente percibimos como nuestro universo, no es más que uno de esos eones. Hubo otros antes del Big Bang y habrá otros después. Unas ideas que se oponen frontalmente al modelo cosmológico más extendido en la actualidad: el de universo inflacionario. Según dicho modelo, el universo empezó en un punto de densidad infinita (el Big Bang) hace aproximadamente 13.700 millones de años, se expandió de forma extremadamente rápida durante una fracción de segundo, y ha continuado expandiéndose mucho más lentamente desde entonces, un tiempo durante el cual han ido surgiendo galaxias, estrellas, planetas y, finalmente, los seres humanos.

El tiempo antes del Big Bang Penrose, sin embargo, está convencido de que el modelo inflacionario no cuadra con el bajísimo estado de entropía que hizo posible el nacimiento del universo tal y como lo conocemos. Y tampoco cree que el espacio y el tiempo empezaran a existir en el momento del Big Bang, sino que el Big Bang fue, de hecho, sólo uno entre una serie de muchos acontecimientos similares, con cada uno marcando el inicio de un nuevo “eón” en la historia del universo. Las teorías de Penrose implican que, en un futuro lejano, el universo volverá, de alguna manera, a tener las condiciones que hicieron posible el Big Bang. Según el físico, en esos momentos la geometría del universo será suave y lineal, muy diferente a como es ahora, con abundantes picos y discontinuidades.

«La materia oscura puede ser ‘otra dimensión’, tal vez incluso un importante sistema de transporte galáctico. […]

En Interstellar, la película de ciencia ficción de Christopher Nolan, los protagonistas cruzan un agujero de gusano hallado fortuitamente en las cercanías de Saturno que permite viajar a varios mundos potencialmente habitables fuera del Sistema Solar.  A veces pienso que, hablar de esto es casi lo mismo que hablar de cómo se creó en el Universo, en ambos casos, existen espacios oscuros que nos alejan de la posible verdad de lo que pudo ocurrir o de lo que podrá ser posible.

Esta futura continuidad de forma, afirma, permitirá una transición desde el final del actual eón, con un universo muy expandido e infinitamente grande, al inicio del siguiente, cuando de nuevo se hará infinitamente pequeño para estallar formando el siguiente Big Bang. Pruebas en el fondo cósmico El físico asegura que ha encontrado pruebas que sostienen lo que dice. Y que esas pruebas están en el fondo cósmico de microondas, los ecos lejanos del propio Big Bang, una especie de rescoldo de aquella gran explosión que es detectable, hoy, en cualquier punto del universo. Analizando, junto a su colega armenio Vahe Gurzadyan, siete años de datos del satélite WMAP, que está diseñado precisamente para medir el fondo de microondas, Penrose ha detectado con claridad una serie de “círculos concéntricos”, regiones en el cielo de microondas en los que el rango de temperatura de la radiación es notablemente menor que en otros sitios. Son precisamente esos círculos los que nos permiten “ver” a través del Big Bang, vislumbrando el eón que que existió anteriormente. Los círculos, dicen Penrose y Gurzadyan, son marcas dejadas en nuestro eón por las ondulaciones esféricas de las ondas gravitatorias que se generaron cuando los agujeros negros colisionaron en el eón anterior. Y estos círculos, sostienen, suponen un serio problema para la teoría inflacionaria, según la cual la distribución de las variaciones de temperatura en el cielo deberían ser Gaussianas, o aleatorias, en lugar de tener estructuras discernibles en su interior. Si Penrose tiene razón, cambiará por completo la forma que tenemos de percibir el universo en que vivimos, su nacimiento y su destino final.

Amigos míos, lo cierto es que, seguros lo que se dice seguros… ¡No lo podemos estar! Ya que, los modelos actuales del Universo, aunque algunos, como el Big Bang, parece que se puede acercar a esa realidad que buscamos, lo cierto es que, nos deja muchas zonas oscuras y, afirmar nada podemos.

emilio silvera

La maravilla de los cuantos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

LA MARAVILLA DE LOS CUANTOS

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…

Figura animada que representa un rayo de luz incidiendo sobre un cuerpo negro hasta su total absorción. l nombre cuerpo negro fue introducido por Gustav Kirchhoff  en 1862 y su idea deriva de la siguiente observación: toda la materia emite radiación electromagnética cuando se encuentra a una temperatura por encima del cero absoluto. La radiación electromagnética emitida por un cuerpo a una temperatura dada es un proceso espontáneo y procede de una conversión de su energía térmica en energía electromagnética. También sucede a la inversa, toda la materia absorbe radiación electromagnética de su entorno en función de su temperatura.

 La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas  producidas por las vibraciones de las partículas cargadas  que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.

 Ley de Planck para cuerpos a diferentes temperaturas.

Curvas de emisión de cuerpos negros a diferentes temperaturas comparadas con las predicciones de la física clásica anteriores a la ley de Planck.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

                       Acero al  “rojo vivo”, el objeto está radiando en la zona de la luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

E = hv

Donde E es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Ni que decir tiene que, desde entonces, la fórmula ha sido mejorada y, como siempre pasa, los avances que son imparables van modificando las teorías originales para perfeccionarlas y que se ajusten mucho más a la realidad que la Naturaleza nos muestra cuando somos capaces de descubrir sus secretos.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

En mecánica cuántica, el comportamiento de un electrón en un átomo se describe por un orbital, que es una distribución de probabilidad más que una órbita.  El electrón (e), es una partícula subatómica con una carga eléctrica elemental negativa.Un electrón no tiene componentes o subestructura conocidos, en otras palabras, generalmente se define como una partícula elemetal.

En la Teoría de cuerdas se dice que un electrón se encuentra formado por una subestructura (cuerdas). Tiene una masa que es aproximadamente 1836 veces menor con respecto a la del protón.  El miomento angular  (espín) intrínseco del electrón es un valor semientero en unidades de ħ, lo que significa que es un fermión.  Su antipartícula es denominada positrón: es idéntica excepto por el hecho de que tiene cargas —entre ellas, la eléctrica— de signo opuesto. Cuando un electrón colisiona con un positrón, las dos partículas pueden resultar totalmente aniquiladas y producir fotones y rayos gamma.

los leptones

Los electrones, que pertenecen a la primera generación de la familia de partículas de los leptones y participan en las interacciones fundamentales, tales como la Gravedad, el electromagnetismo y la fuerza nuclear débil. Como toda la materia, posee propiedades mecánico cuánticas tanto de partículas como de onmdas,   de tal manera que pueden colisionar con otras partículas y pueden ser difractadas como la luz. Esta dualidad se demuestra de una mejor manera en experimentos con electrones a causa de su ínfima masa. Como los electrones son fermiones, dos de ellos no pueden ocupar el mismo estado cuántico, según el Principio de exclusión de Pauli. Por este motivo se forman las estrellas enanas blancas y de neutrones al final de la vida de las estrellas de poca masa.

Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.

Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.

Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

http://www.ecbloguer.com/cienciaaldia/wp-content/uploads/2012/11/luz-onda.jpg

                     ¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.

Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.

Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal. Así, los extraterrestres del cuarto planeta a partir de la estrella SIL, cuando descubran esa constante, el resultado sería exactamente el mismo que le dio a Plancl, es decir, el Universo, funciona igual en todas partes.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.

Quizá funcione bien, pero ¿dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos,  incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!

La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecanocuánticos.

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.

Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?

Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.

emilio silvera